
UNIMODALITY AND YOUNG’S LATTICE

Dennis Stanton†

Abstract. Young’s lattice of a partition λ consists of all partitions whose Ferrers
diagrams fit inside λ. Several infinite families of partitions are given whose Young’s
lattice is not rank unimodal. Some related problems are discussed.

1. Introduction.

It is well known that the q-binomial coefficient

(1.1)

[

n+m
m

]

q

is a symmetric unimodal polynomial in q (see, e.g. [1, §3.5]). Recall that a sequence
of integers ai is unimodal if there exists an integer N such that

a0 ≤ a1 ≤ · · · ≤ aN ≥ aN+1 ≥ aN+2 ≥ · · · .
A polynomial is called unimodal if its sequence of coefficients is unimodal. For the
q-binomial coefficient in (1.1), N = nm/2, half of the degree of the polynomial.

Combinatorially, the q-binomial coefficient has the following interpretation. If
ai is the number of partitions of i which lie inside an n × m rectangle, then ai is
the coefficient of qi in (1.1). This is another way of saying that the q-binomial
coefficient is the generating function for all partitions which lie inside an n × m
rectangle. These partitions are the elements of a lattice called Young’s lattice,
whose order relation is given by containment of the respective Ferrers diagrams.

Instead of a rectangle, we can consider Young’s lattice for any partition λ. Let
λ = (λ1, λ2, . . . , λk), where λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 1, and call the lattice Yλ. The
purpose of this paper is to study the unimodality properties of Yλ.

We let G(Yλ)(q) be the generating function for all partitions which lie inside λ.
If λ′ denotes the conjugate of the partition λ, it is clear that

(1.2) G(Yλ)(q) = G(Yλ′)(q).

We will call a partition λ unimodal if G(Yλ)(q) is a unimodal polynomial. Note that
the non-unimodality of λ is equivalent to the following condition on the coefficients
bi of (1− q)G(Yλ)(q). There is some i < j satisfying bi < 0 and bj > 0.

In §2 we give the data from the programs which were written for this problem.
The theorems which are suggested from the data are stated and proved in §3. Some
final remarks, including observations and conjectures, are given in §4. We will use
the notation ⌊x⌋ and ⌈x⌉ for the greatest integer ≤ x and the least integer ≥ x
respectively.
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2. Data.

All partitions of n ≤ 50 were tested. (There are 204226 partitions of 50.) Not

all partitions λ are unimodal. The first non-unimodal λ is λ = (8, 8, 4, 4), with
coefficients

1 1 2 3 5 6 9 11 15 17 21 23 27 28 31 30 31 27 24 18 14 8 5 2 1.

It is true that all partitions of n ≤ 23, or all partitions which lie inside a 7 × 7
square, are unimodal. The following table lists the non-unimodal partitions of
n ≤ 36. Because of (1.2), we list only one of λ and λ′. The value of i for which
unimodality fails, and the three offending values ai−1, ai, and ai+1 are also given.

Partition i Values Partition i Values
8 8 4 4 15 31 30 31 11 11 6 6 21 67 66 67

10 9 4 4 17 46 45 46 14 13 4 4 21 76 75 76

10 10 4 4 17 46 45 46 16 12 4 4 23 91 90 91

12 10 4 4 19 61 60 61 14 14 4 4 21 76 75 76

12 11 4 4 19 61 60 61 12 12 8 4 23 81 80 81

12 12 4 4 19 61 60 61 12 10 8 6 23 82 81 82

14 11 4 4 21 76 75 76 8 8 8 6 4 2 23 141 140 141

11 11 6 5 21 67 66 67 8 8 6 6 4 4 23 144 143 144

14 12 4 4 21 76 75 76

Table 1

Many of the partitions on the previous list have the form λ = (a, a, b, b). The
following table lists all non-unimodal partitions of this form with a ≤ 24.

Partition i Values Partition i Values
8 8 4 4 15 31 30 31 20 20 4 4 27 121 120 121

10 10 4 4 17 46 45 46 20 20 10 10 37 297 296 298

11 11 6 6 21 67 66 67 20 20 12 12 39 314 313 316

12 12 4 4 19 61 60 61 21 21 8 8 35 278 277 278

14 14 4 4 21 76 75 76 21 21 12 12 41 356 354 355

14 14 8 8 27 123 122 123 22 22 4 4 29 136 135 136

16 16 4 4 23 91 90 91 22 22 11 11 41 384 382 383

16 16 9 9 31 173 172 173 22 22 13 13 43 405 404 406

17 17 8 8 31 188 187 188 23 23 8 8 37 323 322 323

17 17 10 10 33 204 203 204 23 23 14 14 37 458 457 460

18 18 4 4 25 106 105 106 24 24 4 4 31 151 150 151

18 18 10 10 35 235 233 234 24 24 11 11 43 460 459 461

19 19 8 8 33 233 232 233 24 24 14 14 47 512 510 512

19 19 11 11 33 273 272 273

Table 2

It is also of interest to test λ = (a, a, b, b) for particular values of a. Table 3 takes
a = 90 and a = 89.

Partition i Values Partition i Values
90 90 58 58 179 21973 21971 21984 89 89 58 58 177 21270 21269 21283

90 90 57 57 179 21964 21959 21968 89 89 57 57 177 21266 21263 21274

90 90 56 56 179 21944 21934 21938 89 89 56 56 177 21254 21247 21254

90 90 54 54 175 21847 21843 21852 89 89 55 55 177 21229 21217 21218

90 90 52 52 175 21682 21681 21693 89 89 53 53 175 21123 21117 21123
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90 90 51 51 175 21582 21571 21572 89 89 51 51 173 20948 20944 20951

90 90 50 50 173 21440 21439 21450 89 89 49 49 171 20693 20688 20694

90 90 48 48 171 21111 21107 21114 89 89 47 47 169 20349 20340 20341

90 90 45 45 167 20426 20423 20430 89 89 46 46 167 20131 20130 20139

90 90 42 42 163 19515 19506 19507 89 89 43 43 163 19352 19349 19355

90 90 41 41 161 19153 19149 19154 89 89 38 38 155 17534 17529 17532

90 90 35 35 151 16484 16477 16478 89 89 37 37 153 17091 17089 17095

90 90 34 34 149 15962 15958 15962 89 89 31 31 143 14049 14044 14045

90 90 33 33 147 15423 15422 15428 89 89 30 30 141 13488 13485 13489

90 90 27 27 137 11963 11959 11961 89 89 23 23 129 9397 9394 9396

90 90 26 26 135 11359 11357 11361 89 89 22 22 127 8806 8805 8809

90 90 20 20 125 7761 7757 7758 89 89 16 16 117 5425 5422 5423

90 90 19 19 123 7178 7176 7178 89 89 15 15 115 4901 4900 4902

90 90 18 18 121 6605 6604 6608 89 89 8 8 103 1808 1807 1808

90 90 12 12 111 3487 3485 3486

90 90 11 11 109 3034 3033 3035

90 90 4 4 97 646 645 646

Table 3

Table 4 gives the number of partitions of n (p(n)) and the number of non-
unimodal partitions of n (NU(n)) for n ≤ 50.

n p(n) NU(n) n p(n) NU(n) n p(n) NU(n)
24 1575 2 33 10143 4 42 53174 16

25 1958 0 34 12310 4 43 63261 14

26 2436 0 35 14883 2 44 75175 14

27 3010 2 36 17977 12 45 89134 18

28 3718 2 37 21637 14 46 105558 24

29 4565 0 38 26015 20 47 124754 26

30 5604 2 39 31185 16 48 147273 32

31 6842 2 40 37338 16 49 173525 40

32 8349 2 41 44583 6 50 204226 40

Table 4
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3. Theorems.

Unfortunately it is not possible to completely classify the non-unimodal parti-
tions λ. In this section we will give several infinite families of partitions which are
not unimodal in Theorems 3, 4, 5, 6, 8, and 9. We also give in Theorems 7 and
Theorem 11 two infinite families of unimodal partitions.

From Table 2 it appears that the following theorem holds.

Theorem 1. The partition λ = (2k, 2k, 4, 4) is non-unimodal for k ≥ 4 at i =
2k + 7, with consecutive differences of -1 and 1.

We do not prove Theorem 1 here, because Theorem 3 generalizes Theorem 1.
Table 2 also indicates that a similar theorem should hold for (2k, 2k, 11, 11). Note
that both 4 and 11 occur on Table 3 for a = 90. Then Table 3 might indicate that
there is a similar theorem for 4, 11, 12, 18, 19, 20, 26, 27, 33, 34, 35, 41, 42, and
45.

For λ = (2k + 1, 2k + 1, 8, 8) we have the next theorem.

Theorem 2. The partition λ = (2k + 1, 2k + 1, 8, 8) is non-unimodal for k ≥ 8 at

i = 2k + 15, with consecutive differences of -1 and 1.

Again Table 3 indicates that a similar theorem may hold for 8, 15, 16, 22, 23,
30, 31, 37, 38, and 43.

We now come to the theorems for partitions λ = (a, a, b, b) which give the above
two sequences of b′s, and generalize Theorems 1 and 2.

Theorem 3. Let a be an even integer satisfying a ≥ (4−
√
3)b+ (5−

√
3). If b

satisfies

(1) ⌊
√
3(b+ 1)⌋ is even, and

(2)
√

3(b+ 1)2 + 6 ≤ ⌊
√
3(b+ 1)⌋+ 1 ≤

√

3(b+ 2)2 − 8− 1,

then λ = (a, a, b, b) is non-unimodal at i = a + ⌊
√
3(b+ 1)⌋ − 1. The consecutive

differences are

⌈(3b2 + 6b− (⌊
√
3(b+ 1)⌋ − 2)2 − 6(⌊

√
3(b+ 1)⌋ − 2)− 12)/12⌉

and

⌈(3b2 + 12b− (⌊
√
3(b+ 1)⌋ − 2)2 − 6(⌊

√
3(b+ 1)⌋ − 2))/12⌉.

Theorem 4. Let a be an odd integer satisfying a ≥ (4−
√
3)b+ (5−

√
3). If b

satisfies

(1) ⌊
√
3(b+ 1)⌋ is odd, and

(2)
√

3(b+ 1)2 + 9 ≤ ⌊
√
3(b+ 1)⌋+ 1 ≤

√

3(b+ 2)2 − 11− 1,

then λ = (a, a, b, b) is non-unimodal at i = a + ⌊
√
3(b+ 1)⌋ − 1. The consecutive

differences are

⌈(3b2 + 6b− (⌊
√
3(b+ 1)⌋ − 2)2 − 6(⌊

√
3(b+ 1)⌋ − 2)− 9)/12⌉

and

⌈(3b2 + 12b− (⌊
√
3(b+ 1)⌋ − 2)2 − 6(⌊

√
3(b+ 1)⌋ − 2)− 3)/12⌉.
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Proof. We prove Theorem 3. A straightforward but tedious calculation shows that

(1− q)G(Yλ)(q) =
1

(1− q2)(1− q3)(1− q4)
− q3b+3

(1− q)(1− q2)(1− q3)

+
q4b+5

(1− q)(1− q2)(1− q4)
− qa+1

(1− q)(1− q2)(1− q3)

+
qa+2b+3

(1− q)2(1− q2)
− qa+3b+5

(1− q)2(1− q3)

+
q2a+3

(1− q)(1− q2)2
− q2a+b+4

(1− q)2(1− q2)

+
q2a+2b+6

(1− q)(1− q2)2
.

(3.1)

Clearly each term in (3.1) can be expanded in a Taylor series in q, with coefficients
of qn which are pseudo polynomials in n [7, §4.4]. Assume for the time being
that a ≥ 4b+ 5. Then for n in the interval from a + 1 to a + 2b + 2, only the
first four terms of (3.1) contribute. A MACSYMA run using these explicit pseudo
polynomials shows that the coefficient of qa+j+1 is
(3.2)

⌈

3b2 + 6b− j2 − 6j − 12

12

⌉

=

⌊

3b2 + 6b− j2 − 6j − 5

12

⌋

for a even and j even,

⌈

3b2 + 12b− j2 − 6j

12

⌉

=

⌊

3b2 + 12b− j2 − 6j + 7

12

⌋

for a even and j odd,

⌈

3b2 + 12b− j2 − 6j − 3

12

⌉

=

⌊

3b2 + 12b− j2 − 6j + 4

12

⌋

for a odd and j even,

⌈

3b2 + 6b− j2 − 6j − 9

12

⌉

=

⌊

3b2 + 6b− j2 − 6j − 2

12

⌋

for a odd and j odd.

Some elementary algebra then implies Theorem 3 for a ≥ 4b+ 5. This inequality
on a may be relaxed to 4b + 5 ≤ a+ ⌊

√
3(b+ 1)⌋, so that the four terms of (3.1)

still contribute to the two offending terms. �

We see that the sequence of b′s for Theorem 3 (Theorem 4) does not include 45
(44) as suspected. It does appear that the allowed b′s for Theorem 3 lie in residue
classes modulo 15. However this is not correct. It can be shown, for example, that
b = 15m + 11, 0 ≤ m ≤ 26 satisfies Theorem 3, but b = 15 × 27 + 11 does not.
Strictly speaking, Theorem 3 (Theorem 4) with b = 4 (b = 8) implies Theorem
1 (Theorem 2) for k ≥ 7 (k ≥ 11). Nevertheless, these two theorems can be
established independent of Theorems 3 and 4.

Note also that condition (1) in Theorems 3 and 4 implies that a given b may

not satisfy both theorems. Because N
√
3 − ⌊N

√
3⌋is equidistributed on [0,1) ([5,

Prob. 166]), it can be shown that the density of the b′s satisfying Theorem 3 or 4

is (
√
3− 1)/2.

It is also clear that the bound for a in Theorems 3 and 4 is not the best possible,
for example one might conjecture that a ≥ 2b is sufficient. However, b = 12 is
allowed by Theorem 3 and (24, 24, 12, 12) is unimodal. (It does not appear on
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Table 2.) Moreover a > 2b is not sufficient, for b = 35, a ≥ 78. It is possible to give
a general theorem in the range 2b+2 ≤ a+ 1 ≤ 3b+ 3, but the inequalities are not
as nice as condition (2) in Theorem 3. For the range 3b/2+ 1 ≤ a+ 1 ≤ 2b+ 1, for
example (11, 11, 6, 6), there is another simple sufficient condition, which we state in
the next two theorems.

Theorem 5. If k ≥ 2 and 2 ≤ t ≤ (1 +
√
1 + 24k)/4, then the partition λ =

(3k+t, 3k+t, 2k, 2k) is non-unimodal at i = 6k+2t−1. The consecutive differences

are

−
⌈

t2 − t

3

⌉

and
⌊

3k − 2t2 + t+ 6

6

⌋

.

Theorem 6. If k ≥ 2 and 2 ≤ t ≤ (1 +
√
1 + 24k)/4, then the partition λ =

(3k + t + 2, 3k + t + 2, 2k + 1, 2k + 1) is non-unimodal at i = 6k + 2t + 3. The

consecutive differences are

−
⌊

t2 − 1

3

⌋

and
⌊

3k − 2t2 − t+ 6

6

⌋

.

Proof. This time three terms of (3.1) contribute to the coefficient of q3b+3+j , for
0 ≤ j ≤ a− b. The terms given in Theorems 5 and 6 are the differences given by
MACSYMA, and the inequality on t insures that the differences are negative and
positive. �

Next we see that Table 1 lists partitions with four or six parts, which suggests
that a partition with at most three parts is unimodal. This is true, and we will
give a proof similar to the proof of Theorems 5 and 6. However the computations
can be simplified by using the following lemma.

Lemma 1. For any partition λ = (λ1, λ2, . . . , λk), we have

(1− q)G(Yλ)(q) = G(Z)(q)− qλ1+1G(Yµ)(q),

where Z is the set of all partitions inside λ whose first two parts are equal, and µ
is the partition (λ2, λ3, . . . , λk).

Proof. Let A = {∅, 1} and consider the set Y × A whose generating function is
(1−q)G(Yλ)(q) if the sign of 1 ∈ A is −1. A sign-reversing involution σ on Y×A is
given by σ((γ, ∅)) = (µ, 1), where µ = (γ1−1, γ2, . . . , γk) if γ1 > γ2; and σ((γ, 1)) =
(µ, ∅), where µ = (γ1 + 1, γ2, . . . , γk) if γ1 < λ1. Clearly the fixed points of σ have
γ1 = γ2 or γ1 = λ1, whose generating function is given in Lemma 1. �
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Proposition 1. If λ = (a, b, c), then

(1− q)G(Yλ)(q) =
1

(1− q2)(1− q3)
− q3c+3

(1− q2)(1− q3)
− q2b+2

(1− q)(1− q2)
+

q2b+c+3

(1− q)(1− q2)

− qa+1

(1− q)(1− q2)
+

qa+b+2

(1− q)2
− qa+b+c+3

(1− q)2
+

qa+2c+3

(1− q)(1− q2)
.

(3.3)

Proof. An easy calculation shows that Lemma 1 implies Corollary 1, where the first
four terms of (3.3) are G(Z)(q) and the last four terms are −qa+1G(Yµ)(q). �

Theorem 7. If λ has at most three parts, then λ is unimodal.

Proof. We indicate the proof if λ has three parts. From Lemma 1, we see that (1−
q)G(Yλ)(q) is the difference of two terms which are given explicitly in Proposition
1. If each term were unimodal, we could conclude in this case that λ is unimodal.
Unfortunately, this is not true, but a careful case-by-case analysis shows that λ is
unimodal. �

The next observation is that the non-unimodal λ in Table 1 lie in intervals. For
example, (12, 10, 4, 4), (12, 11, 4, 4) and (12, 12, 4, 4) are all non-unimodal at
i = 21 with the same three values of ai, and they form the interval [(12, 10, 4, 4),
(12, 12, 4, 4)]. The reason is clear: if a cell in position (j + 1, k + 1) is removed
from the Ferrers diagram of λ, the coefficients of qn in G(Yλ)(q) do not change for
0 ≤ n ≤ jk + j + k. Thus if j and k are chosen so that jk + j + k ≥ i+ 1, then
λ with the cell (j + 1, k + 1) removed will also be non-unimodal. For example, we
see that Theorem 1 implies that (2k,m, 4, 4) is non-unimodal for m ≥ k + 4. It is
possible to state a general theorem corresponding to Theorems 3 and 4, instead we
give such a theorem for Theorems 5 and 6.

Theorem 8. Let 2 ≤ t ≤ (1 +
√
1 + 24k)/4. Any partition in the following inter-

vals is non-unimodal:

(1) [(3k + t, 3k + t, 2k, 2k − ⌊(2k + 3− 2t)/4⌋), (3k + t, 3k + t, 2k, 2k)] or
(2) [(3k + t+ 2, 3k + t+ 2, 2k + 1, 2k + 1− ⌊(2k − 1− 2t)/4⌋), (3k + t+ 2, 3k +

t+ 2, 2k + 1, 2k + 1)].

By considering the non-unimodal partitions of n ≤ 50, two more infinite families,
each singly indexed, can be found: (k + 2, k, k, k), for k = 10 or k ≥ 12, non-
unimodal at i = 2k+3; and (2k+4, 2k+4, 2k+4, 2k+2) for k ≥ 4, at i = 4k+7.
In fact, the cases (a, a, a, b) and (a, b, b, b) could be done just as (a, a, b, b) was,
but we shall be content to give these two families. In the first case cells from two
different rows may be deleted to create non-unimodal intervals.

Theorem 9. Any partition in the following intervals is non-unimodal:

(1) [(k+2, k, ⌈(2k + 2)/3⌉, ⌈(2k + 1)/4⌉), (k+2, k, k, k)] for k = 10 or k ≥ 12,
or

(2) [(2k + 4, 2k + 4, ⌈(4k + 5)/3⌉, k), (2k + 4, 2k + 4, 2k + 4, k)] for k ≥ 4.

The respective consecutive differences are

(1) -1 and ⌊k/6⌋−1 for k 6≡ 4 (mod 6); and -1 and ⌊k/6⌋ for k ≡ 4 (mod 6),
and

(2) -1 and ⌊(k + 1)/3⌋ − 1 for k 6≡ 1 (mod 3); and -1 and ⌊(k + 1)/3⌋ for

k ≡ 1 (mod 3).
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Proof. First we verify the non-unimodality claim for (k + 2, k, k, k). This follows
from

G(Yλ)(q) =

[

k + 4
4

]

q

+ (qk+1 + qk+2)

[

k + 3
3

]

q

and some lengthy calculations involving the appropriate pseudo polynomials. The
second part is verified by noting that (2k+4, 2k+4, 2k+4, k) and (2k+4, 2k+2, 2k+
2, 2k+2) contain the same partitions of i for i ≤ 4k + 3. For i = 4k+6, 4k+7, and
4k + 8 respectively, (2k + 4, 2k + 4, 2k + 4, k) contains 1, 2, and 4 partitions that
(2k + 4, 2k + 2, 2k + 2, 2k + 2) does not contain. Similarly for i = 4k + 6, 4k + 7,
and 4k + 8, (2k + 4, 2k + 2, 2k + 2, 2k + 2) contains 2, 3, and 5 partitions that
(2k+4, 2k+4, 2k+4, k) does not contain. Thus the consecutive differences are the
same at i = 4k + 7 and i = 4k + 8, which establishes (2). �

How many non-unimodal partitions of n are there? Table 4 and Theorem 8
imply that these numbers are non-zero for n ≥ 30. The intervals of Theorem 8 or
Theorem 9 imply the following theorem. It is very likely, however, that this number
grows much more rapidly than Theorem 10 asserts.

Theorem 10. As n → ∞, the number of non-unimodal partitions of n is at least

cn2.

We also see from Table 4 that the number of non-unimodal partitions of n is
even for n ≤ 50. In view of (1.2), this could suggest that self-conjugate partitions
are unimodal. In fact, no self-conjugate partition appears on the list of all non-
unimodal partitions of n ≤ 50. Moreover, all self-conjugate partitions of n ≤ 124
are unimodal. The following theorem is a partial result in this direction.

Theorem 11. If λ is any self-conjugate partition whose Durfee square has size at

most two, then λ is unimodal.

Proof. We may assume that the Durfee square of λ has size two, λ = (a + 2, b +
2, 2b, 1a−b), where b ≤ a. If we apply Lemma 1 to λ we find

G(Z)(q) =1 + (q2 + · · ·+ qa+2) +
q4

(1− q)(1− q2)2
− qa+5

(1− q)2(1− q2)
+

qa+b+6

(1− q)2(1− q2)

− 2q2b+6

(1− q)(1− q2)2
+

qa+2b+7

(1− q)2(1− q2)
− qa+3b+8

(1− q)2(1− q2)
+

q4b+8

(1− q)(1− q2)2

(3.4)

and

G(Yµ)(q) =(1 + q + · · ·+ qa+1) +
q2

(1− q)2(1− q2)
− qa+3

(1− q)3
+

2qa+b+4

(1− q)3

− q2b+4

(1− q)2(1− q2)
− qb+3

(1− q)2(1− q2)
− qa+2b+5

(1− q)3
+

q3b+5

(1− q)2(1− q2)
.

(3.5)

Again a case-by-case analysis implies Theorem 10. (The case b ≤ a ≤ 2b is partic-
ularly unpleasant.) �
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4. Remarks. There are several observations which can be made that have not led
to theorems. The purpose of this section is to comment on these possible theorems.

Observation 1. All examples of non-unimodal partitions are bimodal.

Observation 2. All examples of non-unimodal partitions are non-unimodal at an

odd integer i.

Observation 3. All examples of non-unimodal partitions have their absolute peaks

at i− 1 or i+ 1 if they are non-unimodal at i.

It would appear very unlikely that Observations 1-3 are theorems, rather they
are properties of the infinite families that have been found so far.

Observation 4. There are no examples of non-unimodal partitions with 5, 7, or

9 parts.

This has been checked for 5 parts with part size ≤ 30, 7 parts with part size
≤ 15, and 9 parts with part size ≤ 10. Again it appears that there is just not
enough data in this case.

Observation 5. All examples of infinite families of non-unimodal partitions have

four parts. The only examples of non-unimodal partitions with six parts lie in

intervals associated with (10, 9, 9, 9, 9, 9), (8, 8, 8, 8, 8, 2), or (8, 8, 6, 6, 6, 6).

It is remarkable that (10, 9, 9, 9, 9, 9) is non-unimodal, being so close to (9, 9, 9, 9, 9, 9),
which is unimodal. These three examples have resisted all attempts to be placed
in an infinite family.

Observation 6. The probability that a partition of n is non-unimodal roughly de-

creases to .00014 at n = 52.

The word “roughly” is used because the probability is not strictly decreasing. For
42 ≤ n ≤ 52 the probability lies between .00014 and .00030. (The last integer for
which it has been computed is n = 52.) One might conjecture that the probability
→ 0 as n → ∞.

Conjecture 1. All self-conjugate partitions are unimodal.

Conjecture 1 has been verified for all self-conjugate partitions of n ≤ 124. (There
are 174181 such partitions). It is also supported by Theorem 11.

Conjecture 2. The staircase partition λ = (n, n− 1, . . . , 1) is unimodal.

Conjecture 2 has been verified for n ≤ 22. The generating function was consid-
ered by Carlitz [2]. It is also related to the Rogers-Ramanujan continued fraction
[4, §19.15]. If Gn(Yλ)(q) is the generating function for λ = (n − 1, n − 2, . . . , 1),
and G0(Yλ)(q) = 1, it is well-known [3] that Gn(Yλ)(q) is q-analogue of the nth
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Catalan number. It is not hard to see that

∞
∑

n=0

Gn(Yλ)(1/q)q
n(n−1)/2xn =

1

1− x

1− xq

1− xq2

. . .

=
∞
∑

n=0

(−x)nqn
2

(q)n

/

∞
∑

n=0

(−x)nqn
2
−n

(q)n
,

(4.1)

where

(q)n =
n
∏

k=1

(1− qk).

Thus, Conjecture 2 is equivalent to a unimodality property of the continued fraction
in (4.1).

Several other questions about Young’s lattice remain open. The existence of a
symmetric chain decomposition for a m × n rectangle, m ≥ 5 is open. Clearly
the rectangles are the only partitions which are symmetric. What happens if skew
shapes are allowed? It is also known that Young’s lattice of a rectangle has the
Sperner property [8]. Susanna Fishel and the author have shown that the Young’s
lattice of any partition of n ≤ 26 has the Sperner property. Finally, it is clear
that one would not have found the infinite families of non-unimodal partitions
without aid of a computer. What is missing is an algebraic formulation for a
general partition λ (see [6] and [8]).
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helpful comments.
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