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Abstract

In this work, we present a Direct Least-Squares (DLS)
method for computing all solutions of the perspective-n-
point camera pose determination (PnP) problem in the gen-
eral case (n ≥ 3). Specifically, based on the camera mea-
surement equations, we formulate a nonlinear least-squares
cost function whose optimality conditions constitute a sys-
tem of three third-order polynomials. Subsequently, we em-
ploy the multiplication matrix to determine all the roots of
the system analytically, and hence all minima of the LS,
without requiring iterations or an initial guess of the param-
eters. A key advantage of our method is scalability, since the
order of the polynomial system that we solve is independent
of the number of points. We compare the performance of our
algorithm with the leading PnP approaches, both in simula-
tion and experimentally, and demonstrate that DLS consis-
tently achieves accuracy close to the Maximum-Likelihood
Estimator (MLE).

1. Introduction

The task of determining the six-degrees-of-freedom
(d.o.f.) camera position and orientation (pose) from obser-
vations of known points in the scene has numerous appli-
cations in computer vision and robotics. Examples include
robot localization [12], spacecraft pose estimation during
descent and landing [20], pose determination for model-
based vision [17], as well as hand-eye calibration [4].

The perspective-n-point pose determination problem
(PnP) has been studied for various numbers of points (from
the minimum of 3, to the general case of n), and several dif-
ferent solution approaches exist, such as: (i) directly solving
the nonlinear geometric constraint equations in the minimal
case [6], (ii) formulating an overdetermined linear system of
equations in the non-minimal case [1], and (iii) iteratively
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minimizing a nonlinear least-squares cost function, which
accounts for the measurement noise [9].

Currently, no approach exists that directly provides all
solutions for PnP (n ≥ 3), in a Maximum-Likelihood sense,
without the need for initialization or approximations in the
problem treatment. Some authors have proposed methods
which reach close to the global optimum, e.g., based on
successive Linear Matrix Inequality (LMI) relaxations [15],
transformation to a Semi-Definite Program (SDP) [23], or
a geometric transformation of the problem [16]. However,
these approaches are only applicable when PnP admits a
unique solution, which can only be guaranteed when n ≥ 6,
and some approaches require special treatment (e.g., when
all points are co-planar).

The proposed Direct Least-Squares (DLS) method seeks
to overcome the limitations of the current approaches:
• It computes all pose solutions, as the minima of a non-

linear least-squares cost function, in the general case
of n ≥ 3 points.
• No initialization is required, and the performance is

consistently better than competing methods and close
to that of Maximum-Likelihood Estimator (MLE).
• The method is scalable, since the size of the nonlinear

least-squares cost function which is minimized is not
dependent on the number of points.

The rest of this paper is organized as follows: Section 2
provides an overview of the related work on PnP. We de-
scribe our proposed approach in Section 3, while we present
simulation and experimental comparisons to alternative ap-
proaches in Section 4. Lastly, we provide our concluding
remarks in Section 5.

2. Related Work
The minimal PnP problem (i.e., P3P) has typically been

addressed by treating the geometric constraint equations as
noise-free, and solving for the camera pose [6, 8]. Har-
alick et al. [10] provided a comparison of the classical
P3P methods and an analysis of singular configurations.
Direct solutions have also been proposed for the overde-
termined case (i.e., PnP, n ≥ 4). For instance, Horaud
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et al. [13] addressed the P4P problem by connecting the
four known points to form three known lines, and exploit-
ing the nonlinear line projection equations to compute the
camera pose. Linear methods (e.g., based on lifting) also
exist for both P4P and PnP [1, 16, 21, 22]. Significant work
has also focused on characterizing the number of solutions
for P3P [5, 7, 25], and PnP [14, 25].

A key drawback of the approaches which consider noise-
free measurements is that they may return inaccurate or
even erroneous solutions in the presence of noise. Hence,
these analytic methods are most often employed as an ini-
tialization step for an MLE of the camera pose [24].

Several authors have addressed the PnP problem from a
least-squares perspective, by iteratively minimizing a cost
function which is the sum of the squared errors (either re-
projection or geometric) for each point [9, 24]. These meth-
ods are more accurate, since they explicitly account for
the measurement noise, and under certain noise assump-
tions, return the maximum-likelihood estimate of the cam-
era pose. However, they can only compute one solution (out
of possibly many), and require a good initial guess of the
camera pose to converge.

Other approaches exist that seek to directly compute a
global optimum without initialization. For instance, Kahl
and Henrion [15] proposed a method based on a series of
LMI relaxations, while Schweighofer and Pinz [23] pre-
sented an approach which first transforms the PnP problem
into an SDP before optimizing for the camera pose. Un-
fortunately, these approaches do not provide a method for
computing multiple solutions when they exist, and may re-
quire special treatment if the known points are co-planar.

In contrast to the above methods, we present a Direct
Least-Squares (DLS) approach for PnP which accounts for
the measurement noise, and admits all solutions to the prob-
lem without requiring iterations or an initial guess of the
camera pose. Specifically, we reparametrize the constraint
equations to obtain a polynomial cost function that only de-
pends on the unknown orientation. We then solve the corre-
sponding optimality conditions analytically, and recover all
minima (pose hypotheses) of the LS problem directly.

3. Problem Formulation
3.1. Measurement Model

The camera observation of known points in the scene
projected onto the image plane can be described by the
spherical camera model:

zi = S r̄i + ηi (1)
Sri = S

GC
Gri + SpG (2)

where zi is the measurement of the unit-vector direction,
S r̄i =

Sri
||Sri|| , from the sensor frame {S} towards point i,

r2 r3

r1

{S}

Sr̄3

{G}

Gr1

Gr3

Gr2

{SGC, SpG}

Sr̄1

Sr̄2

Figure 1. This figure depicts the observations of points ri, i =
1, 2, 3 via the unit-vector directions S r̄i from the origin of the cam-
era frame {S} towards each point. The distance from {S} to each
point is αi = ||Sri||. The vector SpG is the origin of {G} with
respect to {S}, the rotation matrix from {G} to {S} is S

GC, and
Gri is the position of each point in {G}.

which is corrupted by noise ηi. The point’s coordinates in
the sensing frame {S} are a function of the known coor-
dinates, Gri, in the global frame {G}, as well as the un-
known global-to-sensor transformation described by the ro-
tation matrix S

GC and translation vector SpG. Figure 1 de-
picts the observation of three non-collinear points, which is
the minimal case required in order to be able to solve the
measurement equations and recover the camera pose.

3.2. Cost function

PnP can be formulated as the following constrained non-
linear least-squares minimization problem:

{α∗i , S

GC
∗, Sp∗G} = arg min J (3)

subject to S

GC
T S

GC = I3, det (S

GC) = 1

αi = ||SGC Gri + SpG||

where the cost function J is the sum of the squared mea-
surement errors, i.e.,

J =
n∑

i=1

||zi − S r̄i||2 =
n∑

i=1

||zi −
1

αi

(
S
GC

Gri + SpG

)
||2.

Unfortunately, J is nonlinear in the unknown quantities,
and computing all of its local minima is quite challenging.
One approach is to select an initial guess for the parame-
ter vector and employ an iterative minimization technique,
such as Gauss-Newton, to numerically compute a single lo-
cal minimum of J . A clear limitation of this approach is that
it can only converge to one of the minima of the cost func-
tion, and even with multiple restarts, we are not guaranteed
to obtain all minima of J . An alternative approach is to at-
tempt to analytically solve the system of equations provided
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by the Karush-Khun-Tucker (KKT) optimality conditions
of (3) for the unknown quantities. However, this method is
also challenging since the KKT conditions form a nonlinear
system of equations in 6 +n unknowns (3 from S

GC, 3 from
GpS , and n from αi, i = 1, . . . , n).1 A third strategy is to
relax the original optimization problem [see (3)] and ma-
nipulate the measurement equations to reduce the number
of unknowns. This leads to a modified LS problem for the
reduced set of parameters, which can be solved analytically.

In this paper, we follow the third approach, which is de-
scribed in Sects. 3.3-3.5. Before discussing our method
in detail, we first provide a brief overview. We satisfy
the constraints in the following way: (i) We employ the
Cayley-Gibbs-Rodriguez (CGR) parametrization of the ro-
tation matrix S

GC and utilize the three CGR parameters
as unconstrained optimization variables. In this way we
satisfy the rotation matrix constraints, S

GC
T S

GC = I and
det (S

GC) = 1, exactly. (ii) We relax the scale constraint
αi = ||SGC Gri + SpG||, treating each αi as a free parame-
ter. Note that this relaxation is reasonable since solving the
optimality conditions results in α∗i = zT

i (S
GC

Gri + SpG),
which exactly satisfies the constraint when the measure-
ments are noise free (see Appendix A). Subsequently, in or-
der to reduce the number of unknown parameters in the LS
cost function, we manipulate the measurement equations,
and express SpG and αi as functions of the unknown rota-
tion S

GC. We then directly solve a modified LS problem to
obtain all rotation hypotheses (local minima), from which
we recover the scale αi and translation SpG.

3.3. Modified measurement equations

We first consider the noise-free geometric constraints
which appear in the measurement model (1),

αi
S r̄i = S

GC
Gri + SpG, i = 1, . . . , n. (4)

This system of equations contains unknown quantities
(αi, S

GC,
SpG), and quantities which are either known per-

fectly (Gri), or are measured by the camera (S r̄i). We would
like to reparametrize this system of equations in terms of
fewer unknowns. Since both the scale and translation pa-
rameters appear linearly, they are good candidates for re-

1Note that in this case, the KKT conditions can be written as a system
of polynomial equations whose degree and number of variables depend
linearly on the number of measurements. Given the doubly exponential
(in the degree and number of variables) complexity of current methods for
solving polynomial systems, this approach is only practical for small-scale
problems.

duction. We can rewrite (4) in matrix-vector form as


S r̄1 −I

. . .
...

S r̄n −I


︸ ︷︷ ︸

A


α1

...
αn

SpG


︸ ︷︷ ︸

x

=


S
GC

. . .
S
GC


︸ ︷︷ ︸

W


Gr1

...
Grn


︸ ︷︷ ︸

b

⇔ Ax = Wb (5)

where A and b comprise quantities that are known or mea-
sured, x is the vector of unknowns which we wish to elimi-
nate from the system of equations, and W is a block diago-
nal matrix of the unknown rotational matrix. From (5), we
can express SpG and αi, i = 1, . . . , n in terms of the other
system quantities as

x = (ATA)
−1

ATWb =

[
U
V

]
Wb (6)

where we have partitioned (ATA)
−1

AT into U and V such
that the scale parameters are a function of U and the trans-
lation is a function of V. Exploiting the sparse structure
of A, U and V in (6) are computed in closed form (see
Appendix A).

We note that both SpG and αi are linear functions of the
unknown rotation matrix S

GC, i.e.,

αi = uT

i Wb, i = 1, . . . , n (7)
SpG = VWb, (8)

where uT
i corresponds to the i-th row of matrix U [see (6)].

Hence, we can rewrite the constraint equations (4) as

uT

i Wb︸ ︷︷ ︸
αi

S r̄i = S

GC
Gri + VWb︸ ︷︷ ︸

SpG

, i = 1, . . . , n. (9)

At this point, we have reduced the number of unknown
parameters from 6 + n down to 3. Furthermore, we ex-
press the rotation matrix in terms of the CGR parameters
s =

[
s1 s2 s3

]T
, where

S

GC =
C̄

1 + sT s
(10)

C̄ , ((1− sT s) I3 + 2bs×c+ 2ssT ) , (11)

where I3 denotes the 3× 3 identity matrix, and bs×c is the
skew-symmetric matrix parametrized by s. Using the CGR
parameters will allow us to formulate a LS minimization
problem in s that automatically satisfies the rotation matrix
constraints, i.e., S

GC
T S

GC = I, det (S
GC) = 1. We can ex-

plicitly show the dependence of (9) on s, i.e.,

uT
i W

(
S
GC(s)

)
bS r̄i = S

GC(s) Gri+VW
(
S
GC (s)

)
b. (12)
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Note that S
GC (s) appears linearly in this equation. This

allows one further simplification, specifically, we can cancel
the denominator 1 + sT s from the constraint equation (12)
[see (10)], i.e.,

uT

i W
(
C̄ (s)

)
bS r̄i = C̄ (s) Gri + VW

(
C̄ (s)

)
b, (13)

which renders constraints that are quadratic in s.
To summarize, we began with the original geometric

constraint relationship between a known point coordinate
Gri and its noise-free observation S r̄i, and reparametrized
the geometric constraint to be only a function of the un-
known rotation matrix S

GC. To do so, we treated the un-
known scales αi, i = 1, . . . , n, as independent variables, re-
laxing the original problem formulation (3). Subsequently,
we employed the CGR parameters to express orientation,
and as a final step, we canceled the denominator from the
CGR rotation matrix. Hence, this approach results in con-
straints which are quadratic in the elements of s.

3.4. Modified cost function

We employ the modified measurement constraint (13)
to formulate a LS minimization problem for computing
the optimal CGR rotation parameters s. Recalling that
the measured unit-vector direction towards each point is
zi = r̄i + ηi, we rewrite the measurement constraints as

uT
i W

(
C̄(s)

)
b (zi−ηi)=C̄ (s)Gri + VW

(
C̄ (s)

)
b (14)

⇒ uT
i W

(
C̄ (s)

)
bzi − C̄ (s) Gri −VW

(
C̄ (s)

)
b = η′i (15)

where η′i is a zero-mean noise term that is a function of ηi,
but whose covariance depends on the system parameters,
and both ui and V are evaluated at S r̄i = zi.

Based on (15), the pose-determination problem can be
reformulated as the following unconstrained least-squares
minimization problem

{s∗1, s∗2, s∗3} = arg min J ′ (16)

where the cost function J ′ is the sum of the squared con-
straint errors from (15), i.e.,

J ′ =
n∑

i=1

||uT
i W

(
C̄ (s)

)
bzi−C̄(s) Gri−VW

(
C̄ (s)

)
b||2

=
n∑

i=1

η′Ti η′i. (17)

Note that each summand in J ′ is quartic in the elements
of s, and J ′ contains all monomials up to degree four, i.e.,
{1, s1, s2, s3, s1s2, s1s3, s2s3, . . . , s41, s42, s43}.

Since J ′ is a fourth-order polynomial, the correspond-
ing optimality conditions form a system of three third-
order polynomials. What we show next, is how to employ
the Macaulay matrix to directly compute all of the critical
points of J ′ by finding the roots of the polynomial system.

A key benefit of our proposed approach is that the polyno-
mial system we solve is of a constant degree, independent
of the number of points in the PnP problem. Changing the
number of points only affects the coefficients appearing in
the system. Thus, we need only compute the Macaulay ma-
trix symbolically once. Subsequently, we simply form the
elements of the Macaulay matrix from the data (an oper-
ation which is linear in the number of points), and directly
find the roots via the eigen decomposition of the Schur com-
plement of the Macaulay matrix (see Sect. 3.5).2

3.5. Directly computing the local minima

What follows next is a brief overview of how we employ
the Macaulay matrix [18, 19] to directly determine the roots
of a system of polynomial equations. We refer the interested
reader to “Using Algebraic Geometry” by Cox et al. [3] for
a more complete perspective.

Since J ′ is a fourth-order polynomial function in three
unknowns, the corresponding optimality conditions form a
system of polynomial equations, i.e.,

∇siJ ′ = Fi = 0, i = 1, 2, 3. (18)

Each Fi is a polynomial of degree three in the variables
s1, s2, s3. The Bézout bound (i.e., the maximum number of
possible solutions) for this system of equations is 27. Under
mild conditions [3], which are met for general PnP instan-
tiations, the Bézout bound is reached.

Our goal is to compute the multiplication matrix from
which we can directly obtain all the solutions to our system
via eigen decomposition [2]. We obtain the multiplication
matrix by first constructing the Macaulay resultant matrix.
To do so, we augment our polynomial system with an ad-
ditional linear equation, which is generally non-zero at the
roots of our system, i.e., F0 = u0 + u1s1 + u2s2 + u3s3,
where each uj , j = 0, . . . , 3 is randomly generated. We
denote the set of all monomials up to degree 7 as

S = {sγ :
∑
jγj ≤ 7} (19)

where we use the notation sγ , sγ11 s
γ2
2 s

γ3
3 , γi ∈ Z≥0, to

denote a specific monomial. The set S is important, since,
using S we can expand our original system of polynomi-
als to obtain a square system that has the same number of
equations as monomials. To do so, we first partition S into
four subsets, such that S3 contains all monomials that can
be divided by s33, S2 contains all monomials that can be di-
vided by s32 but not s33, S1 contains all monomials that can
be divided by s31 but not by s32 or s33, and S0 contains the
remaining monomials, i.e.,

2We compute the Schur complement of a sparse 120 × 120 matrix,
followed by the eigen decomposition of a non-sparse 27× 27 matrix. The
total time to complete both operations in Matlab is approximately 15 ms.
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S0 = {1, s1, s21, s2, s1s2, s21s2, s22, s1s22, s21s22, s3, s1s3, s21s3,

s2s3, s1s2s3, s
2
1s2s3, s

2
2s3, s1s

2
2s3, s

2
1s

2
2s3, s

2
3, s1s

2
3,

s21s
2
3, s2s

2
3, s1s2s

2
3, s

2
1s2s

2
3, s

2
2s

2
3, s1s

2
2s

2
3, s

2
1s

2
2s

2
3}.

Note that the second, fourth, and tenth elements of S0 are
the three CGR rotation parameters {s1, s2, s3}; a fact that
we will exploit later.

We next form an extended system of equations by mul-
tiplying F0 with each of the monomials in S0, and multi-
plying Fi with each of the monomials in Si divided by s3i ,
i = 1, 2, 3. We denote polynomials obtained from extend-
ing Fi as Gi,j , j = 1, . . . , |Si|. Thus, the extended set of
polynomial equations is

G0,1

G0,2

...
G1,1

...

 =



cT
0,1

cT
0,2

...
cT
1,1

...

 sγ = Msγ = M

[
sα

sβ

]
(20)

where each polynomial Gi,j is expressed as an inner prod-
uct between the coefficient vector, cT

i,j , and the vector of all
monomials sγ , i.e., Gi,j = cT

i,js
γ . The Macaulay matrix M

is formed by stacking the coefficient vectors. Finally, we
partition sγ such that sα comprises monomials in S0, and
sβ contains the remaining monomials.

If we evaluate (20) at a root, p =
[
p1 p2 p3

]T
, of

the original system (18), then all polynomialsGi,j extended
from Fi, i = 1, 2, 3 will be zero, since Fi(p) = 0 by defini-
tion. However, F0 and hence G0,j , j = 1, . . . , |S0| will not
generally be zero, i.e.,

G0,1(p)
...

G0,|S0|(p)
0
...
0


= M

[
pα

pβ

]
⇔
[
F0(p)pα

0

]
= M

[
pα

pβ

]
(21)

where pα and pβ denote the monomial vectors evaluated
at p, i.e., sα(p) = pα and sβ(p) = pβ. Based on this
observation, we partition M into four blocks where M00 is
of dimension |S0| × |S0|, and rewrite (21) as[

F0(p)pα

0

]
=

[
M00 M01

M10 M11

] [
pα

pβ

]
. (22)

Finally, exploiting the Schur complement, we obtain

F0(p)pα =MF0p
α (23)

whereMF0 = M00 −M01M
−1
11 M10 is the multiplication

matrix corresponding to F0. From (23) we see that F0(p)

is an eigenvalue of MF0 with corresponding eigenvector
pα. We can directly obtain all 27 solutions to our system of
equations (18) via eigen decomposition, since the eigenvec-
tors ofMF0

are the monomials of S0 evaluated at each of
the 27 roots. Since the first element in S0 is 1, we normalize
each eigenvector by its first element, and read off the solu-
tion for si, i = 1, 2, 3, from the second, fourth, and tenth
elements of the eigenvector.

Through this procedure we obtain 27 critical points,
which include real and imaginary minima, maxima, and
saddle points of the cost function (17). In practice, we
have only observed up to 4 real local minima that place the
points in front of the center of perspectivity. In almost all
cases, when n ≥ 6 we obtain a single real minimum of
the function. After obtaining the minima, we evaluate the
cost function to find the optimal orientation, and compute
the corresponding translation from (8). Additional details
about the DLS PnP algorithm implementation are available
as supplemental material [11].

4. Simulation and Experimental Results

4.1. Simulations

We hereafter present simulation results which compare
the accuracy of our method to the leading PnP approaches:
• NPL: The N-Point Linear (NPL) method of Ansar and

Daniilidis [1].
• EPnP: The approach of Lepitit et al. [16].
• SDP: The Semi Definite Program (SDP) approach of

Schweighofer and Pinz [23].
• DLS: The Direct Least-Squares (DLS) solution pre-

sented in this paper. An open source implementation
of DLS is available at www.umn.edu/˜joel
• DLS-LM: Maximum-likelihood estimate, computed

using iterative Levenberg-Marquardt (LM) minimiza-
tion of the sum of the squared reprojection errors, ini-
tialized with DLS.

To test the NPL, EPnP, and SDP methods, we obtained the
authors’ own Matlab implementations, which were either
provided via e-mail request or publicly available on the web.

We first examine the performance of the above algo-
rithms versus number of points. We randomly distribute
points within the field of view (45◦ × 45◦) of an internally
calibrated camera (focal length 600 px), at distances be-
tween 0.5 and 5.5 meters. We perturb each image measure-
ment (point projection on the image plane) by independent
zero-mean Gaussian noise (σ = 1.5 px along both u and
v axes). We vary the number of points from 3 to 10, not-
ing that for the methods which require a unique solution to
work (i.e., NPL, EPnP, and SDP), we only show results for
4 or more points (when a unique solution is probable).

Figure 2 shows the results comparing the five approaches
based on their average error norm computed over 100 tri-
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Figure 2. Accuracy comparison depicted as the average error norm, over 100 trials for each number of points, for orientation 2(a) and
position 2(b). The results for just SDP, DLS, and DLS+LM are depicted in 2(c).
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Figure 3. Accuracy comparison depicted as the average error norm, over 100 trials for each value of σ, for orientation 4(a) and position 4(b).
The results for just SDP, DLS, and DLS+LM are depicted in 3(c).

als. We compute the position error norm as ||SpG,true −
SpG,est||, while we compute the tilt-angle (orientation) er-
ror norm as ||δθ|| = 2||s̃||, where s̃ is the CGR parame-
ter obtained from S

GC̃ = S
GC

T
true

S
GCest. We see that DLS

performs consistently better than other approaches, and ob-
tains results close to the MLE estimate (DLS-LM). The
SDP method treats strictly planar scenes differently than
non-planar scenes [23], by using two different SDP relax-
ations. However in some cases, when the points are close
to a coplanar configuration, neither SDP approach provides
accurate results [e.g., n = 6 in Fig. 2(c), the average er-
ror is larger due to a few nearly coplanar cases out of the
100 trials]. We also note that NPL is least accurate since it
sometimes returns imaginary solutions (due to recovery of
the original parameters after lifting). In these instances, we
compute a real solution by projecting the imaginary solution
back onto the real axis.

We also examine the performance of the five approaches
as a function of the pixel noise. We vary the pixel noise stan-
dard deviation between σ = 0 px and σ = 7 px, noting that
we only permit noise between ±3σ (to prevent outliers).
Figure 3 displays the results of the average error norm over

100 trials for position and orientation. We note that DLS
again outperforms the existing methods and is very close to
the MLE estimate (DLS-LM).

4.2. Experiments

We evaluated our method experimentally with observa-
tions of 7 known points at the corners of a cube. We com-
puted the camera pose with each method (using 3, 4, and
7 known points), and compared the resulting pose value to
the MLE estimate obtained using all 7 points. Table 1 lists
the errors for orientation and position for each method.

Figure 4 depicts the visual results of the experiment. We
show the back-projection of the known global points on the
image as green circles, for DLS3 [Fig. 4(a)], and DLS7
[Fig. 4(b)]. In order to further validate the results visually,
we also back-project a virtual box (of identical dimensions
as the real box) next to the real box. Additional trials are
included in the supplemental material [11].

4.3. Processing time comparison

The speed of the four direct methods was evaluated in
Matlab 7.8 running on a Linux (kernel 2.6.32) computer
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(a) (b)

Figure 4. The solution computed using DLS with 3 known points is depicted in 4(a), where the green circles represent the three known
points back-projected onto the image using the computed transformation. 4(b) is the result obtained using DLS with 7 known points. In
both cases, we also back-project a virtual cube, placed next to the real one, to aid visual verification of the result.

n-points Ori. Error Norm (rad) Pos. Error Norm (m)
NPL4 2.87×10−3 8.67×10−3

NPL7 2.12×10−3 2.42×10−3

EPnP4 2.49×10−2 2.33×10−2

EPnP7 1.24×10−2 3.41×10−3

SDP4 4.26×10−3 9.82×10−3

SDP7 3.86×10−4 3.49×10−4

DLS3 5.41×10−3 1.02×10−2

DLS4 4.28×10−3 9.83×10−3

DLS7 4.29×10−4 3.35×10−4

Table 1. The orientation and position errors for different numbers
of points. Errors are computed with respect to the MLE estimate
of the camera pose computed using all 7 points.

with a 2.4 GHz Intel Core 2 Duo processor. NPL and EPnP
were the fastest algorithms, requiring approximately 10 ms
and 5 ms, respectively, to solve a four-point problem. Our
algorithm required approximately 15 ms to compute all lo-
cal minima of the LS cost function using the Macaulay re-
sultants method. The slowest approach was SDP which
required approximately 200 ms to solve the semi-definite
program (using SeDuMi). Since the implementations are
Matlab-based and not optimized for speed, we provide these
only as “ball-park” figures for performance. Part of our on-
going work is to compare the run-time of these methods
using efficient C/C++ implementations.

5. Conclusion

In this work, we have presented a Direct Least-Squares
(DLS) method for PnP which has several advantages com-
pared to existing approaches. First, it is flexible in that it can
handle any number of points from the minimal case of 3, to
the general case of n ≥ 4. It computes all pose solutions

analytically, as the minima of a nonlinear least-squares cost
function, without the need for initialization. Instead, us-
ing a reformulation of the geometric constraints, we obtain
LS optimality conditions that form a system of three third-
order polynomials, which are solved efficiently using the
multiplication matrix.

We have validated the proposed method alongside three
leading PnP algorithms as well as the MLE, both in simula-
tion and experimentally. Compared to existing approaches,
DLS is consistently more accurate, attaining performance
close to the MLE. DLS is also efficient, since the order of
the polynomial system that it solves is independent of the
number of measurements. Lastly, in contrast to other tech-
niques which seek to obtain a single global optimum (e.g.,
SDP and EPnP) DLS has the unique characteristic that it
analytically computes all minima of the LS cost function.

A. Appendix
Employing the expression for A from (5) we have:

ATA =


1 −S r̄T

1

. . .
...

1 −S r̄T
n

−S r̄1 . . . −S r̄n nI

 (24)

where we have exploited the fact that S r̄T
i

S r̄i = 1. Using
block-matrix inversion yields(
ATA

)−1
=

[
E F
G H

]
(25)

E = I +


S r̄T

1

...
S r̄T

n

H [S r̄1 . . . S r̄n] , F =


S r̄T

1

...
S r̄T

n

H
G = H

[
S r̄1 . . .

S r̄n
]
, H =

(
nI−

n∑
i=1

S r̄i
S r̄T

i

)−1

.
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Next, we compute the block matrices U and V in (6) by
post-multiplying the above expression with AT , i.e.,[

U

V

]
=
(
ATA

)−1
AT (26)

U =


S r̄T

1

. . .
S r̄T

n

+


S r̄T

1

...
S r̄T

n

V (27)

V = H
[
S r̄1

S r̄T
1 − I . . . S r̄n

S r̄T
n − I

]
(28)

where U is n × 3n and V is 3 × 3n. Based on (5), (6),
and (26), we compute both the scale and the translation as a
function of the unknown rotation matrix:

SpG = H
n∑
i=1

(S r̄i
S r̄T

i − I) S

GC
Gri (29)

αi = S r̄T

i (S

GC
Gri + SpG) . (30)
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