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wireless sensor network (WSN) is a collection
of physically distributed sensing devices that
can communicate through a shared wireless
channel. Sensors can be deployed, for example,
to detect the presence of a contaminant in a
water reservoir, to estimate the temperature in an orange
grove, or to track the position of a moving target.

The promise of WSNs stems from the benefits of distrib-
uted sensing and control. For example, in the target-tracking
setup depicted in Figure 1, where sensors measure their
distance to a target whose trajectory is to be estimated, the
benefit of distributed sensing is the availability of observa-
tions with high signal-to-noise ratio (SNR). Whether col-
lected by a passive radar, which estimates distances by the
strength of an electromagnetic signature emitted by the
target, or by an active radar, which gauges the reflection of
a probing signal, measured signal strength decreases with
increasing distance. Observation noise, however, remains
unchanged because it is determined by circuit design and
the operational environment. Consequently, in passive and
active radar, the SNR of distance observations is inversely
related to the distance being measured. In a conventional
radar system a few expensive stations are deployed to cover
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Applications of
the Kalman Filter
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a substantial area. Most of the time, the distance between
the target and the sensors is large, and the observation SNR
is low. Since the WSN comprises a large number of sensors,
at each point in time a few sensors are close to the target,
and thus measured distances are smaller. Although the cir-
cuitry of the sensors in the WSN is of lower quality than
that of stations in a conventional radar system of compara-
ble cost, the decrease in SNR due to the larger circuit noise
power is more than offset by the smaller distances mea-
sured. Therefore, a WSN offers the potential to reduce
localization error.

WSNs offer several advantages beyond those inherent to
their distributed nature. Because sensors are independent
hardware units, the likelihood of a large number of them
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failing simultaneously is small. Thus, WSNs have built-in
redundancy, which can improve robustness relative to cen-
tralized processing. Redundancy also simplifies network
deployment because optimizing sensor placements is not
critical. Considering also the fact that it is not necessary to
wire the sensors together, network deployment can be as
simple as scattering the sensors over the area of interest.
See [2]-[4] for discussions of additional advantages, issues,
and applications of WSNEs.

Although WSNs present attractive features, challenges
associated with the scarcity of bandwidth and power in
wireless communications have to be addressed. For the
state-estimation problems discussed here, observations
about a common state are collected by physically distrib-
uted terminals. To perform state estimation, sensors may
share these observations with each other or communicate
them to a fusion center for centralized processing. In either
scenario, the communication cost in terms of bandwidth
and power required to convey observations is large enough
to merit attention. To explore this point, consider a vector
state x(n) € R? at time n and let the kth sensor collect
observations y, (1) € R%. The linear state and observation
models are

x(n) =An)x(n—1) +u(n), 1)
yi(n) =Hy(n)x(n) + v (n), )

where the driving noise vector u(n) is normal and uncor-
related across time with covariance matrix C,(n), while
the normal observation noise v, (1) has covariance matrix
C,(n) and is uncorrelated across time and sensors.

With K vector observations {y;(n)}f_, available, the
optimal mean squared error (MSE) estimation of the state
x(n) for the linear model (1), (2) is accomplished by a
Kalman filter. Brute force collection of these observations,
however, incurs a communication cost commensurate with
the product of the number K of sensors in the network, the
number of scalar observations in the y;(n) vectors, and the
number of bits used to quantize each component of yi(n).

The communication cost incurred by brute force collec-
tion of observations is not only large but unnecessary. It is
possible to reduce the impact of the three factors mentioned
above by exploiting information redundancy across obser-
vations y, (n) and y, (1) collected by different sensors,
between different scalar observations composing the vector
yi(n) ata given sensor, and within each individual scalar
observation. Indeed, because all sensors are observing the
same state x(71), the measurements y; (1) and y, (n) are
correlated. As a consequence of this correlation, it is possi-
ble for sensor k; to estimate the observation of sensor k,
and use this estimate to reduce the cost of communicating
its own observation to k,. The correlation between individ-
ual components of the vector observation y.(n) can be
exploited to group scalar observations in a vector of reduced
dimensionality. Finally, it is not necessary to finely quan-

FIGURE 1 Target tracking with a wireless sensor network. Wireless
sensor networks offer an inherent advantage in estimation problems
due to distributed data collection. For a target-tracking application it
is likely that some sensors, not necessarily the same over time, are
always close to the target. Due to proximity, these sensors provide
observations with a larger signal-to-noise ratio than observations
that would be acquired by a single centralized sensor.

tize components of yi(n) but only to the extent that further
precision in the quantization of y,(n) contributes to reduc-
ing the error in the estimation of the state x(n).

To reduce the cost of communicating the components of
yi (1), we discuss filters that estimate the state x(1) based
on quantized representations of the original observations
yi(n) using a small number of bits, typically between one
and three. Finely quantized versions of y; (1) can be used
in lieu of the nonquantized observations y; in standard
Kalman filters. This substitution is not possible with
coarsely quantized versions, motivating the design of state
estimators that incorporate the nonlinear quantization
operation into the observation model. The challenge in this
estimation problem is that the quantization operator is dis-
continuous. In principle, it is therefore necessary to resort
to nonlinear state-estimation tools, such as the unscented
Kalman filter [5] or the particle filter [6], resulting in pro-
hibitive computational cost for WSN deployment. However,
it turns out that despite the discontinuous observation
model it is possible to build state-estimation algorithms
whose structure and computational cost is similar to a
standard Kalman filter. These algorithms are presented in
the section “Quantized Kalman Filters.”

We begin by considering quantization to a single bit by
resorting to the transmission of the sign of the innovations
sequence. Quantization to multiple bits is addressed
through an iterative quantizer. Whereas coarse quantiza-
tion to a few bits per observation increases the MSE of esti-
mates relative to a Kalman filter using finely quantized
observations, performance analysis of quantized Kalman
filters shows that the increase in MSE is small. As we detail
in the section “Quantized Kalman Filters,” quantization to
a single bit per observation increases the MSE by a factor of
7 /2 = 1.57 with respect to a standard Kalman filter, while
quantization to 2 bits and 3 bits results in relative penalties
of 1.15 and 1.05; see also [7] and [8]. Applications of quan-
tized Kalman filters using 1 bit and 3 bits per observation are
presented for a simulated target-tracking problem and an
experimental multiple robot localization problem.
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To exploit the correlation between observation data
acquired at different sensors, recursive data-aggregation
protocols are discussed. Brute force collection of y, (1)
observations incurs a large communication cost because,
in addition to transmitting their own observations, sen-
sors transmit observations received from other sensors in
previous communications. Instead of forwarding separate
observations, sensors forward linear combinations of
their local information with messages received from
neighboring sensors, which are also linear combinations
formed at earlier times. State estimation in this context
calls for the design of MSE optimal estimators for x(n)
based on recursive linear combinations of data. To this
end, the section “Consensus-Based Distributed Kalman
Filtering and Smoothing” describes how to design the
messages exchanged among sensors and the information-
combining rules.

Finally, the correlation between components of yi(n)
allows sensors to reduce the dimensionality of their obser-
vation data y,(n). The compression procedure is designed
to trade off transmission cost as dictated by the reduced
dimension and estimation accuracy as quantified by the
MSE. Given a limited power budget available at each sensor
and the fact that communication takes place over nonideal
channel links, the goal is to design linear dimensionality-
reducing operators that minimize the state-estimate MSE
when operating over noisy channels. Two scenarios are con-
sidered, differentiated by whether state estimation takes

Further Reading

review of research challenges associated with WSNs can be

foundin [3]. Comprehensive references dealing with various
applications and research problems are included in [2] and [S1].
The sign of innovations Kalman filter is presented in [7]. From
a more general point of view, the intermingling of quantization
and estimation has a long history; early references include [S2]
and [S3]. In the context of wireless sensor networks, the prob-
lem is revisited in [S4]—[S6]. An introduction to this topic can be
found in [S7]. The iterative sign of innovations Kalman filter is
developed in [S8]. More general quantization rules for Kalman
filtering problems can be found in [8]. The distributed Kalman
smoother state estimators can be found in [24], whereas alter-
native distributed implementations are available in [15]-[17] and
[19]. Detailed treatment of distributed computation and estima-
tion are given in [22], [24], and [29], and the references therein.
The intertwining of dimensionality reduction with estimation and
tracking is further developed in [12], [31], [S7], and [S8].
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place at a fusion center or at predetermined sensors in an ad
hoc topology.

The reader interested on technical details can find a
brief literature guide in “Further Reading.”

QUANTIZED KALMAN FILTERS

To study quantized Kalman filters we initially focus on
scalar observations {y;(n)}f_;, resulting in an observation
model of the form y,(n) = hi(n)x(n) + v.(n) with noise
variance o,(n). We also assume that a scheduling algo-
rithm is in place to decide which sensor is to transmit at
time n. Therefore, with k(1) denoting the scheduled sensor
at time 7, an efficient means of quantizing and transmit-
ting y(n) =y, (n) is sought. In more precise terms we
study state-estimation problems when nonquantized
amplitude observations y(n) are mapped to messages
m(n) containing a small number of bits.

Quantization results in a subtle change in the state-es-
timation problem. Instead of seeking the minimum mean
squared error (MMSE) estimator X(n|y,,) based on past
observations yj,, = [y(0),...,y(n)]", the problem trans-
mutes into that of finding the MMSE estimator x (7| m,,,)
based on past messages my, =[m(0),...,m(n)]". Al-
though both estimators are given by the respective condi-
tional means, the use of past observations yields a
canonical linear-state estimation, whereas the use of past
messages is a challenging nonlinear estimation. Since the
computational cost of most nonlinear state-estimation
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algorithms is excessive for WSN deployments, the goal is
to find filters that can deal with quantization discontinui-
ties while retaining the small computational requirements
and memory footprints of conventional Kalman filters.
These properties are present in the sign of innovations
Kalman filter (SOI-KF) and its variants discussed in this
section; see also [7].

Sign of Innovations Kalman Filter

In state-estimation problems, the innovations sequence is
defined as the difference between the current observation
and its prediction based on past observations. The intuition
supporting this definition is that this difference contains
the information that the current observation y(n) has
about the state x(n) that is not conveyed by previous
observations yj.,_;. It is thus natural to define the predicted
estimates as 7(n|my, ) = E[y(n) |my, 1], the corre-
sponding innovations sequence as ¥ (n|mg, ;) =y(n) —
7(n|my,_,), and the message m(n) asa quantized version
of §(n|my,_,). As a first approach, consider quantization
to a single bit per observation and let messages exchanged
consist of the sign of the innovations sequence, that is,
m(n) = sign[y (n|my, )] = sign[y(n) — §(n|mg, ,)]. The
sequence m(n) indicates whether the observation y(n) is
larger or smaller than the prediction (1 |m,,,_;) based on
past messages my,, ;.

The estimation task at hand is then to find the MMSE
estimate x(7|my,,) of the state x(n) given the current and
past messages my,,. The MMSE estimate is given by the
conditional expectation E[x(1) |my,], which in principle
can be determined by computing the corresponding multi-
dimensional integral of the state x(n) weighted by the
conditional distribution p[x(n)|my,] of the state, given
messages m,,. Evaluating this integral, in turn, requires
knowing the probability density function (pdf) p[x(n) | my,,],
which can be found using the prediction-correction algo-
rithm described below.

The prediction step involves obtaining the prediction
pdf p[x(n) |mg, ;] from the correction pdf p[x(n —1)]
my,,_;]. Thestate x(n) attime n isthesumof A(n)x(n — 1)
and the independent input noise u(n). Therefore, to
obtain the prediction pdf p[x(n)|my, ], it suffices to
propagate the correction pdf p[x(n — 1) |mg,,_,] through
the linear transformation A(n) and then convolve the
result with the normal pdf N[u(n); 0, C,(n)] of the driv-
ing noise.

The correction step starts from the prediction pdf and
computes the correction pdf p[x (1) | my,,]. This computation
can be done by applying Bayes’s rule to the random vari-
ables x(n) and m(n) to obtain

_ Pr{m(”) |X(1’l), m0:,1,1}
P[x(n) |m0:n} - P[X(”) |m0:n71] Pr{m(n)|m0;,,71}

®)

In spirit, these prediction-correction steps are not
different from the corresponding ones in the Kalman
filter. With linear state propagation, linear observations,
normal driving inputs, and normal observation noise,
the prediction pdfs p[x(n) |yy,_1] and the correction
pdfs p[x(1) | yg,—1] are normal. As such, prediction and
correction pdfs are completely characterized by their
means and covariances, which are the quantities that
the Kalman filter tracks. Thus, the prediction step in the
Kalman filter can be interpreted as propagating the cor-
rection pdf p[x(n — 1) | yo.,,_1] of the previous step to the
prediction pdf p[x(n) | yo.,1] through convolution. Like-
wise, the correction step uses Bayes’s rule to obtain the
correction pdf p[x(n)|y,] from the prediction pdf
p[x(n) | y0:nfl]-

Because quantization is a nonlinear operation, the
probability distributions p[x(n) | my,, ] and p[x(n) | my,,]
necessary to find X(n|mg,) are not normal. Conse-
quently, itis not sufficient to track their first two moments,
and the prediction-correction becomes computationally
costly. An alternative approximation in nonlinear filter-
ing (see [9]) is to model the prediction pdf p[x(n) | mg,, 1]
as normal so that, at least for the prediction step, only the
mean and covariance must be propagated as performed
by (see also Figure 2)

)A((n|m0m,1) :A(n)f((n—1|m0:y,,1), (4)
M(n|mg,_;) = A(n)M(n—1|my,_)AT(n) +C,(n). (5)

Even with this simplifying approximation, p[x(n) | my.,] is
notnormal.Indeed, the probability Pr{m (n) |x(1n), my, 1}
of observing m(n) given the state x(n) and past obser-
vations my, ; can be rewritten as Pr{m(n)|x(n)}
because conditioning on past messages given the present
state is redundant. Furthermore, m(n) =1 is equivalent to
y(n) —y(n|mgy,_,) =0, which, using the observation
model in (2), yields h™(n)x(n) — §(n|my, ;) = v(n). Sim-
ilarly, m(n) = —1 is equivalent to y(n) — §(n|mg,_,) <0
and, from the observation model, to hT(n)x(n) —
y(n|mgy, ;) <wv(n). Given that the observation noise
v(n) is normal, the probability of v(n) being larger or
smaller than h”(n)x(n) — §(n|my, ;) can be expressed
in terms of the normal cumulative distribution function.
Comparing these comments with Bayes’s rule (3), we
deduce that p[x(n) |mg,_,] is the product of the normal
pdf p[x(n)|my, ;] and the normal cumulative distri-
bution Pr{m(n)|x(n), my, ,}. The remaining term
Pr{m(n)| my, _,} is a normalizing constant.

While the correction pdf in (3) is not normal, the
MMSE estimate is nonetheless obtained as the solution
of the expected value integral, which could be evaluated
numerically. It is noteworthy, however, that a closed-
form expression for this integral exists and leads to the
correction step [7]
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Normal approximation in the sign of innovations Kalman filter (SOI-KF). The prediction probability distribution function (pdf)
plx(n)lmy.,_,] for a scalar state model x(n) = x(n) and the normal approximation A'[x(n);X(nlmg.,_;), M(nlmg.,_,)] used to derive
the SOI-KF are compared in (a) and (b). The signal to noise ratio SNR := F?(n)E[x*(n)]/a2(n) of the state-observation model in (a) is
SNR = 10 dB, whereas in (b) SNR = 0 dB. The approximation works best for the small SNR = 0 dB in (b) but it is accurate even for the
high SNR = 10 dB in (a). The comparison in (c) and (d) is between the actual correction pdf p[x(n)Im,.,] < p[x(n)Imy.,_,]
Pr{m(n)Ix(n), my.,_;} and the approximation p[x(n)Img.,] « N[x(n); x(nlmy.,_;), M(nlmq.,_,)]Pr{m(n)Ix(n), my.,_,}. The compar-
ison in (c) is for SNR = 10 dB, whereas in (d) is for SNR = 0 dB. Inspection of (c) and (d) reveals that the first moment of the approxi-
mated pdf B[x(n)Im,.,] is similar to the first moment of p[x(n)Im,.,]. Approximating x(n|m,.,) as the first moment of p[x(n)Im,.,] is

thus justified.

)2(1’1 | mO:n) = )2(1’1 | mO:n*l)
(V2/7)M(n|mg, ) h(n)
VR (n)M (| mg,,,)h(n) + o2(n)

m(n),
(6)
M(n|my,) =M(n|my, )

_ (Z/W)M(”|m0;n—1)h(ﬂ)hT(”)M(”|m0:n—1)
hT(n)M(n|my,,_)h(n)+o2(n)

@)

The SOI-KF, which amounts to a recursive application of
4), (5) and (6), (7), is similar to the Kalman filter in that it
requires only a few algebraic operations per iteration.
Moreover, comparison of the SOI-KF covariance correction
equation with the corresponding covariance correction for
the standard Kalman filter based on the innovations reveals
that they are identical except for the factor 2 /.
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The similarity between the covariance updates of the
Kalman filter and the SOI-KF allows for a simple perfor-
mance comparison. The variance of the state estimates
increases with each prediction step and decreases with
each correction step. Starting with the same covariance
matrix M(n —1|mg, ;) =M(n —1]yg,_,) at time n—1,
a Kalman filter and an SOI-KF have identical predicted
covariance matrices, that is, M(n|my,,_;) = M(n|yp,._1),
at time n. To compare the corrected variances of the
Kalman filter and the SOI-KF, it is informative to examine
the per-step covariance reductions. For the Kalman filter,
the per-step covariance reduction is defined as AMK () =
M(n — 1| yp,—1) — M(#n]|yy,), while, for the SOI-KF, it is
defined as AM(n) ==M(n —1|my, ;) —M(n|m,). It is
not difficult to recognize that these reductions are related
by the factor 2/m, that is, AM(n) = (2/7)AM* (n).
Using the sign of innovations m(n) thus entails a penalty
of 1—2/7=36% relative to the variance reduction
afforded by the actual innovations y(n). This penalty is
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modest for the use of a coarse quantization rule of one bit
per scalar observation.

On the other hand, while 2/ relates the per-step covari-
ance reductions, these reductions accumulate over time and
eventually could cause considerable loss in SOI-KF perfor-
mance relative to the Kalman filter. Therefore, while the rela-
tive penalty of using the sign of the innovations in lieu of the
actual innovation is small, the absolute penalty could be con-
siderable. These limitations motivate consideration of finer
multibit quantization rules, which are discussed below.

Algorithmic Implementation

Algorithms shown in tables 1 and 2 delineate im-
plementation of the SOI-KF in a WSN. The observation-
transmission algorithm in Table 1 is run by only one sensor
at a time, as dictated by the scheduling algorithm. The goal
of this algorithm is to compute and transmit the sign of
innovations m(n). The scheduled sensor Sy, uses its
observation y(n) =y, (n) to form the predicted estimates
x(n|my, ;) for the state and §(n|my,_;) for the observa-
tion. The sign of innovations sequence m(n) is computed
as the sign of the difference between the observation and
its predicted estimate and then broadcast to all other sen-
sors. The objective of the reception-estimation algorithm in
Table 2, which is run continually by all sensors, is to esti-
mate the state x(n) using all received messages my,,. To
this end, sensors use prediction-correction equations simi-
lar to the expressions used by the Kalman filter. Therefore,
at each time slot the state prediction x(n|m,,_;) and asso-
ciated covariance matrix M(#|my,,_;) are computed. After
a sensor receives the sign of innovations message m(n),

TABLE 1 Sign of innovations Kalman filter (SOI-KF)
observation-transmission algorithm. The SOI-KF
observation-transmissionalgorithmis runbythe scheduled
sensor S, to collect the observation y(n) = y,(,(n)
and compute and broadcast the message m(n). The
observation prediction y(nim,,_;) is computed using
linear transformations of the previous state estimate
x(n—1Imy,_;). The message m(n) is the sign of the
innovation y (nlmy.,_;) =y (n) — y(nimy.,_).

Algorithm 1-A SOI-KF - Observation and transmission

Require: x(n— 1Img,, ;)

Ensure: m(n)

1: Collect observation y(n) = yym(n)

2: Compute state prediction x(nlmy., 1) = A(n)x(n—1lm., 1)
3: Compute observation prediction y(nlm,,_,) = h(n)x(nlmy.,_;)
4: Construct binary observation m(n) =sign[y(n)—y(nimy., ;)]
5: Transmit m(n)

the corrected estimate X (7| my,) and corresponding cova-
riance matrix M(n|m,) are obtained. Except for minor
differences in the correction equations, this algorithm is
identical to the Kalman filter.

Computational and memory requirements of the algo-
rithms in tables 1 and 2 are affordable for low-cost sensors.
Storing state estimates X(n|my,_;) and x(#|m,y,) and
their respective covariance matrices M(n|mgy,_;) and
M(n|m,,) requires pz + p memory elements, where p is
the number of elements in the state vector x(f). Memory is
also required to store the system model, that is, A(n),
C,(n), h(n), and ), which requires on the order of p?

TABLE 2 Sign of innovations Kalman filter (SOI-KF) reception-estimation algorithm. The SOI-KF reception-estimation algorithm
is run continually by all sensors to compute state estimates X(nim,.,) . In the prediction step (Step 2), linear transformations
of the previous state estimate X(n— 1lm,.,_;) and the covariance matrices M(n — 1lm,.,_,) yield the predicted estimate
X(nim,.,,_,) and its corresponding covariance matrix M(nlm,,, ,). The information contained in the sign of innovations
message m(n) is incorporated in the correction step (Step 4). The correction step is similar to the conventional Kalman filter.
The covariance matrix update, in particular, is identical except for the factor 2 /7.

Algorithm 1-B SOI-KF — Reception and estimation

Require: prior estimate X(—1/—1) and covariance matrix M(—11 —1)

1: for n=0 to » do {repeat for the life of the network}

2: Compute predicted estimate X(nlm.,_;) and covariance matrix M(nlmg.,_;)

)A((nlmo:nﬂ) =A(n)x(n— 1Irn0:n71)
M(nlmy,_;) = A(n)M(n—1lmg,_;)A"(n) + C,(n)

3: Receive binary observation m(n)

4: Compute corrected estimate X(nlm,,,) and covariance matrix M(nlm,,,)

(V2/m)M(nlmg.,_)h(n)

)A((nlmO:n) = )A((nlmo:n—1) +

VAT MM(nimg, h(n) + o2(n)

(n)

(2/7)M(nimg.,_1)h(n)h"(n)M(nlmg,, ;)

M(nlmO:n) = M(n|m0:n—1) -

5: end for

h7(n)M(nlmg.,_;)h(n) + a2(n)
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memory elements. Prediction equations (4) and (5) require
p* and p® flops, respectively. Correction equations (6) and
(7) necessitate on the order of p2 flops and, in the case of (6),
the computation of a scalar square root. The latter opera-
tion is the only one that is not shared with a Kalman filter
based on the actual innovations ¥ (1| my,, ;).

Because the scheduled sensor Sy, also runs the recep-
tion-estimation algorithm in Table 2, it does not take full
advantage of the information that y,(n) contains about
the state x (). In principle, sensors not scheduled at time n
could improve performance of their estimates by combin-
ing their own observations vy (n). Local information is
left out from the algorithms in tables 1 and 2 because the
goal of the SOI-KF is to obtain a synchronized estimate
x(n|mg,) across all sensors.

Filter Implementation

While the MSE updates of the Kalman filter and its
quantized version in (7) are similar, the update of the state
estimates has a different form. As it turns out, it is possible
to express the state update in (6) in a form that exemplifies
its link with the Kalman filter update. By replacing the
innovation ¥(n|my,_,) with its sign m(n), the units of
the observations are lost. To recover these units, let

oy(n|mg, ) = VE[j*(n|my,_;)] denote the standard

deviation of the innovations sequence and define the
SOI-KF innovation as i (n|my, 1) = o (1| mg, ;) m(n).
The innovation sequence has zero-mean and its variance is
given by the denominator of the MSE update in (7).
According to this definition, the units of the SOI-KF
innovation 77 (n | mg,, ;) are those of i (1| m,, ), and their
average energies are the same, that is, E[#7*(n|my, )] =
E[yz(n | mO:n*l)]-

Recalling the definition of the Kalman gain and replac-
ing m(n) with i(n|my,_;) in (6), the SOI-KF takes a form
more reminiscent of the Kalman filter

M(n|m0m,1)h(n)
h'(n)M(n|my,_)h(n) + o2(n)’

k(n) = (8)

)2(1’1|1Tl0:y,) = )?(7’1|m0;y,71) + (\/Z/iw)k(n)ﬁ’l(n|m0:n,l),
©)

M(nlmO:n) = [I - (Z/W)k(n)hT(Tl)] M(n|m0:n—1)' (10)

The gain k(n) in (8) has the same functional expression as
the gain used in the Kalman filter, while the MSE updates
are identical except for the factor 2/7. The state updates
differ only in the factor V2/7 and in the replacement of

y(n) Y(nlYo:n-+1) X(nYo:n)
[Yon—1 o) e Yo X
+T+
. hT(n) = A(n)z‘1
Y(nYo.n-1) X(NYo:n—1)

(a)

Transmitter Side

y(njmg.,_+)

JA/(nlmO:n—1)

Receiver Side
Y Y _ n~1(n - i(n|m0:n)
rrrrrrrrr > VEAn|me,, - )] V2/rkTn) | —(+ >
m(n) + 4+
< A(n)z™!
x(njm.,_+)

(b)

FIGURE 3 Block diagram of the sign of innovations Kalman filter (SOI-KF) compared with the standard Kalman filter. The Kalman filter
(a) contains a feedback loop to compute state and observation predictions as linear transformations of the state estimate for the previ-
ous time slot. The observation prediction is subtracted from the observation to form the innovation. The innovation is then multiplied by
the Kalman gain and added to the state prediction to form the corrected estimate. Likewise, the SOI-KF (b) has a feedback loop that
starts with a delayed copy of the corrected estimate Xx(n—1|mg, ;) to compute the state x(nlm,,, ;) and observation y(nlmg., ;)
predictions, as well as the innovation y(n|m,,_1). The highlighted differences with the Kalman filter include the hard limiter used to
obtain the sign message m(n); the transmission-reception stage; the computation of the SOI-KF innovation m(n) == m(n|mg.,_4); and
the use of a scaled Kalman gain before addition to the predicted estimate. The scheduled sensor also utilizes m(n) to compute the
corrected estimate as signified by the dotted line in the transmission-reception stage.
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the innovation ¥(n|mg, ;) by the SOI-KF innovation
fi(n|my,_,). As the first- and second-order moments of
y(n|mgy, ;) and #i(n|mgy, ) are identical, the factor
\2/m appearing in the state update explains the factor
2/ in the MSE update. The difference between the SOI-KF
correction and the Kalman filter correction is that in the
SOI-KF the magnitude of the correction at each step is
determined by the magnitude of o (1 |my,_;), which is
the same regardless of how large or small the actual inno-
vation ¥ (n|mg, ;) is.

Expressing the correction step as in (8), (10) simplifies
the comparison between the block diagrams of the Kalman
filter and the SOI-KFE. The block diagram for the Kalman
filter in Figure 3 includes the feedback loop on the right
that starts with a delayed copy of the corrected estimate
x(n—1|yp,—1) and computes the predicted estimate
x(n|yp,-1) along with the observation predict