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Abstract— Linearized filters, such as the extended Kalman
filter (EKF), often become inconsistent, when applied to observ-
able nonlinear systems with partial-state measurements (where
the full state cannot be reconstructed from the measurements
at each time step). Relying on a novel decomposition of the
observability matrix with respect to different measurement
sources (sensors), we show that the standard EKF acquires spu-
rious information from the measurements of each source, which
erroneously reduces the uncertainty of the state estimates and
hence causes inconsistency. With this key insight, we propose
two EKF algorithms which compute the Jacobians in such as
way so as to ensure that all decompositions of the observability
matrix have nullspace of correct dimension. In the first, the
linearization points are selected so as to minimize linearization
errors under the constraints that the decompositions of the
observability matrix have the appropriate nullspace. In the
second, we project the most accurate measurement Jacobian
(i.e., computed using the latest, and thus the best, state estimates
as in the standard EKF) onto the actual information-available
directions. We test the proposed algorithms in a two-radar
target tracking example and show that significant performance
improvement over the standard EKF is attained.

I. INTRODUCTION

An issue of concern with most nonlinear filtering problems
(e.g., target tracking [1]) is that of inconsistency; that is,
no provably consistent estimator can be constructed for a
nonlinear system, and the consistency of every filter has to
be evaluated experimentally. As defined in [2], an estimator
is consistent if the estimation errors are zero-mean and have
covariance smaller or equal to the one calculated by the filter.
Consistency is one of the primary criteria for evaluating the
performance of any filter; if a filter is inconsistent, then its
estimation accuracy is unknown, which in turn makes the
filter unreliable. To date, the problem of estimator inconsis-
tency has been studied primarily for the case of unobservable
systems (e.g., robot localization [3]–[8]), while very little
is known about the causes of estimator inconsistency in
observable systems.

In this paper, we revisit the problem of filter inconsistency
for a broad class of discrete-time nonlinear systems, by
examining the directions of the state space along which
information is available from the measurements of each
source (sensor). Based on this analysis, we propose a novel
methodology to improve consistency by ensuring that the
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filter acquires information from each source’s measurements
along the correct directions of the state space.

In particular, the Fisher information matrix (FIM) [2]
for given measurements encapsulates all the available in-
formation about the entire state of a stochastic system.
By marginalizating all but the initial state, we obtain the
corresponding FIM that contains all information available in
the measurements for determining the initial state. Studying
the FIM’s structure reveals the directions along which infor-
mation is (un)available from the measurements. These can
be exploited in the design of estimation algorithms, i.e., by
enforcing estimators to gain information from measurements
only along the “correct” directions (where information is
actually available). Moreover, we show that the FIM of the
initial state can be factorized in terms of the observability
matrix of the corresponding deterministic system. Based on
this key finding, and in order to improve consistency, we
impose the constraint of acquiring information along the
correct directions on the resulting (with respect to different
measurement sources) decompositions of the observability
matrix, instead of the FIM. To this end, we introduce two
different EKF algorithms that compute the appropriate filter
Jacobians, either directly (i.e., by projecting the most ac-
curate Jacobians onto the information-available subspace) or
indirectly (i.e., by first finding optimal linearization points for
computing the Jacobians). As a result, only information ac-
tually available from each source’s measurements is gained,
which substantially improves the estimation consistency and
accuracy, as opposed to the standard EKF.

II. PROBLEM FORMULATION AND SOLUTION

We consider a general discrete-time nonlinear system of
the following form:

xk+1 = f(xk,uk) + wk (1)
zi,k = h(xk, si,k) + vi,k , i ∈ {1, . . . , s} (2)

where xk ∈ Rn denotes the state of the system, uk ∈ Rη
is the control input, and wk ∈ Rn is zero-mean white
Gaussian process noise, i.e., wk ∼ N (0,Qk). zi,k ∈ Rm
is the measurement taken from the i-th (i ∈ {1, . . . , s})
measurement source (e.g., sensor), and is generally (although
not necessarily) of lower dimension than the state vector,
i.e., m < n, which is the case of partial-state measurements
we consider in this work. The parameter si,k denotes the
known parameters of the i-th measurement source, such as
the sensor’s location or a binary indicator of the availability
of the i-th measurement. The random variable vi,k ∈ Rm is



zero-mean white Gaussian measurement noise, i.e., vi,k ∼
N (0,Ri,k).

We employ the EKF to recursively compute the state
estimate and error covariance. Specifically, we linearize the
nonlinear system at the linearization points, x?k|k−1 and x?k|k
(i.e., the linearization points before and after the update at
time step k) [see (1) and (2)], and obtain the following
linearized error-state system:1

x̃k+1|k = Φkx̃k|k + wk (3)
z̃i,k|k−1 = Hi,kx̃k|k−1 + vi,k , i ∈ {1, . . . , s} (4)

where

Φk = ∇xk f
∣∣∣
{x?
k|k,x

?
k+1|k}

, Hi,k = ∇xkh
∣∣∣
{x?
k|k−1

}
(5)

The standard choice of linearization point is the latest state
estimate, which, however, we will show is not necessarily
the best choice. Once the propagation and measurement
Jacobians are computed, we propagate and update the state
estimate and covariance, respectively, as follows [2]:

x̂k+1|k = f(x̂k|k,uk) (6)

Pk+1|k = ΦkPk|kΦ
T
k + Qk (7)

x̂k|k = x̂k|k−1 + Kkrk (8)

Pk|k = Pk|k−1 −KkSkK
T
k (9)

where Kk = Pk|k−1H
T
i,kS

−1
k is the Kalman gain, rk =

zi,k − h(x̂k|k−1, si,k) is the measurement residual, and
Sk = Hi,kPk|k−1H

T
i,k + Ri,k is the corresponding residual

covariance.

A. Observability and Fisher Information

Since the EKF is constructed based on the linearized sys-
tem [see (3) and (4)], it is important to study the observability
properties of the corresponding deterministic system (i.e.,
noise free). Observability examines whether the information
provided by the available measurements is sufficient for
estimating the initial state without ambiguity. In particular,
the observability matrix for the linearized system (3)-(4)
during the time interval [0, k] is defined by [9], [10]:

M =


H0

H1Φ0

...
HkΦk−1 · · ·Φ0

 (10)

If the system is observable, then the corresponding observ-
ability matrix M is full-rank.

The FIM [2] is closely related to the system observability
and precisely describes the information available in the
measurements. Thus, by studying its properties, we can also
gain insight about the directions in the state space along
which information is actually available. To this end, we
examine the structure of the Hessian (information) matrix
of the corresponding batch maximum a posteriori (MAP)

1Throughout this paper, the subscript `|j refers to the estimate of a
quantity at time step `, after all measurements up to time step j have been
processed. x̂ is used to denote the estimate of a random variable x, while
x̃ = x− x̂ is the error in this estimate. 0m×n denotes m× n matrices of
zeros, and In is the n× n identity matrix.

estimator over the time interval [0, k], which is known to be
optimal [11]. In what follows, we show that the FIM of the
initial state x0 (obtained by marginalization) has the same
rank properties as the observability matrix, which motivates
us to instead examine the observability matrix in our analysis.

The optimal batch-MAP estimator utilizes all available
information to estimate the entire state trajectory that is
formed by stacking all states in the time interval [0, k]:

x0:k =
[
xT0 xT1 · · · xTk

]T
(11)

Specifically, the batch-MAP estimator seeks to determine the
entire state-space trajectory estimate x̂0:k|k by maximizing
the following posterior pdf (assuming no prior is available):

p(x0:k|z0:k) ∝
k−1∏
κ=0

p(xκ+1|xκ)

k∏
κ=0

p(zi,κ|xκ) (12)

where z0:k denotes all the sensor measurements in the time
interval [0, k]. In the above expression, we have employed
the assumption of independent state and measurement noise
and the Markovian property of the system dynamics [see (1),
and (2), respectively]. Moreover, using the assumption of
Gaussian noise, the posterior pdf (12) can be written as:

p(x0:k|z0:k) ∝ (13)
k−1∏
κ=0

1√
|2πQκ|

exp

(
−1

2
||xκ+1 − f(xκ,uκ)||2Qκ

)
×

k∏
κ=0

1√
|2πRi,κ|

exp

(
−1

2
||zi,κ − h(xκ, si,κ)||2Ri,κ

)
where we have employed the notation, ||a||2Λ , aTΛ−1a.
Due to the monotonicity of the negative logarithm, maxi-
mizing (13) is equivalent to minimizing the following cost
function under mild assumptions:

c(x0:k) =

k−1∑
κ=0

1

2
||xκ+1 − f(xκ,uκ)||2Qκ

+

k∑
κ=0

1

2
||zi,κ − h(xκ, si,κ)||2Ri,κ

(14)

The information (Hessian) matrix can be computed as:

A =

k−1∑
κ=0

FTκ Q−1κ Fκ +

k∑
κ=0

HTκR−1κ Hκ (15)

with

Fκ =
[
0 · · · −Φκ In · · · 0

]
(16)

Hκ =
[
0 · · · −Hκ · · · 0

]
(17)

where Hκ = Hi,κ and Rκ = Ri,κ, if the i-th source
provides the measurement at time step κ, i.e., zκ = zi,κ (note
that hereafter we will use these notations interchangeably).
Note also that due to the sparse structure of Fκ and Hκ
[see (16) and (17)], the FIM (15) has banded structure (18).

We now show that the Schur complement of the full FIM
with respect to the initial state x0 (i.e., the information matrix
of x0, denoted by A0), has the following relation to the
observability matrix M:



A =


ΦT

0 Q−10 Φ0 + HT
0 R−10 H0 −ΦT

0 Q−10 0 · · · 0
−Q−10 Φ0 Q−10 + ΦT

1 Q−11 Φ1 + HT
1 R−11 H1 −ΦT

1 Q−11 · · · 0
. . . . . . . . . . . . . . .
0 · · · −Q−1k−2Φk−2 Q−1k−2 + ΦT

k−1Q
−1
k−1Φk−1 + HT

k−1R
−1
k−1Hk−1 −ΦT

k−1Q
−1
k−1

0 · · · 0 −Q−1k−1Φk−1 Q−1k−1 + HT
kR−1k Hk

 (18)

Lemma 2.1: The FIM of the initial state x0, i.e., the
corresponding Schur complement of the full FIM, can be
factorized as:

A0 = MTΣM (19)

where M is the observability matrix and Σ is a nonsingular
(full-rank) real symmetric block-diagonal matrix.

Proof: See Appendix I.
From this lemma, it is evident that the FIM of the

initial state and the observability matrix are closely related.
In particular, the FIM can be seen as the “observability
gramian” for the corresponding stochastic system. Note also
that the stochastic system (1)-(2) is observable if and only
if the corresponding deterministic system is observable. In
the following, we will exploit this result and decompose
the observability matrix in a novel way (i.e., based on the
measurement sources), which inspires the proposed filters for
improving consistency.

B. Algorithms

Due to the additive property of the measurement informa-
tion, we decompose the FIM according to the measurements
that originated from each of the s sources [see (15)]:

A =

k−1∑
κ=0

FTκ Q−1κ Fκ +

s∑
i=1

k∑
κ=0

HTi,κR−1i,κHi,κ

=

s∑
i=1

(
k−1∑
κ=0

FTκ Q′κ
−1Fκ +

k∑
κ=0

HTi,κR−1i,κHi,κ

)
︸ ︷︷ ︸

Ai

(20)

where Q′κ , sQκ denotes the inflated state-noise covariance
for the i-th source used in order to compensate for the
decomposition. Hence, Ai is considered as the full FIM
constructed using measurements only from the i-th source.
Based on Lemma 2.1, the corresponding FIM of the initial
state A0i can be written as:

A0i = MT
i ΣMi (21)

It is important to note that Mi in (21) is the “observability
matrix” which is constructed using the measurements only
from the i-th source, but padded with zeros in the places
corresponding to the measurements from the other sources, in
order to match the dimension of the full observability matrix
M [e.g., see (23)]. This immediately results in MT

i Mj = 0
for i 6= j. Note also that we directly use Σ in (21), since
zeros in Mi will cancel out the corresponding submatrices
in Σ to the measurements from the j-th source (j 6= i)
[see (60)]. Therefore, this result (21) leads to the following
decomposition of the observability matrix:

Lemma 2.2: The observability matrix is decomposed as:

M =

s∑
i=1

Mi (22)

Proof: Using the fact that MT
i Mj = 0 for i 6= j, we

have [see Lemma 2.1, (20) and (21)]:

MTΣM = A0 =
s∑
i=1

A0i =
s∑
i=1

MT
i ΣMi ⇒ M =

s∑
i=1

Mi

We thus see that based on the decomposition of the FIM
of the initial state according to the measurement sources, the
observability matrix can be accordingly decomposed. For in-
stance, if the i-th source provides measurement intermittently
at even time steps only, then the i-th decomposition of the
observability matrix, Mi, assumes the following form (by
assuming k is even):

Mi =



Hi,0

0
...

Hi,k−2Φk−3 · · ·Φ0

0
Hi,kΦk−1 · · ·Φ0


(23)

It is interesting to note that in many cases (e.g., see
Section III) the decomposition of the observability ma-
trix (23), Mi, is rank-deficient, although the observability
matrix (10), M, is full-rank, i.e., the linearized system (3)-
(4) is observable. The right nullspace of the matrix, Mi,
and thus the decomposition of the FIM (21), A0i , dictates
the directions of the state space along which no information
is available from the measurements from the i-th source.
If these directions are incorrect, the filter acquires spurious
information from the i-th source’s measurement, and hence
is expected to become inconsistent. Therefore, to ensure con-
sistent estimation, the filter should have Mi, and hence A0i ,
of correct nullspace, for i = 1, . . . , s, so that no nonexistent
information is gained from the measurements available from
each source. To this end, in computing the filter Jacobians at
each time step, we explicitly enforce the following constraint
on the decompositions of the observability matrix, i.e., each
Mi has correct nullspace denoted by Ni [see (23)]:

MiNi = 0 ⇔

{
Hi,0Ni = 0 , if κ = 0

Hi,κΦκ−1 · · ·Φ0Ni = 0 , if κ > 0
(24)

In particular, Ni is a design choice which defines the
desired nullspace for the i-th measurement source, and one
practical choice will be the nullspace of the first measurement
Jacobian Hi,0, i.e., Hi,0Ni = 0. Once Ni has been selected,
the next design decision is to compute the filter Jacobians
appropriately so that (24) is satisfied.



We first propose to compute the Jacobians indirectly,
i.e., to find optimal linearization points that minimize the
linearization errors of the points x?k|k and x?k+1|k used in
computing the filter Jacobians, Φk and Hk+1, at time step
k + 1, subject to the constraint that Mi has the correct
nullspace (24). This can be formulated as the following
constrained minimization problem:

min
x?
k|k,x

?
k+1|k

∫
||x?k − xk||2p(xk|z0:k)dxk+ (25)∫
||x?k+1|k − xk+1||2p(xk+1|z0:k)dxk+1

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (26)

In general it is intractable to solve this problem analytically.
However, when p(xk|z0:k) and p(xk+1|z0:k) are Gaussian
which is the assumption employed in the EKF, this problem
can be simplified based on the following lemma, and then
solved analytically by using Lagrangian multipliers:

Lemma 2.3: When p(xk|z0:k) and p(xk+1|z0:k) are Gaus-
sian, the constrained minimization problem (25)-(26) is
equivalent to the following problem:

min
x?
k|k,x

?
k+1|k

||x?k|k − x̂k|k||2 + ||x?k+1|k − x̂k+1|k||2 (27)

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (28)
Proof: See Appendix II.

Alternatively, we can compute the desired filter Jacobians
directly. In particular, we compute the propagation Jacobian
Φκ (κ = 0, . . . , k − 1) in the same way as in the standard
EKF, while enforcing the information constraint (24) for
computing the measurement Jacobian:

min
Hi,k

||Hi,k −Ho||2F (29)

subject to Hi,kΦk−1 · · ·Φ0Ni = 0 , ∀i = 1, . . . , s (30)

where || · ||F denotes the Frobenius norm. In the above ex-
pression, Ho ideally is the measurement Jacobian computed
using the true states, which, however, is not realizable in
practice. Hence, we employ the latest, and thus the best, state
estimates for computing this Jacobian as in the standard EKF,
i.e., Ho = Ho(x̂k|k−1). The optimal solution to the above
problem (29)-(30) is obtained in closed form by application
of the following lemma:

Lemma 2.4: The optimal solution to the constrained min-
imization problem (29)-(30) is:

Hi,k = Ho

(
In −Ui(U

T
i Ui)

−1UT
i

)
(31)

where Ui = Φk−1 · · ·Φ0Ni.
Proof: See Appendix III.

Note that Ui in (31) is the propagated nullspace of the
i-th source at time step k, and

(
In −Ui(U

T
i Ui)

−1UT
i

)
is

the subspace orthogonal to Ui, i.e., the subspace at time step
k where information is available.

III. APPLICATION: TWO-RADAR TARGET TRACKING

In order to verify the preceding analysis and validate
the proposed methodology, in this section, we consider a
particular application of two radars tracking a target. Con-
sider a target (robot) that moves on a plane and two radars

Fig. 1. Illustration of the application of the two-radar target tracking: A
target (robot) moves on a plane and two radars, s1 and s2, alternate between
measuring distance to the target. For example, at time step k = 1, the first
radar, s1, measures distance to the target; at time step k = 2, the second
radar, s2, measures distance to the target; at time step k = 3, s1 measures
distance again; and so on so forth.

alternatively provide distance measurements to the target (see
Fig. 1). Using such intermittent distance measurements as
well as the target’s motion model, the EKF is employed
to estimate the target’s pose (position and orientation) in a
global frame of reference, denoted by xk =

[
pTk φk

]T
=[

xk yk φk
]T

. In what follows, we first describe the
motion and measurement models of this system in the context
of the standard EKF.

In the propagation step, the target (robot) is assumed
to have an odometer whose measurements are processed
to obtain an estimate of the pose change between two
consecutive time steps, and then employed in the EKF to
propagate the state estimate. The EKF state propagation
equations are given by:

p̂k+1|k = p̂k|k + C(φ̂k|k)kp̂k+1 (32)

φ̂k+1|k = φ̂k|k + kφ̂k+1 (33)

where C(·) denotes the 2× 2 rotation matrix, and kx̂k+1 =
[kp̂Tk+1

kφ̂k+1]T is the odometry-based estimate of the
target’s motion between time steps k and k+1. This estimate
is corrupted by zero-mean white Gaussian noise wk =
kxk+1 − kx̂k+1, with covariance matrix Qk. Clearly this
process model is nonlinear, and hence the linearized error-
state propagation equation is necessary for the EKF, i.e.,

x̃k+1|k = Φkx̃k|k + Gkwk (34)

where the state and noise Jacobians are given by:

Φk =

[
I2 J

(
p̂k+1|k − p̂k|k

)
01×2 1

]
(35)

Gk =

[
C(φ̂k|k) 02×1

01×2 1

]
, J ,

[
0 −1
1 0

]
. (36)

The distance measurement at time step k is given by:

zi,k = ||pk − pSi ||+ vi,k

=
√

(xk − xSi)2 + (yk − ySi)2 + vi,k , i = 1, 2 (37)

where pSi , [xSi ySi ]
T is the known position of the i-th

radar expressed in the global frame of reference, and vi,k is
zero-mean white Gaussian measurement noise, with variance
σ2
i,k, i.e., vi,k ∼ N (0, σ2

i,k). The linearized measurement
model is:

z̃i,k ' Hi,kx̃k|k−1 + vi,k (38)



with Jacobian:

Hi,k =
[
(p̂k|k−1−pSi )

T

||p̂k|k−1−pSi ||
0
]

=
(p̂k|k−1 − pSi)

T

||p̂k|k−1 − pSi ||︸ ︷︷ ︸
α̂i,k

[
I2 J(p̂k|k−1 − pSi)

]
(39)

A. Observability of the EKF Linearized Systems

We now examine the observability matrix (and thus the
FIM), and show that in the standard EKF each of the
decompositions of the observability matrix, with respect to
different radars, has different nullspace than the ideal case,
i.e., when the Jacobians are evaluated at the true states and
which is expected to have correct observability properties.

1) Ideal EKF: To facilitate the ensuing analysis, we begin
with the ideal case of a single radar providing distance
measurements. In this ideal EKF, the filter Jacobians are
evaluated using the true values of the state variables, i.e.,
x?k|k = x?k|k−1 = xk, for all k. In the following, all matrices
evaluated using the true state values are denoted by the
symbol “ ˘ ”. In this case, by noting that [see (35) and (39)]

H̆κΦ̆κ−1 · · · Φ̆0 = ᾰκ
[
I2 J(p0 − pS)

]
(40)

the observability matrix is computed by [see (10)]:

M̆ = Diag (ᾰ0, ᾰ1, · · · , ᾰk)


I2 J(p0 − pS)
I2 J(p0 − pS)
...

...
I2 J(p0 − pS)

 (41)

Using the theorem of the rank of the matrix product [12], we

can show that rank(M̆) = 2 and null(M̆) =

[
J(pS − p0)

1

]
.

Now we extend this analysis to the ideal case where two
radars alternatively provide distance measurements. Specif-
ically, by proceeding similarly, the observability matrix of
the ideal-EKF linearized system can be computed as:

M̆ = Diag (ᾰ1,0, ᾰ2,1, · · · , ᾰ1,k−1, ᾰ2,k)︸ ︷︷ ︸
D̆


I2 J(p0 − pS1)
I2 J(p1 − pS2)
...

...
I2 J(p0 − pS1

)
I2 J(p1 − pS2)



= D̆


I2 J(p0 − pS1)

02×2 02×1
...

...
I2 J(p0 − pS1

)
02×2 02×1


︸ ︷︷ ︸

M̆1

+ D̆


02×2 02×1
I2 J(p1 − pS2)
...

...
02×2 02×1
I2 J(p1 − pS2

)


︸ ︷︷ ︸

M̆2

(42)

where M̆1 and M̆2 are the decompositions of the observ-
ability matrix M̆, with respect to the first and second radar,
respectively. It is not difficult to show that rank(M̆1) =
rank(M̆2) = 2, which agrees with the preceding result in
the single-radar case.

2) Standard EKF: The ideal EKF is not realizable in
practice since the true states are not available. Therefore,
we now consider the standard EKF which computes the
Jacobians using the current state estimates, and show that the
preceding results do not hold for the standard EKF linearized

system. Specifically, the observability matrix for the two-
radar scenario under consideration is given by:

M = Diag (α̂1,0, α̂2,1, · · · , α̂1,k−1, α̂2,k)︸ ︷︷ ︸
D̂


I2 J(p̂0|0 − pS1

)
I2 J(p̂1|0 − pS2

)
...

...
I2 J(p̂k−1|k−1 +

∑k−2
κ=1 ∆p̂κ − pS1

)

I2 J(p̂k|k +
∑k−1
κ=1 ∆p̂κ − pS2

)



= D̂


I2 J(p̂0|0 − pS1)

02×2 02×1
...

...
I2 J(p̂k−1|k−1 +

∑k−2
κ=1 ∆p̂κ − pS1)

02×2 02×1


︸ ︷︷ ︸

M1

+ D̂


02×2 02×1
I2 J(p̂1|0 − pS2)
...

...
02×2 02×1

I2 J(p̂k|k +
∑k−1
κ=1 ∆p̂κ − pS2

)


︸ ︷︷ ︸

M2

(43)

where ∆p̂κ , p̂κ|κ − p̂κ|κ−1 is the correction in the target
position due to the EKF update at time step κ, and in
general does not vanish. As a result, the decompositions of
the observability matrix become full-rank, i.e., rank(M1) =
rank(M2) = 3. This implies that the standard EKF acquires
nonexistent information along one direction of the state
space from each radar’s measurements, which can lead to
inconsistency and confirms our preceding analysis. Next, we
apply the algorithms presented in Section II-B to this system
so as to improve EKF consistency.

B. Application of the Consistency Algorithms

In particular, we choose the desired nullspace of the
decompositions of the observability matrix for the two radars
as follows (i.e., using the first state estimates when the two
sensors provide their first measurements):

N1 =

[
J(pS1 − p̂0|0)

1

]
, N2 =

[
J(pS2 − p̂1|0)

1

]
(44)

We first describe the indirect algorithm which first finds
the optimal linearization points for computing Jacobians by
solving the problem (27)-(28). In this case, the constraint (28)
can be simplified as:

Hi,kΦk−1 · · ·Φ0Ni = 0

⇔ α̂i,k

[
I2 J

(
p?0|0 +

∑k
κ=1 ∆p?κ − pSi

)]
Ni = 0

⇔ p?k|k = p?k|k−1 −
k∑
κ=1

∆p?κ (45)

where we have employed the definition ∆p?κ = p?κ|κ −
p?κ|κ−1. Using the method of Lagrangian multipliers, we
can now analytically solve for the optimal solution to the
problem (27) and (45), which is given by:

p?k|k = p?k|k−1 = p̂k|k−1 , φ
?
k|k = φ̂k|k , φ

?
k|k−1 = φ̂k|k−1 (46)

Alternatively, we can use the direct algorithm for com-
puting the EKF Jacobians. Specifically, we directly use
the optimal solution of the measurement Jacobian (31),
i.e., projecting the best-available measurement Jacobian onto
the information-available directions (see Lemma 2.4), while
computing the propagation Jacobians in the same way as the
standard EKF.

It is important to point out that in the both proposed EKF
algorithms, once the filter Jacobians are computed, the state
estimates and covariance are propagated and updated in the
same way as in the standard EKF. Note also that the proposed



EKFs are causal and realizable in practice, since they do not
use any information about the future or the true states.

C. Numerical Results

To demonstrate the ability of the proposed algorithms to
improve filter consistency, we conducted 100 Monte-Carlo
simulations under various conditions. The metrics used to
evaluate filter performance are: (i) the root mean square error
(RMSE), and (ii) the average normalized (state) estimation
error squared (NEES) [2]. Specifically, we compute the aver-
age RMSE and average NEES by averaging over all Monte-
Carlo runs for each time step. The RMSE provides us with a
concise metric of the accuracy of a given estimator. On the
other hand, the NEES is a standard criterion for evaluating
filter consistency. Specifically, it is known that the NEES
of an N -dimensional Gaussian random variable follows a
χ2 distribution with N degrees of freedom. Therefore, if a
certain filter is consistent, we expect that the average NEES
will be close to 3 for all time steps. The larger the deviations
of the NEES from these values, the worse the inconsistency
of the filter. By studying both the RMSE and NEES of all the
filters considered here, we obtain a comprehensive picture of
the estimators’ performance.

In the numerical simulation test presented here, a target
(robot) with a simple differential drive model moved on a
planar surface, at a constant velocity of v = 0.25 m/sec. The
two-drive wheels were equipped with encoders, which mea-
sure their revolutions and provide measurements of velocity
(i.e., right and left wheel velocities, vr and vl, respectively),
with standard deviation equal to σ = 1%v for each wheel.
These measurements were used to obtain the linear and
rotational velocity measurements for the target, which are
given by v = vr+vl

2 and ω = vr−vl
a , where a = 0.5 m is the

distance between the active wheels. The standard deviations
of the linear and rotational velocity measurement noise were
thus equal to σv = σ√

2
and σω =

√
2σ
a , respectively. Two

radars with known positions alternatively provide distance
measurements to the target. The standard deviation of the
distance-measurement noise was equal to 10% of the radar-
to-target distance.

Fig. 2 shows the Monte-Carlo results of average NEES and
RMSE for the robot (target) pose. As evident, the proposed
EKFs (i.e., the indirect and direct EKFs) perform much better
than the standard EKF, and very close to the benchmark, the
ideal EKF, in terms of both consistency (NEES) and accuracy
(RMSE). This is attributed to the fact that the proposed EKFs
acquire information only along the correct directions of the
state space from each radar’s measurements.

IV. CONCLUSIONS

In this paper, we have studied the problem of filter
inconsistency for nonlinear systems where only partial-state
measurements are available. We showed that despite the fact
that the system is observable, linearized estimators, such as
the EKF, can still become inconsistent. To understand the
cause of inconsistency, we examined the FIM of the initial
state (by marginalizing all but the initial state) and showed

that it is closely related to the observability matrix. Moreover,
we proposed a novel decomposition of the observability ma-
trix of the standard linearized system with respect to different
sources of measurements, and showed that when using the
standard EKF each decomposition of the observability matrix
has higher rank than that of the ideal case. This implies that
the filter gains spurious information from the measurements
of each source, which leads to inconsistency. To address
this issue, we proposed to compute the filter Jacobians in
such a way that ensures that each decomposition of the
observability matrix has nullspace of correct dimensions. We
applied the proposed algorithms to the problem of two-radar
target tracking, and demonstrated the superior performance
of the proposed filters over the standard EKF.

APPENDIX I
PROOF OF LEMMA 2.1

We prove this result by mathematical induction. Specifi-
cally, we start by the base case of k = 0, in which since
no marginalization is involved and the observability matrix
is simply the first measurement Jacobian, i.e., M = H0

[see (10)], the information matrix can be directly written
in the desired form:

A = A0 = HT
0 R−10 H0 =: MTΣM (47)

We now consider the case of k = 1, in which the state

vector is x0:1 =

[
x0

x1

]
and hence the full information matrix

is given by [see (18)]:

A = FT0 Q−10 F0 +HT0 R−10 H0 +HT1 R−11 H1 (48)

=

[
ΦT

0 Q−10 Φ0 + HT
0 R−10 H0 −ΦT

0 Q−10

−Q−10 Φ0 Q−10 + HT
1 R−11 H1

]
In order to obtain the information matrix of x0, we marginal-
ize out x1 by employing the Schur complement:

A0 =ΦT
0 Q−10 Φ0 + HT

0 R−10 H0 −
(
ΦT

0 Q−10

) (
Q−10 + HT

1 R−11 H1

)−1︸ ︷︷ ︸
Ξ1

(
Q−10 Φ0

)
=ΦT

0 Q−10 Φ0 + HT
0 R−10 H0−(

ΦT
0 Q−10

) [
Q0 −Q0H

T
1 (H1Q0H

T
1 + R1)−1H1Q0

] (
Q−10 Φ0

)
=HT

0 R−10 H0 + (H1Φ0)
T

(H1Q0H
T
1 + R1)−1 (H1Φ0)

=
[

H0

H1Φ0

]T [
R−10 0

0 (H1Q0H
T
1 + R1)−1

] [
H0

H1Φ0

]
=: MTΣM

(49)

where we have used the Woodbury matrix identity [13]
for computing Ξ1. It becomes clear that in this case the
information matrix of x0 is factorized into the desired form.

To better understand the structure, we also consider the
case of k = 2, where the full information matrix of the
entire state x0:2 is given by [see (18)]:

A =

1∑
κ=0

FTκ Q−1κ Fκ +

2∑
κ=0

HTκR−1κ Hκ (50)

=
ΦT

0 Q−10 Φ0 + HT
0 R−10 H0 −ΦT

0 Q−10 0
−Q−10 Φ0 Q−10 + ΦT

1 Q−11 Φ1 + HT
1 R−11 H1 −ΦT

1 Q−11

0 −Q−11 Φ1 Q−11 + HT
2 R−12 H2
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Fig. 2. Monte-Carlo results of two-radar tracking. In this simulation, a target moves on a circular trajectory and two radars with known positions alternate
between providing distance measurements to the target. Note that in these plots, the RMSE values of the ideal EKF and the two proposed EKFs are very
close, which makes the corresponding lines difficult to distinguish.

Similarly, by marginalizing out x1 and x2 using the Schur
complement, we obtain the information matrix of the initial
state x0:

A0 = ΦT
0 Q−10 Φ0 + HT

0 R−10 H0− (51)[
Q−10 Φ0

0

]T [
Q−10 + ΦT

1 Q−11 Φ1 + HT
1 R−11 H1 −ΦT

1 Q−11

−Q−11 Φ1 Q−11 + HT
2 R−12 H2

]−1
︸ ︷︷ ︸

Ξ2

[
Q−10 Φ0

0

]

It is clear that due to the structure of the above equation, we
only need to compute the top-leftmost submatrix Ξ2(1, 1),

obtained by partitioning Ξ2 =

[
Ξ2(1, 1) Ξ2(1, 2)
Ξ2(2, 1) Ξ2(2, 2)

]
, corre-

sponding to the nonzero block of
[
Q−10 Φ0

0

]
. Hence, using

the block matrix inversion lemma [13], we have:

Ξ2(1, 1) =
[
Q−10 + ΦT

1 Q−11 Φ1 + HT
1 R−11 H1 −ΦT

1 Q−11

(
Q−11 + HT

2 R−12 H2

)−1
Q−11 ΦT

1

]−1
=
[
Q−10 + HT

1 R−11 H1 + ΦT
1 HT

2 (H2Q2H
T
2 + R2)−1H2Φ1

]−1
=

{
Q−10 +

[
H1

H2Φ1

]T [
R−11 0

0 (H2Q2H
T
2 + R2)−1

] [
H1

H2Φ1

]}−1
=:
[
Q−10 + HT

1:2R
−1
1:2H1:2

]−1
= Q0 −Q0H

T
1:2(H1:2Q0H

T
1:2 + R1:2)−1H1:2Q0 (52)

where we have defined H1:2 ,

[
H1

H2Φ1

]
and R1:2 ,

Diag
(
R1,H2Q2H

T
2 + R2

)
. It is important to notice that,

from the first equality of the above equations, Ξ−12 (1, 1)
is the Schur complement of Ξ−12 with respect to x1 (i.e.,
marginalizing out x2 from x1:2). In the second equality, we
have also employed the Woodbury matrix identity. Substi-
tution of (52) in (51) yields (by noting again that it is not

necessary to compute the other submatrices of Ξ2):

A0 = ΦT
0 Q−10 Φ0 + HT

0 R−10 H0−

ΦT
0 Q−10

[
Q0 −Q0H

T
1:2(H1:2Q0H

T
1:2 + R1:2)−1H1:2Q0

]
Q−10 Φ0

= HT
0 R−10 H0 + ΦT

0 HT
1:2(H1:2Q0H

T
1:2 + R1:2)−1H1:2Φ0

=
[

H0

H1:2Φ0

]T [
R−10 0

0 (H1:2Q0H
T
1:2 + R1:2)−1

] [
H0

H1:2Φ0

]
=: MTΣM

(53)

It is clear that in this case we can also factorize the
information matrix of x0 into the desired form.

We now consider the general case of k = κ. Suppose in the
case of k = κ− 1, the information matrix of the initial state
x0 can be factorized into the desired form and in particular
Ξκ−1(1, 1) whose inversion is the Schur complement of
Ξ−1κ−1 with respect to x1 by marginalizing out x2:κ−1 from
x1:κ−1, assumes the following form [see (52)]:

Ξκ−1(1, 1) =
(
Q−10 + HT

1:κ−1R
−1
1:κ−1H1:κ−1

)−1
(54)

= Q0 −Q0H
T
1:κ−1

(
H1:κ−1Q0H

T
1:κ−1 + R1:κ−1

)−1
R1:κ−1Q0

where H1:κ−1 and R1:κ−1 are defined similarly as in (52):

H1:κ−1 ,

 H1

...
Hκ−1Φκ−2 · · ·Φ1

 (55)

R1:κ−1 , Diag
(
R1, · · · ,Hκ−1Qκ−1H

T
κ−1 + Rκ−1

)
(56)

Note that by considering the full state x2:κ (instead of
x1:κ−1) and marginalizing x3:κ from the full state, we will
have a similar matrix as (54) whose time index is shifted by
one and which is useful for the ensuing derivations.

Ξ′κ(1, 1) =
(
Q−11 + HT

2:κR
−1
2:κH2:κ

)−1
(57)

= Q1 −Q1H
T
2:κ

(
H2:κQ1H

T
2:κ + R2:κ

)−1
R2:κQ1

Due to the sparse banded structure of the full information
matrix (18), marginalization of x1:κ from the full state x0:κ



using the Schur complement yields:

A0 = ΦT
0 Q−10 Φ0 + HT

0 R−10 H0 −


Q−10 Φ0

0
...
0


T

Ξκ


Q−10 Φ0

0
...
0

 (58)

As evident, to compute A0, we only need to calculate
the submatrix Ξκ(1, 1) corresponding to Q−10 Φ0. Note that
analogous to (54), Ξ−1κ (1, 1) is the Schur complement of
Ξ−1κ with respect to x1 by marginalizing out x2:κ from x1:κ.
Using (18) and (57), we compute Ξκ(1, 1):
Ξκ(1, 1) =

[
Q−10 + ΦT

1 Q−11 Φ1 + HT
1 R−11 H1 −ΦT

1 Q−11 Ξ′κ(1, 1)Q−11 Φ1

]−1
=
[
Q−10 + HT

1 R−11 H1 + ΦT
1 HT

2:κ

(
H2:κQ1H

T
2:κ + R2:κ

)−1
H2:κΦ1

]−1
=

{
Q−10 +

[
H1

H2:κΦ1

]T [
R−11 0

0 R−12:κ

] [
H1

H2:κΦ1

]}−1
=:
(
Q−10 + H1:κR

−1
1:κH1:κ

)−1
= Q0 −Q0H

T
1:κ

(
H1:κQ0H

T
1:κ + R1:κ

)−1
R1:κQ0 (59)

Substituting (59) in (58), we obtain the information matrix
of x0 in the desired form:

A0 = ΦT
0 Q−10 Φ0 + HT

0 R−10 H0−

ΦT
0 Q−10

[
Q0 −Q0H

T
1:κ

(
H1:κQ0H

T
1:κ + R1:κ

)−1
R1:κQ0

]
Q−10 Φ0

= HT
0 R−10 H0 + ΦT

0 HT
1:κ

(
H1:κQ0H

T
1:κ + R1:κ

)−1
H1:κΦ0

=
[

H0

H1:κΦ0

]T [
R−10 0

0
(
H1:κQ0H

T
1:κ + R1:κ

)−1] [ H0

H1:κΦ0

]
=: MTΣM (60)

This completes the proof.

APPENDIX II
PROOF OF LEMMA 2.3

Under the Gaussianity assumption, p(xk|z0:k) =
N (x̂k|k,Pk|k) and p(xk+1|z0:k) = N (x̂k+1|k,Pk+1|k), the
first term of the cost function (25) is computed as:∫ ∣∣∣∣xk − x?k|k

∣∣∣∣2p(xk|z0:k)dxk

=

∫ (
xTk xk − 2xTk x?k|k + x?Tk|kx

?
k|k

)
p(xk|z0:k)dxk

= E
(
xTk xk

)
− 2E

(
xTk
)
x?k|k + x?Tk|kx

?
k|k

= tr
(
Pk|k + x̂k|kx̂

T
k|k

)
− 2x̂Tk|kx

?
k|k + x?Tk|kx

?
k|k

= tr
(
Pk|k

)
+
∣∣∣∣x̂k|k−x?k|k

∣∣∣∣2 (61)
where E(·) denotes expectation and tr(·) the matrix trace.
Proceeding similarly, we can show that the second term of
the cost function (25) is equivalent to:∫

||xk+1 − x?k+1|k||
2p(xk+1|z0:k)dxk+1

= tr
(
Pk+1|k

)
+
∣∣∣∣x̂k+1|k−x?k+1|k

∣∣∣∣2 (62)
Using the fact that the true Pk|k and Pk+1|k are independent
of the linearization points, the following is immediate:

min
x?
k|k,x

?
k+1|k

tr
(
Pk|k

)
+
∣∣∣∣x̂k|k−x?k

∣∣∣∣2 + tr
(
Pk+1|k

)
+
∣∣∣∣x̂k+1|k−x?k+1|k

∣∣∣∣2
⇔ min

x?
k|k,x

?
k+1|k

∣∣∣∣x̂k|k−x?k|k
∣∣∣∣2 +

∣∣∣∣x̂k+1|k−x?k+1|k
∣∣∣∣2

This completes the proof.

APPENDIX III
PROOF OF LEMMA 2.4

The constraint (30) states that the rows of Hi,k lie in the
left nullspace of the matrix Ui. Therefore, if L is a matrix
whose rows span this nullspace, then Hi,k can be written as:

Hi,k = ΘL (63)
where Θ is the unknown matrix we seek to find. We note that
there are several possible ways of computing an appropriate
matrix L, whose rows lie in the nullspace of Ui. For instance,
such a matrix is given, in closed form, by the expression:

L =
[
Im 0m×(n−m)

] (
In −Ui(U

T
i Ui)

−1UT
i

)
=: ΓΠ (64)

It is not difficult to see that Π := In −Ui(U
T
i Ui)

−1UT
i is

an orthogonal projection matrix (i.e., Π2 = Π and ΠT = Π)
and hence has the eigenvalues of either 1 or 0, whose
reduced SVD is given by Π = QQT . Using this result,
LT immediately can be written as LT = QQTΓT . By
substituting this identity into the cost function, we have:

min ||Ho −Hi,k||2F = ||QTΓTΘT −QTHo
T ||2F

⇒ Θ = HoQ (ΓQ)
−1 (65)

Therefore, substitution of the above equation in (63) yields:
Hi,k = HoQ (ΓQ)

−1
ΓQQT = HoQQT = HoΠ

= Ho

(
In −Ui(U

T
i Ui)

−1UT
i

)
(66)

This completes the proof.
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