
Consistency Analysis and Improvement for Single-camera Localization

Joel A. Hesch and Stergios I. Roumeliotis∗

Dept. of Computer Science and Engineering
University of Minnesota, Minneapolis, MN 55455

{joel|stergios}@cs.umn.edu

Abstract

In this paper, we study the problem of estimator inconsis-
tency in single-camera simultaneous localization and map-
ping (MonoSLAM) from a standpoint of system observabil-
ity. Specifically, we postulate that a leading cause of in-
consistency is the gain of spurious information along un-
observable directions, resulting in smaller uncertainties,
larger estimation errors, and divergence. Moreover, we
introduce an Observability-Constrained MonoSLAM (OC-
MonoSLAM) approach, which explicitly enforces the unob-
servable directions of the system, hence preventing spurious
information gain and reducing inconsistency. Our analysis,
along with the proposed method for reducing inconsistency,
are validated with simulation trials and real-world experi-
mentation.

1. Introduction
In egocentric vision tasks, it is often necessary to main-

tain an estimate of the camera’s position and orientation
(pose) over time as the person moves around. For example,
a navigation aid for the visually impaired (e.g., [13]) must
estimate its pose as the person walks, in order to provide
them with turn-by-turn directions from point A to B. In a
human-worn augmented reality system (e.g., [3]), maintain-
ing the camera pose along with the environment structure,
is necessary to annotate the scene with information.

Numerous vision-based localization approaches have
been presented in the literature, including methods based
on the Extended Kalman Filter (EKF) [5], the Un-
scented Kalman Filter (UKF) [15], and Batch-least Squares
(BLS) [10, 14]. Non-parametric estimators, such as the Par-
ticle Filter (PF), have also been applied to visual odome-
try (e.g., [16]). While most existing works focus on vision
navigation systems working in real-time [5] or providing

∗This work was supported by the University of Minnesota (DTC), the
National Science Foundation (IIS-0643680, IIS-0811946, IIS-0835637),
and AFOSR (FA9550-10-1-0567). J. A. Hesch was supported by the UMN
Doctoral Dissertation Fellowship.

dense-realistic maps [14], a key issue that has not yet been
addressed in the literature is how estimator inconsistency
impacts monocular localization. As defined in [1], a state
estimator is consistent if the estimation errors are zero-mean
and have covariance smaller than or equal to the one calcu-
lated by the filter. As we will demonstrate, a leading cause
of inconsistency in monocular localization is due to spuri-
ous information gained about the scale of the scene, which
is unobservable (i.e., scale cannot be determined using a
monocular camera alone).

Until recently, little attention was paid to the effects that
observability properties can have on nonlinear estimator
consistency. The work by Huang et al. [7, 8, 9] was the
first to identify this connection for several 2D localization
problems (i.e., simultaneous localization and mapping, co-
operative localization). The authors showed that, for these
problems, a mismatch exists between the number of unob-
servable directions of the true nonlinear system and the lin-
earized system used for estimation purposes. In particular,
the estimated (linearized) system has one-fewer unobserv-
able direction than the true system, allowing the estimator
to surreptitiously gain spurious information along the di-
rection corresponding to global orientation (yaw). This in-
creases the estimation errors while reducing the estimator
uncertainty, and leads to inconsistency.

In this paper, we analyze and improve consistency
for monocular Simultaneous Localization and Mapping
(MonoSLAM). The main contributions of this work are:

• We provide an overview of the MonoSLAM observ-
ability analysis using the system observability matrix,
and show that seven d.o.f. are unobservable. These
correspond to three-d.o.f. global translation, three-
d.o.f. global rotation, and global scale.

• We report on MonoSLAM inconsistency, and demon-
strate that a standard EKF-based MonoSLAM ap-
proach can gain spurious information about the scale
of the system, leading to estimator inconsistency.

• We introduce an Observability-Constrained
MonoSLAM (OC-MonoSLAM) algorithm which

978-1-4673-1612-5/12/$31.00 ©2012 IEEE 15

explicitly adheres to the system observability proper-
ties, and hence mitigates inconsistency. We validate
our method with Monte-Carlo simulations and experi-
mental results to show that it has increased consistency
and lower errors compared to standard MonoSLAM.

The rest of this paper is organized as follows: In Sect. 2,
we describe the system and measurement models, fol-
lowed by our analysis of MonoSLAM inconsistency in
Sect. 3. The proposed estimator modification is presented
in Sect. 3.1, and subsequently validated both in simulations
and experimentally (Sects. 4 and 5). Finally, we provide
our concluding remarks and outline our future research di-
rections in Sect. 6.

2. Estimator Description

We begin with an overview of the propagation and mea-
surement models which govern the MonoSLAM system.
We adopt the EKF as our framework for fusing the cam-
era measurements across time, and we employ a tracking
model to predict the camera’s motion between images.1 The
sensing platform moves in a previously unknown environ-
ment, and localizes solely using Persistent Features (PFs)
(e.g., SIFT keys [11]), which can be reliably tracked across
images, and redetected when revisiting an area.

2.1. System State and Propagation Model

The EKF estimates the camera pose, as well as its linear
and rotational velocities, and a map corresponding to the 3D
coordinates of features in the environment. The filter state
is the (13 + 3N)× 1 vector:

x =
[
GpT

S
S q̄T

G
SvT SωT | GfT

1 · · · GfT

N

]T
=
[
xT
s | xT

m

]T
, (1)

where xs(t) is the 13 × 1 sensor platform state, and xm(t)
is the 3N × 1 state of the map. The sensor platform state
comprises S q̄G(t) which is the unit quaternion representing
the orientation of the global frame {G} in the sensor frame,
{S}, at time t. The frame {S} is attached to the camera,
while {G} is a reference frame whose origin coincides with
the initial camera position. The linear and rotational ve-
locities of the camera, Sv(t) and Sω(t), are expressed with
respect to {S}, while the camera’s position, GpS(t), is ex-
pressed in {G}.

The map, xm, comprises N PFs, Gfi, i = 1, . . . , N , and
grows as new PFs are observed. With the state of the system
now defined, we turn our attention to the continuous-time
model we utilize to track the system state.

1While we focus on the case of the EKF, our observability analysis
and proposed algorithm for improving consistency are extensible to any
linearized estimation architecture (e.g., UKF and sliding window filter).

2.1.1 Continuous-time model

We employ a constant-velocity tracking model, in which
both linear and rotational velocities are expressed in the sen-
sor frame. This has the advantage of being more flexible
than the “constant-global-velocity” model originally pro-
posed for MonoSLAM [5], while at the same time enabling
a simpler estimator framework than the Interacting Multiple
Model (IMM) approach of Civera et al. [4].

S ˙̄qG(t) =
1

2
Ω(Sω(t))S q̄G(t), Sω̇(t) = ηω (2)

GṗS(t) = GvS(t) = S

GCT Sv(t), Sv̇(t) = ηv (3)
Gḟi(t) = 03×1 , i = 1, . . . , N. (4)

where S
GC is the rotational matrix corresponding to S q̄G(t),

and Ω(ω) is the matrix governing the quaternion time
derivative, i.e.,

Ω(ω) =

[
−bω×c ω
−ωT 0

]
, bω×c ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 .
The time derivatives of the rotational and linear velocities,
Sω and Sv, are modeled as zero-mean white Gaussian pro-
cesses, ηω and ηv , respectively. The PFs belong to the static
scene, thus, their time derivatives are zero [see (4)].

Linearizing at the current estimates and applying the ex-
pectation operator on both sides of (2)-(4), we obtain the
state estimate propagation model

S ˙̄̂qG(t) =
1

2
Ω(ω̂(t))S ˆ̄qG(t), S ˙̂ω(t) = 03×1 (5)

G ˙̂pS(t) = S

GĈT Sv̂S(t), S ˙̂v(t) = 03×1 (6)

G˙̂
fi (t) = 03×1 , i = 1, . . . , N. (7)

The (12 + 3N)× 1 error-state vector is defined as

x̃ =
[
Gp̃T

S
SδθT

G
SṽT Sω̃T | Gf̃T

1 · · ·G f̃T

N

]T
=
[
x̃T
s | x̃T

m

]T
, (8)

where x̃s(t) is the 12 × 1 error state corresponding to the
sensing platform, and x̃m(t) is the 3N × 1 error state of the
map. For the position, linear and rotational velocities, and
the map, an additive error model is utilized (i.e., x̃ = x− x̂
is the error in the estimate x̂ of a quantity x). However, for
the quaternion we employ a multiplicative error model [17].
Specifically, the error between the quaternion q̄ and its esti-
mate ˆ̄q is the 3×1 angle-error vector, δθ, implicitly defined
by the error quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 '
[

1
2δθ

T 1
]T
, (9)

where δq̄ describes the small rotation that causes the true
and estimated attitude to coincide. This allows us to repre-
sent the attitude uncertainty by the 3× 3 covariance matrix
E[δθδθT], which is a minimal representation.

16

The linearized continuous-time error-state equation is

˙̃x =

[
Fs 012×3N

03N×12 03N

]
x̃ +

[
Gs

03N×6

]
n

= Fc x̃ + Gc n , (10)

where 03N denotes the 3N × 3N matrix of zeros, n =[
ηT
ω ηT

v

]T
is the system noise, which is modeled as

a zero-mean white Gaussian process with autocorrelation
E[n(t)nT (τ)] = Qcδ(t − τ). The matrix Fs is the
continuous-time error-state transition matrix corresponding
to the camera state, and Gs is the continuous-time input
noise matrix, i.e.,

Fs=


03 −S

GCT bSv×c S
GCT 03

03 −bSω×c 03 I3

03 03 03 03

03 03 03 03

 , Gs=


03 03

03 03

I3 03

03 I3

 .
2.1.2 Discrete-time implementation

In order to propagate the state forward in time, we employ
Euler integration of (5)–(7), with a specified step size, δt,
selected to be significantly smaller than the camera frame-
rate. Moreover, to derive the covariance propagation equa-
tion, we evaluate the discrete-time state transition matrix,
Φk, and the discrete-time system noise covariance matrix,
Qd,k, as

Φk = Φ(tk+1, tk) = exp

(∫ tk+1

tk

Fc(τ)dτ

)
(11)

Qd,k =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T

cΦT (tk+1, τ)dτ.

The propagated covariance is then computed as

Pk+1|k = ΦkPk|kΦ
T

k + Qd,k. (12)

2.2. Measurement Update Model

As the camera moves it observes visual features. These
measurements are exploited to concurrently estimate the
motion of the sensing platform and the map of PFs. To sim-
plify the discussion, we consider the observation of a single
PF fi. The camera measures zi, which is the perspective
projection of the 3D point, Sfi =

[
x y z

]T
, expressed in

the current camera frame {S}, onto the image plane2, i.e.,

zi =
1

z

[
x
y

]
+ ηi,

Sfi = S

GC (Gfi − GpS) . (13)

The measurement noise, ηi, is modeled as zero mean white
Gaussian with covariance Ri. The linearized error model is

2Without loss of generality, we express the image measurement in nor-
malized pixel coordinates [2].

z̃i = zi − ẑi ' Hix̃ + ηi, where ẑ is the expected mea-
surement computed by evaluating (13) at the current state
estimate, and the measurement Jacobian, Hi, is

Hi = Hcam

[
Hp 03 Hq̄ 03 |03 · · · Hfi · · · 03

]
(14)

Hcam =
1

z2

[
z 0 −x
0 z −y

]
, Hp = −S

GC

Hq̄ = bSGC (Gfi − GpS) ×c, Hfi = S

GC.

Here, Hcam, is the Jacobian of the perspective projection
with respect to Sfi, while Hq̄ , Hp, and Hfi , are the Jaco-
bians of Sfi with respect to SqG, GpS , and Gfi, respectively.

For PFs that are already in the map, we directly apply
the measurement model (13)-(14) to update the filter. We
compute the measurement residual, the covariance of the
residual, and the Kalman gain

ri = zi − ẑi, Si = HiPk+1|kHi
T + Ri (15)

K = Pk+1|kHi
TS−1

i . (16)

Employing these quantities, we compute the EKF state and
covariance update as

x̂k+1|k+1 = x̂k+1|k + Kri (17)

Pk+1|k+1 = Pk+1|k−Pk+1|kHi
TS−1

i HiPk+1|k. (18)

For previously unseen PFs, we compute an initial estimate,
along with covariance and cross-correlations by solving a
bundle-adjustment over a short time window [18].

3. Observability-constrained MonoSLAM
Using the system and measurement models presented

above, we hereafter describe how the system observabil-
ity properties influence estimator consistency. In particular,
we show that MonoSLAM has seven unobservable direc-
tions, corresponding to global translation, global rotation,
and global scale. However, when using a linearized esti-
mator, such as the EKF, errors in linearization while eval-
uating the system and measurement Jacobians change the
directions in which information is acquired by the estima-
tor. Over time, these directions can span the whole state
space, including directions which should be unobservable.
In particular, for MonoSLAM we observe that the estimator
gains scale information, which can lead to scale drift over
time. When spurious information is gained along unobserv-
able directions, it leads to larger errors, smaller uncertain-
ties, and inconsistency. In what follows, we first analyze the
system observability properties and show why the standard
MonoSLAM violates them. Subsequently, we present an
Observability-Constrained MonoSLAM (OC-MonoSLAM)
estimation algorithm that explicitly adheres to the observ-
ability properties of the system.

17

The observability matrix [12] is defined as a function of
the linearized measurement model, H, and the discrete-time
state transition matrix, Φ, which are in turn functions of the
linearization point, x, i.e.,

M (x) =


H1

H2Φ2,1

...
HkΦk,1

 (19)

where Φk,1 = Φk−1 · · ·Φ1 is the state transition matrix
from time step t1 to tk. We compute the discrete-time state
transition matrix, Φk,1 as the solution to the following ma-
trix differential equation,

Φ̇t,t1 = Fc(t)Φt,t1 i.c. Φt1,t1 = I. (20)

To simplify the discussion, we consider only a single land-
mark in the state vector. Using the initial condition and the
structure of Fc [see (10)], we obtain Φt,t1 as

Φt,t1 =


I3 Φ[1,2] Φ[1,3] Φ[1,4] 03

03 Φ[2,2] 0 Φ[2,4] 03

03 03 I3 03 03

03 03 03 I3 03

03 03 03 03 I3

 (21)

where

Φ[1,2] = −bGpS(t) − GpS(t1)×c G

S(t1)C (22)

Φ[1,3] =

∫ t

t1

G

S(τ)C dτ (23)

Φ[1,4] = −
∫ t

t1

bGvS(r)×c
∫ r

t1

G

S(τ)C dτ dκ (24)

Φ[2,2] =
S(t)
S(t1)C (25)

Φ[2,4] =

∫ t

t1

S(t)
S(τ)C dτ (26)

where S(t) denotes the frame {S} at time t. Employ-
ing (14) and (21), the k − th block row of the observability
matrix [see (19)] is

HkΦk,1 = A1

[
−I3 A2 A3 A4 I3

]
(27)

where

A1 = Hcam,k · S(k)
G C (28)

A2 = bGf − GpS(k)×c G

S(1)C (29)

A3 = −
∫ tk

t1

G

S(τ)C dτ (30)

A4 = bGf − GpS(k)×c
∫ tk

t1

G

S(τ)C dτ −Φ[1,4]. (31)

Figure 1: The unobservable directions are depicted in gold.
Ns corresponds to global scale (i.e., translating the whole
scene and the camera towards or away from the origin). Nt

corresponds to global translations of the scene and camera
along any of the cardinal axes. Nr corresponds to rotating
the whole scene and the camera about the cardinal axes.

It is straightforward to verify that the right nullspace of
M (x) spans seven directions, i.e., M (x) N1 = 0, where

N1 =


I3 −bGpS(1)×c GpS(1)

03
S(1)
G C 03×1

03 03
S(1)v

03 03 03×1

I3 −bGf ×c Gf


=
[
Nt,1 | Nr,1 | Ns,1

]
(32)

where Nt,1 corresponds to global translations of the camera
and landmark together, Nr,1 corresponds to global rotations
of both together, and Ns,1 is the direction corresponding to
global scale (see Fig. 1).

Ideally, any estimator we employ should correspond to
a system with an unobservable subspace that matches these
directions, both in number and structure. However, when
linearizing about the estimated state x̂, M (x̂) gains rank
due to errors in the state estimates across time. This can
be easily verified by numerically evaluating (19) during any
experiment. To address this problem and ensure that (32)
is orthogonal to every block row of M when the state esti-
mates are used for computing H`, and Φ`,1, ` = 1, . . . , k,
we must ensure that H`Φ`,1N1 = 0, ` = 1, . . . , k.

One way to enforce this is by requiring that at each time
step

N`+1 = Φ`N` (33)
H`N` = 0, ` = 1, . . . , k (34)

both hold. This can be accomplished by propagating the

18

nullspace in time and appropriately modifying H` follow-
ing the process described in the next section.

3.1. OC-MonoSLAM: Algorithm Description

Hereafter, we present our OC-MonoSLAM algorithm
which enforces the observability constraints dictated by the
MonoSLAM system structure. Rather than changing the
linearization points explicitly (e.g., as in [7]), we maintain
the nullspace, Nk, at each time step, and use it to enforce
the unobservable directions.

3.1.1 Nullspace initialization for the camera

The initial nullspace corresponding to the camera state ele-
ments is analytically defined as

N1 =


I3 −bGp̂S,0|0×c Gp̂S,0|0
03 C

(
S ˆ̄qG,0|0

)
03×1

03 0 Sv̂0|0
03 0 03×1

 (35)

where the x̂i|j denotes the estimate of x at time step i based
on all measurements up to time step j. We note that in
SLAM it is common to (arbitrarily) assign the global frame
to coincide with the initial camera frame, while the initial
velocity can be set to be unity along the estimated direc-
tion of translation between the first image pair, to set the
scale. However, any other preferred method for initializing
the MonoSLAM state can also be employed to initialize the
nullspace.

3.1.2 Nullspace initialization for new landmarks

Each time a new landmark is initialized into the state vector,
we must augment the nullspace, Nk, so as to account for
the new feature, and fulfill (33) and (34) at subsequent time
steps. To accomplish this, we form the 3× 7 block row

Nfi =
[
I3 −bGf̂k|k ×c Gf̂k|k

]
(36)

which we concatenate with the current nullspace Nk.

3.1.3 Nullspace propagation

During the propagation step, we need to compute the new
nullspace at time k + 1, Nk+1. Based on the observability
constraint (33), this entails propagating the nullspace from
time step k to k + 1 using the computed state transition
matrix Φk.

3.1.4 Modification of H

During each update step, we must ensure that HkNk = 0
is satisfied. Hence, we seek a modified Hk that fulfills (34),

while maintaining its structure. Based on (14), we can write
this relationship per feature as[

0 0 0
]

= Hcam

[
Hp Hq̄ 03 03 | Hf

]
·

I3 −bGp̂S,k|k−1×c Gp̂S,k|k−1

03 C
(
S ˆ̄qG,k|k−1

)
03

03 03
Gv̂S,k|k−1

03 03 03

I3 −bGf̂k|k−1×c Gf̂k|k−1

 (37)

The first block column of (37) requires that Hf = −Hp.
Hence, we rewrite the second and third block columns of
(37) as[
0 0
]

= Hcam

[
Hp Hq̄

]
·[

bGf̂k|k−1 − Gp̂S,k|k−1×c Gp̂S,k|k−1 − Gf̂k|k−1

C
(
S ˆ̄qG,k|k−1

)
03×1

]
(38)

This is a constraint of the form 0 = AU, where U is a fixed
quantity determined by elements in the nullspace, and A
comprises elements of the measurement Jacobian, which we
seek to modify. To compute the minimum perturbation, A∗,
of A, we formulate the following minimization problem

min
A∗
||A∗ −A||2F , s.t. A∗U = 0 (39)

where || · ||F denotes the Frobenius matrix norm. After em-
ploying the method of Lagrange multipliers, and solving the
corresponding KKT optimality conditions, the optimal A∗

that fulfills (39) is A∗ = A − AU(UTU)−1UT . Finally,
the elements of the measurement Jacobian are computed as

HcamHp = A∗1:2,1:3 (40)

HcamHf = −A∗1:2,1:3 (41)

HcamHq̄ = A∗1:2,4:6 (42)

where the subscripts (i:j, m:n) denote the submatrix span-
ning rows i to j, and columns m to n. After computing the
modified measurement Jacobian, we proceed with the filter
update as described in Sect. 2.2.

4. Simulations
We conducted Monte-Carlo simulations to evaluate

the impact of the proposed Observability-Constrained
MonoSLAM (OC-MonoSLAM) method on estimator con-
sistency. We compared its performance to standard
MonoSLAM (Std-MonoSLAM), as well as an ideal
MonoSLAM method that linearizes the Jacobians at the true
state. We note that the ideal MonoSLAM is not realizable
in practice, but is utilized as a benchmark for performance
comparison.

19

(a) (b)

Figure 2: Errors and 3σ bounds plotted for the x-axis position (left) and δθ1 orientation (right) for the first 200 seconds of a
representative run.

To evaluate the accuracy and consistency of the pro-
posed approach, we computed the Root Mean Squared
Error (RMSE) and Normalized Estimation Error Squared
(NEES) [1] over 50 trials in which a simulated camera tra-
versed a circular trajectory for 500 sec at an average speed
of 11 cm/s.3 The environment contained 72 visual features
distributed in a planar grid pattern, which the camera ob-
served while moving.

The effect of inconsistency during a single run is demon-
strated in Fig. 2 where we depict the error and correspond-
ing 3σ bounds for the x-axis position and δθ1 orientation.
All three filters attain comparable accuracy and uncertainty
for orientation, which is not surprising since there are suf-
ficient points in the scene to precisely track the camera’s
rotations. However, from the position error plot, it is clear
that the 3σ bounds for the Std-MonoSLAM are smaller than
for either the OC-MonoSLAM, or the Ideal-MonoSLAM.
This indicates that the Std-MonoSLAM gains spurious in-
formation. Furthermore, the x-axis position error for Std-
MonoSLAM starts to increase over time, eventually causing
inconsistency.

Figure 3 displays the RMSE and NEES, in which we ob-
serve that all three filters obtain similar accuracy and con-
sistency performance for orientation. However, the OC-
MonoSLAM attains significantly better positioning accu-
racy and consistency compared to Std-MonoSLAM, and
is almost indistinguishable from the Ideal-MonoSLAM.
Based on our analysis and these results, we postulate that
the key source of position error and inconsistency in the
Std-MonoSLAM is violation of the unobservable scale di-
rection [i.e., Ns, see (32)].

3The camera was simulated with a 45x45 deg fov, with σpx = 1px.

5. Experimental Validation

Our experimental set-up comprised a monochrome Point
Grey Chameleon camera which recorded images at 7.5 Hz.
We moved the camera on a circular trajectory in front of
a calibration board comprising 72 corner features, whose
positions are accurately known Fig. 4.

Using the observations of the visual features over 25
seconds (approx. 4.5 rotations), we estimated the cam-
era trajectory and corresponding map using both the Std-
MonoSLAM and the OC-MonoSLAM methods. The filters
were initialized using the PnP estimate of the camera pose at
the first image, along with the linear and rotation velocities
computed between the first two images. In order to obtain
an “approximate” ground truth trajectory, we utilized DLS-
PnP [6] to compute the camera pose independently for each
image, given the known landmark locations.

The estimated 3D trajectories and maps are depicted in
Fig. 4. The PnP trajectory is plotted in black and closely co-
incides with the one computed by OC-MonoSLAM, while
the Std-MonoSLAM position estimates follow an estimated
circular trajectory with a smaller radius (indicating incon-
sistent scale). The scale inconsistency is also visually ap-
parent in Fig. 4 (right), which depicts a top view of the
landmarks and trajectories. The true landmarks lie in the
y = 0 cm plane, hence, the Std-MonoSLAM underesti-
mates the depth to the scene.

In Fig. 5, we plot the estimated 3σ bounds and corre-
sponding errors with respect to the PnP trajectory for two
representative axes (i.e., x-axis position and δθ1 orienta-
tion). It is evident that the orientation performance of both
filters is comparable, while the OC-MonoSLAM outper-
forms the Std-MonoSLAM in position accuracy. In addi-
tion, the OC-MonoSLAM is more conservative that the Std-
MonoSLAM in terms of position uncertainty.

20

(a) (b)

(c) (d)

Figure 3: The NEES and RMSE for orientation (left) and position (right) plotted for all three filters, averaged per time step
over 50 Monte-Carlo trials.

(a) (b)

Figure 4: (left) The estimated 3D trajectory for the Std-MonoSLAM and the OC-MonoSLAM, along with the estimated map.
The PnP estimated trajectory is plotted in black, and is overlapped by the OC-MonoSLAM estimate. (right) A top view of
the trajectories and landmarks. The true landmarks lie on the y = 0 plane, hence the Std-MonoSLAM underestimates the
depth to the scene, demonstrating scale drift.

6. Conclusion and Future Work

In this paper, we analyzed the inconsistency of
MonoSLAM from the standpoint of observability. Specifi-

cally, we showed that using a standard EKF-based approach
leads to spurious information gain, in particular for scale,
since it does not adhere to the unobservable directions of
the true system. Moreover, we introduced an observability-

21

(a) (b)

Figure 5: (left) The position error and corresponding 3σ bounds for the x-axis computed with respect to the PnP pose
estimates. (right) The orientation error and 3σ bounds for δθ1.

constrained MonoSLAM method to mitigate estimator in-
consistency by enforcing the nullspace explicitly. Finally,
we presented simulation and experimental results to sup-
port our claims and validate the proposed estimator. In our
future work, we are interested in analyzing additional po-
tential sources of estimator inconsistency in MonoSLAM
such as the existence of multiple local minima.

References
[1] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan. Estimation

with Applications to Tracking and Navigation. John Wiley
& Sons, New York, NY, 2001. 1, 6

[2] J.-Y. Bouguet. Camera calibration toolbox for matlab, 2006.
3

[3] R. Castle, G. Klein, and D. Murray. Combining MonoSLAM
with object recognition for scene augmentation using a wear-
able camera. Image and Vision Computing, 28(11):1548–
1556, Nov. 2010. 1

[4] J. Civera, A. J. Davison, and J. M. M. Montiel. Interacting
multiple model monocular SLAM . In Proc. of the IEEE
Int. Conf. on Robotics and Automation, pages 3704–3709,
Pasadena, CA, May 19–23, 2008. 2

[5] A. J. Davison, I. Reid, N. Molton, and O. Stasse.
MonoSLAM: Real-time single camera SLAM. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 29(6):1052–
1067, June 2007. 1, 2

[6] J. A. Hesch and S. I. Roumeliotis. A direct least-squares
(dls) solution for PnP. In Proc. of the Int. Conf. on Computer
Vision, Barcelona, Spain, Nov. 6–13, 2011. 6

[7] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis. Analysis
and improvement of the consistency of extended kalman fil-
ter based SLAM. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, pages 373–382, Pasadena, CA, May 19–23,
2008. 1, 5

[8] G. P. Huang, A. I. Mourikis, and S. I. Roumeliotis.
Observability-based rules for designing consistent EKF
SLAM estimators. Int. Journal of Robotics Research,
29(5):502–528, Apr. 2010. 1

[9] G. P. Huang, N. Trawny, A. I. Mourikis, and S. I. Roume-
liotis. Observability-based consistent EKF estimators for
multi-robot cooperative localization. Autonomous Robots,
30(1):99–122, Jan. 2011. 1

[10] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Proc. of the IEEE and ACM Inter-
national Symposium on Mixed and Augmented Reality, pages
225–234, Nara, Japan, Nov. 13–16, 2007. 1

[11] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. Int. Journal of Computer Vision, 60(2):91–110,
Nov. 2004. 2

[12] P. S. Maybeck. Stochastic models, estimation, and control,
volume I. Academic Press, New York, NY, 1979. 4

[13] N. Molton, S. Se, J. M. Brady, D. Lee, and P. Probert. A
stereo vision-based aid for the visually impaired. Image and
Vision Computing, 16(4):251–263, Mar. 1998. 1

[14] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM:
Dense tracking and mapping in real-time. In International
Conf. on Computer Vision, pages 2320–2327, Barcelona,
Spain, Nov. 6–13, 2011. 1

[15] N. S underhauf, S. Lange, and P. Protzel. Using the un-
scented Kalman filter in mono-SLAM with inverse depth
parametrization for autonomous airship control. In Proc.
of the IEEE International Workshop on Safety, Security, and
Rescue Robotics, pages 1–6, Rome, Italy, Sept. 27–29, 2007.
1

[16] J. Teddy Yap, M. Li, A. I. Mourikis, and C. R. Shelton. A
particle filter for monocular vision-aided odometry. In Proc.
of the IEEE Int. Conf. on Robotics and Automation, pages
5663–5669, Shanghai, China, May 9–13, 2011. 1

[17] N. Trawny and S. I. Roumeliotis. Indirect Kalman filter for
3D attitude estimation. Technical Report 2005-002, Univer-
sity of Minnesota, Dept. of Comp. Sci. & Eng., MARS Lab,
Mar. 2005. 2

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment – a modern synthesis. In B. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, volume 1883 of Lecture Notes in Com-
puter Science, pages 298–372. Springer-Verlag, 2000. 3

22

