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Abstract. We give a combinatorial proof that the coefficient of zAB in a certain

rational function is a sum of two binomial coefficients.

1. Introduction.

The q-Dyson conjecture was a constant term problem which was finally solved
combinatorially by Zeilberger and Bressoud [10]. In this paper we shall give a
combinatorial proof of another such theorem [4, Corollary 3].

Theorem 1. Let A and B be positive integers. The coefficient of zAB in

(1)
(1− λµzA+B)A+B

(1− λzA)A(1− µzB)B

is

(2)

(

A+B − 1

B

)

λB +

(

A+B − 1

A

)

µA.

The analytic proof of Theorem 1 in [4] uses a special evaluation of a generalized
hypergeometric series. Because of the extensive work on the combinatorics of these
series, one might think that a combinatorial proof of Theorem 1 is routine. However,
this is not true. There are two bijective models for such series. The first allows
arbitrary parameters in the series and computes generating functions of objects [5],
[7]; while the second restricts the parameters to be integers and counts objects in
specific sets. It is theoretically possible to use the first model to derive results in the
second model, although the involution principle may be necessary. The first model
does not explain special conditions on the parameters, which do exist for Theorem 1.
The relevant versions of the second model for Theorem 1 involve integer parameters
which give positive terms in the series, whereas we need parameters which make
the series alternate (see Lemma 4). So Theorem 1 poses a much more difficult
combinatorial problem.

We will in fact give a sign-reversing involution which proves a q-analogue (The-
orem 6) of Theorem 1. Unfortunately, Theorem 6 has a finite sum which replaces
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(2), and thus is not as elegant as Theorem 1. Our involution will indicate why the
q-analogue is more complicated.

The rest of the paper is organized in the following way. In §2 the combinatorial
model for Theorem 1 and its q-analogue is given. The sign-reversing involution on
ordered triples of partitions is given in §3. The final result is given in §4, along with
a mischievous open bijection for binomial coefficients. Finally, remarks are made
in §5.

2. Combinatorics of Theorem 1.

If we put x = λzA and y = µzB it is natural to consider

(3) F (x, y) =
(1− xy)A+B

(1− x)A(1− y)B
.

Clearly F (x, y) is the generating function for ordered triples (a, b, c) of
(a) multisets a from an alphabet A with A elements,
(b) multisets b from an alphabet B with B elements,
(c) subsets c from an alphabet C with A+B elements.
The weights are defined by w(α) = x, w(β) = y, and w(γ) = −xy, for α ∈ A,
β ∈ B, and γ ∈ C.

To construct a term in F (λzA, µzB) contributing to the coefficient of zAB, we
choose a multiset a with na elements from A, a multiset b with nb elements from
B, and a subset c with nc elements from C. We must have

(4) (na + nc)A+ (nb + nc)B = AB.

This will give us a term with
λna+ncµnb+nc

in it. For such na, nb, and nc, the number of such set and multiset triples is

(5)

(

na +A− 1

na

)(

nb +B − 1

nb

)(

A+B

nc

)

and the sign will be (−1)nc .
If we restrict nc = 0, the solutions to (4) will have the following form. Let

r = gcd(A,B). Write A = ar and B = br. Then (4) implies na = db and
nb = (r − d)a, 0 ≤ d ≤ r.

In general, na+nc = db and nb+nc = (r−d)a. Each d will give a different power
of λ and µ. For d = r, nb+nc = 0 implies nb = 0 and nc = 0 so that na = rb = B.
For d = 0, na + nc = 0 implies na = 0 and nc = 0 so that nb = ra = A. The
former gives the term

(

A+B − 1

B

)

λB

while the latter gives the term
(

A+B − 1

A

)

µA.

These are precisely the two terms in Theorem 1.
For other values of d, nc may range between 0 and min{db, (r−d)a}; each choice

will give λdbµ(r−d)a. Letting c = r − d and k = nc, and summing the terms in (5),
Theorem 1 will follow from the following lemma.
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Lemma 2. For a, b, c, d > 0,
(6)
∑

k

(−1)k
(

ac− 1 + b(c+ d)− k

ac− k

)(

bd− 1 + a(c+ d)− k

bd− k

)(

(a+ b)(c + d)

k

)

= 0.

Lemma 2 is a special case of a 2-balanced 3F2 evaluation (see [4]). We begin by
using Pascal’s triangle for the third binomial coefficient in (6) to find

∑

k

(−1)k
(

ac− 1 + b(c+ d)− k

ac− k

)(

bd− 1 + a(c+ d)− k

bd− k

)(

(a+ b)(c + d)− 1

k

)

(7)

=
∑

k

(−1)k
(

ac− 2 + b(c+ d)− k

ac− 1− k

)(

bd− 2 + a(c+ d)− k

bd− 1− k

)(

(a+ b)(c + d)− 1

k

)

.

To prove (7) we will evaluate both sides, and show that they are identical. This
is the content of the following lemma, which is an alternating sign version of
Saalschütz’s 3F2 evaluation.

Lemma 3. For 0 < u < B and 0 < v < A,

∑

k

(−1)k
(

A− 1 + u− k

u− k

)(

B − 1 + v − k

v − k

)(

A+B − 1

k

)

=

(

A− 1 + u− v

u

)(

B − 1 + v − u

v

)

.

(8)

The q-analogue of Lemma 3 which we shall prove is Lemma 4.

Lemma 4. For 0 < u < B and 0 < v < A,

∑

k

(−1)k
[

A− 1 + u− k

u− k

]

q

[

B − 1 + v − k

v − k

]

q

[

A+B − 1
k

]

q

q(
k

2)

= quv
[

A− 1 + u− v

u

]

q

[

B − 1 + v − u

v

]

q

.

(9)

We shall prove q-Saalschütz (Lemma 4) by interpreting the q-binomial coeffi-
cients as the generating functions for partitions which lie inside rectangles [1]. The
q = 1 case (Lemma 3) will follow by interpreting the lattice paths of the Ferrers
diagrams of the partitions as subsets.

3. The q-Saalschütz Theorem.

First we need some notation for sets of partitions. For any integer partition λ,

let w(λ) = q|λ|, where |λ| denotes the number partitioned by λ. Let PD
a,b
k denote

all partitions with k distinct parts, whose part sizes lie between a and b (inclusive).

Similarly let Pa,b
k denote all partitions with k parts, whose part sizes lie between a

and b (inclusive). If λ ∈ PD
a,b
k , let sign(λ) = (−1)k.

The left side of (9) is the generating function for the set S,

S =
⋃

k

Sk =
⋃

k

PD
0,A+B−2
k ×P

0,A−1
u−k ×P

0,B−1
v−k .
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The right side of (9) is the generating function for T,

T = {uv} ×P0,A−1−v
u ×P0,B−1−u

u ,

where uv is the partition with v parts of size u. Lemma 4 clearly now has this
combinatorial interpretation.

Lemma 5. For 0 < u < B and 0 < v < A, there is a sign-reversing, weight-

preserving involution Ψ on S with fixed point set Ψ0. Furthermore, all elements of

Ψ0 have positive sign and there is a weight-preserving bijection between Ψ0 and T .

Proof. First of all, we will show that Ψ0 = {(∅, µ, ν)} where ∅ is the empty parti-
tion (k = 0), µ ∈ P0,A−1−v

u and ν ∈ Pu,B−1
v . Since there is an obvious identification

between Pu,B−1
v and {uv}×P0,B−1−v

v , the bijection between Ψ0 and T is immediate.

We will define two separate involutions, Ψ∗ and Ψ̃. The involution Ψ∗ will be
defined on the set S∗ ⊆ S and the involution Ψ̃ will be defined on the set S̃ = S−S∗.
The involution Ψ∗ will have no fixed points. The fixed points of Ψ̃ will be exactly
{(∅, µ, ν)} described in the previous paragraph. Both Ψ̃ and Ψ∗ will be based on
the same involution, which we call Φ. It is also defined on the set S.

Let (λ, µ, ν) ∈ Sk. Write λ = (λ1, . . . , λk), µ = (µ1, . . . , µu−k) and ν =
(ν1, . . . , νv−k). For degenerate cases, we assume λ0 = A + B − 1, µ0 = A − 1
and ν0 = B − 1. We make the following definitions:

x = λk

y = νv−k

z = µu−k−y, if y ≤ u− k

r = min{t : x ≤ µu−k−t + t, t = 0, . . . , u− k}, if x ≤ u− k +A− 1

s = x− r, if x ≤ u− k +A− 1

See Figure 1. We can think of laying x along the boundary of the Ferrers diagram
of µ. If x lies inside the (A− 1)× (u− k) rectangle containing µ, then r and s are
the height and width of x respectively.

The definition of Φ breaks into two cases. We let Φ(λ, µ, ν) = (λ′, µ′, ν′). Asso-
ciated with (λ′, µ′, ν′) we have x′, y′, z′, r′, s′ and k′.

Case 1. x ≤ y + z or both y > u− k and x ≤ u− k +A− 1.
Note that in this case r and s must be defined and, in fact, r ≤ y. In this case,

define (λ′, µ′, ν′) as follows:

k′ = k − 1,

λ′ = (λ1, . . . , λk−1),

µ′ = (µ1, . . . , µu−k−r, s, µu−k−r+1 . . . , µu−k), and

ν′ = (ν1, . . . , νv−k, r).

We then have

x′ > x,

y′ = r,

z′ = s,

r′ > r, if x′ ≤ u− k′ +A− 1, and

s′ ≥ s, if x′ ≤ u− k′ +A− 1.
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Case 2. x > y + z.
Note that in this case z must be defined and either r is not defined or r > y.

Define (λ′, µ′, ν′) as follows:

k′ = k + 1,

λ′ = (λ1, . . . , λk, y + z),

µ′ = (µ1, . . . , µu−k−y−1, µu−k−y+1, . . . , µu−k), and

ν′ = (ν1, . . . , νv−k−1).

We then have

x′ = y + z,

y′ = r ≥ y,

z′ ≥ z, if y′ ≤ u− k′,

r′ = y, and

s′ = z.

Note that if (λ, µ, ν) is in Case 1, then (λ′, µ′, ν′) will be in Case 2 and vice versa.
Also, Φ is sign-reversing and weight-preserving. The fixed points occur exactly when
none of z, r, or s are defined. This will happen when y > u−k and x > u−k+A−1.

Unfortunately, Φ does not give us a proof of Lemma 5–its fixed point set is too
large. So we must restrict Φ to a smaller subset S∗ of S and look for another
involution on the complement. It turns out that the new involution will also be
defined from Φ. This brings us to the definition of S∗ and S̃. Let

w = min{t : µu−k−t ≥ A− v}.

Then
S∗ = {(λ, µ, ν) : x < A− v + w or y < w},

S̃ = {(λ, µ, ν) : x ≥ A− v + w and y ≥ w}.

Now define Ψ∗ = Φ|S∗ . We must verify that Ψ∗ is well-defined on S∗ and has no
fixed points.

Let (λ, µ, ν) ∈ S∗ and let Φ(λ, µ, ν) = (λ′, µ′, ν′) with the same definitions of x,
y, z, r, s, x′, y′, z′, r′ and s′ as before. Also, let w be defined as above and let w′

be the corresponding value for (λ′, µ′, ν′).
Suppose (λ, µ, ν) is in Case 1. It is clear from Figure 2 that r ≤ w and w′ = w+1.

Thus y′ = r ≤ w < w′ so that (λ′, µ′, ν′) is in S∗.
Suppose (λ, µ, ν) is in Case 2. It is clear from Figure 3 that w′ = w − 1 and

that if y < w then z < A − v. Thus, either x′ = y + z < x < A − v + w, or
x′ = y + z < w + z < A− v + w. In either case x′ < A− v + w − 1 = A− v + w′,
and again (λ′, µ′, ν′) is in S∗.

Since either y < w ≤ u− k or x < A− v + w ≤ A− 1 + w ≤ A− 1 + u− k, Ψ∗

has no fixed points.
We now turn our attention to S̃ and the definition of Ψ̃. Suppose (λ, µ, ν) ∈ S̃.

Define
Γ(λ, µ, ν) = ((A− v)u−k−w, (A− v + w)k, wv−k, τ, λ̃, µ̃, ν̃)
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where

τ ∈ P0,A−v−1
w ,

λ̃ ∈ PD
0,B+v−w−2
k = PD

0,Ã+B̃−2
k ,

µ̃ ∈ P
0,B−1−w
v−k = P

0,Ã−1
ũ−k ,

ν̃ ∈ P
0,v−1
u−k−w = P

0,B̃−1
ṽ−k

and

Ã = B − w,

B̃ = v,

ũ = v,

ṽ = u− w.

See Figure 4.
If ṽ = u − w > 0, we can apply the involution Φ to the triple (λ̃, µ̃, ν̃) to

get (λ̃′, µ̃′, ν̃′). We can write ((A − v)u−k−w, (A − v + w)k, wv−k, τ) as ((A −

v)u−k′−w, (A − v + w)k
′

, wv−k′

, τ) where k′ = k ± 1. We may then piece the par-
titions back together by observing that there is an element (λ′, µ′, ν′) ∈ Sk′ such
that

Γ(λ′, µ′, ν′) = ((A− v)u−k′−w, (A− v + w)k
′

, wv−k′

, τ, λ̃′, µ̃′, ν̃′).

The fixed points of the involution Φ applied to (λ̃, µ̃, ν̃) would occur when x̃ >

ũ−k+Ã−1 = v−k+B−w−1. Since x̃ is the smallest part of λ̃ and λ̃ ∈ PD
0,Ã+B̃−2
k ,

x̃ ≤ Ã+ B̃ − 2− k + 1 = v − k +B −w− 1. Therefore, Φ in this case has no fixed
points.

Thus, when w < u, we let Ψ̃ = Γ−1 ◦ Φ ◦ Γ.
If w = u, then k = 0, λ = ∅, µ = τ ∈ P0,A−v−1

u and ν ∈ Pu,B−1
v . See Figure 5.

These are exactly the fixed points we were seeking. �

4. The Final Identity.

If we apply Lemma 3 to both sides of (7) (with A = b(c + d), B = a(c + d),
u = ac, v = bd; and A = b(c + d), B = a(c + d),u = ac − 1, v = bd − 1) we must
show

(10)

(

c(a+ b)− 1

ac

)(

d(a+ b)− 1

bd

)

=

(

c(a+ b)− 1

bc

)(

d(a+ b)− 1

ad

)

.

We could not give a simple bijection which proved (10). If one allows multiplication
of (10) by abcd, then the fact that (ac)(bd) = (bc)(ad) gives an easy combinatorial
proof.

For the q-analogue of Theorem 1, our involution proves the following theorem.
We use the notation

(x)A =

A−1
∏

i=0

(1− xqi).
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Theorem 6. Let A and B be positive integers, r = gcd(A,B), A = ar, and B = br.

The coefficient of zAB in

(11)
(λµzAB)A+B

(λzA)A(µzB)B

is
[

A+B − 1
B

]

q

λB +

[

A+B − 1
A

]

q

µA +
r−1
∑

d=1

λbdµacqabcdKd,

where c = r − d and

Kd =

[

c(a+ b)− 1
ac

]

q

[

d(a+ b)− 1
bd

]

q

− qad+bc

[

c(a+ b)− 1
ac− 1

]

q

[

d(a+ b)− 1
bd− 1

]

q

.

This may explain why a bijection for (10) is not transparent.

5. Further Comments.

Many combinatorial proofs of Saalschütz’s 3F2 evaluation and its q-analogue
have appeared. Two generating function proofs are given in [5] and [7]. To translate
these to a proof of Lemma 2 would use the involution principle. The other bijective
proofs do not have signed sets [2],[3],[6],[9]. For example, if A and B are negative
integers, and the signs of x and y are changed, an expansion for (3) equivalent to
an unsigned version Saalschütz’s theorem can be done combinatorially [8].

Several of the results in [4] have combinatorial proofs which follow directly from
the constructions in this paper. These include Theorem 10, Corollary 11, and (6.2).

The involution Φ defined in §3 can be used to prove directly the A → ∞, B → ∞
limiting case of Lemma 4.

A multivariable version of Theorem 1 is still unknown.
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