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Abstract. The centered difference of principally specialized Schur functions

s
λ̃
(1, q, · · · , qn)− qnsλ(1, q, · · · , q

n)

is shown to be a symmetric, unimodal polynomial in q with non-negative coefficients

for certain choices of λ̃, λ, and n, in which λ̃ is always obtained from λ by adding two

cells, and n is chosen to be odd or even depending on λ̃, λ. The basic technique is to
find an injection of representations for the symplectic or orthogonal Lie algebras, and
interpret the above difference as the principal specialization of the formal character

of the quotient. As a special case, a difference of q-binomial coefficients is shown to
be unimodal.

1. Introduction.
It is well known [St, Theorem 13] that the principal specialization of a Schur

function,
sλ(1, q, · · · , q

n−1),

is a symmetric, unimodal polynomial in q with non-negative coefficients. If λ = 1k

is a single column, we have

s1k(1, q, · · · , q
n−1) = q

k(k−1)
2

[

n
k

]

q

.

For λ = k a single row,

sk(1, q, · · · , q
n−1) =

[

n+ k − 1
k

]

q

.

thus proving the q-binomial coefficient is a symmetric unimodal polynomial in q.
In this paper we prove (Theorems 1,5,8) that certain differences of principal spe-
cializations of Schur functions

sλ̃(1, q, · · · , q
n)− qnsλ(1, q, · · · , q

n)

are symmetric and unimodal. Our basic technique is to realize the differences as
principal specializations of formal characters of representations of the symplectic
or orthogonal Lie algebras.
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We consider two special cases of λ, λ̃ related to some interesting posets in §2 and
§3, and consider more general λ, λ̃ in §4. Some poset conjectures are given in §2
and §3, while unimodality conjectures are given in §5. All notation is taken from
Macdonald [Ma].

2. The motivating special case.
Empirically, the following theorem was discovered.

Theorem 1. If n is an odd positive integer and 2k ≤ n+ 1, then

[

n
k

]

q

−

[

n
k − 1

]

q

is a symmetric, unimodal polynomial in q with non-negative coefficients.

The first main goal of this section is to prove Theorem 1. It is straightforward to
check that the above difference is symmetric as a polynomial in q, and Andrews [An]
and Fishel [Fi] gave explicit sets of partitions for which the difference in Theorem
1 is the generating function, thus proving non-negativity. Moreover the difference
is known [Bu] to be the Kostka polynomial K(n−k,k),1n(q) [Ma, p. 130], which has
non-negative coefficients. However, none of these results gives unimodality.

First we note that one can rewrite the above difference using the q-Pascal’s
triangle recurrences (see [An, p. 21]) as

(2.1)

[

n
k

]

q

−

[

n
k − 1

]

q

= qk

(

[

n− 1
k

]

q

− qn−2k+1

[

n− 1
k − 2

]

q

)

.

The advantage to this rewriting is that the two terms inside the parentheses on
the right hand side of (2.1) are now not only symmetric, but also centered at the
same power of q. This suggests an algebraic interpretation as the sl2-character of
some quotient module, and we will construct such an sl2-module as the principal
specialization of the irreducible representation of spm corresponding to its kth fun-
damental weight. Our construction of these representations follows [Bo, Chap VIII
§13] (See [FuH] §17.3 and 24.2 for a discussion of these same representations in a
dualized form using Weyl’s construction).

Set m = n − 1, which is an even number, and let m = 2l. Let V be an m-
dimensional C-vector space with a symplectic form 〈·, ·〉, i.e. 〈·, ·〉 is a non-degenerate
skew-symmetric bilinear form on V . Let Sp(V ) be the symplectic group inside of
GL(V ) which consists of all invertible transformations preserving 〈·, ·〉, and spm its
Lie algebra. Then Sp(V ) and spm act on V , and hence on the exterior powers ∧kV
with formal character

charspm
(∧kV ) = ek(xl, xl−1, . . . , x2, x1, x

−1
1 , x−1

2 , . . . , x−1
l−1, x

−1
l )

where ek(z1, . . . , zm) is the kth elementary symmetric function in the variables
z1, . . . , zm. Inside spm is a distinguished subalgebra isomorphic to sl2 known as a
principal three-dimensional subalgebra (TDS), which is unique up to conjugacy (see
[Pr3]). Restricting a representation of spm to this TDS yields an sl2-module whose
formal character is obtained from charspm

by the specialization xi = q2i−1, so for
∧kV we obtain
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charsl2(∧
kV ) = ek(q

2l−1, q2l−3, . . . , q3−2l, q1−2l)

= qk(k−m)

[

m
k

]

q2
.

This then suggests that perhaps one could prove Theorem 1 by demonstrating an
spm-equivariant injection φ : ∧k−2V → ∧kV , so that the quotient ∧kV/φ(∧k−2V )
would have formal characters

charspm
(∧kV/φ(∧k−2V )) = ek(xl, xl−1, . . . , x

−1
l−1, x

−1
l )− ek−2(xl, xl−1, . . . , x

−1
l−1, x

−1
l )

charsl2(∧
kV/φ(∧k−2V )) = qk(k−m)

[

n− 1
k

]

q2
− q(k−2)(k−2−m)

[

n− 1
k − 2

]

q2

= qk(k−m)

(

[

m
k

]

q2
− (q2)n−2k+1

[

m
k − 2

]

q2

)

= qk(k−m)

(

[

n
k

]

q2
−

[

n
k − 1

]

q2

)

.

Since such sl2-characters are are known to be symmetric, unimodal Laurent poly-
nomials in q centered about q0 (see [St], Theorem 15), this would imply that the
difference in Theorem 1 is symmetric and unimodal as a polynomial in q.

In [Bo, Chap VIII §13, no. 3], such a map φ is constructed by identifying the
skew-symmetric form 〈·, ·〉 with a skew-symmetric 2-tensor w ∈ ∧2(V ), and letting
φ(v) = v ∧ w. The fact that φ is spm-equivariant is immediate from the fact that
Sp(V ) preserves 〈·, ·〉 and hence spm annihilates w. Injectivity of φ is guaranteed
by the following proposition (essentially proven in [Bo, page 203]) whose statement
we include here for later use in Section 4.

Proposition 2. Let V be a m-dimensional vector space over C. Fix w ∈ ∧2(V ),
fix k, 2k ≤ m+ 2, and define φ(v) = w ∧ v. Then φ is an injection from ∧k−2V to
∧kV , if, and only if, w corresponds to a non-degenerate (skew-symmetric) bilinear
form.

This completes the proof of Theorem 1. We note that Bourbaki also proves
that the spm-representation ∧kV/φ(∧k−2V ) is irreducible and corresponds to the
kth fundamental weight ω1 + . . . + ωk of spm. As such, one could compute a
product formula for the difference in Theorem 1 using the q-Weyl dimension for-
mula (see e.g. [Pr3]), however this yields no more in this case than the formula
one gets by combining common factors in the product formulas for the individ-
ual q-binomial coefficients. Hughes [Hu] gave a different combinatorial formula for
charsl2(∧

kV/φ(∧k−2V )) based upon Freudenthal’s multiplicity formula.

In the remainder of this section we wish to discuss how the partitions considered
by Andrews in [An] naturally index a basis for the quotient space ∧kV/φ(∧k−2V ),
and which coincides with another known basis for the irreducible representations
of spm.

There is an obvious bijection between partitions µ whose Ferrers diagrams fit
inside a k×(m−k) rectangle and a basis for ∧kV . Namely, consider µ as a multiset
of size k of integers in {0, 1, · · · ,m− k}, and add i to the ith smallest element of µ,
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to obtain a k-subset S of {1, · · · ,m}. These subsets become basis elements under
the identification

vS = ∧i∈Svi

where {v1, . . . , vm} is a basis for V .
The quotient space ∧kV/φ(∧k−2V ) has sl2-character equal to the left-hand side

of (2.1), up to rescaling. Andrews [An] gave an explicit set of partitions inside a
k × (m− k) rectangle whose generating function is given by (2.1) (NB: one might
expect these partitions to lie inside a k × (n − k) rectangle, but in fact they lie
in the smaller k × (m− k) rectangle). His description uses the Frobenius notation
for a partition µ (see [An]): if the Durfee square of µ has size r2, let ai = µi − i,
bi = µ′

i − i, and

µ =

(

a1a2 · · · ar
b1b2 · · · br

)

.

Proposition 3 (Andrews). The generating function for all partitions λ whose
Frobenius notation satisfies a1 ≤ m− k − 1, b1 ≤ k − 1, and ai − bi ≤ m− 2k is

q−k

(

[

n
k

]

q

−

[

n
k − 1

]

q

)

=

[

m
k

]

q

− qm−2k+2

[

m
k − 2

]

q

.

If a partition µ inside a k×(m−k) rectangle satisfies the conditions of Proposition
3, we will say µ (or its corresponding subset S or its corresponding basis vector vS)
is Andrews and otherwise that it is non-Andrews.

Theorem 4. If m is even and 2k ≤ m + 2, then the images of the Andrews
partitions form a basis for the quotient ∧kV/φ(∧k−2V ).

Proof. We originally had a direct proof of this, similar to the proof of Theorem 6,
using as a key lemma a result of independent interest which we have relegated to
the Appendix. We later found out that the theorem can be deduced from work of
Berele [Be], as we now explain.

Directly translating the condition for a partition µ to be non-Andrews via the
correspondence with subsets, one can check that a k-subset S′ is non-Andrews if
and only if there exists some i for which the ith largest element a in S′ and the ith

smallest element b in {1, 2, . . . ,m}−S′ satisfy a > b and a+ b > m+1. Now biject
{1, 2, . . . ,m} with

[±l] := {−1,−2, . . . ,−(l − 1),−l, l, l − 1, . . . , 2, 1}

by matching up the corresponding entries of these sets in the order that they are
listed. Under this correspondence, one can check that the non-Andrews partitions
are exactly the subsets S ⊆ [±l] for which there is some i so that |S ∩ [±i]| > i.
In the terminology of Sheats [Sh], a subset of S ⊆ [±l] corresponds to a circle
diagram, and the non-Andrews condition is the same as the circle diagram being
non-admissible. Sheats explains how the admissible circle diagrams are the same
as the symplectic tableaux of King [Kin] and DeConcini [DeC] indexing the weights
of the irreducible representations of spm, in the case where the representations are
fundamental. Furthermore, Berele [Be] showed how to construct the irreducible
representations of spm in such a way that King’s symplectic tableaux index a basis,
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and hence in the case of the fundamental representations, the basis is indexed by
admissible circle diagrams or Andrews partitions. It is easy to check that in the
case of the fundamental representations, Berele’s construction is exactly the same
as our construction following Bourbaki, i.e. ∧kV/φ(∧k−2V ). �

We also wish to discuss a natural poset structure on the Andrews partitions.
Recall that the Gaussian poset L(k,m− k) is the distributive lattice formed by all
partitions inside an k× (m−k) box, ordered by inclusion of their Ferrers diagrams.

It has rank generating function

[

m
k

]

q

, and the proof of its rank-unimodality using

the action of a principal TDS inside of glm also proves that this poset is Peck by
showing that the action of the element e in sl2 gives rise to an order-raising operator
on the poset (see [Pr1] for definitions of Peck and order-raising operator).

Similarly, one can easily check that the subset of Andrews partitions inside
L(k,m − k) form a distributive sublattice which we will call Andrews(k,m − k).
One can also easily check that the self-duality on L(k,m−k) given by complement-
ing a partition within the k × (m− k) box restricts to Andrews(k,m− k), so it is
also self-dual. A picture of Andrews(3, 3) inside of L(3, 3) is shown in Figure 1a.

AndrewsPoset.fig

Figure 1. (a) The Gaussian poset L(3, 3) with the elements ofAndrews(3, 3)
shown circled, (b) The Gaussian poset L(3, 2) with the elements of
Good(3, 2) shown circled.

Theorem 4 shows that not only is Andrews(k,m−k) rank-symmetric and rank-
unimodal for m even with 2k ≤ m + 2, but that its elements naturally index the
basis for the spm-module (and hence sl2-module) ∧kV/φ(∧k−2V ). Thus one would
hope that the element e in the principal TDS would give rise to an order-raising
operator on ∧kV/φ(∧k−2V ) with respect to the order Andrews(k,m − k), and
hence prove this poset is Peck. This is false, however, already for k = 2 and m ≥ 6.
Nevertheless, we had conjectured that the poset Andrews(k,m − k) is Peck if m
is even and 2k ≤ m+ 2, and this has been proven very recently by Donnelly [Do].
Donnelly constructs the fundamental irreducible representations of spm with a basis
indexed by admissible circle diagrams, in such a way that the principal TDS has
its raising operator acting as an order-raising operator with respect to the partial
order on the circle diagrams isomorphic to Andrews(k,m− k).

There is also a well-known open problem to determine whether the Gaussian
poset L(k,m−k) has a symmetric chain decomposition (see [Pr2] for definition and
some discussion of this problem). Theorem 4 suggest a natural extension of this
problem:

Question. Does there exist a symmetric chain decomposition for L(k,m−k) which
restricts to Andrews(k,m− k) for m even?

If such a symmetric chain decomposition exists, it would by necessity also give
a symmetric chain decomposition for the subposet NonAndrews(k,m− k) of non-
Andrews partitions inside L(k,m−k). Strangely, this poset NonAndrews(k,m−k)
is not isomorphic to the smaller Gaussian poset L(k − 2,m + 2 − k), even though
they share the same rank-generating function. In fact NonAndrews(k,m − k) is
not even a distributive lattice for k ≥ 4!
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3. Another special case.
In this section we prove analogous results involving Sym∗V and the orthogonal

Lie algebra, rather than ∧∗V and the symplectic Lie algebra. This case also leads to
a conjecture that another self-dual, rank-unimodal subposet of the Gaussian poset
is Peck.

Theorem 5. If n is an odd positive integer, then

[

n+ k − 1
k

]

q

− qn−1

[

n+ k − 3
k − 2

]

q

is a symmetric, unimodal polynomial with non-negative coefficients.

Proof. In fact, we will show that this difference is, up to rescaling, the sl2-character
for the principal TDS inside of the orthogonal Lie algebra son acting in a certain
representation.

Let n = 2l + 1. Choose 〈·, ·〉 a non-degenerate symmetric form on an n-
dimensional C-vector space, and let the special orthogonal group SO(V ) be the
subgroup of GL(V ) consisting of transformations which have determinant 1 and
preserve 〈·, ·〉. Then SO(V ) and its Lie algebra son act on V , and hence on SymkV
with character

charson(Sym
kV ) = hk(xl, xl−1, . . . , x2, x1, 1, x

−1
1 , x−1

2 , . . . , x−1
l−1, x

−1
l )

where hk is the kth (complete) homogeneous symmetric function. The principal
TDS inside of son therefore acts on SymkV with character

charsl2(Sym
kV ) = hk(q

n−1, qn−3, . . . , q4, q2, 1, q−2, q−4, . . . , q3−n, q1−n)

= qk(1−n)

[

n+ k − 1
k

]

q2

and hence

charsl2(Sym
kV )−charsl2(Sym

k−2V )

= qk(1−n)

(

[

n+ k − 1
k

]

q2
− (q2)n−1

[

n+ k − 3
k − 2

]

q2

)

.(3.1)

Define φ : Symk−2V → SymkV to be multiplication by the symmetric 2-tensor
w ∈ Sym2V corresponding to 〈·, ·〉. “Multiplication” by w means the following
composite

Symk−2V →֒ Symk−2V ⊗ Sym2V → SymkV
v 7→ v ⊗ w 7→ v · w

where the second map in the sequence is the shuffle (symmetrization) product.
The map φ is son-equivariant as before since 〈·, ·〉 is preserved by SO(V ), so w

is annihilated by sl2. The map φ is an injection, since under the isomorphism of
the symmetric algebra Sym∗V and the polynomial ring C[x1, . . . , xn], the map φ
corresponds to multiplying the polynomials of degree k−2 by a non-zero polynomial
of degree 2.
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Therefore the expression on the right-hand side of equation (3.1) is the sl2-
character of the quotient module SymkV/φ(Symk−2V ), and hence is unimodal.
�

Remark. Empirically it appears that the assertion of Theorem 5 is also true if k is
odd and n > 2 is arbitrary, but we have no proof of this for even n.

It can be shown that the son representation SymkV/φ(Symk−2V ) appearing
in the proof of Theorem 5 is irreducible, although it does not correspond to a
fundamental representation of son (see the discussion after the proof of Theorem
6). We now prove that there is again a natural set of partitions which index a
basis for this quotient, deferring a discussion of their relation to known orthogonal
tableaux until after the proof.

Firstly, note that a partition λ inside a k × (n− 1) rectangle can be thought of
as the k-multiset S of its parts in {0, 1, . . . , n− 1}, and also can be identified with
a product of the basis vectors {v0, . . . , vn−1} of V ,

vλ =
∏

i∈S

vi

where here again the product is the commutative symmetrization product in Sym∗V .
Thus the set of all such partitions naturally indexes the monomial basis of SymkV .

We wish to identify an appropriate subset of these partitions which will index a
basis for our quotient module. Again using one of the q-Pascal’s triangle recursions,
we have

[

n+ k − 1
k

]

q

− qn−1

[

n+ k − 3
k − 2

]

q

=

[

n+ k − 3
k − 1

]

q

+ qk
[

n+ k − 2
k

]

q

,

whose right-hand side suggests the set of partitions λ inside in a k×(n−1) rectangle
which satisfy one of these two mutually exclusive conditions: either λi ≤ n− 2 for
all i and λk = 0 (i.e. λ fits inside a (k− 1)× (n− 2) “corner” of the box) or λk > 0
(so removing the full first column of λ gives a partition inside a k × (n − 2) box).
Say that a partition inside a k × (n − 1) box (or its corresponding multiset or its
corresponding basis vector in SymkV ) satisfying either of these two conditions is
good, else it is bad.

Theorem 6. For n odd, the images of the good basis vectors in SymkV form a
basis for SymkV/φ(Symk−2V ).

Proof. Identifying φ with its
(

n+k−3
k−2

)

×
(

n+k−1
k

)

matrix relative to the multiset

bases, we will show that the
(

n+k−3
k−2

)

×
(

n+k−3
k−2

)

square submatrix φ′ of φ obtained
by restricting to the bad columns is non-singular, and hence that the images of the
good basis vectors form a basis for the quotient SymkV/φ(Symk−2V ).

Directly translating the condition for a partition λ to be bad via the correspon-
dence with multisets, one can check that a k-multiset S′ is bad if and only if it
contains a copy of the pair {0, n− 1}.

By the canonical forms for symmetric non-degenerate bilinear forms over C, we
can assume w is given by

w =

l
∑

i=0

vi · vn−1−i.
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After identifying basis elements of Symk−2V, SymkV with (k − 2)-multisets, k-
multisets respectively, φ sends a basis (k−2)-multiset S to the sum of all k-multisets
S′ obtained by adjoining a new copy of the pair {i, n− 1− i} to S.

We now decompose the matrix φ into a certain block form. Call the subsets
of the form {i, n − 1 − i} pairs, and note that any subset S can be decomposed
decomposed uniquely S = P ∪ U where P is a union of some pairs, and U consists
of the unpaired elements (either i or n− 1− i) within S. For example, if n = 7 and
S = {0, 0, 1, 2, 2, 3, 5, 6, 6, 6}, then P = {0, 0, 1, 5, 6, 6}, U = {2, 2, 3, 6}. Note that
if φ(S) contains some multiset S′ with non-zero coefficient, then S′ must have the
same multiset of unpaired elements U as S, and it must contain exactly one more
pair {i, n − 1 − i} than S did. Therefore if we fix a possible multiset of unpaired
elements U (that is, any multiset on {0, 1, . . . , n − 1} which contains at most one
element from {i, n − 1 − i} for all i), and let SU ,S

′
U be the collection of (k − 2)-

multisets, k-multisets on {0, 1, · · · , n− 1} whose unpaired elements are exactly U ,
then φ will be block diagonal, with each non-zero block representing the map from
subspace spanned by SU into that spanned by S ′

U . Let φU be the restriction of φ
to the spaces spanned by SU ,S

′
U , and φ′

U the restriction of φU to its bad columns.
It remains to show that each φ′

U is square and non-singular.

Trivially, we can reduce to the case where U is empty, since removing the un-
paired elements from S, S′ does not affect the matrix entry φU (S, S

′), and does not
affect whether S′ is good or bad. When U is empty, since S, S′ are unions of pairs
{i, n − 1 − i}, we lose no information if we replace S, S′ by the multisets T, T ′ of
{0, 1, . . . , (n− 1)/2} obtained by replacing each pair {i, n− 1− i} with the smaller
of the two numbers in the pair. We will have

φU (S, S
′) =

{

1 if T ⊂ T ′

0 else

and S′ is bad if and only if 0 ∈ T ′.

Thus it only remains to observe the following: For any positive integers m, r, let
M be the inclusion incidence matrix with rows, columns indexed by (r − 1) and
r-multisets on {0, 1, . . . ,m} respectively. Let M ′ be its restriction to the columns
indexed by multisets containing 0. Then M ′ is square and invertible. To see this,
note that if we order the rows and columns by lexicographic order on multisets with
0 coming first, 1 next, etc., then this matrix is upper unitriangular. �

It follows from Littlewood’s branching rules for restricting irreducible gln-characters
to son-characters [Li], that the representation SymkV/φ(Symk−2V ) is an irre-
ducible son-representation and corresponds to the partition (k) having a single
part of size k. Orthogonal tableaux indexing the weights of these irreducible repre-
sentations have been given by King [Kin], Koike and Terada [KT], Proctor [Pr4],
and Sundaram [Su]. It is easy to check in the case of the irreducible corresponding
to the partition (k) that each of these sets of orthogonal tableaux reduces to the
disjoint union of two sets, consisting of all k-multisets and all (k − 1)-multisets on
an (n − 1)-set, respectively. This is easily seen to correspond bijectively with the
two kinds of good partitions in Theorem 6. We are not aware, however, of any
explicit construction of the irreducible representations of som which coincides with
our construction SymkV/φ(Symk−2V ) in this special case, and hence which would
imply Theorem 6 in the way that Berele’s construction implied Theorem 4.
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As in the previous section, one can consider a natural partial order on the good

partitions. The q-binomial coefficient

[

n+ k − 1
k

]

q

is the rank generating function

for the Gaussian poset L(k, n − 1), and one can easily check that the subset of
good partitions inside L(k, n − 1) form a distributive sublattice which we will call
Good(k, n − 1). One can also check that the self-duality on L(k, n − 1) given by
complementing a partition within the k × (n − 1) box restricts to Good(k, n − 1),
so it is also self-dual. A picture of Good(3, 2) is shown in Figure 1b. Theorem 6
shows that not only is Good(k, n−1) rank-symmetric and rank-unimodal for n odd,
but that its elements naturally index the basis for an sl2-module. Thus one would
again hope that the element e in sl2 would give rise to an order-raising operator on
Good(k, n − 1), and hence prove that it is Peck. This hope is again false, already
for k = 2 and n ≥ 5. Nevertheless, we still make the following conjecture

Conjecture 7. The poset Good(k, n− 1) is Peck for n odd.

It would be interesting to see if the methods of Donnelly mentioned in the previous
section can be modified to prove this.

As in the discussion at the end of the previous section, it is natural to extend the
question of whether there is a symmetric chain decomposition of the Gaussian poset
L(k, n−1) to ask whether there is one which restricts to Good(k, n−1). In contrast
to the case of Andrews(k,m − k), the question seems more hopeful in this case
because the subposet Bad(k, n−1) consisting of the bad partitions in L(k, n−1) is
easily seen to be isomorphic to the smaller Gaussian poset L(k−2, n−1). Therefore,
one could hope for existence of a symmetric chain decomposition defined recursively
on L(k−2, n−1), which then extends over Good(k, n−1) to the rest of L(k, n−1).

4. Schur functions.

We now generalize Theorems 1 and 5 by proving a unimodality result for certain
differences of principally specialized Schur functions. For a partition λ, we let
sλ(x1, . . . , xn) denote the Schur function in the variables x1, . . . , xn associated to
λ [Ma]. The principal specialization of sλ is sλ(1, q, q

2, . . . , qn−1), and is known
to be a symmetric, unimodal polynomial in q with non-negative coefficients [St,
Theorem 13].

The main result of this section is the following theorem.

Theorem 8. Under the following conditions on λ, λ̃ and the parity of n, the cen-
tered difference of principal specializations

sλ̃(1, q, q
2, . . . , qn−1)− qn−1sλ(1, q, q

2, . . . , qn−1)

is the principal specialization of an spn-character (n even) or son-character (n odd),
and hence a symmetric, unimodal polynomial in q with non-negative coefficients:

(1) λ̃ is obtained from λ by adding two cells to the first row, and n is odd.

(2) λ̃ is obtained from λ by adding a new part of size 2, n is odd, and n > a+ b
where a, b are the lengths of the first two columns of λ.

(3) λ̃ is obtained from λ by adding two cells to the first column, n is even, and
n ≥ 2(l(λ) + 1) where l(λ) is the number of parts of λ.

(4) λ̃ is obtained from λ by adding a new column of size 2, n is even, and n ≥ 2.
9



Before giving the proof of each case of the theorem, we give a sketch of the
basic idea underlying all four cases. Our first step is to interpret sλ(x1, . . . , xn)
as the formal character of an explicitly constructed irreducible representation of
GL(V ), where V is an n-dimensional C-vector space as usual. To this end, recall
that for an n-dimensional vector space V over C, the Schur module (or co-Schur
module) SλV constructs the irreducible representation of GL(V ) corresponding to
λ, and the formal character is sλ(x1, . . . , xn) (see [ABW] for definitions and details
about (co-)Schur modules). Because we are working over C, the Schur module
and co-Schur module are isomorphic as GL(V )-representations, so we will abuse
notation and use SλV for both. By choosing a non-degenerate symmetric (resp.
skew-symmetric) form 〈·, ·〉 on V when n is odd (resp. even), and letting SO(V ), son
(resp. Sp(V ), spn) be the classical simple Lie group and Lie algebra associated to
the form 〈·, ·〉, the Schur module SλV is also a representation for son (resp. spn)
whose formal character is

charsonSλV = sλ(xl, xl−1, . . . , x1, 1, x
−1
1 , . . . , x−1

l−1, x
−1
l )

charspn
SλV = sλ(xl, xl−1, . . . , x1, x

−1
1 , . . . , x−1

l−1, x
−1
l )

and whose sl2-character when restricted to the principal TDS inside of son or spn
is

charsl2SλV = sλ(q
1−n, q3−n, . . . , qn−3, qn−1)

= q(1−n)|λ|sλ(1, q
2, q4, . . . , q2(n−1))

where |λ| is the sum of the parts of λ. It therefore suffices to prove (for each case
asserted in the theorem) that there exists an son or spn-equivariant injection

φ : SλV →֒ Sλ̃V.

This implies that the difference of principal specializations will be (up to a shift
by a power of q, and the substitution q 7→ q2) the sl2-character for the quotient
Sλ̃V/φ(SλV ), and then symmetry, unimodality and non-negativity of the coeffi-
cients follow as before from [St, Theorem 15].

The injection φ may be uniformly described in each case as the following com-
posite of three maps:

SλV → SλV ⊗ (V ⊗ V ) →
⊕

λ⊂λ̃

|λ̃|=|λ|+2

Sλ̃V → Sλ̃V

Here the first map is simply tensoring with w, the symmetric or skew-symmetric
2-tensor in V ⊗ V which corresponds to the form 〈·, ·〉, and which is annihilated
by son or spn. The second map comes from the Pieri formula for Schur modules
or Schur functions ([MO],[Ma p. 42]), and the third map is just the canonical
projection onto a summand in the direct sum.

It is clear that φ is son or spn-equivariant as before since w is annihilated by
son or spn. It only remains to check that in each case asserted by the theorem, φ
is injective. While the composite “Pieri map”

SλV ⊗ (V ⊗ V ) → Sλ̃V
10



is somewhat complicated to describe explicitly for general λ̃, λ (see [MO]), in each
of the cases asserted in the theorem we have a simple description, which allows us
to conclude that φ is injective.

Proof of Theorem 8. From the previous discussion, we only need to show in each
case of the theorem how to describe the map φ explicitly, and check that it is
injective. We will use the fact that the (co-)Schur functor construction may be
applied for any skew Ferrers diagram D, i.e. D need not necessarily correspond
to a partition. We introduce the following terminology: for a non-negative integer
m, Row(m) denotes a Ferrers diagram consisting of a single row with m cells, and
Col(m) is a single column with m cells. Given two skew diagrams D and D′, let
D∗D′ denote the skew diagram obtained by placing D′ strictly north and east of D
so that they have no cells in the same row or column. We will use without further
mention the facts that

SRow(m)V ∼= SymmV

SCol(m)V ∼= ∧mV.

For case 1, consider the following commutative diagram of maps

(4.1)

Sλ
i1−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)

⊗w





y





y

⊗w

Sλ∗Row(2)
i2−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)∗Row(2)

π̂





y





y

π

Sλ̃

i3−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1+2)

where here SD denotes the Schur module construction (as opposed to the co-Schur
module) applied to V . The horizontal maps i1, i2, i3 are inclusions which come
from the definition of a Schur module SDV as the image of a certain map into
Symµ1V ⊗ Symµ2V · · · ⊗ SymµlV , where µi is the size of the ith row of the skew
diagram D. Also the maps ⊗w from the first row to the second row are defined
because w is a symmetric 2-tensor, i.e. it is in SRow(2)V , because n is odd. The
map π is defined by π = id ⊗ · · · ⊗ id ⊗ g, where g is the symmetrization map
g : Symλ1V ⊗Sym2V → Symλ1+2V . The map π̂ is defined because the composite
π ◦ i2 happens to factor through Sλ̃, as is easy to check from the definition of the
Schur module.

The composite π◦(⊗w) of the two maps in the right column is injective, because
it is id⊗· · ·⊗id⊗h, where h is the same map which was shown to be injective in the
proof of Theorem 5. Since i1 is an injection, this implies that our map φ = π̂◦(⊗w)
is an injection, as desired.

For case 3, one does the “transpose” of the argument just given, replacing Schur
modules with co-Schur modules, and rows by columns. In the second-to-last sen-
tence of the argument, one uses Proposition 2.

11



For case 4, consider the following commutative diagram
(4.2)

Sλ
i1−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)

⊗w





y





y

⊗w

Sλ∗Row(1)∗Row(1)
i2−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2)∗Row(λ1)∗Row(1)∗Row(1)

π̂





y





y

π

Sλ̃

i3−−−−→ SRow(λk)∗Row(λk−1)∗···∗Row(λ2+1)∗Row(λ1+1)

where here SD denotes the Schur module construction applied to V . The horizontal
maps i1, i2, i3 are the Schur modules’ defining inclusions as before. The map π is
defined by π = id⊗ · · · ⊗ id⊗ g1 ⊗ g2, where g1, g2 are the symmetrization maps

g1 : Symλ1V ⊗ V → Symλ1+1V

g2 : Symλ2V ⊗ V → Symλ2+1V

The map π̂ is defined because the composite π ◦ i2 happens to factor through Sλ̃,
as is easy to check from the definition of the co-Schur module, using the fact that
w is already a skew-symmetric 2-tensor (since n is even).

Since i1 is an injection, our composite map φ = π̂ ◦ (⊗w) in the first column will
be an injection, as long as we can show that the composite π ◦ (⊗w) in the right
column is injective. But this map is id⊗ · · · ⊗ id⊗ h, where h is the same map in
the case where there are only 2 rows in λ. Thus we need a lemma which says that
if w is a non-degenerate skew-symmetric 2-tensor, n ≥ 2, and λ has only 2 rows,
then the composite map (g1 ⊗ g2) ◦ (⊗w) is injective. This is easy to prove using
the same sort of block-diagonal decomposition technique used to prove injectivity
of the map in Theorem 6, so we will omit the details.

For case 2, one does the “transpose” of the argument just given, replacing Schur
modules with co-Schur modules, and rows by columns. In the second-to-last sen-
tence of the argument, one needs to show that if a ≥ b with n > a+ b, and w is a
non-degenerate symmetric 2-tensor, then the following composite map is injective:

SCol(a)∗Col(b) → SCol(a)∗Col(b)∗Col(1)∗Col(1) → SCol(a+1)∗Col(b+1)

⊗w g1 ⊗ g2

where g1, g2 are the antisymmetrization maps

g1 : ∧aV ⊗ V → ∧a+1V

g2 : ∧bV ⊗ V → ∧b+1V

Again this is easy to prove using the same block-diagonal decomposition tech-
nique used to prove injectivity of the map in Theorem 6, and we omit the details.
�

Remarks.

1. It is not hard to give combinatorial injections proving that in all of the cases
12



(1)-(4), the appropriate differences

sλ̃(xl, xl−1, . . . , x1, 1, x
−1
1 , . . . ,x−1

l−1, x
−1
l )

−sλ(xl, xl−1, . . . , x1, 1, x
−1
1 , . . . , x−1

l−1, x
−1
l )

or

sλ̃(xl, xl−1, . . . , x1, x
−1
1 , . . . ,x−1

l−1, x
−1
l )

−sλ(xl, xl−1, . . . , x1, x
−1
1 , . . . , x−1

l−1, x
−1
l )

where l = ⌊n
2 ⌋ have non-negative coefficients as a Laurent polynomial in

x1, . . . , xl, regardless of the parity of n. However, these differences will not
have always have meaning as son or spn-characters, and unimodality of
their principal specializations requires the parity conditions stated in each
case.

2. There is an alternative proof of Theorem 8 relying on Littlewood’s iden-
tities [Li] giving the branching rules for decomposing into irreducibles the
restriction of an irreducible gln-representation SλV to son or spn. In the
alternative proof, one shows that when λ, λ̃, n satisfy the hypotheses of the
theorem, the decomposition coefficients for λ̃ always dominate those of λ, so
that there must be an injection of representations. Such a program would
not be hard to carry out, but we feel that such a proof is somewhat less
illuminating than actually constructing the injections as above.

3. One might hope that for any λ̃ obtained from λ by adding two cells, the
centered difference considered in Theorem 8 is unimodal (it will trivially
be symmetric) under some parity conditions on n. However, this is false

in general. For example, if λ, λ̃ = (3, 1), (3, 3) then the difference is not

unimodal for n = 4, 5, 6, 8, if λ, λ̃ = (2, 1, 1), (2, 2, 2) then the difference

is not unimodal for n = 5, 6, 7, and if λ, λ̃ = (3, 2, 1), (3, 3, 2) then the
difference is not unimodal for n = 5, 6. Interestingly, in each of these
examples, the difference does appear to be unimodal for n sufficiently large,
regardless of its parity!

4. One might also ask whether there is a generalization of Theorems 4 and 6,
and Conjecture 7 about posets. There is a good candidate to replace the
Gaussian poset L(k, n), namely the poset L(λ, n) consisting of all column-
strict tableaux of shape λ ordered entry-wise, which was conjectured to
be Peck by Stanley, and proven using sl2-representations in [Pr2]. Unfortu-
nately, we do not know of good candidates for the analogues of the subposets
of Andrews and good partitions in Sections 2 and 3, which would index basis
elements in the quotient Sλ̃V/φ(SλV ).

5. A strange conjecture.
The KOH identity [Ze] writes a q-binomial coefficient as

[

m
k

]

q

=
∑

ν

Gν(q),

where ν ranges over all partitions of k, and Gν(q) is a certain shifted product of
q-binomial coefficients, which are all symmetric and centered at the same power of

13



q. Similarly the generalization of KOH to Schur functions of Kirillov [Kir] is

sλ(1, q, . . . , q
m−1) =

∑

ν

Gν(q),

where here ν ranges over certain sequences of partitions, called configurations, and
Gν(q) is another shifted product of q-binomial coefficients. Therefore one might
try to prove a refinement of Theorem 8, namely, that the centered difference

Gν̃(q)− qm−1Gν(q)

is symmetric, unimodal with non-negative coefficients, under some natural condi-
tions on m, ν̃, ν.

In case (3) of Theorem 8 we have such a conjecture. The new configuration
ν̃ is obtained by adding two cells to the first column of each partition of ν, and
appending 11 and 1 as new partitions to ν. Here, m is even, m ≥ 2(l(ν1) + 1).
We cannot even verify that for q = 1 the integer representing this difference is
non-negative.

By considering an iterate of the ν = 1k−2 term of the above conjecture, we
conjecture the following generalization of Theorem 1.

Conjecture 9. If n is odd, and r and k are non-negative integers with n ≥ 2rk −
4r + 3, then

[

n− 1
k

]

q

− qn−2rk+1+4(r−1)

[

n− 1 + 4(r − 1)
k − 2

]

q

is a symmetric, unimodal polynomial in q with non-negative coefficients.

Appendix: a lemma on the canonical matching.
There is a well-known matching in the incidence graph for the inclusion relation

between the (r − 1) and r-subsets of an n-element set, which has been discovered
and rediscovered by many authors in various guises [Ai,GK,WW]. For this reason
we call it the canonical matching. Our original proof of Theorem 4 (before we were
aware of Berele’s work [Be]) relied on a decomposition of the matrix for the map
φ : ∧k−2V → ∧kV into rectangular blocks, very similar to the proof of Theorem 6.
It was shown that in each rectangular block the non-Andrews partitions naturally
indexed a set of columns which selected out an invertible square submatrix, and
hence that the Andrews partitions formed a basis for the quotient ∧kV/φ(∧k−2V ).
The crucial lemma in this proof was the following statement about the canonical
matching, which we think is of independent interest:

Lemma 10. Assume 2r ≤ n + 1 and let M(n, r) be the
(

n
r−1

)

×
(

n
r−1

)

incidence

matrix obtained by restricting the inclusion incidence matrix between (r − 1) and
r-subsets of an n-set to the columns indexed by those r-subsets which are matched
in the canonical matching. Then M(n, r) is square and invertible.

Proof. Let θn,r : T 7→ T ′ be the canonical matching. From any of the descriptions
of θ ([Ai,GK,WW]) the following two properties of θ are easy to check, assuming
r ≤ ⌈n

2 ⌉:

(1) If n 6∈ T then n 6∈ θn,r(T ).
(2) If n ∈ T then n ∈ θn,r(T ) and

θn,r(T ) = θn−1,r−1(T − {n}) ∪ {n}

14



From this it follows that reordering both the rows and columns of M(n, r) so that
the subsets not containing n come first, produces a block upper-triangular form for
M(n, r):

M(n, r) =

(

M(n− 1, r) ∗
0 M(n− 1, r − 1)

)

.

Thus by induction on r+ n it only remains to show that M(2r− 1, r) is invertible.
But M(2r− 1, r) is the entire inclusion incidence matrix between the middle ranks
in a Boolean algebra of odd rank, which is known to be invertible [Ka].�
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