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Abstract
Three statistics on lattice paths are considered: the major index, the major+lesser index, and
a new statistic called 001-110. Three generating functions for lattice paths which lie between
two parallel lines are given. Moreover, a conjectured decomposition of the lattice paths implies
stronger generating function results.

1 Introduction

It is well-known [1, 13] that integer partitions may be studied from the point of view of lattice paths,
which themselves are words of 0’s and 1’s. Under a natural bijection, the simplest statistic on words,
the inversion number (inv), corresponds to the integer being partitioned. However, several other
statistics on words are known to have the same distribution as inv, for example maj. In this paper
we consider two statistics on words, 001 — 110, and maj + comaj, along with maj. The 001 — 110
statistic has the same generating function as inv or maj (see Theorem 2.2), while maj + comaj does
not (see Theorem 2.3). A simple bijection proving that inv, maj, and 001 — 110 are equidistributed
is given in §2.

These three statistics (maj, maj+ comaj, and 001 — 110) have some remarkable properties related
to a special set of lattice paths. These lattice paths move generally east along a grid of parallel lines.
The three statistics have a conjectured multiplicative decomposition (see Conjecture 3.2), which allows
for explicit alternating sums for each of the three generating functions ((5),(7), and (9)).

A special case of these lattice paths was considered by Andrews et al. [3], who also found an alter-
nating sum for the generating function of integer partitions with certain hook difference conditions.
This is equivalent to finding the generating function for the 001 — 110 statistic, see (7).

Borwein conjectured [2] the positivity of the coefficients of similar alternating sums. The only
difference is that his sums have a modified quadratic power of q. A natural idea [4] to prove this
conjecture is to weight the paths by an appropriate statistic, thus yielding the Borwein alternating
sum. In this paper we give the modification of 001 — 110 to maj and maj + comayj, although neither
settles the Borwein conjecture.

In §4-6 we give explicit bijections which prove a positive generating function for each of the three
statistics. Some remarks and a limiting case are given in §7.

All notation (for g-binomial coefficients, ¢-shifted factorials) is consistent with that found in [8].

2 ¢-weights of lattice paths

In this section we explicitly give three bijections from the set of integer partitions to lattice paths.
These three bijections, which are defined similarly, prove that inv = mayj, inv = 001 — 110, and
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a statistic of Burge is equidistributed with inv. We also state MacMahon’s generating function for
maj + comaj, see Theorem 2.3.

First we set some notation. Let R(m,n) denote the region {(z,4)|0 < z < m,0 < y < n} in R%
R(m,n) can be regarded as a union of mn unit squares indexed by (i, j), where i and j are integers
satisfying 0 <7 <m—1,0 < j <n-—1. Each unit square in a rectangle is indexed by the coordinates
of its lower-left corner. For a given (7, j), the upward hook in an m x n rectangle determined by the
square (7,7) is the set {(7,1) : j <l <n}U{(k,J): i<k <m}.

Let m = myms---m be a partition whose Ferrers diagram lies inside an n x m rectangle. This
implies I < n and m < m. The Frobenius notation of the partition = is

a1 as - ap
by by .- by |
where a; = m; —i and b; = |[{j : j > 1, and m; > i}|. We associate to m the subset of

{(Cll, bl), ((127 bz), ey ([lk, bk)}

of unit squares in R(m,n). We can represent the subset corresponding to m by marking the squares
in R(m,n). Note that each upward hook contains at most one marked square, since a;’s (b;’s resp.)
are decreasing. Conversely, any configuration of marked squares will correspond to a partition, if each
upward hook contains at most one marked square.

We will use the marked squares of 7 to define three bijections from partitions to lattice paths.

We set some notation for lattice paths. A lattice path L = (e1,¢a, ..., ¢min) from (0,0) to (m,n)
is a sequence of m 0’s and n 1’s. We let 0 represent a unit horizontal step and 1 a unit vertical step.
We let Ly n) denote the set of lattice paths from (0,0) to (m, n).

A unit square (7, 7) is called a corner cell of L, if two sides of (i, j) coincide with L. A corner cell
(¢,7) of L is called a 0l-corner cell of L, if ¢;y;41 = 0 and ¢j4542 = 1. A corner cell (7,j) of L is
called a 10-corner cell of L, if ¢;1;41 =1 and ¢;4j42 = 0. A Ol-corner cell (¢, j) of L is called ezposed
if ¢;y; = 0. A 10-corner cell (i, ) of L is called exposed, c¢;y; = 1. We prepend 0 to L, so that an
initial 01 i1s exposed. A corner cell, 01- or 10-, which is not exposed, is called unezposed.

Definition 2.1 Letm = Zl 2“2 Z‘k be a partition whose Ferrers diagram lies inside an n xm
L by e by

rectangle. We define lattice paths v1(7) and () as follows:

1. 1(m) is the unique lattice path L in R(m,n) from (0,0) to (m,n) whose 10-corner cells are
{(ala bl): (llg,bg), sy (aka bk)}

2. iq(m) is the unique lattice path L in R(m,n) from (0,0) to (m,n) whose exposed corner cells,
01- or 10-, are {(a1,b1), (az,b2),..., (ak, bx)}.

The map 1, can be constructed by drawing two rays on each marked square: one easterly, ema-
nating from the north edge of the 10-corner cell; and one southernly, emanating from the west edge
of the 10-corner cell. The lattice path L is obtained by taking a union of these line segments, see
Figure 1.

The fact that 12 is well-defined requires some thought. Consider the example of ¢5(m) in Figure 1.
The only occurrences of 110 or 001 in the word for L must occur at the marked cells. A path always
has a 0 prepended, so starting at the origin I must alternate 1010 - - -. Once this staircase path (as in
Figure 1) reaches the horizontal line of the south edge of the first marked square, it must move across,
appending 00 ---01, making the first marked square an exposed Ol-corner cell. If the first marked
square were above the diagonal, the path would move up when it reaches the vertical line of the west
edge of the marked square, appending 11---10, an exposed 10-corner cell. As the path moves to the
next marked square, staircases are again required, followed by the appropriate 00---01 or 11---10.



It is well-known [1] that the generating function for partitions inside an m x n rectangle is given

by
|ﬂ_|_ m+n
> =[]
TeR(m,n) q

In terms of the Frobenius notation one has |7| = (a1 + b1+ 1)+ -+ (ag + b + 1). If ¢1(w) = L =
(e1,¢2,. .., Cmyn), the 10-corner cells (i, 7) yield ciyj41 = 1, ciyjt2 = 0, a descent in position i + j.
In terms of the major index maj [6], we have

|| = maj(L),

thus % is a bijection from inv to maj proving that

o gmei = | T
m q'

LeL(m,n

The bijection 15 similarly proves a new statistic is Mahonian. From the definition of the exposed
cells, we count descents 10 when preceded by a 1, (110), and we count ascents 01 when preceded by
a 0, (001). We call this statistic the 001 — 110 statistic,

001 —110(L) = > i

i>1, (ci—1,c4,ci41)=(1,1,0) OT (0,0,1)

A list of all lattice paths from (0,0) to (2,2) is given below (including the prepended 0), with their
001 — 110 statistics.

00011
00101
ojotto 1
01001
01010
01100

N O W = N
w

Note that the generating function is 1 4+ ¢' +2¢? + ¢ + ¢* = [;l]q.

Theorem 2.2 We have

Z g001-110(L) — m+n
m .

LEL(m,n) 1

Burge [5] considers a different bijection 1, between 7 and a lattice path L. The path L =
Yp(7) € L(m,n) in Burge’s correspondence is the unique lattice path whose 10-corner cells in the
upper diagonal region (the cells (i,7)’s with ¢ < j) are those in {(a1,b1), (az,b2),...,(ak, bg)},
and whose Ol-corner cells in the lower diagonal region (the cells (i,j)’s with ¢ > j) are those in
{(&1,51), (Ctz, bz), ) (ak,bk)}~
Example. Let (m,n) = (3,2). If 7 is an empty partition, then ¢ (7) = (0,0,0,1,1), ¢a(7) =

0
(1,0,1,0,0), ¥(r) = (1,0,1,0,0). =1 = [ 0 ] then ¢1(r) = (1,0,0,0,1), ¥o(7) = (0,1,0,1,0),

¥p(m) = (0,1,1,0,0). Note that the prepended 0 makes the square (0,0) in 1/)2([ 8 ]) =(0,1,0,1,0)

an exposed 0l-corner.



(11,9) (11,9) (11,9)

(0,0) (0,0) (0,0)

Figure 1. (m,n) = (11,9), 7 = [ g 2 g f ], 1 (), Pa(m), ¥p(m) respectively.

We also consider a third statistic on lattice paths, which MacMahon [13] called the greater+lesser
index,
(maj + comayj)(L) = Z i.
i>1, cieip

The maj + comaj statistic is computed below on all 6 lattice paths from (0,0) to (2, 2).

0011 2
0101 14+2+3
0110 1+3
1001 1+3
1010 14243
1100 2

so the generating function is 2¢% + 2¢* + 2¢°.

Let . ) )
], - (]
], 14497 |2 42
and note that [g]; =2¢% + 2¢* + 245.

MacMahon [13] found the following generating function, which we shall need.

Theorem 2.3 We have .
T gmaiteomai) = [m + ”] ,
q

m
LeL(m,n

A more general result is given in Theorem 1 of [9], which implies

E Imaj(L)ycomaj(L) — " m+n—1 + ym m+n—1
n n—1 ’
LEL(m)n) Ty Ty

Moreover (see [9]) we have

| P I Flzy9) (1)

m%o [m : n] q (Qf(vq)m(qy)" (zy9%; 4% oo

so that the power series coefficients of F(z,y, q) are non-negative.



3 k-good paths, k-bad paths and k-types

In this section we consider how a lattice path L intersects a certain set of parallel lines. Paths which
always move east along these lines are called good paths,; otherwise they are called bad. Good paths
include paths which lie strictly inside two parallel lines. This is equivalent to considering partitions
with prescribed hook difference conditions [3]. The results (5),(7), and (9) below can be considered
as generalized versions of special cases of an alternating sum considered by Andrews et al. 3]

First we define the k-type of a path L € L, »). Fix a positive integer k, and consider the infinite
set of parallel lines y = = + ak, for all integers a. L intersects some of the lines of the form y = z + ak.
We record all the lines that I visits. Let (ag, a1, as,...,a:) be the sequence such that ag = 0 and for
each 7, a; # a;—1 and L visits the line y = x + a;k directly after it visits the line y = z 4+ a;_1k. Note
that |a; — a;—1| = 1, for each i. We associate to L the sequence typey (L) = (a1, as, ..., a¢), where

0, ifai:ai_l—l,
a; = .
1, ifa; =a;_1+ 1.

The basic intuition is that 0’s in typer (L) mean the path is moving east across the diagonal lines,
while 1’s represent northward movement.

If L is a path from (—lk,lk) to (m,n), then we translate it to a path in L4k n—ix) and define
typer (L) as above.

Definition 3.1 A path L is called k-good iftypex (L) = (a1, g, . .., ) witha; = 0 for all i; otherwise
it is called k-bad. The path L is said to be of class v, classi(L) = v, if typex (L) has v 1’s. The path
L is said to be of k-length t, if typey (L) is of length t.

(16,10) (16,10)

(0,0) (0,0)

Figure 2. A k-good path L and a k-bad path L' with k£ = 3.
The 3-type of L is (0,0) and the 3-type of L' is (0, 1,0, 0).

We let L[(i;:n) denote the set of paths L € L(yn) such that classg(L) = v. Thus any path
Le LI(Z:_HR m) has k-length [ + 2v and is good iff v = 0.

For our main conjecture we need a correspondence between good paths and certain bad paths.

Let v be a positive integer. For any v-subset S C {1,2,---,l+ 2v}, let lerfi(lilisgq) be those lattice
paths in Ly 4k m) whose k-length is {+2v, and whose k-type equals one at exactly at the positions 5.
Conjecture 3.2 Fiz k > 2 and a positive integer v. For any v-subset S C {1,2--- 1+ 2v}, define
L(S) = (c1,¢2, -, cki420)) € Lansr|s|k|s)) bY crj—1)y4n =1 forall h =1,2,--- kiff j€S. If s is
etther maj, 001 — 110, or maj + comaj, we have

Y ) = ) D L), (2)

k,bad(S) k0
LeL sk m) LeL i iksrislm—kis))



We next show that Conjecture 3.2 implies three explicit generating functions for all k-good paths
from (0,0) to (m + lk, m). We adopt the notation

k, _ L
L(mv+1k,m)(5) = Z gD,
LELECn:+lk m)

where s denotes maj, 001 — 110, or maj + comaj. Using (2) and the fact that the set Limir,m) of
all paths from (0,0) to (m + Lk, m) is partitioned into

_ k,bad(S)
U L m+lk m) U U L(m-}-lk,m) !
v Scq{1,..,i+2v},|S|=v

we can consider the paths in Ly, ik m) weighted by maj, 001 — 110, or maj + comaj. For example,
using maj and Conjecture 3.2 we have

[lk + Zm] [+ 21)]
q“.

ZL (m+(1+v)k,m— vk)(maj)[ v

Replacing m by Mk + m, where 0 < m < k, and [ by J — 2M yields

Jk +2m . .
By = Mk—}-m] EAMU m+J V), m+Uk)(mCL_]), (3)
where i
— 2v
Apry =
M |:M_U:|qk

Clearly (3) is a matrix equation, B = AL; moreover, since A~ is explicitly known [8],

Cw—s _k(T-25) o—s k(*=* .
i 754 it (- ) O ifu> s,
v 0, ifv<s.
we have
k,0 N o . J—v—s l—qk(‘]_zs) ves k(u;s) Jk+ 2m
L(m+(J_U)k7m+Uk)(ma]) —Z% [ v s qkm(—l) q skm ] (4)

The J = 2v version of the above equation is

v

(k,0) N s k(2 2vk 4+ 2m

L(m+uk,m+vk)(ma.7) - Z (_1) q ( ) |:’Uk _ sk +m q' (5)
The steps of the previous paragraph may be repeated using the 001 — 110 and maj + comaj
statistics. Note that these two statistics coincide on the lattice paths L(S) of Conjecture 3.2. We also

have the explicit inverse [8]
J—20]"

A= [0

M — v qk

J—v—s —g*U—29) v—s v—s5)2—2v v :

A* -1 _ [ ]q2k 1—1qu21—2v—26) (_1) qk(( ;-2 )(qu + q2 k)’ if v > s,

((A%)")us = 0 <
, ifv<s.



The results are

k0

(m+(J—U)k,m+vk)(001 - 110) =

1— qk(J—Qs)

v

s=0

whose J = 2v version 1s

v
k,0
L%

S=—v
and

k,0
L%

(m+(T—v)k mok) (MAJ + comaj) =

k(J—2s)

s=0

whose J = 2v version 1s

v

LEZ?I—)vk,m-}-uk)(maj + comaj) = Z (_1)sqks2 [(

S=—v

The equation (7) is a special case of Theorem 1 in [3].
Recall that in (4)-(9) we have 0 < m < k.

For k = 2, we have explicit evaluations of the sums in (4), (6), (8).

J—v—s 5
—1)v—s k((v—s)*=2v)/ kJ 20k
E[ v—5 :|q2k1_qk(2j_2u_2s)( )" (67 +47) sk +m

2 2vk +2m
_ — _1\8 ks
(m+Uk,m+vk)(001 110) Z ( 1) q I:(U . S)k + m:| q, (7)

[J—v—s 1—q s Rl )2
e A U ((v—s)?>—2v)( kJ 2wk
Z [ v—s ]q”‘ 1— qk(QJ—2u—25)( )" (¢ +¢7") sk +m

vk +2m 1"
v—s)k+m

Jk + 2m]
q

Jk—i—Zm]*

)
q

q

We have replaced m + 2v

by m and m + 2(J — v) by m + 2/ in these three sums for the explicit statements given in Theorem
3.3 below. We shall prove Theorem 3.3 (without assuming Conjecture 3.1) in the next three sections.
These three summations are very-well poised evaluations in the theory of basic hypergeometric series

8.

Theorem 3.3 Let P be the set of all 2-good paths from (0,0) to (m + 2l,m). Then we have

1.
maj m+l
> qmeith) = [ l ] (=43 0)m 4
LeP 7’
2.
3 o) = [m;rl] (=4;4%)m,
LeP 7’
3.

LeP

4 Maj statistics

maj+tcomaj m+l m
> qmeit J(L)I[ ; ] (= 0" m g™
q2

2

In this section we prove Theorem 3.3 (1), on the maj statistic, by a weight preserving bijection.
The right side of Theorem 3.3 (1) can be considered as the generating function for all ordered

triples
()‘a a, (5)1



where A = XAy - Ay is a partition with even parts, Ay < 2/, 6 = (m —1)(m —2) --- 10 is the
staircase partition, and ¢ is any subset of {1,2,--- m} weighted by the sum of the entries. The
main idea is to use (A, 0, d) to find the Frobenius notation for a uniquely defined partition g, then let

L =11(pn).

To check that L is a 2-good path, we note that if y = [ Z‘l 22 Z‘l ], and L = (), then L
1 2 ... !

is a 2-good path in R(m + 2/, m) if and only if

1. a; > b; for all 7, a; < m + 2] and b; < m,

2. by 1s 0 or 1, moreover, if by = 1, then a; 1s odd,

3. b; — b;p1 <2 for all i, moreover, if b; — b; 11 = 2, then a; — b; is even.
Two examples of 2-good paths in R(20, 6) are given in Figure 3.

(20,6) (20,6)

(0,0 (0,0)
Figure 3. 2-good paths inside 20 x 6 rectangle with (m,!) = (6, 7).

Given (A, 0,9), let

—_ — aq ag ay
7T_/\+5_[bl by ... bl]'

Note that 7 satisfies conditions (1)-(3) above so that i (7) is a 2-good path. We just insert the
elements of the subset ¢ into 7 one at a time to obtain p. At each stage the conditions (1)-(3) are
preserved.

Suppose we want to insert 1 € ¢ into m. If b = 1, then enlarge ¢ by setting a;4+1 = biy1 = 0;
if b = 0, then increase a; by 1. Suppose we want to insert 2. If by = 1, then enlarge ¢ by setting
a;4+1 = b1 = 0 and increase a; by 1;if b = 0 and b;_1; = 2, then increase a; and b; by 1;if b = 0
and b;_; = 1, then increase a; and a;_1 by 1. Suppose we want to insert k. If b; = 1, then enlarge o
by setting a;4+1 = biy1 = 0 and increase k — 1 entries by 1 among a;, by, a;—1,b;-1,...; if by = 0, then
increase k entries by 1 among a;,b;,a;-1,b;—1,.... If some b; cannot be increased, then we skip it.
Note that b; cannot be increased if b; = b;_1 — 1, but a; can always be increased, since a; < a;_1 — 1.
Any subset ¢ can be inserted into 7; the largest entry is inserted first and the second largest and so
on. Let u denote the resulting partition.

An example is given in Figure 4. Inserting 5, then 4, and finally 1 into

F—[16 14 10 6 4
"7l 5 4 2 1 0

yields

16 15 11 7 5 16 15 12 8 6 _ |1 15 12 8 7
5 4 3 1 0] 54320’N_54320'

The details that the insertion procedure gives the bijection are left to the reader.



457—7—7—7—7—7—7—7—7—7—]’
145H—0—HI

4 5

O «@@ -

Figure 4. (m,l) = (6,7), A=121210882, = 543210, 0 = {1,4,5}
_ c_[16 14 10 6 4 _ _[16 15 12 8 7
W_)”LO_[S 4 2 1 0]’ “_W+‘7—[5 4 3 2 0]'

5 Maj+ comaj statistics

In this section we prove Theorem 3.3 (3), on the maj+comaj statistic, by a weight preserving bijection.
The method of proof is somewhat different from §4. We find a two weight preserving bijections: one
for each side of Theorem 3.3 (2), to a third set.

First we find another way to compute the maj + comaj weight of the 2-good paths. This is our
first bijection.

Let L = (s1,82, - ,Samt21) be a 2-good path inside R(m + 2{,m). Since L is 2-good, 1 occurs
consecutively at most twice. Let s;, be the ¢-th 1. Then s;,_15s;,5;,41 is either 010, 110, or 011. The
second case occurs only if j; is odd, and the third case occurs only if j; is even. (We assume that
S0 = Som42i41 = 1.)

For i € {1,--- ,m}, we define an integer p; as follows:

2ji — 2, i sj,_185,85,41 = 010,
_Jgi—2i+1, if j;is odd and s;,_15;,5;5,41 = 110,
pi = Ji — 21, if j; is even and j; < 2m + 2l and s;,_15;,5;,41 = 011,

21, if j; = 2m+ 2l and s;,_15;,5;,41 = 011.

(We think of 2{ as colored version of 2{.) Clearly, p; is even for all ¢ and

m m

maj + comaj(L) = Z(Zl —1+p)=m’+ EPZ*

i=1 i=1

The p;’s just described measure how far the path is away from the ‘base’ path (for instance, the first
path in Figure 5). For example, if (m,l) = (6,7), L = 00001000000101000110010000, (the second
path in Figure 5) then p = (8, 20,22, 10,10, 32),

The path L can be recovered from the sequence p. The leader of any string in p of odd length
must correspond to a 010 in L. Any consecutive pair p; = p;41 in a string must correspond to an
occurrence of 11 in L.

We can also classify the sequences p by inequalities. For example, suppose ¢ + 1 consecutive pairs
Di = Dit1, -, Pit2t = Pitat+1 lie between two leaders p; 1 and p;y2¢42. Since

Jitat+1 + 2 < Jitorgo,  Jitas—1+ 3 < Jigas for 1 <s <t

and

i1 < Ji — 3, for ji_1 even,
T1=0ji—2, for jioi odd,



we must have
Pi <pig2 < - < pigar, 2pigorgr + 20+ 4+ 4 < pigoarya

and

< 2p; +2i—4, for j;_y even,
pPi-1 < 2p; +2i— 2, for j;_; odd.

In our example p = (8,20, 22,10, 10,32), we see that the above inequalities imply that only 9,9 or
10, 10 could be inserted between 22 and 32.

Sort p = p1p2 - - pm in descending order, assuming that 2 is larger than anything else, to obtain
U = ujuz - Up,. The set of sequences U is our third set. In our example, U = (32,22, 20,10, 10, 8).
Again p can be recovered from U using the above inequalities, but we do not give these details.

We obtain the same sequences U from the left side of Theorem 3.3 (2). Again let A = A Ag - Ay
be a partition with even parts, and A\ < 2l. Let ¢ be a subset of {2[,21+2,--- 2]+ 2m — 2}. Define
a sequence T = t1ty - -ty by

. _{)\i+2m+2l—2i, if 2m + 20 — 2i € o,

A, else,

for all ¢. If ¢,, is 2 with A, = 0, then write it as 2. Sort 7" in descending order, again assuming
that 2[ is larger than anything else, and let the sorted sequence be U = ujus---uy,,. For example,
if (m,l) = (6,7), A = (10,10,10,8,6,6), and o = {14,16,22}, we have T" = (10, 32,10, 8, 22, 20),
U = (32,22,20,10,10,8).

We claim that from U we can recover T' = t1t5 - --t,,, A and o. Let U = uqus - - - u,, be the sorted
sequence. We determine A = A1 Ag -+ A, and o as follows. Assume that u; # 2[. If all the u;’s are
less than or equal to 2[, then let u; = A; and ¢ = @. Otherwise, we declare that each u; greater than
20 is in the wrong position. If the sequence U has any number in a wrong position, then let j be the
largest index such that u; is in a wrong position. If u; — (2m 4 20 — 2j) > u;41, then we now declare
that u; is in the right position; otherwise, switch u; and u;4;. Repeat the same procedure with the
resulting sequence until all the u;’s greater than 2/ are in a right position. The resulting sequence is
T =tytg -ty I t; > 2m+ 20 — 24, then add 2m + 21 — 27 to o and set A; = ¢; — (2m + 21 — 27); else
set A; = t;. If u; = 21, then set A,;; = 0 and declare that 2/ is an element of o and proceed as before.

On the example (m,l) = (6,7), U = (32,22,20,10,10,8), we first test 20, which is in a wrong
position. Tt swaps with 10, 10 and 8 to obtain (32,22,10, 10,8, 20). Then the 22 swaps with 10, 10,
and 8 to obtain (32,10, 10, 8,22,20), and 32 swaps with 10 to obtain 7' = (10,32, 10, 8, 22,20).

(20,6) (20,6)

(0,0) (0,0)

Figure 5. 2-good paths inside 20 x 6 rectangle with (m,!) = (6, 7).
o=1{14,16,22}, A= 10101086 6.

6 001 — 110 statistics

In this section we prove Theorem 3.3 (2), on the 001 — 110 statistic, by a weight preserving bijection,
similar to §4.

10



Again let A = A As--- A, be a partition with even parts, and A\; < 2/, and let ¢ be a subset of
{1,2,---,m}. We consider i € ¢ as the self-conjugate hook of size (2i — 1).

Given a pair (A, o), we generate a 2-good path L from (0,0) to (m + 2[,m). We produce the
marked squares which uniquely determine the path, as in 5

First divide each part of A by 2 to obtain X. We compare the largest hook in A (arm z, leg y, hook
length z + y — 1) with the largest hook (2t — 1) in ¢. If y > ¢, then remove the hook from A and mark
the square (22 4+ y — 2,y — 1), else remove the largest row from X and the largest element from o, and
mark the square (2z +¢ — 1,¢# — 1). Repeat this process until X becomes empty. Let L be the lattice
path whose exposed corner cells, 01- or 10-, are exactly the marked squares.

We claim that I is a 2-good path. Suppose that (i1,71) and (42, j2), j1 < j2, are two consecutive
exposed corner cells. Recall that between two consecutive exposed cells, the lattice path is a staircase,
followed by either a long vertical or horizontal path. We must show that the long vertical path does
not occur. We first assume that iy + j; and i3 + j2 are odd. Then (i1,71) = (2a1 + {1 — 2,11 — 1) and
(2, j2) = (2a2 +1s — 2,15 — 1) for some (a1,!1) and (as,ls), where a1 < ag and 1 < ly. So we have
Ji—i1 > ja—iz+2, which implies that there is no vertical path between the exposed corner cells (i1, j1)
and (72,72). We now assume that i1 + j; and iz + ja are even. Then (i1, j1) = (2a1 + 1 — 1,81 — 1)
and (ia, ja) = (2a2 + ta — 1,2 — 1) for some ay,t1,as,t2, where a; < ay and t; < #3. So we have
j1 — 21 > jo — 12, which, in this case, implies that there is no violation between the exposed corner
cells (41, 71) and (g, j2). The other cases are similar.

The inverse mapping is clear.

In the example of Figure 7, (m,!) = (8,10), A = (18,16, 14, 14,8,8,6,2), A= (9,8,7,7,4,4,3,1),
and o = {1,4, 5,8} (hooks of size 1,7,9,17.) Here are the steps of the algorithm:
legy=8=1t,(8,7,7,4,4,3,1), {1,4,5} mark cell (25,7),
legy="7,t=5,(6,6,3,3,2), {1,4,5} mark cell (21, 6),
legy=5=t,(6,3,3,2), {1,4} mark cell (16,4),
legy=4=t,(3,3,2), {1} mark cell (15, 3),
legy=3,t=1,(2,1), {1} mark cell (7,2),
legy=2,t=1, @, {1} mark cell (4,1),
legy=0,t=1, @, @ mark cell (0,0).

O @@= @

(20,8)

:;}

Figure 6. (m,l) = (8,10), A=98774431, 0 = {1,4,5,8}.
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(28,8)

(0,0)

Figure 7. L € L?ég 8) corresponding to A=98774431, 0= {1,4,5,8}.

7 Remarks and a limiting case

Conjecture 3.2 does not hold for the inv statistic. We do have a proof of Conjecture 3.2 for £ = 2 and
s =001 —110. However it uses special properties of the k¥ = 2 paths, which are not easy to generalize.

It is possible to explicitly state the conditions on a partition m such that ¢s(w) = P, for P €
ho ) Here we take k > 3. (The conditions for k = 2 are given in §4.) If

(m+lk,m
— ap az - Qg
= [ by by -- by ]’

then we have
ar <m+lk—1, t<m
a; <b;+ ({+1)k—2 foralli
if ap < by then a; > by — (kK — 2),
if a; > by then bound; == [(az + 1 — b))/ k],
if b;_1 —b; > a;_1 — a; then bound;_1 := bound;, a;_1 — b;_1 > k x bound;_1 + 2,
if b;_1 —b; < aj—1 — a; then bound;_1 := max{bound;, |(a;—1 + 1 —b;—1)/k]},

For example, if [ = 0, then bound; = —1 for all i and the above conditions become |a; —b;| < k —2,
the hook difference conditions in [3].

We can take the m — oo limit in the above conditions and find the generating function of the
resulting partitions by using (6),

! - L +s 1- (2s+l)k 1 + tk s ks?
(Qaq)oo Z% [ s :|q2k (( — (Iq(gs-}-?l)k))((l _qqlk)) (_1) qk (10)

Thus sum is evaluable by a limiting case of the very-well poised ¢¢5 evaluation [§], to
(4%, 4" 4" ¢* oo (1)
(45 0)o0 (4%; 0% )

The case | = 0 appears in [3], (Theorem 3).
Tt follows from the g-binomial theorem that the generating function in [ of (11) is

(@* 0. a" 0*)oo _ (4%*.4" 0"10%)oo
(7:9) 0 (z; %) 0 (7 9) o0

F(z/q",0,4%). (12)
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The limiting partitions can be described by modifying the bijection 15 to be independent of m and
n: just truncate P after the last marked cell. Thus (12) can be considered the 001 — 110 generating
function for all such paths which are j-good, j < k. So if we multiply (12) by (1 — z), we obtain the
generating function for paths which are exactly k-good,

(0%, 4", 0" 1) o

(@0 F(:E,O,qk).

This motivates the next conjecture. For a partition , let (7) (u(7)) be the number of 0’s (1’s)
in the k-type of the truncation of (7). We make the following conjecture:

Conjecture 7.1

T ey =

T a partition

= F(2,y,4%).

The fraction in Conjecture 7.1 is the generating function for partitions with |a; — b;] < k — 2,
i.e. paths strictly inside the lines y = 2 + k. We have already seen in (1) that the coefficients in
the expansion of F(z,y,q") are positive, and represent certain paths with steps of size k. To verify
Conjecture 7.1, it remains to find an appropriate insertion algorithm of the k-good paths of & length
0 into these larger paths.

In the mathematical physics literature [7], [11] the sum (7) is called bosonic, and has an explicit
fermionic representation which shows it is positive. (5) also has such a fermionic sum [12]. We do not
know the corresponding fermionic sums for (4), (6), (8), although it is likely they exist [12].
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