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Abstract— We present a new strategy for active vision-based
localization and navigation of a mobile robot in a visual
memory, i.e., within a previously-visited area represented as
a large collection of images. Vision-based localization insuch
a large and dynamic visual map is intrinsically ambiguous,
since more than one map-locations can exhibit the same visual
appearance as the current image observed by the robot. Most
existing approaches are passive, i.e., they do not devise any
strategy to resolve this ambiguity. In this work, we presentan
active vision-based localization and navigation strategy that can
disambiguate the true initial location among possible hypotheses
by controlling the mobile observer across a sequence of highly
distinctive images, while concurrently navigating towards the
target image. The performance of our active localization and
navigation algorithm is demonstrated experimentally on a robot
moving within a large outdoor environment.

I. I NTRODUCTION

In order for a robot to autonomously navigate towards
a target location, it must be able to solve a set of related
sub-tasks; first, it mustglobally localizeitself, i.e., it must
estimate its location with respect to some environment rep-
resentation (map) from little or no a priori pose information.
Second, it mustplan a pathto the target and, finally, it has
to reliably navigatealong the path.

In order to achieve the above goals, robots often rely
on GPS. However, GPS cannot be used for navigating
indoors or in urban environments with tall buildings, due
to the limited or absent line-of-sight to satellites. Time-
of-flight laser scanners have also been used, but they are
expensive, and their weight, volume, and power requirements
limit their use to large-size robots. Finally, disambiguating
between map locations using laser data is very challenging,
especially when planar laser scanners are used. Instead, we
are here interested in using vision sensors that are more
informative, increasingly inexpensive, quite compact andcan
be used for large-scale map-based localization [1], [2]. In
particular, in this work we are focusing on the problem
of robot localization and navigation using a visual map
(constructed from a pre-recorded sequence of images) of
the area it navigates in. Robot localization in a large visual
map exhibits several challenges. Among these isperceptual
aliasing, which happens when the image database contains
similarly appearing locations, and results in more than one
location having the same visual appearance as the current
robot image. As a consequence, location recognition from a
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singlequery image is often not sufficient to uniquely localize
the robot within the visual map. Instead, it will only provide
a set ofcandidatelocations (or hypotheses).

Most existing approaches that deal with this issue are
passive, i.e., they do not control the camera/robot towards
additional non-ambiguous observations that will help to dis-
criminate the true initial location among possible hypotheses.

In order to address the problem of perceptual aliasing,
in this paper we present a newactive localization strategy
that can uniquely localize the camera/robot in a largevisual-
memorymap (organized as a Vocabulary Tree - VT [2]),
while visually navigating to a target image through highly-
distinctive image paths. The first innovative contribution
of this work is in the design of a sequential Bayesian
approach that can discard false location candidates by col-
lecting additional observations during the robot motion. The
second contribution is the design of a path planning strategy
based on entropy that guides the robot towards the target
image across highly distinctive (i.e., low-entropy) images in
a graph representation of the VT. The main advantages of
this approach are the ability to discriminate the true robot
location among multiple hypotheses, as well as increased
robustness when re-localization is necessary. It is important
to note that our active strategy is here applied to the case
when no 3D scene or camera pose-prior is available, but
can be easily extended to use such additional information.
The performance of our vision-based active localization and
navigation algorithm is demonstrated experimentally on a
robot moving in a large outdoor environment.

The remainder of the paper is organized as follows. In
Section II, we begin with an overview of the related litera-
ture. Section III presents a summary of the proposed active-
localization and navigation algorithm. Section IV describes
the proposed location-recognition algorithm using the VT.
Our entropy-based planning and the navigation strategy are
presented in Section V. Section VI describes the sequential
Bayesian approach for location discrimination. Experiments
are presented in Section VII. Finally, conclusions and future
research directions are discussed in Section VIII.

II. RELATED WORK

In what follows, we provide an overview of the rep-
resentative literature on localization and navigation based
on image collections, and compare our contribution with
relevant approaches.

Royer et al. [3] presented a strategy for autonomous
vision-based navigation along a previously learned path. The
image features tracked in the training video are used to



compute off-line aglobal 3D map of the environment. When
re-navigating the learned path, the robot computes its pose
from 3D-to-2D correspondences between the map and the
observed scene, respectively. Fontanelliet al. [4] recently
presented a similar strategy to visually navigate the robot
across a path connecting totally different initial and desired
views. While their navigation approach can deal with the
field-of-view constraints imposed by monocular cameras,
their localization algorithm also requires anaccurate 3D
global map of this large environment.

Goedeméet al. [5] relaxed the above assumptions and
built a wheelchair robotic system that can automatically
navigate in a pre-computed visual map made of a sparse
set of panoramic images. However, and differently from our
approach, their navigation strategy uses the relative camera
orientation and the (scaled) translation computed from epipo-
lar geometry decomposition, which can be sensitive to image
noise [6]. In addition, their algorithm still requires an on-line
estimate of the 3Dlocal map of the observed scene.

In general, 3D map- and pose-reconstruction is not nec-
essary, since moving from one reference image to the next
can also be done by relyingsolelyon visual information [7].
Recently, an interesting quantitative comparison of the per-
formance of some appearance-based controllers has been
presented by Cherubiniet al. [8]. However, all of these con-
trollers assume that the camera/robot is moving with positive
linear velocity. Additionally, an estimate of the distanceto
each observed feature is still necessary, thus affecting the
convergence properties of the proposed strategies. In [9],the
authors present an image-based robot navigation strategy that
uses visual memory. Their closed-loop control law does not
require global 3D reconstruction. However, and differently
from our approach, their strategy does not make use of any
efficient and scalable vocabulary tree (VT) scheme.

As an extension over the previous approaches, Fraundorfer
et al. presented in [10] a vision-based localization algorithm
that globally localizes the robot using a VT and allows the
robot to navigate a large image map. This visual-memory
map is represented as a graph, in which nodes correspond
to training images, and links connect similar images. How-
ever, their navigation strategy does not guarantee asymptotic
convergence to the next node. Moreover, their experimental
results are limited to the case of a robot navigating along a
limited indoor path.

At this point, it is important to remark a key difference
betweenall previous approaches and our strategy: They are
passive, i.e., they do not control the mobile observer to
actively seek new images that can reduce the localization
ambiguity caused by different locations exhibiting similar
visual appearance. In contrast, addressing the problem of
perceptual aliasing by actively controlling the robot/camera is
our main contribution. Specifically, we introduce a planning
strategy that allows the robot to visually explore those image
paths that maximize discriminability, while leading to the
target image. As new distinctive images are collected, a
sequential Bayesian approach is used to infer the most likely
robot location in a graph representation of the VT. In this

regard, our work is also relevant to the literature in active
localization and vision-based location recognition.

In [11], Jensfeltet al. presented an active global localiza-
tion strategy that uses Kalman filtering (KF) to track multiple
robot pose hypotheses. This is done jointly with a proba-
bilistic approach for evaluating hypothesis correctness.Their
approach provides improvements over traditional grid-based
strategies [12] because it can be used even with incomplete
maps and with computational complexity independent on the
size of the environment. However, a key difference to our
work is that their navigation strategy simply guides the robot
to places with a high concentration of map features, without
taking into account their distinguishability.

Arbel and Ferrie presented in [13] a gaze-planning strategy
that moves the camera to another viewpoint around an object
in order to recognize it. The new measurements, accumulated
over time, are used in a one-step-ahead Bayesian approach
that resolves the object recognition ambiguity, while navigat-
ing an entropy map. Differently from their work, our proba-
bilistic approach seeks informative images over anextended
time-horizon. More recently, LaPorteet al. [14] proposed
a computationally efficient viewpoint-selection strategythat,
jointly with sequential Bayesian recognition, can disam-
biguate among competing hypotheses on both object class
and pose. However, and differently from the two strategies
described above, our approach can visually navigate the
robot to the target image without requiring any camera pose
information.

Other researchers recently proposed to address the prob-
lem of image ambiguity in location recognition, by either
querying twice the VT (in order to detect at the second time
more distinctive features) [15], or by incorporating additional
knowledge about the camera location among consecutive
images [16]. Such additional information can also be used in
our algorithm. However, to the best of our knowledge, our
work is the first to introduce active localization in a large
image database, that seeks to guide the robot towards the
target through a path of highly-distinctive images.

III. A LGORITHM DESCRIPTION

Fig. 1 shows the block diagram of the proposed active-
localization algorithm.

We hereafter assume that the robot has previously vis-
ited the environment and has collected a set oftraining
images, {Ii} (i = 1, ..., N). All of these training images
are used to create thevisual-memorymap: Specifically, a
set of SIFT image descriptors1 {Zi} is first extracted off-
line from all the images and is used to build the VT (cf.
Sec. IV). Then, and similarly to [5], [9], [10], a graph
representation,G, is obtained from this image collection by
linking two nodes/images that share a minimum number of
SIFT matches, thus indicating the possibility for the robotto
visually navigate among similar images. In order to measure
the distinctiveness of an image in the VT, an entropy measure
is computed and assigned to each node.

1Our method uses SIFT keypoints [17], [18], but can be extended to use
other types of descriptors.
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Fig. 1. Block diagram of our active vision-based localization in a visual
map.

After this initial (off-line) phase, the robot is powered
up somewhere in the environment and the active global
localization phase starts. First, the on-board camera takes an
initial image I0 and the SIFT descriptors,Z0, are extracted
from it and used to query the VT (cf. Sec. IV) to find the
most similar candidate image in the visual map. Due to
perceptual aliasing, this query may return aset ofM0 similar
candidate images{Ij , j =1, ...,M0}⊂{I1, ..., IN}, M0 <

N , and the corresponding set ofcandidatenode locations
{xj ∈ IN, j = 1, ...,M0} ⊂ {1, ..., N}. We will represent
a candidate location with the random variableX0. For
example, in Fig. 1,M0 = 2 andX0 ∈ {x1, x2} = {2, 16}.

After this global localization phase, a planning algorithm
is used on the entropy-weighted graphG, to find the least
unambiguous image-pathPj , from each candidatexj to the
goal node2 x∗ [cf. Sec. V]. Among all theM0 possible paths,
only the one with the lowest entropy,̂P , is selected and the
image-based navigationalgorithm starts to guide the robot
across images in̂P .

As the robot moves from time stept = 1 to an interme-
diate time stept = T , a set of new SIFT-descriptor mea-
surementsZ1:T , {Z1, ..., ZT } is extracted from each new
image and used to computep(X0|Z0:T ), i.e., the probability
that the robot started from one of the initial candidate
locations (or hypotheses). We do this by adoptingBayesian
smoothing [19] over the set of the initialM0 location
hypotheses forX0 (cf. Sec. VI). At timeT , if the point of
maximum of the posterior pdf still coincides with the index
of the initially-chosen hypothesis for the starting location,
then the visual navigation continues to the next node, and

2We assume that the target imageI∗ is not ambiguous, so that the
correspondingx∗ is unique.

so on until the robot reachesx∗. Otherwise, the robot first
visually navigates back to the initial image and then restarts
the navigation process using a different hypothesis for the
starting location.

Note that, instead of navigating back toI0, we could
have chosen to re-plan the robot’s path starting from the
current location where it first realized the initial hypothesis
was wrong. However, we chose not to do so for the following
reasons:(i) our active localization strategy can rapidly detect
a wrong hypothesis [cf. Sec. VII], so that the robot only
needs to move back few steps;(ii) tracing back a traveled
path is more robust compared to exploring a new (possible)
path to the goal;(iii) fewer computations are required, since
the paths from all the initial hypotheses have already been
computed.

IV. L OCATION RECOGNITION USING A VOCABULARY

TREE

Given an initial imageI0, our first step towards solving the
global localization problem is to useZ0 to query the visual
map to find the most similar image. For this purpose, we
employ a vocabulary-tree approach [2], due to its efficiency
and speed, as well as its compact image representation and
robustness to background clutter and occlusions. Our global
localization algorithm uses a set of SIFT descriptorsZ0 to
query the VT in order to determineX0, i.e., the location
(node) index of the training images most similar toI0.

We have used a tree with depthL = 4 and branching
factork = 10. The leaves of the tree correspond to quantized
SIFT descriptors (visual words) obtained by clustering (with
hierarchicalk−means) all of the training data{Zi}i=1,...,N .
To each leaf node we assign a list of indices of the training
images that had at least one descriptor assigned to it; this
constitutes theinverted file [20]. Next, for each training
imageIi, a sparsedocument vectorvdi ∈ INW , i = 1, ..., N ,
is created (withW = kL). Each entry ofvdi contains
the number of descriptor vectorsZi with a path through
the corresponding leaf node, weighted using the inverse-
document-frequency (IDF) [2]. The setZ0 of descriptors
extracted from robot’s current imageI0 is used to obtain the
query vectorv0 ∈ INW . After normalizing the vectorsvdi

and v0, we compute theirL2 distanced0,i = ‖v0 − vdi‖2,
and use it as their similarity score. The output of each query
process can be summarized by this score function that is
defined over the domain of all theN training image indices.

In an ideal case, if queried with an imageI0 = Ii,
this score function will exhibit a unique peak localized at
the indexX0 = i. However, due to presence of dynamic or
commonly occurring objects (e.g., floor, brick walls, etc.)as
well as changes in illumination and viewpoint, the similarity
score may exhibit multiple peaks (see Fig. 2) or even a
uniform distribution over a wide range of indices. These
represent indeed the cases in which it is extremely difficult
to uniquely localize the query image in the database. Fig. 3
shows an example in which the effects of perceptual aliasing
are evident.
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Fig. 2. Location recognition using a vocabulary tree with aunique
match (indoor sequence). (a) The initial imageI0 is used to query the
VT (N = 188); (b) The resulting normalized score function shows only
one candidate node (X0 = 38) that exceeds a preset threshold (percentage
of the maximum value). (c) The corresponding training imageI38, which
is very similar toI0.

Note that the effect of perceptual aliasing may be reduced
by using additional information (e.g., epipolar geometry
constraints [15], [16]). However, there exists no method that
can guarantee that the images will be matched unequivocally.
To address this issue, in what follows we present our
active-localization-based approach that controls the path of
the robot so as to maximize the information acquired for
disambiguating its location.

V. A PPEARANCE-BASED PATH-PLANNING AND

NAVIGATION IN THE ENTROPY SPACE

In this section, we present a new strategy to plan a non-
ambiguous visual path, from an initial imageI0 to a target
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Fig. 3. Location recognition using a vocabulary tree withmultiple matches
(outdoor sequence). (a) Query imageI0; (b) The score function shows two
candidatesX0 = {x1, x2} = {64, 88}; (c)-(d) While I64 appears very
similar toI0, I88 does not. However, both images have very similar feature
representation in the VT.

imageI∗.

Similarly to previous works [10], [5], we use a graph
representationG = (V, E) of the image collection (see
Fig. 1), in which each nodei ∈ V is associated to a
training imageIi, (i = 1, ..., N). Moreover, a link between
two nodes is established when the associated images share
a minimum number of SIFT keypoint matches (20, in our
implementation), thus indicating that the robot can effectively
servo between the two associated images. Once the graph
G = (V, E) is built, then it can be used to compute a
traversable path from the starting to the target node/image.

A possible path-planning strategy would be to apply
Dijkstra’s algorithm [19] on the graphG using as distance
between two nodes the inverse of the number of SIFT
matches. However, such strategy cannot cope with perceptual
aliasing. As an illustrative example, consider the case of
Fig. 4 where a sequence of images was taken in front of two
similarly-appearing buildings. Even if the image-pairs along
the pathP1 (dashed thick curve) share (among them) a large
number of SIFT matches (s↑), navigation through the setA
can be confused with going through setB. This ambiguity
can negatively affect the navigation performance, for exam-
ple, when the robot needs to re-localize after unexpected
disturbances (e.g., sudden illumination changes, image blur,
etc.). If this re-localization process takes place within one
of these ambiguous image sets, then the robot might start to
follow erroneous paths that will drive it far from its goal.

In order to address this challenge, we propose to augment
the graph with information, assigned to the edge weights in
G, about the entropy of the training images, and use it to plan
a path through the most distinctive (i.e., low entropy) images.
In the example of Fig. 4,P2 (continuous thick curve) will be
chosen as the least ambiguous path, since its edge weights
have low-entropy valuesw. In contrast, the edge weights for
the images in the A- and B-segments of pathP1 have high
values ofw (not shown in figure due to limited space).

The main steps of this algorithm are detailed hereafter.
Specifically, to each nodei = 1, ..., N we assign a score that
measures thedistinctivenessof each node/image in the entire
vocabulary tree. This score is given by theentropyHi ∈ IR,

P2

P1

A B

w↓

w↓w↓

w↓

s↑s↑s↑s↑s↑s↑s↑s↑s↑

treesbuilding

Fig. 4. The sets of views A and B along the pathP1 (dashed thick curve)
contain ambiguous images of two identical buildings. By using the entropy
measure for setting the weights of the graph links (continuous black lines),
the planner will correctly discard the ambiguous pathP1 (even if its images
contain a large number of SIFT descriptorss↑). Instead, it will select path
P2 (continuous thick curve) whose edges have low values of entropy (w↓).



defined as

Hi , H(X |Zi) =−
N∑

j=1

p(X=j|Zi)· logp(X=j|Zi), (1)

wherep(X |Zi) is obtained as the result of querying the VT
with each training imageIi over all the graph nodesX = j,
(j = 1, ..., N). The result of the query is then normalized so
as to represent a pdf.

A low value of entropy indicates a highly-distinctive
image, while higher entropy values indicate a node associated
to an image similar to many others (i.e., not an informative
image). The entropyHi is then used to compute an entropy-
related weightwij for each edge inE between two nodes
(i, j) that share a minimum number of SIFT descriptors.
Each weightwij is computed as the average of the entropy
at the nodesi andj, i.e.,3

wij =
Hi + Hj

2
. (2)

Once the edge weightswij are computed, Dijkstra’s algo-
rithm is used to select the least uncertain pathP̂ .

So far we have considered the case of a single hypothesis
for the initial location. Whenmultiple initial-location can-
didatesX0 = {x1, x2, ..., xM0

} exist, we follow the same
procedure described above to compute the weightswij for
G. Next, Dijkstra’s algorithm is used to compute a set ofM0

possible paths, for all the initial hypotheses inX0. Finally,
only the pathP̂ with the minimum entropy is chosen.

A. Image-based Visual Route Navigation

Once the candidate routêP is generated, a vision-based
navigation strategy is used to navigate to the next node/image
and towards the goal. To achieve this, we use our epipole-
based visual servoing (IBVS) algorithm described in [21].
This algorithm has certain desirable advantages compared to
alternative approaches. In particular, it is free from local min-
ima and singularities (typically encountered in other IBVS
schemes based on image Jacobians [7], [8]). Secondly, it does
not require any additional geometric knowledge about the 3D
scene. Finally, it guaranteesglobal asymptotic convergence
to the desired configuration, even in the case of unknown
focal length.

VI. L OCATION DISCRIMINATION

Among the set of candidate paths{P0,P1, ...,PM0
} (each

of them made of highly distinctive images), the strategy
proposed in the previous section selects the pathP̂ that is
the least ambiguous path to travel. As the robot navigates
along P̂, additional information is still needed in order to
uniquely discriminate the correctinitial robot locationamong
all theM0 initial hypotheses inX0. In order to discriminate
the assumed initial location in the visual map, our active
strategy collects additional images from the moving on-board
camera. This new data is used in a sequential Bayesian

3Note that the sum of the weights from an initial to a final node equals
the sum of the entropies of all the intermediate nodes plus a constant term
equal to the average entropy of the initial and final nodes.

approach whose goal is to maximize the belief overX0

for the initial location. In particular, as the robot moves,
the camera collectsnew measurements,Z0:T , that are used
to evaluate the posteriorp(X0|Z0:T ), by formulating our
problem as Bayesian smoothing [19]:

p(X0|Z0:T ) =
p(X0, Z0, Z1:T )

p(Z0, Z1:T )

=
p(Z1:T |X0)p(X0|Z0)

p(Z1:T |Z0)

∝ p(X0|Z0) p(Z1:T |X0) , (3)

where p(X0|Z0) is the prior pdf over the domain of the
candidate nodesX0, given the initial image. We assume
p(X0|Z0) is uniform, due to the selection of the initial
location candidates by thresholding the normalized score
function (cf. Sec. IV)4. This choice reflects the assumption
that all the hypothesesX0 have the same probability. While
this assumption might change when other measurements are
available (e.g., SIFT matches), we note that this will not
cancel perceptual aliasing. The likelihoodp(Z1:T |X0) in (3)
can be written as

p(Z1:T |X0) =
∑

X1

p(Z1:T |X1, X0) p(X1|X0) , (4)

whereX1 represents the nodes that can be reached by the
robot starting fromX0 through visual servoing.5 Employing
the Markov assumption, (4) can be written as

p(Z1:T |X0) =
∑

X1

p(Z1|X1) p(Z2:T |X1) p(X1|X0). (5)

Note that p(X1|X0) represents the motion model in the
planned path from nodes inX0 to nodes inX1. Since the
motion is planned on a graph, and the visual servo algorithm
is globally convergent [cf. Sec. V-A], we can assume that this
is also uniform over all possible nodes inX1 linked to nodes
in X0. p(Z2:T |X1) represents the recursive call to (5) itself.

The pdf p(Z1|X1) in (5) represents the measurement
likelihood. In order to find an expression for it, consider the
case in which the robot has moved to a specific node inX1.
In this case, a vocabulary-tree query using the current camera
measurementsZ1 will return a normalized score function that
matches with the one obtained by querying the VT using the
training measurementsZ1 (associated with a specific node
in X1). We use the Jeffrey divergenceJ [14] as a distance
measure between the expected queryh′ , p(X1|Z1) and the
current oneh , p(X1|Z1), i.e.,

J(h||h′) = D(h||h′) + D(h′||h) (6)

where D(h||h′) is the Kullback-Leibler divergence [22]
given by

D(h||h′) =
∑

X1

h(X1) log
h(X1)

h′(X1)
, (7)

4In our case the threshold is set as a percentage of the maximumvalue
of the score function.

5In our implementation we considered nodes in the graph connected with
X0 up to distance 2.



and finally we can model the likelihoodp(Z1|X1) as

p(Z1|X1) =
1√
2π

e
−J(h||h′)2

2 . (8)

The peak of the posterior distributionp(X0|Z0:T ) com-
puted as in (3) from (4)-(8), will most likely be at the node
hypothesisxj which corresponds to the true initial location
of the robot. In case that this value is different from the initial
hypothesis selected for starting the path, the robot will use
the images stored up toT to servo back to the initial image,
and start to navigate along the new path which hasxj as its
initial node.

VII. E XPERIMENTAL RESULTS

In this section, we present experimental results to test
the effectiveness of the proposed localization and image-
based navigation algorithms. Our experimental platform is
a nonholonomic Pioneer 3-DX. Our robot is only equipped
with a IEEE 1394 camera that captures in real-time1024×
768 pixel images.

A. Vision-based localization performance

We first present the performance of the initial global
localization algorithm using the VT. The robot was driven
to capture two sets of images, from an indoor (office) and
an outdoor sequence. In particular, the latter one is of
approximately 200 m, with changing sunlight conditions due
to trees and building shadows.

For each image sequence, a vocabulary tree is generated
(k = 10, L = 4). Then, for a given number of realizations
and for an increasing number of SIFT descriptors (randomly-
chosen for each database image), the VT was queried and
the best matching image obtained. The percentage of success
in localizing the correct image for the office sequence is
depicted in Fig. 5(a) and, as expected, shows that the best
retrieval performance (97%) is obtained whenall the descrip-
tors in the image are used for the query. By decreasing the
number of descriptors, the retrieval performances degraded
to 70%. Similar performances is observed for the outdoor
sequence (see Fig. 5(b)).

We also implemented astop-list [2] which penalizes
those images from the query that have a high number of
descriptors commonly occurring in the database (e.g., carpet
or pavement textures). This is done by blocking from scoring
those inverted files that are above a certain length. In our
implementation, the use of a stop-list led to an improvement
in the retrieval quality, as shown in our results.

The obtained results suggest that trying to reduce the
query time to the VT by decreasing the number of SIFT
descriptors used, will increase the risk of perceptual aliasing,
thus motivating the use of ouractive localization strategy.
Other approaches (e.g., stop-list) can only alleviate, butnot
eliminate, the perceptual aliasing.

B. Active path planning and navigation

We hereafter present the results obtained for all three
phases (location recognition, path planning and visual nav-
igation) of our active localization algorithm (Sec. VI). In

particular, we present two experiments that are representative
of the single- and multiple-location candidate cases, respec-
tively. The vocabulary tree used in this case is the same one
generated for the results described in Sec. VII-A.

In the first experiment, the camera/robot observes an initial
image I0 that is uniquely associated by the VT to node
54 in the graph (see Fig. 6(a)). Starting from this node,
Dijkstra’s algorithm computes a pathP to the desired image
I∗ (node88) comprising a sequence of indices of images to
be visually navigated. The resulting robot/camera motion is
shown in Fig. 6(a), superimposed to the satellite view of the
experimental site.

In the second experiment, we consider the case in which
the localization algorithm, queried with the initial viewI0,
provides two initial view hypotheses,I1 and I68, corre-
sponding to the two nodesx1 = 1 and x2 = 68 in the
graph (see Fig. 6(b)) (the correct result from the query
should have beenx1). For each candidate, a path towards
the desired image in the topological graph is generated and
x2 is erroneously selected as the hypothesis for the robot’s
initial location. Consequently, the patĥP = P2 is used for
navigating towards the goal. This wrong initial belief on
the robot’s initial location makes the robot move forward
(and away from the goal imageI∗), as it would have been
necessary for going fromI68 to I∗. This (initial) phase
shows that perceptual aliasing can indeed defeat a simplistic
visual navigation basedonly on queries to a VT. The forward
motion for T = 2 steps is represented in the inset of
Fig. 6(b). At this point, as described in Sec. VI, our Bayesian
approach uses the collected dataZ0:2 and evaluates the
posteriorp(X0|Z0:2) for each of the two candidate nodes (cf.
Sec. VI). This yieldsp(X0|Z0:2) = {0.938, 0.062}, which
clearly indicates that the initial node locationx1 = 1 was
the correct hypothesis (instead ofx2 = 68). The robot then
visually navigates back to the initial image and selects the
correct pathP1, which finally leads the robot toI∗, as shown
in the bottom trajectory of Fig. 6(b).

Table I contains the posterior distributionp(X0|Z0:T )
obtained for increasing timeT and shows that the probability
of the correct locationx1 increases rapidly as more images
are considered for computing the posterior distribution.

VIII. C ONCLUSIONS

Location recognition in large and dynamic environments is
intrinsically ambiguous. Existing approaches do not exploit
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Fig. 5. Localization performance. (a) Office sequence: percentage of
success; (b) Outdoor sequence: percentage of success.
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Fig. 6. Experimental results: (a) In the first experiment the initial image
is correctly retrieved and a path generated. The robot then navigates (red
line) along the selected way-points comprising the least ambiguous path.
(b) In the second experiment the initial imageI0 currently observed by
the robot has two possible matches in the database, images{I1, I68}.
Bayesian smoothing estimation is used to discriminate the correct position
after T = 2 robot motion steps.

p(X0 = x1|Z0:T ) p(X0 = x2|Z0:T )

T=0 0.5 0.5

T=1 0.820 0.180

T=2 0.938 0.062

T=3 0.962 0.038

T=4 0.976 0.024

TABLE I

POSTERIOR PDF FOR INCREASING TIMET , OVER THE DOMAIN OF ALL

(M0 = 2 IN THIS CASE) CANDIDATE NODES.

the possibility of controlling the camera/robot and do not
leverage new camera measurements to disambiguate the true
initial robot location. In this work, we presented a new
method for active robot localization, planning, and navigation
in a large-scale image map (represented as a vocabulary tree).
In particular, we adopted a sequential Bayesian approach
that allows us to eliminate the localization ambiguity by
exploiting additional camera measurements over an extended
time horizon, while navigating towards a target image, and
along a non-ambiguous (i.e., low entropy) visual path. The
performance of our localization, planning and navigation

algorithms is demonstrated experimentally on a robot moving
in a large outdoor scenario.

Our future work will address the extension of our exper-
imental results to a city-scale scenario as well as to visit
previously unexplored locations. We are also planning to
design new methods for graph representation of the visual
map that will include both geometric constraints between
images, as well as discriminative features [16].
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