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wireless sensor network (WSN) is a collection 

of physically distributed sensing devices that 

can communicate through a shared wireless 

channel. Sensors can be deployed, for example, 

to detect the presence of a contaminant in a 

water reservoir, to estimate the temperature in an orange 

grove, or to track the position of a moving target. 

The promise of WSNs stems from the benefits of distrib-

uted sensing and control. For example, in the target-tracking 

setup depicted in Figure 1, where sensors measure their 

distance to a target whose trajectory is to be estimated, the 

benefit of distributed sensing is the availability of observa-

tions with high signal-to-noise ratio (SNR). Whether col-

lected by a passive radar, which estimates distances by the 

strength of an electromagnetic signature emitted by the 

target, or by an active radar, which gauges the reflection of 

a probing signal, measured signal strength decreases with 

increasing distance. Observation noise, however, remains 

unchanged because it is determined by circuit design and 

the operational environment. Consequently, in passive and 

active radar, the SNR of distance observations is inversely 

related to the distance being measured. In a conventional 

radar system a few expensive stations are deployed to cover 

a substantial area. Most of the time, the distance between 

the target and the sensors is large, and the observation SNR 

is low. Since the WSN comprises a large number of sensors, 

at each point in time a few sensors are close to the target, 

and thus measured distances are smaller. Although the cir-

cuitry of the sensors in the WSN is of lower quality than 

that of stations in a conventional radar system of compara-

ble cost, the decrease in SNR due to the larger circuit noise 

power is more than offset by the smaller distances mea-

sured. Therefore, a WSN offers the potential to reduce 

localization error. 

WSNs offer several advantages beyond those inherent to 

their distributed nature. Because sensors are independent 

hardware units, the likelihood of a large number of them 
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failing simultaneously is small. Thus, WSNs have built-in 

redundancy, which can improve robustness relative to cen-

tralized processing. Redundancy also simplifies network 

deployment because optimizing sensor placements is not 

critical. Considering also the fact that it is not necessary to 

wire the sensors together, network deployment can be as 

simple as scattering the sensors over the area of interest. 

See [2]–[4] for discussions of additional advantages, issues, 

and applications of WSNs. 

Although WSNs present attractive features, challenges 

associated with the scarcity of bandwidth and power in 

wireless communications have to be addressed. For the 

state-estimation problems discussed here, observations 

about a common state are collected by physically distrib-

uted terminals. To perform state estimation, sensors may 

share these observations with each other or communicate 

them to a fusion center for centralized processing. In either 

scenario, the communication cost in terms of bandwidth 

and power required to convey observations is large enough 

to merit attention. To explore this point, consider a vector 

state x (n) [ Rp  at time n  and let the kth sensor collect 

observations yk(n) [ Rq.  The linear state and observation 

models are 

 x (n) 5 A (n)x (n 2 1) 1 u (n) ,  (1)

 yk(n) 5 Hk(n)x (n) 1 vk(n) ,  (2)

where the driving noise vector u (n)  is normal and uncor-

related across time with covariance matrix Cu (n) ,  while 

the normal observation noise vk(n)  has covariance matrix 

Cv (n)  and is uncorrelated across time and sensors. 

With K  vector observations 5yk(n)6k51
K  available, the 

optimal mean squared error (MSE) estimation of the state 

x (n)  for the linear model (1), (2) is accomplished by a 

Kalman filter. Brute force collection of these observations, 

however, incurs a communication cost commensurate with 

the product of the number K  of sensors in the network, the 

number of scalar observations in the yk(n)  vectors, and the 

number of bits used to quantize each component of yk(n) .  

The communication cost incurred by brute force collec-

tion of observations is not only large but unnecessary. It is 

possible to reduce the impact of the three factors mentioned 

above by exploiting information redundancy across obser-

vations yk1
(n)  and yk2

(n)  collected by different sensors, 

between different scalar observations composing the vector 

yk(n)  at a given sensor, and within each individual scalar 

observation. Indeed, because all sensors are observing the 

same state x (n) ,  the measurements yk1
(n)  and yk2

(n)  are 

correlated. As a consequence of this correlation, it is possi-

ble for sensor k1 to estimate the observation of sensor k2 

and use this estimate to reduce the cost of communicating 

its own observation to k2.  The correlation between individ-

ual components of the vector observation yk(n)  can be 

exploited to group scalar observations in a vector of reduced 

dimensionality. Finally, it is not necessary to finely quan-

tize components of yk(n)  but only to the extent that further 

precision in the quantization of yk(n)  contributes to reduc-

ing the error in the estimation of the state x (n) .  

To reduce the cost of communicating the components of 

yk(n) ,  we discuss filters that estimate the state x (n)  based 

on quantized representations of the original observations 

yk(n)  using a small number of bits, typically between one 

and three. Finely quantized versions of yk(n)  can be used 

in lieu of the nonquantized observations yk  in standard 

Kalman filters. This substitution is not possible with 

coarsely quantized versions, motivating the design of state 

estimators that incorporate the nonlinear quantization 

operation into the observation model. The challenge in this 

estimation problem is that the quantization operator is dis-

continuous. In principle, it is therefore necessary to resort 

to nonlinear state-estimation tools, such as the unscented 

Kalman filter [5] or the particle filter [6], resulting in pro-

hibitive computational cost for WSN deployment. However, 

it turns out that despite the discontinuous observation 

model it is possible to build state-estimation algorithms 

whose structure and computational cost is similar to a 

standard Kalman filter. These algorithms are presented in 

the section “Quantized Kalman Filters.” 

We begin by considering quantization to a single bit by 

resorting to the transmission of the sign of the innovations 

sequence. Quantization to multiple bits is addressed 

through an iterative quantizer. Whereas coarse quantiza-

tion to a few bits per observation increases the MSE of esti-

mates relative to a Kalman filter using finely quantized 

observations, performance analysis of quantized Kalman 

filters shows that the increase in MSE is small. As we detail 

in the section “Quantized Kalman Filters,” quantization to 

a single bit per observation increases the MSE by a factor of 

p/2 < 1.57 with respect to a standard Kalman filter, while 

quantization to 2 bits and 3 bits results in relative penalties 

of 1.15 and 1.05; see also [7] and [8]. Applications of quan-

tized Kalman filters using 1 bit and 3 bits per observation are 

presented for a simulated target-tracking problem and an 

experimental multiple robot localization problem. 

FIGURE 1 Target tracking with a wireless sensor network. Wireless 

sensor networks offer an inherent advantage in estimation problems 

due to distributed data collection. For a target-tracking  application it 

is likely that some sensors, not necessarily the same over time, are 

always close to the target. Due to proximity, these sensors provide 

observations with a larger signal-to-noise ratio than observations 

that would be acquired by a single centralized sensor.
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To exploit the correlation between observation data 

acquired at different sensors, recursive data-aggregation 

protocols are discussed. Brute force collection of yk(n)  

observations incurs a large communication cost because, 

in addition to transmitting their own observations, sen-

sors transmit observations received from other sensors in 

previous communications. Instead of forwarding separate 

observations, sensors forward linear combinations of 

their local information with messages received from 

neighboring  sensors, which are also linear combinations 

formed at earlier times. State estimation in this context 

calls for the design of MSE optimal estimators for x (n)  

based on recursive linear combinations of data. To this 

end, the section  “Consensus-Based Distributed Kalman 

Filtering and Smoothing” describes how to design the 

messages exchanged among sensors and the information-

combining rules. 

Finally, the correlation between components of yk(n)  

allows sensors to reduce the dimensionality of their obser-

vation data yk(n) .  The compression procedure is designed 

to trade off transmission cost as dictated by the reduced 

dimension and estimation accuracy as quantified by the 

MSE. Given a limited power budget available at each sensor 

and the fact that communication takes place over nonideal 

channel links, the goal is to design linear dimensionality-

reducing operators that minimize the state-estimate MSE 

when operating over noisy channels. Two scenarios are con-

sidered, differentiated by whether state estimation takes 

place at a fusion center or at predetermined sensors in an ad 

hoc topology. 

The reader interested on technical details can find a 

brief literature guide in “Further Reading.” 

QUANTIZED KALMAN FILTERS
To study quantized Kalman filters we initially focus on 

scalar observations 5yk(n)6k51
K ,  resulting in an observation 

model of the form yk(n) 5 hk
T (n)x (n) 1 vk(n)  with noise 

variance sv (n) .  We also assume that a scheduling algo-

rithm is in place to decide which sensor is to transmit at 

time n.  Therefore, with k (n)  denoting the scheduled sensor 

at time n,  an efficient means of quantizing and transmit-

ting y (n) J yk(n) (n)  is sought. In more precise terms we 

study state-estimation problems when nonquantized 

amplitude observations y (n)  are mapped to messages 

m (n)  containing a small number of bits. 

Quantization results in a subtle change in the state-es-

timation problem. Instead of seeking the minimum mean 

squared error (MMSE) estimator x̂ (n|y0:n )  based on past 

observations y0:n J 3y (0) , c, y (n)4T,  the problem trans-

mutes into that of finding the MMSE estimator x̂ (n|m0:n )  

based on past messages m0:n J 3m (0) ,c, m (n)4T.  Al-

though both estimators are given by the respective condi-

tional means, the use of past observations yields a 

canonical linear-state estimation, whereas the use of past 

messages is a challenging nonlinear estimation. Since the 

computational cost of most nonlinear state-estimation 

review of research challenges associated with WSNs can be 

found in [3]. Comprehensive references dealing with various 

applications and research problems are included in [2] and [S1]. 

The sign of innovations Kalman fi lter is presented in [7]. From 

a more general point of view, the intermingling of quantization 

and estimation has a long history; early references include [S2] 

and [S3]. In the context of wireless sensor networks, the prob-

lem is revisited in [S4]–[S6]. An introduction to this topic can be 

found in [S7]. The iterative sign of innovations Kalman fi lter is 

developed in [S8]. More general quantization rules for Kalman 

fi ltering problems can be found in [8]. The distributed Kalman 

smoother state estimators can be found in [24], whereas alter-

native distributed implementations are available in [15]–[17]  and 

[19]. Detailed treatment of distributed computation and estima-

tion are given in [22], [24], and [29], and the references therein. 

The intertwining of dimensionality reduction with estimation and 

tracking is further developed in [12], [31], [S7], and [S8]. 
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 algorithms is  excessive for WSN deployments, the goal is 

to find filters that can deal with quantization discontinui-

ties while retaining the small computational requirements 

and memory footprints of conventional Kalman filters. 

These properties are present in the sign of innovations 

Kalman filter (SOI-KF) and its variants discussed in this 

section; see also [7]. 

Sign of Innovations Kalman Filter
In state-estimation problems, the innovations sequence is 

defined as the difference between the current observation 

and its prediction based on past observations. The intuition 

supporting this definition is that this difference contains 

the information that the current observation y (n)  has 

about the state x (n)  that is not conveyed by previous 

 observations y0:n21.  It is thus natural to define the predicted 

estimates as ŷ (n|m0:n21 ) J E 3y (n)|m0:n21 4,  the corre-

sponding innovations sequence as y| (n|m0:n21 ) J y (n) 2  

ŷ (n|m0:n21 ) ,  and the message m (n)  as a quantized version 

of y| (n|m0:n21 ) .  As a first approach, consider quantization 

to a single bit per observation and let messages exchanged 

consist of the sign of the innovations sequence, that is, 

m(n) J sign 3y| (n|m0:n21) 45 sign 3y (n) 2 ŷ (n|m0:n21 ) 4.  The 

sequence m (n)  indicates whether the observation y (n)  is 

larger or smaller than the prediction ŷ (n|m0:n21 )  based on 

past messages m0:n21.  

The estimation task at hand is then to find the MMSE 

estimate x̂ (n|m0:n )  of the state x (n)  given the current and 

past messages m0:n.  The MMSE estimate is given by the 

conditional expectation E 3x (n)|m0:n 4,  which in principle 

can be determined by computing the corresponding multi-

dimensional integral of the state x (n)  weighted by the 

 conditional distribution p 3x (n)|m0:n 4  of the state, given 

messages m0:n.  Evaluating this integral, in turn, requires 

knowing the probability density function (pdf) p 3x (n)|m0:n 4,  
which can be found using the prediction-correction algo-

rithm described below. 

The prediction step involves obtaining the predic tion 

pdf p 3x (n)|m0:n21 4  from the correction pdf p 3x (n 2 1) 0  
m0:n21 4.  The state x (n)  at time n  is the sum of A (n)x (n 2 1) 

and the independent input noise u (n) .  Therefore, to 

obtain the prediction pdf p 3x (n)|m0:n21 4,  it suffices to 

propagate the correction pdf p 3x (n 2 1)|m0:n21 4  through 

the linear transformation A (n)  and then convolve the 

result with the normal pdf N 3u (n) ; 0, Cu (n)4  of the driv-

ing noise. 

The correction step starts from the prediction pdf and 

com putes the correction pdf p 3x (n)|m0:n 4. This computation 

can be done by applying Bayes’s rule to the random vari-

ables x (n)  and m (n)  to obtain 

 p 3x (n)|m0:n 45 p 3x (n)|m0:n21 4Pr5m (n)|x (n), m0:n216
Pr5m (n)|m0:n216  .

 (3)

In spirit, these prediction-correction steps are not 

different from the corresponding ones in the Kalman 

filter. With linear state propagation, linear observations, 

normal driving inputs, and normal observation noise, 

the prediction pdfs p 3x (n)|y0:n21 4  and the correction 

pdfs p 3x (n)|y0:n21 4  are normal. As such, prediction and 

correction pdfs are completely characterized by their 

means and covariances, which are the quantities that 

the Kalman filter tracks. Thus, the prediction step in the 

Kalman filter can be interpreted as propagating the cor-

rection pdf p 3x (n 2 1)|y0:n21 4  of the previous step to the 

prediction pdf p 3x (n)|y0:n21 4  through convolution. Like-

wise, the correction step uses Bayes’s rule to obtain the 

correction pdf p 3x (n)|y0:n 4  from the prediction pdf 

p 3x (n)|y0:n21 4.  
Because quantization is a nonlinear operation, the 

probability distributions p 3x (n)|m0:n21 4  and p 3x (n)|m0:n 4  
necessary to find x̂ (n|m0:n )  are not normal. Conse-

quently, it is not sufficient to track their first two moments, 

and the  prediction-correction becomes computationally 

costly. An alternative approximation in nonlinear filter-

ing (see [9]) is to model the prediction pdf p 3x (n)|m0:n21 4  
as normal so that, at least for the prediction step, only the 

mean and covariance must be propagated as performed 

by (see also Figure 2 ) 

 x̂ (n|m0:n21) 5 A (n) x̂ (n 2 1|m0:n21 ) ,  (4)

 M(n|m0:n21) 5 A (n)M (n21|m0:n21 )AT (n) 1Cu (n) .  (5)

Even with this simplifying approximation, p 3x (n)|m0:n 4  is 

not normal. Indeed, the probability Pr5m (n)|x (n) , m0:n216  
of observing m (n)  given the state x (n)  and past obser-

vations m0:n21  can be rewritten as Pr5m (n)|x (n) 6  
because conditioning on past messages given the present 

state is redundant. Furthermore, m (n) 5 1 is equivalent to 

y (n) 2 ŷ (n|m0:n21 ) $ 0, which, using the observation 

model in (2), yields hT (n)x (n) 2 ŷ (n|m0:n21 ) $ v (n) .  Sim-

ilarly, m (n) 5 21 is equivalent to y (n) 2 ŷ (n|m0:n21 ) , 0  

and, from the observation model, to hT (n)x (n) 2  

ŷ (n|m0:n21 ) , v (n) .  Given that the observation noise 

v (n)  is normal, the probability of v (n)  being larger or 

smaller than hT (n)x (n) 2 ŷ (n|m0:n21 )  can be expressed 

in terms of the normal cumulative distribution function. 

Comparing these comments with Bayes’s rule (3), we 

deduce that p 3x (n)|m0:n21 4  is the product of the normal 

pdf p 3x (n)|m0:n21 4  and the normal cumulative distri-

bution Pr5m (n)|x (n) , m0:n216.  The remaining term 

Pr5m (n) 0  m0:n216  is a normalizing constant. 

While the correction pdf in (3) is not normal, the 

MMSE estimate is nonetheless obtained as the solution 

of the expected value integral, which could be evaluated 

numerically. It is noteworthy, however, that a closed-

form expression for this integral exists and leads to the 

correction step [7] 
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x̂ (n|m0:n ) 5 x̂ (n|m0:n21 )

  1
("2/p )M (n|m0:n21 )h (n)

"hT (n)M (n|m0:n21 )h (n) 1 sv
2 (n)

m (n) ,  

 (6)

M (n|m0:n ) 5 M (n|m0:n21 )

 2
(2/p )M (n|m0:n21)h (n)hT (n)M (n|m0:n21)

hT (n)M (n|m0:n21)h (n) 1sv
2 (n)

.

 (7)

The SOI-KF, which amounts to a recursive application of 

(4), (5) and (6), (7), is similar to the Kalman filter in that it 

requires only a few algebraic operations per iteration. 

Moreover, comparison of the SOI-KF covariance correction 

equation with the corresponding covariance correction for 

the standard Kalman filter based on the innovations reveals 

that they are identical except for the factor 2/p.  

The similarity between the covariance updates of the 

Kalman filter and the SOI-KF allows for a simple perfor-

mance comparison. The variance of the state estimates 

increases with each prediction step and decreases with 

each correction step. Starting with the same covariance 

matrix M (n 2 1|m0:n21 ) 5 M (n 2 1|y0:n21 )  at time n 2 1, 

a Kalman filter and an SOI-KF have identical predicted 

covariance matrices, that is, M (n|m0:n21 ) 5 M (n|y0:n21 ) ,  

at time n.  To compare the corrected variances of the 

Kalman filter and the SOI-KF, it is informative to examine 

the per-step covariance reductions. For the Kalman filter, 

the per-step covariance reduction is defined as DMKF(n) J
M (n 2 1 0  y0:n21 ) 2 M (n|y0:n ) ,  while, for the SOI-KF, it is 

defined as DM (n) J M (n 2 1|m0:n21 ) 2 M (n|m0:n ) .  It is 

not difficult to recognize that these reductions are related 

by the factor 2/p,  that is, DM (n) 5 (2/p )DMKF(n) .  

Using the sign of innovations m (n)  thus entails a penalty 

of 1 2 2/p 5 36% relative to the variance reduction 

afforded by the actual innovations y (n) .  This penalty is 
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FIGURE 2 Normal approximation in the sign of innovations Kalman filter (SOI-KF). The prediction probability distribution function (pdf) 

p 3x (n ) |m0: n21 4  for a scalar state model x (n ) 5 x (n )  and the normal approximation N 3x (n ) ; x̂ (n |m0:n21), M(n|m0:n21)4  used to derive 

the SOI-KF are compared in (a) and (b). The signal to noise ratio SNR J h2(n )E 3x2(n ) 4/sv
2(n )  of the state-observation model in (a) is 

SNR 5 10 dB, whereas in (b) SNR 5 0 dB. The approximation works best for the small SNR 5 0 dB in (b) but it is accurate even for the 

high SNR 5 10 dB in (a). The comparison in (c) and (d) is between the actual correction pdf p 3x (n ) |m0:n 4 ~ p 3x (n ) |m0:n21 4  
Pr5m(n ) |x (n ) , m0:n216  and the approximation p| 3x (n ) |m0:n 4 ~ N 3x (n ) ; x̂ (n|m0:n21) ,  M(n|m0:n21)4Pr 5m(n ) |x (n ) , m0:n216.  The compar-

ison in (c) is for SNR 5 10 dB, whereas in (d) is for SNR 5 0 dB. Inspection of (c) and (d) reveals that the first moment of the approxi-

mated pdf p| 3x (n ) |m0:n 4  is similar to the first moment of p 3x (n ) |m0:n 4.  Approximating x̂ (n|m0:n)  as the first moment of p| 3x (n ) |m0:n 4  is 

thus justified.
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modest for the use of a coarse quantization rule of one bit 

per scalar observation. 

On the other hand, while 2/p  relates the per-step covari-

ance reductions, these reductions accumulate over time and 

eventually could cause considerable loss in SOI-KF perfor-

mance relative to the Kalman filter. Therefore, while the rela-

tive penalty of using the sign of the innovations in lieu of the 

actual innovation is small, the absolute penalty could be con-

siderable. These limitations motivate consideration of finer 

multibit quantization rules, which are discussed below. 

Algorithmic Implementation
Algorithms shown in tables 1 and 2 delineate im -

plementation of the SOI-KF in a WSN. The observation-

transmission algorithm in Table 1 is run by only one sensor 

at a time, as dictated by the scheduling algorithm. The goal 

of this algorithm is to compute and transmit the sign of 

innovations m (n) .  The scheduled sensor Sk(n)  uses its 

observation y (n) 5 yk(n) (n)  to form the predicted estimates 

x̂ (n|m0:n21 )  for the state and ŷ (n|m0:n21 )  for the observa-

tion. The sign of innovations sequence m (n)  is computed 

as the sign of the difference between the observation and 

its predicted estimate and then broadcast to all other sen-

sors. The objective of the reception-estimation algorithm in 

Table 2, which is run continually by all sensors, is to esti-

mate the state x (n)  using all received messages m0:n.  To 

this end, sensors use prediction-correction equations simi-

lar to the expressions used by the Kalman filter. Therefore, 

at each time slot the state prediction x̂ (n|m0:n21 )  and asso-

ciated covariance matrix M (n|m0:n21 )  are computed. After 

a sensor receives the sign of innovations message m (n) ,  

the corrected estimate x̂ (n|m0:n )  and corresponding cova-

riance matrix M (n|m0:n )  are obtained. Except for minor 

differences in the correction equations, this algorithm is 

identical to the Kalman filter. 

Computational and memory requirements of the algo-

rithms in tables 1 and 2 are affordable for low-cost sensors. 

Storing state estimates x̂ (n|m0:n21 )  and x̂ (n|m0:n )  and 

their respective covariance matrices M (n|m0:n21 )  and 

M (n|m0:n )  requires p2 1 p  memory elements, where p  is 

the number of elements in the state vector x ( t ) .  Memory is 

also required to store the system model, that is, A (n) ,  

Cu (n) ,  h (n) ,  and sv(n),  which requires on the order of p2 

Algorithm 1-A SOI-KF – Observation and transmission

Require: x̂ (n 2 1|m0:n21)  

Ensure: m(n )  

1: Collect observation y (n ) 5 yk(n) (n )  

2: Compute state prediction x̂(n|m0:n21) 5 A(n ) x̂ (n 21|m0:n21)  

3: Compute observation prediction ŷ (n|m0:n21)5 hT(n)x̂(n|m0:n21)  

4: Construct binary observation m(n)5sign 3y (n )2ŷ (n|m0:n21)4  
5: Transmit m(n )

TABLE 1 Sign of innovations Kalman filter (SOI-KF) 
observation-transmission algorithm. The SOI-KF 
observation-transmission algorithm is run by the scheduled 
sensor Sk (n)  to collect the observation y (n) 5 yk(n) (n)  
and compute and broadcast the message m(n) . The 
observation prediction ŷ (n| m0:n21 )  is computed using 
linear transformations of the previous state estimate 
x̂ (n 2 1|m0:n21 ) . The message m(n )  is the sign of the 
innovation y| (n |m0:n21 ) J y (n) 2 ŷ (n |m0:n21 ) .

Algorithm 1-B SOI-KF – Reception and estimation

Require: prior estimate x̂ (21|21)  and covariance matrix M(21| 21 )  

1: for  n 5 0 to `  do {repeat for the life of the network} 

2: Compute predicted estimate x̂ (n|m0:n21)  and covariance matrix M(n|m0:n21)  

 x̂ (n|m0:n21) 5 A(n ) x̂ (n 2 1|m0:n21)

M(n|m0:n21) 5 A(n )M(n 2 1|m0:n21)AT(n ) 1 Cu(n )

3: Receive binary observation m(n )  

4: Compute corrected estimate x̂ (n|m0:n)  and covariance matrix M(n|m0:n)  

 x̂ (n|m0:n) 5 x̂ (n|m0:n21) 1
("2/p )M(n|m0:n21)h(n )

!hT(n )M(n|m0:n21)h(n ) 1 sv
2(n )

m(n )

M(n|m0:n) 5 M(n|m0:n21) 2
(2/p )M(n|m0:n21)h(n )hT(n )M(n|m0:n21)

hT(n )M(n|m0:n21)h(n ) 1 sv
2(n )

5: end for 

TABLE 2 Sign of innovations Kalman filter (SOI-KF) reception-estimation algorithm. The SOI-KF reception-estimation algorithm 
is run continually by all sensors to compute state estimates x̂ (n|m0:n ) . In the prediction step (Step 2), linear transformations 
of the previous state estimate x̂ (n 2 1|m0:n21 )  and the covariance matrices M (n 2 1|m0:n21 )  yield the predicted estimate 
x̂ (n |m0:n21 )  and its corresponding covariance matrix M (n|m0:n21 ) . The information contained in the sign of innovations 
message m(n)  is incorporated in the correction step (Step 4). The correction step is similar to the conventional Kalman filter. 
The covariance matrix update, in particular, is identical except for the factor 2/p. 
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memory elements. Prediction equations (4) and (5) require 

p2 and p3 flops, respectively. Correction equations (6) and 

(7) necessitate on the order of p2 flops and, in the case of (6), 

the computation of a scalar square root. The latter opera-

tion is the only one that is not shared with a Kalman filter 

based on the actual innovations y| (n|m0:n21 ) .  

Because the scheduled sensor Sk(n)  also runs the recep-

tion-estimation algorithm in Table 2, it does not take full 

advantage of the information that yk(n) (n)  contains about 

the state x (n) .  In principle, sensors not scheduled at time n  

could improve performance of their estimates by combin-

ing their own observations yk(n) .  Local information is 

left out from the algorithms in tables 1 and 2 because the 

goal of the SOI-KF is to obtain a synchronized estimate 

x̂ (n|m0:n )  across all sensors. 

Filter Implementation
While the MSE updates of the Kalman filter and its 

 quantized version in (7) are similar, the update of the state 

estimates has a different form. As it turns out, it is possible 

to express the state update in (6) in a form that exemplifies 

its link with the Kalman filter update. By replacing the 

innovation y| (n|m0:n21 )  with its sign m (n) ,  the units of 

the observations are lost. To recover these units, let 

s,y (n|m0:n21 ) J !E 3y|2 (n|m0:n21 )4  denote the standard 

deviation of the innovations sequence and define the 

SOI-KF innovation as m| (n|m0:n21 ) J sy| (n|m0:n21 )m (n) .  

The innovation sequence has zero-mean and its variance is 

given by the denominator of the MSE update in (7). 

 According to this definition, the units of the SOI-KF 

 innovation m| (n|m0:n21 )  are those of y| (n|m0:n21 ) , and their 

average energies are the same, that is, E 3m|2 (n|m0:n21 )45  

E 3y|2 (n|m0:n21 )4.  
Recalling the definition of the Kalman gain and replac-

ing m (n)  with m| (n|m0:n21 )  in (6), the SOI-KF takes a form 

more reminiscent of the Kalman filter 

 k (n) J
M (n|m0:n21 )h (n)

hT (n)M (n|m0:n21 )h (n) 1 sv
2 (n)

,  (8)

 x̂ (n|m0:n ) 5 x̂ (n|m0:n21 ) 1 ("2/p )k (n)m| (n|m0:n21 ) , 

 (9)

 M (n|m0:n ) 5 3I 2 (2/p )k (n)hT (n)4 M (n|m0:n21 ) .  (10)

The gain k (n)  in (8) has the same functional expression as 

the gain used in the Kalman filter, while the MSE updates 

are identical except for the factor 2/p.  The state updates 

differ only in the factor !2/p  and in the replacement of 

FIGURE 3 Block diagram of the sign of innovations Kalman filter (SOI-KF) compared with the standard Kalman filter. The Kalman filter 

(a) contains a feedback loop to compute state and observation predictions as linear transformations of the state estimate for the previ-

ous time slot. The observation prediction is subtracted from the observation to form the innovation. The innovation is then multiplied by 

the Kalman gain and added to the state prediction to form the corrected estimate. Likewise, the SOI-KF (b) has a feedback loop that 

starts with a delayed copy of the corrected estimate x̂ (n 2 1|m0:n21)  to compute the state x̂ (n |m0:n21)  and observation ŷ (n|m0:n21)  

predictions, as well as the innovation y|(n|m0:n21) .  The highlighted differences with the Kalman filter include the hard limiter used to 

obtain the sign message m(n); the transmission-reception stage; the computation of the SOI-KF innovation m|(n ) J m| (n|m0:n21) ;  and 

the use of a scaled Kalman gain before addition to the predicted estimate. The scheduled sensor also utilizes m(n )  to compute the 

corrected estimate as signified by the dotted line in the transmission-reception stage.
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the innovation y| (n|m0:n21 )  by the SOI-KF innovation 

m| (n|m0:n21 ) .  As the first- and second-order moments of 

y| (n|m0:n21 )  and m| (n|m0:n21 )  are identical, the factor 

!2/p  appearing in the state update explains the factor 

2/p  in the MSE update. The difference between the SOI-KF 

correction and the Kalman filter correction is that in the 

SOI-KF the magnitude of the correction at each step is 

determined by the magnitude of s,y (n|m0:n21 ) ,  which is 

the same regardless of how large or small the actual inno-

vation y| (n|m0:n21 )  is. 

Expressing the correction step as in (8), (10) simplifies 

the comparison between the block diagrams of the Kalman 

filter and the SOI-KF. The block diagram for the Kalman 

filter in Figure 3 includes the feedback loop on the right 

that starts with a delayed copy of the corrected estimate 

x̂ (n 2 1|y0:n21 )  and computes the predicted estimate 

x̂ (n|y0:n21 )  along with the observation prediction 

ŷ (n|y0:n21 ) .  The observation prediction is then subtracted 

from the observation y (n)  to compute the innovation 

y| (n|y0:n21 ) .  The innovation is then multiplied by the 

Kalman gain k (n)  and added to the predicted estimate to 

yield the corrected estimate x̂ (n|y0:n ) . The block diagram 

for the SOI-KF in Figure 3 contains the same feedback loop 

that starts with a delayed copy of the corrected estimate 

x̂ (n 2 1|m0:n21 )  to compute state x̂ (n|m0:n21 )  and obser-

vation ŷ (n|m0:n21 )  predictions as well as the innovation 

y| (n|m0:n21 ) .  The SOI-KF passes the innovation through a 

hard limiter to obtain the sign message m (n) , which is then 

broadcast to other sensors. Upon reception, the message 

m (n)  is multiplied by the innovation’s variance to yield the 

SOI-KF innovation m| (n|m0:n21 ) .  The innovation is then 

multiplied by a scaled Kalman gain and added to the pre-

dicted estimate to yield the corrected estimate x̂ (n|m0:n ) .  

The scheduled sensor also utilizes m (n)  to compute the 

 corrected estimate as signified by the dotted line in the 

 transmission-reception stage. 

Target Tracking with Sign of 
Innovations Kalman Filter
Target tracking based on distance-only measurements is a 

typical problem in bandwidth-constrained distributed esti-

mation using WSNs [6], [10] for which an extended SOI-KF 

to nonlinear models appears to be attractive. Consider K  

sensors randomly and uniformly deployed in a square 

region of L 3 L  m2 and suppose that the sensor positions 

5pk6k51
K  are known. 

The WSN is deployed to track the position 

p (n) J 3p1 (n) , p2 (n) 4T  of a target, whose state model 

accounts for position p (n)  and velocity s (n) J 3s1 (n) ,  

s2 (n) 4T  but not for acceleration, which is captured by the 

system noise. Under these assumptions, the state equation 

for tracking is  [11] 

 p (n) 5 p (n 2 1) 1 Ts s (n 2 1) 1 (Ts
2/2)u (n) ,  (11)

 s (n) 5 s (n 2 1) 1 Tsu (n) ,  (12)

where Ts  is the sampling period and the random vector 

u (n)  is zero-mean white normal; that is, p (u (n)) 5

N(u (n) ; 0, su
2I ) . Sensors gather information about their 

distance to the target by measuring the received power 

of a pilot signal following the path-loss model 

yk(n) 5 alog 7p (n) 2 pk 7 1 v (n) , with constant a $ 2, 

7p (n) 2 pk 7  denoting the distance between the target and 

the kth sensor, and v (n)  the observation noise with pdf 
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FIGURE 4 Target-tracking with the extended sign of innovations 

Kalman filter (SOI-KF). The entire trajectory is shown in (a), while a 

detail is shown in (b). The target trajectory is displayed along with 

extended Kalman filter estimates computed using the nonquantized 

amplitude observations y (n )  and extended SOI-KF estimates 

computed using the sign of innovations messages m(n ) .  The 

extended Kalman filter and extended SOI-KF  estimates are indis-

tinguishable. The target moves according to the zero-acceleration 

model in (11), (12). Randomly deployed sensors provide distance-

only observations of the form yk (n ) 5 a log 7p(n ) 2 pk 7 1v (n ) ,  

where p(n )  is the target’s position, pk  is the position of the k th 

sensor, and v (n )  is white Gaussian noise with variance sv.  The 

scheduling algorithm works in cycles. At the beginning of each 

cycle, the sensor closest to the predicted estimate of the target’s 

position p̂(n|m0:n21)  is scheduled followed by the second closest 

and so on, until the T th closest sensor is scheduled, completing 

the cycle. For this example, the parameters are T 5 4 slots, Ts 5 1 

s, and K 5 100 sensors deployed in a 2-km-by-2-km square with 

a 5 3.4, su 5 0.2 m/s2, and sv 5 1. 
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p (v (n)) 5N(v (n) ;0;sv
2 ) . This model may arise when sen-

sors measure the power of a radar signal that impinges on 

the target’s surface and bounces back to the sensors [12]. 

Mimicking an extended Kalman filter approach, this 

observation model can be linearized around a neighborhood 

of p̂ (n|n 2 1)  to obtain an approximate observation model, 

which, along with the state evolution in (11), (12), is of the 

form (1), (2). It is now possible to use the SOI-KF to track the 

target’s position p (n) , which offers an extended SOI-KF 

variant, that reduces the communication cost of the extended 

Kalman filter. Because of the linearization of the observation 

model, the resulting tracker computes an approximate lin-

earized MMSE estimate of the target’s position. To study the 

properties of the resulting estimates we resort to simula-

tions whose results are depicted in figures 4–6. It can be seen 

that the extended SOI-KF succeeds in tracking the target 

with position errors smaller or in the order of 15 m. While 

this accuracy is a result of the specific experiment, the point 

here is that the extended Kalman filter based on the observa-

tions yk(n)  and the extended SOI-KF yield almost identical 

performance even when the former relies on nonquantized 

amplitude observations, while the extended SOI-KF is based 

only on the transmission of a single bit per sensor. 

The effect of packet losses in the MSE performance of the 

SOI-KF is illustrated in Figure 7 for the extended version pre-

sented for target tracking. To implement the SOI-KF in a dis-

tributed WSN it is assumed that estimates x̂ (n|m0:n )  are 

equal at all sensors; see the algorithms in tables 1 and 2. This 

assumption is needed so that the predicted observations 

ŷ (n|m0:n21 )  coincide, resulting in the consistency of the sign 

of innovations m (n)  computed at the scheduled sensor with 

its interpretation at the receiving sensors. In reality estimates 

x̂ (n|m0:n )  may be different at different sensors due to errone-

ously decoded packets. Since this lack of synchronized esti-

mates propagates in time, it is fair to ask whether the 

accumulation of packet errors ends up garbling the filter’s 
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FIGURE 5 Mean-squared error (MSE) of target position estimates. 

The MSE of the sign of innovations Kalman filter (SOI-KF) is theo-

retically predicted to be equivalent to the MSE of a Kalman filter 

where the observation noise covariance matrix is multiplied by p/2 

[7]. For the same estimation problem, the MSE of the extended 

SOI-KF is thus expected to be close to the MSE of the extended 

Kalman filter, as illustrated by the simulations for the wireless 

sensor network target-tracking problem shown in Figure 4. 
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FIGURE 6 Consistency test for extended sign of innovations 

Kalman filter (SOI-KF). The SOI-KF is derived based on a normal 

approximation of the prediction pdf p 3x (n ) |m0:n21 4.  For the 

extended SOI-KF target-tracking problem of Figure 4, further 

model mismatch is introduced by the linearization of the observa-

tion model. Notwithstanding, model consistency is observed as 

demonstrated by the comparison between the observed location 

error p(n ) 2 p̂( t )  and the standard deviation of location esti-

mates p̂(n|m0:n)  as given by the square root of the diagonal 

entries of the covariance matrix M(n|m0:n) .  The plot shows the 

first component of the error p(n ) 2 p̂(n )  and the square root of 

the first diagonal entry of M(n|m0:n) .  For consistent models, esti-

mation errors must remain within three times the square root of 

the mean-squared error, that is, within the 3s  bounds, with 

99.87% probability. Consistency is indeed observed for the 

extended SOI-KF target-tracking problem.
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FIGURE 7 Effect of packet errors on the extended sign of innova-

tions Kalman filter (SOI-KF). The root-mean-squared error (RMSE) 

of the extended SOI-KF for the target-tracking problem of Figure 4 

is shown when packets are lost with probabilities Pe 5 0, Pe 5 0.1, 

Pe 5 0.3, and Pe 5 0.5. Errors in packet decoding cause the pre-

dicted observations ŷ (n|m0:n21)  to drift across different sensors, 

which results in an inconsistency between the sign of innovations 

m(n )  computed at the sensor scheduled for transmission and its 

interpretation by receivers. This effect is not catastrophic if the drift 

of the predicted observations ŷ (n|m0:n21)  is small compared with 

the observation noise variance sv (n ) .  For the simulation parame-

ters of Figure 4, the filter’s RMSE performance degrades smoothly 

for Pe 5 0.1 and Pe 5 0.3. For Pe 5 0.5 the RMSE error increases 

beyond acceptable levels.
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output. Figure 7 shows that lost packets have a mild effect on 

the filter’s performance by showing the MSE for the extended 

SOI-KF when packet error probabilities Pe vary between 0 

and 0.3. Small and moderate error probabilities Pe 5 0.1 and 

Pe 5 0.3 have a noticeable but not catastrophic effect on the 

MSE of the filter. When the packet error probability is Pe 5 0.5,

the MSE error increases beyond acceptable levels. The resil-

iency of the filter is maintained as long as the drift of predicted 

observations ŷ (n|m0:n21 )  is small compared with the obser-

vation noise variance sv (n) .  

Iterative Sign of Innovations Kalman Filter
Consider now a general quantization scenario, where the 

scheduled sensor at time n  broadcasts an L-bit message 

m(n)  with entry m(l) (n)  denoting the lth bit. As with the 

SOI-KF, it is natural to consider quantization of the innova-

tions sequence y| (n|m0:n21 ) ,  where having l  bits broadens 

the set of possible quantizers. A simple idea is to transmit 

the L  most significant bits of the innovation, but this 

approach is suboptimal since it amounts to uniform quanti-

zation of y| (n|m0:n21 ) ,  whose distribution is close to normal. 

An optimal quantizer for y| (n|m0:n21 )  is not difficult to 

design using Lloyd’s algorithm, an idea developed to con-

struct quantized Kalman filters in [8]. 

Alternatively, we can build on the simplicity of the 

SOI-KF recursions by designing an iterative means for select-

ing the individual bits as signs of an extended innovation 

sequence [8]. More precisely, let m(l) (n) J 3m(1) (n) , c,  

 m(l) (n)4T  denote the first l  bits of the message m(n)  and 

define ŷ(l) (n|m0:n21 ) J E 3y (n)|m(l) (n) , m0:n21 4,  which is 

the observation estimate given past messages and the 

first l  bits of the current message. By convention, 

ŷ(0) (n|m0:n21 ) J E 3y (n)|m0:n21 4  is the observation esti-

mate given past messages only. An extended innovations 

sequence can then be defined, where each observation 

y (n)  generates L  terms. When the observation y (n)  

becomes available, the innovation y|(1) (n|m0:n21 ) J y (n) 2  

ŷ(0) (n|m0:n21 )  is first defined followed by y|(2) (n|m0:n21 ) J  

y (n) 2 ŷ(1) (n|m0:n21 ) .  This process is repeated L  times, 

and at the lth step the innovation y|(l) (n|m0:n21 ) J y (n) 2  

ŷ(l21) (n|m0:n21 )  is added to the sequence. Messages are 

then obtained as the signs of the elements of this sequence 

m(l) (n) J sign 3y|(l) (n|m0:n21 ) 4.  
This iterative process is illustrated in Figure 8. An observa-

tion estimate ŷ(0) (n|m0:n21 )  is computed using past mes-

sages and, depending on whether the observation y (n)  falls 

to the right or left of this estimate, the most significant bit 

m(1) (n)  is set to 11 or 21. The observation estimate is updated 

using this bit to obtain an improved estimate ŷ(1) (n|m0:n21 ) .  

The second most significant bit is subsequently set to 11 or 21 

depending on whether y (n)  is to the right or left of this 

updated estimate. This process is repeated sequentially until 

the Lth bit of the message m(n)  is computed. 

A subtlety in this iterative scheme is that the 

 observation estimates are not linear transformations  of 

the state estimates, that is, ŷ(l) (n|m0:n21 ) 2 hT (n)  

E 3x (n)|m(l) (n) , m0:n21 4 J hT (n) x̂(l) (n|m0:n21 ) .  In fact, it 

follows from the observation model that the estimate of the 

observations is ŷ(l) (n|m0:n21 ) 5 hT (n) x̂(l) (n|m0:n21 ) 1  

E 3v (n)|m(l) (n) 4.  The second term in this sum is nonzero in 

general because the message bits m(l) (n)  contain informa-

tion about the noise v (n) .  

The situation is similar to a state-estimation problem 

with correlated observation noise. A simple solution in 

related cases consists of augmenting the state x (n)  to 

include the observation noise v (n) .  The augmented state 

estimates include the noise estimate needed to compute 

ŷ(l) (n|m0:n21 ) .  Specifically, define the augmented state 

xA(n) J 3xT (n) , v (n) 4T  by appending the noise v (n)  to 

the state x (n)  and the augmented driving noise 

uA(n) J 3uT (n) , v (n)4T.  Using these definitions along 

with AA(n) 5 aA (n) 0

0 0
b  and hA(n) J 3hT (n) , 1 4T,  the 

model in (1), (2) can be rewritten as 

 xA(n) 5 AA(n)xA(n 2 1) 1 uA(n) ,  (13)

 y (n) 5 hA
T (n)xA(n) 1 vA(n) ,  (14)
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FIGURE 8 Message generation in iterative sign of innovations 

Kalman filter (SOI-KF). The iterative SOI-KF is an adaptation of 

the SOI-KF that allows transmission of L-bit messages m(n ) .  

The first bit m(1) (n )  is the sign of the innovation. To compute sub-

sequent bits, estimates ŷ(l) (n|m0:n21)  incorporating information 

from past messages and the first l , L  bits of the current message 

are used. Bits are iteratively defined as the sign of this extended 

innovation sequence. This scheme is illustrated here as a series of 

threshold comparisons. An observation estimate ŷ (0) (n|m0:n21)  is 

computed using past messages. Depending on whether the 

observation y (n )  falls to the right or left of this estimate, the most 

significant bit m(1) (n )  is set to 11 or 21. The observation estimate 

is updated using this bit to obtain an improved estimate 

ŷ(1) (n|m0:n21) .  The second most significant bit is set to 11 or 21 

depending on whether y (n )  is to the right or left of this updated 

estimate. This process is repeated sequentially until the Lth bit of the 

message m(n )  is obtained. In the l th step, the observation y (n )  is 

compared with ŷ(l21) (n|m0:n21)  to determine the l th bit m(l ) (n ) .
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where, by construction, the new observation noise vA(n)  is 

identically zero and thus can be thought of as normal noise 

with variance svA

2 (n) 5 0. The correlation matrix of the 

augmented driving noise is a block-diagonal matrix CuA
(n) ,  

with Cu (n)  in the upper left corner and sv
2 (n)  in the lower 

right one. 

The augmented state formulation (13), (14) entails a state 

with increased dimension but is otherwise equivalent to 

(1), (2). However, the formulation has the appealing prop-

erty that MMSE estimates of the augmented state xA(n)  

contain MMSE estimates of the original state x (n)  and the 

observation noise v (n) .  As a result, ŷ(l) (n|m0:n21 )  can be 

obtained as a linear transformation of the augmented esti-

mates x̂A
(l) (n|m0:n21 ) .  Indeed, with vA(n) 5 0 it follows that 

ŷ(l) (n|m0:n21 ) 5 hA
T (n) x̂A

(l) (n|m0:n21 ) .  

The SOI-KF recursions can now be applied iteratively as 

outlined in the algorithms in tables 3 and 4. The observation-

transmission algorithm requires as inputs the previous 

state estimate x̂A(n 2 1|m0:n21 )  and covariance matrix 

MA(n 2 1|m0:n21 ) . Using y (n) , the predicted estimate and 

its covariance matrix x̂A
(0) (n|m0:n21 )  and MA

(0) (n|m0:n21 )  are 

obtained in steps 1 and 2. These steps, which are identical to 

those performed by the SOI-KF, are employed to  initialize a 

loop for obtaining the L bits of the message m(n)  as sum-

marized in steps 3–7. Each iteration of this loop yields an 

observation prediction ŷ(l21) (n|m0:n21 )  found by linearly 

transforming the state prediction x̂A
(l21) (n|m0:n21 ) , as shown 

in step 4. These predictions are based on past messages 

m0:n21 and the l 2 1 bits computed in previous iterations of 

the loop. The sign of innovations is then computed by com-

paring y (n)  with its prediction ŷ(l21) (n|m0:n21 )  to yield the 

lth bit m(l) (n)  of the current message as outlined in step 5. 

Finally, the  correction step in (6), (7) is run to compute esti-

mates x̂A
(l) (n|m0:n21 )  that incorporate the information con-

tained in the first l bits as summarized in step 6. In these 

equations, both the augmented state variables and model 

parameters, replace the nonaugmented variables and 

parameters in (6), (7). Also recall that the observation noise 

covariance for the augmented system is zero, which explains 

why it does not appear in the denominator of the correction 

equations. Upon completing the Lth iteration, all bits of the 

message m(n)  are available and subsequently broadcast to 

all receiving sensors in range. 

The iterative SOI-KF reception-estimation algorithm in 

Table 4 includes the first steps of the observation-trans-

mission algorithm in Table 3 to compute the predicted 

Algorithm 2-A Iterative SOI-KF – Observation and transmission

Require:  x̂ (n 2 1|n 2 1 )  and M(n 2 1|n 2 1 )  Ensure:  m(n )  

1: Collect observation y (n ) 5 yk(n) (n )  

2: Compute predicted estimate x̂A
(0) (n|m0:n21)  and covariance matrix MA

(0) (n|m0:n21)  

  x̂A
(0) (n|m0:n21) 5 AA(n ) x̂A(n 2 1|m0:n21)

MA
(0) (n|m0:n21) 5 AA(n )MA(n 2 1|m0:n21)AA

T (n ) 1 CuA
(n )

3: for l 5 1 to L   do {repeat for length of message} 

4: Observation prediction given past messages and previous bits (if any) 

ŷ(l21) (n|m0:n21) 5 hA
T (n ) x̂A

(l21) (n|m0:n21)

5: The l th bit of the m(n )  message is 

m(l) (n ) 5 sign 3y (n ) 2 ŷ(l21) (n|m0:n21) 4
6: Compute corrected estimate x̂A

(l) (n|m0:n21)  and covariance matrix MA
(l) (n|m0:n21)  

  x̂A
(l) (n|m0:n21) 5 x̂A

(l21) (n|m0:n21) 1
("2/p )MA

(l21) (n|m0:n21)hA(n )

"hA
T (n )MA

(l21) (n|m0:n21)hA(n )
 m(l) (n )

MA
(l) (n|m0:n21) 5 MA

(l21) (n|m0:n21) 2
(2/p )MA

(l21) (n|m0:n21)hA(n )hA
T (n )MA

(l21) (n|m0:n21)

hA
T (n )MA

(l21) (n|m0:n21)hA(n )

7: end for 
8: Transmit m(n )

TABLE 3 Iterative sign of innovations Kalman filter (SOI-KF) observation-transmission algorithm. Steps 1 and 2 initialize the 
iterative SOI-KF by acquiring the observation y (n) 5 yk(n) (n)  and computing state estimates based on past messages m0:n21.  
The iterative process used to compute the L-bit message m(n) is carried out by the loop in steps 3–7. A linear transformation of 
the state estimate x̂A

(l21) (n |m0:n21 )  in step 4 yields the observation estimate ŷ(l21) (n |m0:n21 )  based on past messages and the 
first l 2 1 bits of the current message. The lth bit m(l) (n )  is then defined as the sign of the difference between the observation 
y (n)  and this prediction in step 5. Step 6 is carried out after the computation of each message bit m(l) (n)  to yield state 
estimates x̂A

(l) (n |m0:n21 )  based on past messages m0:n21 and the first l bits m(l) (n)  of the current message. Note the use of 
state augmentation.
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estimate x̂A
(0) (n|m0:n21 )  and the covariance matrix 

MA
(0) (n|m0:n21 ) , as shown in step 2. Step 3 denotes recep-

tion of the message m(n) , and steps 4–6 represent the 

loop needed to compute the corrected estimate. The core 

of this loop is the recursive computation of x̂A
(l) (n|m0:n21 )  

and MA
(l) (n|m0:n21 )  carried on in step 5. The corrected 

estimate and corresponding covariance matrix are obtained 

after the L  iterations are completed. 

Vector Observations

The state estimation discussed above relies on a message 

m(n)  of length L  formed after quantizing the scalar 

observation y (n) . Below, the general case is addressed 

where each sensor records a vector observation 

y(n) 5 H(n)x (n) 1 v(n) ,  where y(n) [ Rq,  H(n) [ Rq3p,  

and the noise vector v(n) [ Rq  has pdf p 3v(n)4  
5N(v(n) ; 0, Cv(n) ) .  The method pursued here exploits 

both the correlation between components of y(n)  and the 

fact that each of its component contains limited informa-

tion about the state x (n) .  Note that if the observation noise 

is correlated, that is, Cv(n) 2 Iq,  prewhitening can be applied 

to obtain 

y(n) 5 Cv(n)
21/2y(n) 5 Cv(n)

21/2H(n)x (n) 1 Cv(n)
21/2v(n)

 5 H(n)x (n) 1 v(n) ,  (15)

where the noise vector v(n)  is now white with covariance 

matrix Cv(n) 5 Iq.  

When the length of the observation vector exceeds that 

of the state vector, that is, q . p,  optimal dimensionality 

reduction can be performed by employing the QR factor-

ization of the observation matrix H(n) 5 Q1 (n)R1 (n) ,  

where Q1 (n) [ Rq3p  has p  orthonormal columns and 

R1 (n) [ Rp3p  is upper triangular. By projecting the whit-

ened observations onto the space spanned by the rows of 

Q1 (n) ,  the measurement equation (15) takes the form 

 y
?

(n) 5 Q1
Ty(n) 5 R1 (n)x (n) 1 v

?

(n) ,  (16)

where the new noise vector v
?

(n) J Q1
Tv(n)  has covariance 

matrix Cv
?

(n) 5 Ip.  The observation model in (16) is equiva-

lent to the one in (15), but the dimensionality of y
?

(n)  is p.  

Without loss of generality we can thus restrict attention to 

models with q # p,  that is, with observation dimensionality 

not larger than state dimensionality. When p . q  we com-

pute y
?

(n)  and work with the observation model in (16). 

With q # p  and given L  bits for quantizing the q  scalar 

components of the vector y(n) ,  or the p  components of 

y
?

(n)  when q . p,  an optimal bit-allocation strategy 

requires testing q  possibilities per bit, leading to the expo-

nential number qL  of possible quantizers. Instead, an itera-

tive scalar quantization approach can be devised, whereby 

each bit is selected so as to maximize the expected reduc-

tion on the trace of the state estimate’s covariance matrix. 

Specifically, let MA
(l21) (n) J MA(n|m(l21) (n) , m0:n21 )  be 

the augmented state estimate’s covariance after l 2 1 bits of 

Algorithm 2-B Iterative SOI-KF – Reception and estimation

Require: prior estimate x̂ (2 1| 2 1 )  and covariance matrix M(2 1| 2 1 )  

1: for n 5 0 to `  do {repeat for the life of the network} 

2: Compute predicted estimate x̂A
(0) (n|m0:n21)  and covariance matrix MA

(0) (n|m0:n21)  

 x̂A
(0) (n|m0:n21) 5 AA(n ) x̂A(n 2 1|m0:n21)

MA
(0) (n|m0:n21) 5 AA(n )MA(n 2 1|m0:n21)AA

T (n ) 1 CuA
(n )

3: Receive message m(n )  

4: for l 5 1 to L  do {repeat for length of message} 

5: Compute corrected estimate x̂A
(l) (n|m0:n21)  and covariance matrix MA

(l) (n|m0:n21)  

 x̂A
(l) (n|m0:n21) 5 x̂A

(l21) (n|m0:n21) 1
("2/p )MA

(l21) (n|m0:n21)hA(n )

"hA
T (n )MA

(l21) (n|m0:n21)hA(n )
 m(l) (n )

MA
(l) (n|m0:n21) 5 MA

(l21) (n|m0:n21) 2
(2/p )MA

(l21) (n|m0:n21)hA(n )hA
T (n )MA

(l21) (n|m0:n21)

hA
T (n )MA

(l21) (n|m0:n21)hA(n )

6: end for 
7: Corrected estimate x̂A(n|m0:n) 5 x̂A

(L) (n|m0:n21)  

8: Corrected covariance matrix MA(n|m0:n) 5 MA
(L) (n|m0:n21)  

9: end for 

TABLE 4 Iterative sign of innovations Kalman filter (SOI-KF) reception-estimation algorithm. As for the SOI-KF, the iterative 
SOI-KF reception-estimation algorithm is run continually by all sensors to compute state estimates x̂A (n |m0:n ) . The core of 
the algorithm is the loop in steps 4–6. In the lth iteration of the loop, the estimate x̂A

(l21) (n |m0:n21 )  is updated by incorporating 
the information contained in the Ith bit m(l) (n)  (step 5). The estimate x̂A (n |m0:n )  and its corresponding covariance matrix are 
obtained after L iterations of this loop (steps 7 and 8).
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the message m(n)  are utilized in the iterative SOI-KF cor-

rections and consider the augmented measurement matrix 

HA(n) J 3H(n)  Iq 4  of the whitened observation model in 

(15); when q . p,  consider the reduced-dimensionality 

model in (16) and redefine HA(n) J 3R1 (n)  Iq 4.  The lth bit 

is allocated to quantize the jth entry y (n, j )  of the obser-

vation y(n)  if the corresponding row vector hA
T (n, j )  of 

the augmented measurement matrix HA(n)  maximizes 

the quantity 

tra 2

p
 
3MA

(l21) (n)hA(n, j )hA
T (n, j )MA

(l21) (n) 41:p, 1:p

hA
T (n, j )MA

(l21) (n)hA(n, j )
b  

 5
2

p
 
7 3MA

(l21) (n)hA(n, j ) 41:p 7 2
hA

T (n, j )MA
(l21) (n)hA(n, j )

 ,  (17)

among all j 5 1, c, q.  This process requires evaluating 

Lq  terms of the form (17) to determine all of the bits of the 

message m(n) .  

Experimental Results

The iterative extended SOI-KF algorithm is tested experi-

mentally and compared to the extended Kalman filter 

based on nonquantized amplitude observations. The appli-

cation involves autonomous underwater vehicles perform-

ing cooperative multirobot localization [13], [14]. The state 

vector to be estimated is x 5 3x1,  y1,  n1,  f1,  x2 , y2 , n2 , f2 4T,  

where xi,  yi  denote the position coordinates of robot i,  ni  

is the horizontal velocity, and fi  is the heading direction 

(yaw), for i 5 1, 2. A zero-acceleration model is used to describe 

the nonholonomic motion of each vehicle with xi(n11)5 xi(n)  

1 ni ( n) Ts cosfi ( n),  yi(n 11) 5 yi (n) 1ni (n)Ts sinfi(n) ,  

ni(n 1 1) 5 ni(n) 1 u .
ni

(n)Ts, fi(n 1 1) 5 fi(n) 1 u .
fi

(n)Ts,  

where Ts 5 0.05 s is the sampling period,uni
# (n),N(un

i

# (n) ;  

0, sn
i

#2 ) , and uf
#
i
(n) ,N(uf

#
i
(n) ; 0, sfi

#2 ) , with sv
#
1
5 sv

#
2

5 0.28 m/s2,  sf
#

1
5 sf

#
2
5 8.3 deg/s. 

The yaw fi,  pitch ci,  and roll zi,  of robot i  are measured 

by an onboard MicroStrain 3DM-GX1 AHRS inertial sensor. 

The noise in these measurements is modeled as zero-mean 

normal with standard deviations sfi
5 sci

5 szi
5 2°, 

i 5 1, 2. The yaw measurement yfi
(n) 5 fi(n) 1 vfi

(n) ,  

vfi
(n) ,N(vfi

(n) ; 0, sfi

2 )  is processed by the filter to pro-

vide corrections for the estimates of the heading  direction of 

the vehicle. The pitch measurement cmi(n) 5 ci(n)  

1 vci
(n) , vci

(n) ,N(vci
(n) ; 0, svci

2 )  is combined with the 

measurement nmir 5 nir (n) 1 vnir, vnir
(n) ,N(vnir

(n) ; 0, svnir

2 ) ,  

svnir
5 0.25 m/s, of the vehicles’ longitudinal velocity for 

constructing a measurement of its horizontal velocity 

yni
(n) 5 nmir (n)coscmi(n) . ni(n)  1 vni

(n) ,  i 5 1, 2. To ob-

tain this approximation for yni
(n) ,  a first-order Taylor 

series approximation is applied, and the noise vni
(n) .  

nmir (n)sincmi(n)vci
(n) 2 coscmi(n)vnir

(n)  is approximated 

as zero-mean normal with variance svni

2 (n) 5  

(nmir (n) ) 2sin2 cmi(n)sci

2 1 cos2 cmi(n)snir
2 .  The longitudinal 

velocity measurement nmir  is inferred from measurements 

of the propeller’s rate of rotation using a linear approxima-

tion [14]. 

The autonomous underwater vehicles are equipped 

with acoustic modems for underwater communication and 

for calculating the range to the transmitting robot using the 

time of flight and speed of sound in water ( 1500 m/s). The 

distance measurement between the two vehicles is 

ydij
(n) 5!(xi(n)2xj(n)) 2 1 (yi(n) 2 yj(n)) 21vdij

(n),  where 

vdij
(n) ,N(vdij

(n) ; 0, sdij

2 )  and sdij
5 10 m. 

The duration of the experiment is about 15 min, during 

which time the two autonomous underwater vehicles cover 

distances of 1.16 km and 1.18 km, respectively.  Two sce-

narios are examined. In the first one, the robots communi-

cate to each other their nonquantized amplitude 

measurements of velocity and heading along with the 

24 distance measurements recorded during this experi-

ment; see Figure 9. These measurements are processed 

locally on each vehicle by an extended Kalman filter to 

jointly estimate both trajectories. In the second scenario, 

only 3 bits per scalar measurement are communicated 

between the two autonomous vehicles, and the iterative 

extended SOI-KF is used for processing them. As shown in 

figures 10 and 11, the iterative extended SOI-KF is able to 

approximate the robots’ trajectories estimated by the 

extended Kalman filter, while using only 3 bits per obser-

vation. The root mean squared differences between the 

extended Kalman filter and iterative extended SOI-KF 

 estimates for the x  and y  coordinates of the two robots are 

(2.78 m, 2.95 m) and (1.55 m, 5.35 m), respectively, all 

of which are less than 0.5% of the distance traveled by 

each robot. 

CONSENSUS-BASED DISTRIBUTED 
KALMAN FILTERING AND SMOOTHING
We now assume that sensors can exchange information only 

with neighboring sensors located within a predefined trans-

mission radius. The challenge is to obtain the quantities 

needed to perform MMSE estimation with manageable com-

munication cost. Toward this end, sensors can exchange mes-

sages with their neighbors to estimate quantities that are 

essential for implementing the centralized Kalman filter 

recursions. To compute these quantities, sensors use recur-

sive data aggregation schemes to combine their local infor-

mation with messages they receive from their neighbors. 

Since the information gathered at different sensors is corre-

lated, these recursive schemes reduce the communication 

cost of the distributed state-estimation algorithms [15]–[19]. 

Instrumental for implementing distributed Kalman 

filter approaches is the notion of consensus averaging, 

which performs distributed computation of sample aver-

ages across sensors. In consensus averaging, each sensor 

maintains a local state variable that provides an estimate of 

the desired sample average and performs two steps to 

update these local state variables. In the first step, each 
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sensor transmits its estimate to neighboring sensors and 

receives, in return, the neighboring sensors’ local esti-

mates. In the second step, each sensor updates its state by 

forming a weighted sum of its own and neighboring esti-

mates. Upon selecting suitable weights to form these up-

dates and assuming ideal inter-sensor communications, 

the sensor estimates converge to the desired sample aver-

age as the number of updates grows large [20]–[22]. 

Consensus-averaging schemes perform poorly in the 

presence of noise in the intersensor links, to the extent that 

they diverge [23]. However, algorithms based on consensus 

averaging that are robust against noise perturbations for 

distributed estimation are available [24]. Consensus-aver-

aging schemes can also be utilized to distribute the central-

ized Kalman filter recursions. The prediction recursions are 

identical to (4)–(5). Using the information form of the Kalman 

filter [25, p. 139], however, the corrected state and corre-

sponding corrected error covariance matrix are given by 

 M (n|n) J M (n|y0:n ) 5 3I(n) 1 M21 (n|n 2 1) 421, 

 (18)

x̂ (n|n) J x̂ (n|y0:n ) 5 x̂ (n|n 2 1)  

 1 M (n|n) 3c (n) 2I(n) x̂ (n|n2 1)4, 
 (19)

where 

 I(n) J a
K

k51

svk

22 (n)hk(n)hk
T (n) ,

      c (n) J a
K

k51

svk

22 (n)hk(n)yk(n) .  (20)

If sensors have available local estimates x̂k(n 2 1|n 2 1)  and 

the corresponding Mk(n 2 1|n 2 1) , then each sensor could 

run the prediction recursions in (4)–(5) in a distributed fashion 

provided that the model parameters A (n)  and Cu (n)  are 

known at each sensor. However, (18) and (19) require I(n)  

and c (n)  to be acquired at each sensor. This acquisition can be 

carried out using consensus averaging because I(n)  and 

c (n)  are averages with the kth summand located at sensor k.  

Existing distributed Kalman filter approaches rely 

on consensus-based algorithms to form estimates 

Îk(n; n : n 1 N )  and ĉk(n; n :n 1 N )  through N 1 1 recur-

sions starting at n  and finishing at n 1 N  [15], [17]. When 

these estimates are plugged into (18) and (19), local esti-

mates x̂k(n|n; n :n 1 N )  for the state x (n)  using observa-

tions up to time n  necessitate consensus iterations 

performed between times n  and n 1 N  as signified by the 
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FIGURE 9 Cooperative localization. The estimated trajectories of 

Robot 1 (dashed line), Robot 2 (solid line), and the locations 

where robot-to-robot distance measurements ydij
 are recorded 

(small circles connected with dash-dotted lines). Each robot 

also uses measurements of its heading direction yfi
 and hori-

zontal velocity yni
 for i 5 1, 2.  The time step is Ts 5 0.05 s. The 

standard  deviations of the zero-mean white normal noise 

 corrupting the distance, heading direction, and horizontal 

 velocity measurements are sfi
5 2°, sdij 5 10 m, and 

sni
(n ) 5 ! (nmir ( n ) )2sin2cmi(n )sci

2 1 cos2cmi(n )snir
2 , where sci

5   

2°, snir 5 0.25 m/s, and cmi(n )  and nmir (n ) ,  respectively, denote 

measurements of the pitch angle and longitudinal velocity at 

time step n.  The motion of each robot is described by a con-

stant-velocity model.
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FIGURE 10 Comparison of the extended Kalman filter and iterative 

sign of innovations Kalman filter (SOI-KF) with 3 bits. The solid line 

shows the estimated trajectory of Robot 1 when nonquantized 

 measurements of its heading direction f1,  horizontal velocity n1,  

and distance d12 to Robot 2 are processed by an extended Kalman 

filter. The dash-dotted line shows the estimated trajectory of 

Robot 1 when the same measurements are quantized using 3 bits 

and processed by the iterative extended SOI-KF. The motion of 

Robot 1 is described by a constant velocity model. The time step is 

Ts 5 0.05 s. The standard deviations of the zero-mean white 

normal noise corrupting the distance, heading direction, and hori-

zontal velocity measurements are sf1
5 2°, sd12

5 10 m, 

and sn1
(n ) 5 ! (nm1r (n ))2sin2cm1(n )sc1

2 1 cos2 cm1 (n ) sn1r
2 ,  where 

cm1(n )  and nm1r (n ) ,  respectively, denote measurements of the 

pitch angle and longitudinal velocity at time step n,  with sc1
5 2° 

and sn1r 5 0.25 m/s.
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notation n :n 1 N  within x̂k(n|n; n :n 1 N ) .  As a conse-

quence, there is a delay of N  steps in obtaining estimates 

x̂k(n|n; n :n 1 N ) .  This delay confines the operation of the 

associated distributed Kalman filters to applications with 

slowly varying x (n)  or fast communications needed to 

complete N W 1 consensus iterations within the time inter-

val separating the acquisition of yk(n)  and yk(n 1 1) . For 

finite N  these distributed Kalman filtering schemes yield 

estimates x̂k(n|n; n :n 1 N )  that are not MSE optimal given 

the available information in ĉ (n; n :n 1 N ) .  This subopti-

mality renders the distributed Kalman filter estimates in 

[15]–[17] inconsistent with the underlying data model, 

which in turn is known to yield estimation errors violating 

the 3s  consistency bounds. This inconsistency may lead to 

unstable Kalman filters, as illustrated by the numerical 

examples presented below [28, Sect. 5.4-5.6]. Additionally, 

these distributed schemes inherit the noise sensitivity pres-

ent in the consensus-averaging schemes they rely on. 

Distributed Kalman Smoothing

As noted above, standard filtering schemes incur a time 

delay N  due to the consensus iterations required to deter-

mine x̂k(n|n; n :n 1 N ) .  This delay suggests the develop-

ment of fixed-lag distributed Kalman smoothers [24]. 

Fixed-lag smoothers allow sensors, at time instant n 1 N,  

to form local MMSE optimal smoothed estimates 

x̂k(n|n 1 n; n 1 n :n 1 N )  for n 5 0, 1, c, N,  which take 

advantage of all available data within the interval 3n, n 1 N 4.  
This approach leads to estimates with smaller MSE than 

the corrected estimates x̂k(n|n; n :n 1 N ) .  Sensors can also 

form zero delay ( N 5 0 ) corrected estimates x̂k(n|n; n :n)  

as well as anytime linear MSE optimal estimates 

5x̂k(n 1 l 2 n|n 1 l; n 1 l: n 1 N ) 6l, n50
N .  

Centralized recursions can be derived by state augmen-

tation and modification of the standard Kalman filter recur-

sions [25, p. 177]. To obtain a distributed Kalman smoother 

variant, sensors must be able to estimate I(n)  and c (n)  in 

a distributed fashion. Furthermore, to overcome the limita-

tions present in existing consensus- averaging Kalman fil-

tering schemes, noise-robust alternatives can be used to 

provide estimates of I(n)  and c (n)  [24]. Local consensus 

averaging recursions can be obtained after rewriting c (n)  

as the solution of the separable minimization problem 

5c1 (n) , c, cK (n) 6 J  

 arg min
c15c5cK

a
K

k51

7ck 2 Khk(n)svk

22 (n)yk(n) 7 2.  (21)

Problem (21) can be solved using the alternating direction 

method of multipliers algorithm to form local recursions 

yielding estimates Îk(n; n :n 1 N )  and ĉk(n; n :n 1 N )  [24], 

[29]. These local recursions entail second-order updates of 

these estimates, per sensor k,  which involve linear 

 combinations of the local estimates 5ĉkr (n; n :n 1 n 2 1) ,  

ĉkr (n; n : n1 n 2 2) 6kr[Nk
 and 5Îkr (n; n :n 1 n 2 1) ,  Îkr (n;  

 n :n 1 n 2 2) 6kr[Nk
, respectively, which are received from 

its neighbors in Nk.  The estimates Îk(n; n :n 1 N )  and 

ĉk(n; n :n 1 N )  converge to I(n)  and c (n)  and reach con-

sensus as N S `  under ideal links. In the presence of com-

munication noise, these estimates converge in the mean 

sense, while their noise-induced variance remains bounded. 

This noise resiliency allows sensors to exchange quantized 

data further lowering communication cost. 

The key behind forming anytime linear MSE optimal 

estimates is to view ĉk(n; n :n 1 n )  as a consensus-enriched 

observation vector per sensor k.  Besides yk(n) ,  variables 

ĉk(n; n :n 1 n )  include data received from neighboring 

sensors. Because ĉk(n; n :n 1 n )  contains more information 

about the state x ( t )  than the information contained in 

yk(n) ,  state estimates based on ĉk(n; n :n 1 n )  exhibit 

improved MSE performance. Furthermore, note that vari-

ables ĉk(n; n :n 1 n )  become more informative as n increases. 

Instrumental in deriving the distributed smoother is the 

linear relationship 

 ĉk(n; n :n 1 n ) 5 Îk(n; n :n 1 n )x (n) 1 v̂k(n; n :n 1 n ) , 

 (22)
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FIGURE 11 Comparison of extended Kalman filter and iterative 

sign of innovations Kalman filter (SOI-KF) with 3 bits. The solid 

line shows the estimated trajectory of Robot 2 when nonquantized 

measurements of its heading direction f2,  horizontal velocity n2,  

and distance d21 to Robot 1 are processed by the extended 

Kalman filter. The dash-dotted line shows the estimated trajectory 

of Robot 2 when the same measurements are quantized using 3 

bits and processed by the iterative extended SOI-KF. The motion 

of Robot 2 is described by a constant velocity model. The time 

step is Ts 5 0.05 s. The standard deviations of the zero-mean 

white normal noise corrupting the distance, heading direction, 

and horizontal velocity measurements are sf2
5 2°, sd21

5 10 m, 

and sn2
(n ) 5 ! (nm2r (n ))2sin2cm2(n )sc2

2 1 cos2cm2(n )sn2r
2 ,  where 

cm2(n )  and nm2r (n ) ,  respectively, denote the measurements of 

the pitch angle and longitudinal velocity at time step n,  with sc2
5

2° and sn2r 5 0.25 m/s.
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between ĉk(n; n :n 1 n )  and Îk(n; n : n 1 n ) ,  which is valid 

for ideal intersensor links [24]. In (22) v̂k(n; n :n 1 n )  is 

zero-mean normal with a covariance matrix that can be 

evaluated at sensor k  using recursions similar to those 

involved in computing Îk(n; n : n 1 n ) .  

Each sensor utilizes its local consensus-enriched data 

ĉk(n; n :n 1 n )  to implement local smoothing recursions 

corresponding to the observation model (22) and state 

model (1). These local Kalman smoother recursions as 

well as the distributed scheme for forming estimates 

ĉk(n; n :n 1 n )  and Îk(n; n : n 1 n )  constitute the distrib-

uted Kalman smoother. After all sensors initialize their 

state and covariance matrices based on a priori information, 

sensor k  performs the following two steps at time n 1 N:  

Step 1. »  Compute estimates ĉk(n 1 n; n 1 n :n 1 N )  

and Îk(n 1 n; n 1 n : n 1 N ) ,  for n 5 0, c, N,  using 

the consensus-averaging recursions in [24]. 

Step 2. »  Determine anytime state estimates 

x̂k(n 1 n 2 l|n 1 n; n 1 n :n 1 N )  for l, n 5 0, c, N  

using the smoothing recursions corresponding to the 

observation model (22) and the state model (1). 

The local anytime linear estimates x̂k(n 1 n 2 l|n 1  

n; n 1 n :n 1 N )  obtained at sensor k  using the distributed 

smoother are MSE optimal in the sense that for 

l 5 0, c, N  

 x̂k(n 1 n 2 l|n 1 n; n 1 n :n 1 N ) J  

 E 3x (n 1 n 2 l)|5ĉk(n r; n r: n r1 N ) 6nr50
n ,  

 5ĉk(n r; n r: n 1 N ) 6nr5n11
n1n 4, 

where E 3x|y 4 J CxyCyy
21y  denotes the (linear) MMSE esti-

mator of x  given y,  while Cxy  is the cross-covariance matrix 

between x  and y.  As the number of consensus iterates goes 

to infinity, the local state estimates converge to their 

centralized counterparts, that is, for k 5 1, c, K,  and 

n 5 0, 1, c,  

 lim
NS`

x̂k(n 2 l|n; n : n 1 N ) 5 x̂ (n 2 l|n) , 

 lim
NS`

Mk(n 2 l|n; n :n 1 N ) 5 M (n 2 l|n) , l 5 0, c, N.

Over the interval 3n, n 1 N 4,  the distributed smoother pro-

duces a sequence of local MSE optimal state estimates 

x̂k(n 2 l|n; n:n 1 n ) ,  for l, n 5 0, c, N.  The MSE associ-

ated with 5x̂k(n 2 l|n; n :n 1 n ) 6l50
N ,  decreases as n  increases 

since ĉk(n; n : n 1 n )  converges to ĉ (n) .  Moreover, the dis-

tributed smoother exhibits robustness against noise per-

turbations and trades off delay for MSE reduction. 

Simulated Test Case

The MSE performance of the distributed smoother is com-

pared here with alternative distributed Kalman filter 

approaches, namely, those in [15] and [16]. Figure 12 depicts 

the MSE of the aforementioned approaches at a given 

sensor, in the presence of quantization noise. The quantiza-

tion noise at sensor k  is uniformly distributed over 

32Qk/2mk, Qk/2mk 4p,  where Qk  specifies the dynamic range 

of the quantizer and mk  denotes the number of bits used to 

quantize ĉk  and Îk.  It can be seen that the distributed 

smoother estimates the state process through the local cor-

rected estimates x̂k(n|n; n :n) , and the MSE reaches steady 

state. In Figure 12, the MSE of the local estimators discussed 

in [15] and [16] diverges. This behavior is expected since the 

corresponding distributed filtering schemes are inconsis-

tent with the true observation model, causing errors to accu-

mulate for the fast varying x (n) . Figure 13 depicts the 

estimation error and corresponding 3s  bounds at a given 

sensor, when estimating at time slot n  state x (n 2 l)  using 

x̂k(n 2 l|n; n :n)  for l 5 0, 1, 5. Note that larger delays lead 

to lower MSEs. 

REDUCED-DIMENSIONALITY KALMAN FILTER
Dimensionality reduction of vector observations yk(n)  can 

exploit the correlation present among the entries of sensor 

vector observations yk(n)  further reducing transmission 

cost. Besides allowing sensors to comply with power and 

bandwidth budgets, dimensionality reduction is further 

motivated by state-estimation problems with rapidly 

changing states, for example when tracking high-speed 

targets. In these cases observation sampling is faster than 

communication rate, and dimensionality-reducing opera-

tors are necessary for matching the sampling period of a 

signal, dictated by a desirable estimation accuracy, with the 
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FIGURE 12 Empirically estimated mean-squared error (MSE) 

versus time for various distributed Kalman filtering/smoothing 

approaches. A wireless sensor network comprising K 5 60 sen-

sors is used. The state process is scalar with A(n ) 5 1, Cu 5 4, 

and initial conditions E 3x (21 ) 4 5 0 and sx
2(21 ) 5 1. At time n,

sensor k  acquires  the scalar yk (n )  for which hj(n ) 5 hj  is 

 normally distributed, while svk
2 5 1.5. The number of consensus 

iterations used to estimate I (n )  and c (n )  is fixed at N 5 6.
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data rate that is supported by the communication links. 

The following subsections outline two distributed Kalman 

filtering approaches based on reduced-dimensionality 

data. The first approach is developed for WSN topologies 

that include a fusion center, whereas the second approach 

is developed for infrastructureless ad hoc WSNs. 

Fusion Center Based Wireless Sensor Networks

Consider first a WSN topology involving K  sensors linked 

with a fusion center; see Figure 14. Each sensor acquires an 

Mk 3 1 observation vector yk(n) , obeying the linear model 

in (1). The entries of yk(n)  are obtained, for example, by col-

lecting Mk  samples per time slot n. Using an lk 3 Mk  matrix 

Rk(n)  with lk # Mk, sensor k  forms the reduced-dimension-

ality vector Rk(n) 3yk(n) 2 ŷk(n|n 2 1)4, where ŷk(n|n 2 1)  

is subtracted from yk(n)  to save power during transmis-

sion. In practice, sensors transmit their data to the fusion 

center over nonideal links that are corrupted by multiplica-

tive fading and additive noise. Using time division multiple 

access or an alternative scheme supporting orthogonal com-

munication [30, Chap. 15], each sensor can transmit its infor-

mation without interfering with other sensors. In this case, 

the signal received at the fusion center from sensor k  is 

 rk(n) 5 DkRk(n) 3yk(n) 2 ŷk(n|n 2 1)41 wk(n) ,  (23)

where Dk  accounts for the multiplicative fading corrupting 

the link from sensor k  to the fusion center, and wk(n)  

denotes the reception noise at the fusion center. The fusion 

center concatenates the received vectors rk(n)  in a super 

vector r (n)  and aims to track the state x (n)  using the 

received data 5r ( i) 6i50
n .  Specifically, the fusion center 

seeks the (linear) MMSE state estimates x̂ (n) 5 E 3x (n)| 

r (0) , c, r (n)4  recursively based on the reduced-dimen-

sionality data in (23). Having available x̂ (n 2 1|n 2 1) , 

 the fusion center relies on the innovation process of  

the received signal r (n) ,  namely r| (n|n21) J r (n) 2

E 3r (n)|r (0) ,c,  r (n 2 1) 45 r (n) ,  and adds to the pre-

dictor x̂ (n|n 2 1) 5  E 3x (n)| r (0) , c, r (n 2 1)4  the cor-

rection term E 3x (n)| r| (n| n 2 1) 4  to obtain the corrected 

estimate x̂ (n|n) .  

The dimensionality-reducing matrices 5Rk(n) 6k51
K  

can be obtained to minimize the estimation MSE 

E 3 7x (n) 2 x̂ (n|n) 7 2 4  at the fusion center. Recall that 

x̂ (n|n)  is a function of 5Rk(n) 6.  Since each sensor has a 

prespecified transmission budget Pk,  a power constraint is 

required to bound the covariance of the transmitted signal 

Rk(n) 3yk(n) 2 ŷk(n|n 2 1) 4.  Then, the dimensionality-re-

ducing operators can be obtained as the minimizer of [12] 

min5Rk(n)6k51
K E 3 7x (n) 2 x̂ (n|n) 7 2 4, subject to 

 subject to tr(Rk(n)Cy,k y,k
(n|n 2 1)Rk

T (n)) # Pk

  for all k 5 1, c, K,  (24)

where Cy,
k

y,
k
(n|n 2 1)  is the covariance matrix of 

y|k(n|n 2 1) J yk(n) 2 ŷk(n|n 2 1) . Upon solving (24), 

the fusion center feeds 5Rk(n) 6k51
K  back to the sensors for 

them to perform dimensionality reduction. Since the fusion 

center has sufficient resources, it can mitigate the fusion 

center to sensor channel effects and ensure reliable 

 transmission of the dimensionality-reducing matrices to 

the sensors. 

Power awareness is effected through the constraints 

 present in (24), so that the dynamic range of the trans-

mitted quantities is regulated in the mean sense. Further, 
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FIGURE 13 Estimation delay and mean-squared error tradeoff for 

the distributed Kalman smoother. The estimation error associated 

with x̂k (n 2 l |n;n :n )  decreases as the delay l  increases. The 3s  

bounds illustrate the consistency of the distributed Kalman smoother.
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FIGURE 14 Distributed setup for estimating x (n )  using fusion-cen-

ter-based wireless sensor networks. Sensors receive the state pre-

diction x̂(n|n 21 )  from the fusion center. Then, the sensors form 

the observation innovation signal y|k (n ) 5 yk (n ) 2 ŷk (n|n 2 1 )  

and, prior to transmission to the fusion center, reduce its dimen-

sionality using a wide matrix Rk (n ) .
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selecting ŷk(n|n 2 1) J E 3yk(n)|r (0) , c, r (n 2 1) 45  

Hk(n) x̂ (n|n 2 1)  as in [12] and [32] enables sensor k to 

reduce the required power because it transmits the nonre-

dundant local innovation yk(n) 2 ŷk(n|n 2 1) , which has a 

smaller variance and thus dynamic range than its raw data 

yk(n) . This scheme is possible as long as the fusion center 

feeds back to each sensor the state predictor x̂ (n|n 2 1) . It 

turns out that the state predictor, as well as the correspond-

ing covariance matrix in the reduced-dimensionality Kalman 

filter, can be determined along the lines of the full-dimen-

sionality Kalman filter. However, the Kalman gain per time 

step n, as well as the correction recursions for the corrected 

estimate and the corresponding error covariance, are 

obtained in a different manner. These recursions turn out to 

depend on the dimensionality-reducing matrices 5Rk(n) 6k51
K ,  

the channels Dk, and the noise covariance Cwk
 [12]. 

The dimensionality-reducing matrices in (24) can be 

derived in closed form only for K 5 1. In the multisensor 

scenario, however, solving (24) incurs complexity that 

increases exponentially with K  [33]. For K 5 1, it turns out 

that the optimal compression matrices R1
o (n)  can be writ-

ten as a function of the state and observation model para-

meters A (n) , Cu (n) , H1 (n) ,  and Cv1
(n)  as well as the 

channel matrix D1,  the noise covariance Cw1
,  and the power 

budget P1.  The channel matrices can be obtained at the 

fusion center using well-established training techniques 

[34,  p. 383], while the model parameters A (n) , Cu (n) , H1 (n)  

can be determined based on the physics of the problem, for 

example, the target kinematics [28, Chap. 6]. Intuitively, the 

optimal matrix R1
o (n)  selects the entries of y|1 (n|n 2 1)  in 

which x| (n|n 2 1)  is strongest and transmits them over the 

highest quality channels. In the multisensor case, the 

results obtained for the single sensor scenario can be uti-

lized to develop a block coordinate descent algorithm, 

where the cost in (24) is minimized with respect to a matrix 

Rk(n) ,  for k 5 1, c, K,  while treating the rest as fixed [12]. 

This algorithm is ensured to converge at least to a station-

ary point of the cost in (24). 

In Figure 15, the MSE performance of the channel-aware 

approach in [12] is compared with the channel-unaware 

approach in [31]. Both the MSE of [12] and [31] obtained from 

the trace of the corrected error covariance matrix (theoretical), 

as well as through Monte Carlo simulations (empirical), are 

plotted. In the channel-aware approach the MSE reaches 

steady state, while in the channel unaware approach the MSE 

diverges. This divergence is expected since the channel- 

unaware approach does not account for channel imperfec-

tions when designing the dimensionality-reducing operators. 

Ad Hoc Wireless Sensor Networks

Consider next an ad hoc WSN deployed to estimate the 

state vector in a distributed fashion. The motivation behind 

using ad hoc instead of fusion center topologies is to 

improve resilience to isolated points of failure. During time 

slot n,  a single transmitting (broadcasting) sensor m  is 

operating. Sensor m  uses a l 3 Mm  matrix Rm(n)  with 

l # Mm  to form and broadcast the reduced-dimensionality 

vector Rm(n)y
?

m(n)  to all neighboring sensors. The vector 

y
?

m(n)  is the innovation signal of the observation ym(n)  for 

ideal channels, and y
?

m(n) 5 ym(n)  for nonideal channels; 

see [12] for further details. The mapping between time slot 

n  and the transmitting sensor m  can be determined using 

distributed sensor scheduling techniques [35]. One possi-

ble way is to allow neighboring sensors with high-quality 

observations to broadcast their data, letting all sensors, 

even those with less informative data, to form accurate 

state estimates. 

The reduced-dimensionality data Rm(n)y
?

m(n)  are trans-

mitted from sensor m  to other sensors in range over links 

corrupted by multiplicative fading and additive noise. 

Based on the received data rk
m(n)  from sensor m,  all sensors 

in range wish to form linear MMSE estimates of x (n) . The 

dimensionality-reducing operator Rm(n)  at the transmit-

ting sensor m  is selected to minimize the estimation MSE at 

the receiving sensor with the worst reception link from the 

broadcasting sensor m.  The worst reception link is the one 

with the smallest reception SNR. In summary, the reduced-

dimensionality Kalman filter state estimator entails two 

phases. In the first phase, the broadcasting sensor forms 

y
?

m(n)  from ym(n) , performs dimensionality reduction of 

y
?

m(n)  and broadcasts Rm(n)y
?

m(n)  to all other sensors in 

range. The second phase involves reception of rk
m(n)  at each 

sensor k,  through nonideal links, and further implementa-

tion of corresponding Kalman filter recursions. 

The reduced-dimensionality schemes for state estima-

tion developed for ad hoc topologies and WSNs with a 

fusion center have complementary strengths. Dimensionality 
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FIGURE 15 Estimated mean-squared error at the fusion center 

versus time n.  The setting involves a wireless sensor network with 

K 5 50 sensors and each sensor acquiring Mk 5 10 temperature 

measurements. The temperature evolves according to a zero- 

acceleration propagation model. Each sensor reduces the dimen-

sionality of y|k (n|n 2 1 )  to lk 5 1, and transmits these scalars over 

noisy links to the fusion center. 
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reduction for WSNs with a fusion center offers better MSE 

performance because all available data at each time instant 

are gathered and processed at the fusion center. Their ad 

hoc counterparts are flexible to trade off estimation accu-

racy for robustness. In the ad hoc setup, only one sensor 

transmits per time slot, which further improves power effi-

ciency [12]. 

Target Tracking Test Case

Distributed Kalman filtering using reduced-dimensional-

ity data is applicable to target-tracking based on distance-

only measurements. Sensors are deployed to track the 

position x (n) 5 3x1 (n) , x2 (n)4T  of a target. The associated 

state and observation models are given in (11)–(12). This 

setting is also considered in the SOI-KF context, where 

sensors quantize their scalar observations prior to trans-

mission. As mentioned earlier, dimensionality reduction 

is an essential prerequisite to quantization. The scalar 

observations acquired by the SOI-KF can be obtained after 

compressing a vector of multiple observations in the inter-

est of complying with power and bandwidth constraints. 

To isolate the impact of dimensionality reduction on the 

MSE of tracking estimates, no quantization effects are 

considered here. The local tracking recursions corre-

sponding to the distributed tracking scheme described 

earlier can be obtained after applying similar steps as in 

the standard extended Kalman filter, where the nonlinear 

observation model is linearized in the neighborhood of 

x̂ (n|n 2 1) . 

Figure 16(a) depicts the true and estimated target trajec-

tories obtained by the reduced-dimensionality extended 

Kalman filter and the standard extended Kalman filter. 

Further, Figure 16(b) displays the standard deviation of the 

estimation error associated with the standard extended 

Kalman filter and its reduced-dimensionality version. 

Reduced extended Kalman filter is applied so that the 

dimensionality of the observation vectors is reduced down 

to one (scalar). When the extended Kalman filter is imple-

mented under the same communication cost, meaning that 

one scalar is transmitted per sensor per time slot, then the 

reduced extended Kalman filter outperforms the standard 

extended Kalman filter. This behavior is expected because 

the data broadcast in the reduced extended Kalman filter 

are more informative about the target position than in the 

extended Kalman filter, since they are constructed by judi-

cious dimensionality reduction of multiple observations. 

The estimation error’s standard deviation of the extended 

Kalman filter with no communication rate constraint is 

also plotted in Figure 16(b). In this case, each sensor trans-

mits ten scalars per time step n,  instead of one scalar as in 

reduced dimensionality extended Kalman filter. Tracking 

performance is almost identical for both the reduced and 

standard extended Kalman filters. 

CONCLUSIONS
Several strategies to reduce the communication cost of 

state-estimation problems in WSNs were presented. To 

reduce the cost of disseminating the information collected 

by distributed sensors we discussed strategies to exploit 

the redundancy in information provided by individual 

observations collected at different sensors, different obser-

vations collected at different sensors, and different obser-

vations acquired at the same sensor. 

The first strategy leads to the development of quantized 

Kalman filters based on the sign of the innovations sequence. 

We discussed how the resulting SOI-KF has MSE perfor-

mance and complexity that come close to those of the 

equivalent Kalman filter based on the nonquantized obser-

vations. Specifically, the computational cost is almost iden-

tical except that the SOI-KF necessitates computation of a 
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FIGURE 16 Target-tracking with the extended Kalman filter (EKF) 

and the reduced-dimensionality extended Kalman filter (RD-EKF) 

under nonideal links. The wireless sensor network has the same 

characteristics as the network utilized in Figure 4. Part (a) depicts 

the true and estimated target trajectories obtained by the RD-EKF 

and the standard EKF. In the RD-EKF, each sensor acquires 

observation data having dimensionality 10 3 1 and compresses 

the data to a scalar. The standard deviation of the estimation error 

associated with the RD-EKF and the EKF is shown in (b).
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scalar square root for each transmitted bit. The MSE perfor-

mances of the SOI-KF and the Kalman filter can be com-

pared by looking at the MSE reductions at each iteration. 

The MSE reduction of the SOI-KF is 2/p  times smaller than 

the MSE reduction of a Kalman filter based on the nonquan-

tized observations, entailing a relative performance penalty 

of 1 2 2/p < 0.36 for quantization to a single bit per obser-

vation. An iterative version of the SOI-KF was discussed to 

deal with multibit quantization. The promise of the 

approach was illustrated with simulated as well as experi-

mental results. 

The information redundancy resulting from the corre-

lated observations acquired among different sensors is 

exploited through the construction of an iterative data 

aggregation and state-estimation algorithm. A MMSE opti-

mal distributed Kalman smoother was developed, which 

offers anytime optimal state estimates for stationary and 

nonstationary random signals. As corroborated by simula-

tions, the distributed Kalman smoother is flexible to trade 

off estimation delay for MSE reduction, while exhibiting 

noise resilience. 

Finally, the redundancy present in different observa-

tions collected at the same sensor motivated the develop-

ment of channel-aware algorithms for estimating state 

processes based on reduced-dimensionality data collected 

at power-limited sensors. Both fusion center-based WSNs 

as well as ad hoc topologies were considered. Linear 

dimensionality-reducing matrices were derived at the 

fusion center to account for the sensors’ limited power and 

noisy links as well as to minimize the estimator’s MSE. 

Further, distributed Kalman filtering schemes for ad hoc 

topologies were developed to achieve resilience to fusion 

center failures and save transmission power. State-estima-

tion schemes for fusion center-based and ad hoc topologies 

possess complementary strengths. Fusion center-based fil-

ters achieve higher estimation accuracy, while their ad hoc 

counterparts gain in robustness and power savings. 
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