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Abstract— We present a new strategy for active vision-based singlequery image is often not sufficient to uniquely localize

localization and navigation of a mobile robot in a visual the robot within the visual map. Instead, it will only proeid

memory, i.e., within a previously-visited area representeé as . .
a large collection of images. Vision-based localization isuch a set ofcar?dlldatelocatlons (or hypotheses). o
a large and dynamic visual map is intrinsically ambiguous, Most existing approaches that deal with this issue are

since more than one map-locations can exhibit the same vislia passive i.e., they do not control the camera/robot towards
appearance as the current image observed by the robot. Most 5qgitional non-ambiguous observations that will help ®- di

existing approaches are passive, i.e., they do not deviseyan . . LS - .
strategy to resolve this ambiguity. In this work, we presentan criminate the true initial location among possible hypsts

active vision-based localization and navigation strategy that ca In order to address the problem of perceptual aliasing,
disambiguate the true initial location among possible hyptheses  in this paper we present a nesctive localization strategy

by controlling the mobile observer across a sequence of high : : : . i}
distinctive images, while concurrently navigating towards the that can uniquely localize the camera/robot in a larigeal

target image. The performance of our active localization ad ~Memorymap (organized as a Vocabulary Tree - VT [2]),
navigation algorithm is demonstrated experimentally on a pbot ~ while visually navigating to a target image through highly-
moving within a large outdoor environment. distinctive image paths. The first innovative contribution
of this work is in the design of a sequential Bayesian
. approach that can discard false location candidates by col-
In order fof a r_obot 1o autonomously navigate towardsf; cting additional observations during the robot motioheT
a target Iocgtlor!, it must be able t,o §0Ive a Set, of relate§e<:ond contribution is the design of a path planning styateg
sut_)-tasks_; first, 't. musglobally localizeitself, €., It mMUSt pased on entropy that guides the robot towards the target
estimate its location with respect to some environment re'?rhage across highly distinctive (i.e., low-entropy) image
resentation (map) from little or no a priori pose informatio , o5 representation of the VT. The main advantages of
Secopd, I mu.splan a pathto the target and, finally, it has this approach are the ability to discriminate the true robot
to reliably nawgate.along the path. location among multiple hypotheses, as well as increased
In order to achieve the above goals, robots oftep r‘?lP/obustness when re-localization is necessary. It is inaport
on GPS. However, GPS cannot be used for navigating e that our active strategy is here applied to the case

indoors or in urban environments with tall buildings, du§, nen no 3D scene or camera pose-prior is available, but

to the limited or absent line-of-sight to satellites. Time- . g easily extended to use such additional information.

of-flight laser scanners have also been used, but they %fie performance of our vision-based active localizatiod an

gxpensn_/e,and the'”"’e'ght' volume, qnd power reqL,",re!"nerﬁavigation algorithm is demonstrated experimentally on a
limit their use to large-size robots. Finally, disambidngt o moving in a large outdoor environment

between map locations using laser data is very chaIIenging,-l-he remainder of the paper is organized as follows. In

especially_when plan_ar Ias_er scanners are used. Instead, g&tion 1, we begin with an overview of the related litera-
are herg mt_erested_ IN USIng VISion Sensors that are MQfge  section |l presents a summary of the proposed active-
informative, increasingly inexpensive, quite compact aad |, calization and navigation algorithm. Section IV desesb

be gsed fo-r Iarge-scale map-based challza'uon [11. 2] 'the proposed location-recognition algorithm using the VT.
particular, in t_hls_work we are fc_)cusmg on th? probler‘rbur entropy-based planning and the navigation strategy are
of robot localization and navigation using a V|§ua| ma"?:)resented in Section V. Section VI describes the sequential
(constructed from a pre-recorded sequence of images) §£1yesian approach for location discrimination. Experitaen

the area_it.navigates in. Robot localization in allarge \Jisuadre presented in Section VII. Finally, conclusions and eitu
map exhibits several challenges. Among thespeieptual research directions are discussed in Section VIII.
aliasing which happens when the image database contains

similarly appearing locations, and results in more than one 1. RELATED WORK
location having the same visual appearance as the currenf, \what follows, we provide an overview of the rep-

robot image. As a consequence, location recognition fromsenative literature on localization and navigationebas
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compute off-line gglobal 3D map of the environment. When regard, our work is also relevant to the literature in active
re-navigating the learned path, the robot computes its pokmalization and vision-based location recognition.
from 3D-to-2D correspondences between the map and theln [11], Jensfeltet al. presented an active global localiza-
observed scene, respectively. Fontanetlial. [4] recently tion strategy that uses Kalman filtering (KF) to track muéip
presented a similar strategy to visually navigate the robeobbot pose hypotheses. This is done jointly with a proba-
across a path connecting totally different initial and debi  bilistic approach for evaluating hypothesis correctn&seir
views. While their navigation approach can deal with th@pproach provides improvements over traditional gridedas
field-of-view constraints imposed by monocular camerastrategies [12] because it can be used even with incomplete
their localization algorithm also requires atcurate 3D maps and with computational complexity independent on the
global map of this large environment. size of the environment. However, a key difference to our

Goedemeéet al. [5] relaxed the above assumptions andwvork is that their navigation strategy simply guides theatob
built a wheelchair robotic system that can automaticallyo places with a high concentration of map features, without
navigate in a pre-computed visual map made of a spartaking into account their distinguishability.
set of panoramic images. However, and differently from our Arbel and Ferrie presented in [13] a gaze-planning strategy
approach, their navigation strategy uses the relative cmmehat moves the camera to another viewpoint around an object
orientation and the (scaled) translation computed fromp@pi in order to recognize it. The new measurements, accumulated
lar geometry decomposition, which can be sensitive to imagever time, are used in a one-step-ahead Bayesian approach
noise [6]. In addition, their algorithm still requires an-bme  that resolves the object recognition ambiguity, while gat4
estimate of the 3Docal map of the observed scene. ing an entropy map. Differently from their work, our proba-

In general, 3D map- and pose-reconstruction is not nedbilistic approach seeks informative images overeatended
essary, since moving from one reference image to the nettne-horizon More recently, LaPortet al. [14] proposed
can also be done by relyirgplelyon visual information [7]. a computationally efficient viewpoint-selection strateggt,
Recently, an interesting quantitative comparison of the pejointly with sequential Bayesian recognition, can disam-
formance of some appearance-based controllers has béddguate among competing hypotheses on both object class
presented by Cherubiet al. [8]. However, all of these con- and pose. However, and differently from the two strategies
trollers assume that the camera/robot is moving with pasiti described above, our approach can visually navigate the
linear velocity. Additionally, an estimate of the distartoe robot to the target image without requiring any camera pose
each observed feature is still necessary, thus affecting tinformation.
convergence properties of the proposed strategies. Ith®],  Other researchers recently proposed to address the prob-
authors present an image-based robot navigation stratagy tlem of image ambiguity in location recognition, by either
uses visual memory. Their closed-loop control law does nauerying twice the VT (in order to detect at the second time
require global 3D reconstruction. However, and differgntl more distinctive features) [15], or by incorporating aadigl
from our approach, their strategy does not make use of akyowledge about the camera location among consecutive
efficient and scalable vocabulary tree (VT) scheme. images [16]. Such additional information can also be used in

As an extension over the previous approaches, Fraundorfasr algorithm. However, to the best of our knowledge, our
et al. presented in [10] a vision-based localization algorithmwork is the first to introduce active localization in a large
that globally localizes the robot using a VT and allows thémage database, that seeks to guide the robot towards the
robot to navigate a large image map. This visual-memortarget through a path of highly-distinctive images.
map ?s.rep.resented as a graph, in whi_ch_ ners correspond . ALGORITHM DESCRIPTION
to training images, and links connect similar images. How- . .
ever, their navigation strategy does not guarantee asyimpto 19- 1 shows the block diagram of the proposed active-
convergence to the next node. Moreover, their experimenﬂ&c""l'zm'on algorithm. _ )
results are limited to the case of a robot navigating along a "€ hereafter assume that the robot has previously vis-
limited indoor path. !ted the gnqunment and has collected a §ettrqfn|ng

At this point, it is important to remark a key difference/M@9€$ {Zi} (i =1,...,N). All of these training images
betweenall previous approaches and our strategy: They af¥€ Used to create thesual-memorymap: Specifically, a
passive, i.e., they do not control the mobile observer tﬁ_et of SIFT image descnptoﬂs_{Zi} is first extracted off-
actively seek new images that can reduce the localizatidie from all the Images z?md is used to build the VT (cf.
ambiguity caused by different locations exhibiting simila Sec. V). Then, -and S|_m|IarIy to [_5]’_ [91, [10], a _graph
visual appearance. In contrast, addressing the problem 'GPresentationg, is obtained from this image collection by
perceptual aliasing by actively controlling the robot/eais  I"KiNg two nodes/images that share a minimum number of
our main contribution. Specifically, we introduce a plagnin S!FT matches, thus indicating the possibility for the rotoot

strategy that allows the robot to visually explore thosegea ViStally navigate among similar images. In order to measure
paths that maximize discriminability, while leading to thethe distinctiveness of an image in the VT, an entropy measure

target image. As new distinctive images are collected, § COmPuted and assigned to each node.

sequential Baygsian approach is used. to infer the mosylikel 15, method uses SIFT keypoints [17], [18], but can be extertdause
robot location in a graph representation of the VT. In thisther types of descriptors.



Initial Zo so on until the robot reaches’. Otherwise, the robot first

visually navigates back to the initial image and then réstar
Zo the navigation process using a different hypothesis for the
starting location.

Note that, instead of navigating back #, we could
have chosen to re-plan the robot’'s path starting from the
current location where it first realized the initial hyposise
was wrong. However, we chose not to do so for the following
reasons(i) our active localization strategy can rapidly detect
a wrong hypothesis [cf. Sec. VII], so that the robot only
needs to move back few step#) tracing back a traveled
path is more robust compared to exploring a new (possible)
path to the goal(iii) fewer computations are required, since
the paths from all the initial hypotheses have already been
computed.

Location recognition
with Vocabulary Tree
¢X0 e {z1, z2}={2, 16}

Path Planning
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Image-Based ayesian IV. LOCATION RECOGNITIONUSING A VOCABULARY
Navigation mboihin
g TREE

bg,izﬂ;? Given an initial imagé€, our first step towards solving the

Current global localization problem is to usg, to query the visual
map to find the most similar image. For this purpose, we
Fig. 1. Block diagram of our active vision-based localiaatin a visual employ a vocabulary-tree approach [2], due to its efficiency
map. and speed, as well as its compact image representation and
robustness to background clutter and occlusions. Our globa
I(fcalization algorithm uses a set of SIFT descript4gsto
%uery the VT in order to determin&, i.e., the location
(node) index of the training images most similarZg
We have used a tree with depfh = 4 and branching
factork = 10. The leaves of the tree correspond to quantized
%IFT descriptors (visual words) obtained by clusteringttiwi
hierarchicalk—means) all of the training dat@Z»}i:l,,,,,N.
To each leaf node we assign a list of indices of the training
images that had at least one descriptor assigned to it; this
constitutes theinverted file [20]. Next, for each training
imageZ;, a sparselocumentvectovy; € N, i=1,...,N,
is created (withi = k%). Each entry ofvy; contains
Mhe number of descriptor vectors; with a path through
the corresponding leaf node, weighted using the inverse-
document-frequency (IDF) [2]. The sé&f, of descriptors
extracted from robot’s current imadg is used to obtain the
query vectorvy, € IN". After normalizing the vectors;
andv,, we compute theill, distancedy; = ||vo — vail|?,
and use it as their similarity score. The output of each query
process can be summarized by this score function that is
defined over the domain of all th¥ training image indices.
In an ideal case, if queried with an imadgs = Z;,
éhis score function will exhibit a unique peak localized at
the indexX, = i. However, due to presence of dynamic or

Correct path

After this initial (off-line) phase, the robot is powered
up somewhere in the environment and the active glob
localization phase starts. First, the on-board camerastake
initial image Z, and the SIFT descriptors],, are extracted
from it and used to query the VT (cf. Sec. IV) to find the
most similar candidate image in the visual map. Due t
perceptual aliasing, this query may retursed of M, similar
candidate image$Z;, j=1,...Mo} C{Z1,....Zn}, Mo <
N, and the corresponding set o&ndidatenode locations
{z; e N, j=1,...Mp} C {1,....N}. We will represent
a candidate location with the random variahlg,. For
example, in Fig. 1My =2 and Xy € {z1,22} = {2,16}.

After this global localization phase, a planning algorith
is used on the entropy-weighted graghto find the least
unambiguous image-path;, from each candidate; to the
goal nodé z* [cf. Sec. V]. Among all thel/, possible paths,
only the one with the lowest entrop§, is selected and the
image-based navigatioalgorithm starts to guide the robot
across images if®.

As the robot moves from time step= 1 to an interme-
diate time stept = 7', a set of new SIFT-descriptor mea-
surementsZ,.r = {7y, ..., Zr} is extracted from each new
image and used to compupeXy|Zo.7), i.e., the probability
that the robot started from one of the initial candidat

locations (or hypotheses). We do this by adopBayesian commonly occurring objects (e.qg., floor, brick walls, etts)

smoothing [19] over the set of the initialM, location o S . . . :
hypotheses foiX, (cf. Sec. VI). At timeT', if the point of well as changes in illumination and viewpoint, the similari
0\ e ' score may exhibit multiple peaks (see Fig. 2) or even a

maximum of the posterior pdf still coincides with the index” " ST ; A
P P uniform distribution over a wide range of indices. These

of the initially-chosen hypothesis for the starting looati t indeed th i which it i ¢ v difficult
then the visual navigation continues to the next node, arGPresent Indeed the cases in which 1L1s extremely ditficu
10 uniquely localize the query image in the database. Fig. 3
2We assume that the target imagé is not ambiguous, so that the shows an example in which the effects of perceptual aliasing
correspondingz* is unique. are evident.



]4/ candidate imageI*.

&reshold

Similarly to previous works [10], [5], we use a graph
representatiorg = (V, E) of the image collection (see
Fig. 1), in which each nodé € V is associated to a
training imageZ;, (i = 1, ..., N). Moreover, a link between
two nodes is established when the associated images share
a minimum number of SIFT keypoint matches (20, in our
(b) implementation), thus indicating that the robot can effety
servo between the two associated images. Once the graph
G = (V,E) is built, then it can be used to compute a
traversable path from the starting to the target node/image

0 @ 6 100 120 0 i
# Iraimng Images

A possible path-planning strategy would be to apply
Dijkstra’s algorithm [19] on the graply using as distance
- between two nodes the inverse of the number of SIFT
Candidate imageZ(ss) matches. However, such strategy cannot cope with perdeptua
) . () N aliasing. As an illustrative example, consider the case of
Fig. 2. Location recognition using a vocabulary tree withumique . . .
match (indoor sequence). (a) The initial imageg is used to query the F_'Q-_ 4 where a sequence of images was tf_iken in fr(_)m of two
VT (N = 188); (b) The resulting normalized score function shows onlysimilarly-appearing buildings. Even if the image-pairsraj
one candidate nodeX(p = 38) that exceeds a preset threshold (percentagfhe path731 (dashed thick curve) share (among them) a Iarge
of the maximum value). (c) The corresponding training imdge, which . .
is very similar toZo. number of SIFT matches{), navigation through the set
can be confused with going through g8t This ambiguity

L can negatively affect the navigation performance, for exam
Note that the effect of perceptual aliasing may be reducizpcf 9 y 9 b

by using additional information (e.g., epipolar geometr
constraints [15], [16]). However, there exists no methaat th
can guarantee that the images will be matched unequivocal
To address this issue, in what follows we present oyr

. S ol
active-localization-based approach that controls thé pét _
the robot so as to maximize the information acquired for In order to address this challenge, we propose to augment

e, when the robot needs to re-localize after unexpected
disturbances (e.g., sudden illumination changes, image bl
tc.). If this re-localization process takes place withireo
g\f these ambiguous image sets, then the robot might start to
low erroneous paths that will drive it far from its goal.

disambiguating its location. the graph with information, assigned to the edge weights in
G, about the entropy of the training images, and use it to plan
V. APPEARANCEBASED PATH-PLANNING AND a path through the most distinctive (i.e., low entropy) iesg

NAVIGATION IN THE ENTROPY SPACE In the example of Fig. 4P, (continuous thick curve) will be

In this section, we present a new strategy to plan a noghosen as the least ambiguous path, since its edge weights

ambiguous visual path, from an initial imagg to a target have low-entropy values. In contrast, the edge weights for

S Eardias the images in the A- aqd B-segments of p@h have high
1st candidate values ofw (not shown in figure due to limited space).

e The main steps of this algorithm are detailed hereafter.

Specifically, to each node= 1, ..., N we assign a score that
measures thdistinctivenessf each node/image in the entire
vocabulary tree. This score is given by thetropy H; € IR,

w0 60 80 100
#Training Images 07 X9

©,
it

building trees

1st CandidateZ¢4) 2nd CandidateZss)

Fig. 3. Location r(ggzognition using a vocabulary S?e)ze withltiple matches ~ Fi9- 4. The sets of views A and B along the path (dashed thick curve)
(outdoor sequence). (a) Query imagg (b) The score function shows two contain amblguo_us |mages_of two identical bu_lldlngs. B)_ngshe entropy
candidatesX = {z1,z2} = {64,88}; (c)-(d) While T4 appears very Mmeasure for setting the ngghts of the gr_aph links (contusut_)lack_ lines),
similar toZo, Zss does not. However, both images have very similar featurdh® Planner will correctly discard the ambiguous p&th(even if its images
representation in the VT. contain a large nqmber of SIFT descriptars). Instead, it will select path
P2 (continuous thick curve) whose edges have low values obpnttw |).



defined as approach whose goal is to maximize the belief ovéy

B N _ B for the initial location. In particular, as the robot moves,
H; 2 H(X|Z;) :—Zp(X:ﬂZi)- logp(X=j|Z;), (1) the camera collectsew measurementsy.r, that are used
j=1 to evaluate the posterign(Xy|Zo.7), by formulating our
wherep(X|Z;) is obtained as the result of querying the VTProblem as Bayesian smoothing [19]:
with each training imagé&; over all the graph node¥ = 7, .17 _ p(Xo, Zo, Z1.7)
(j =1,...,N). The result of the query is then normalized so p(XolZor) = (Zo, Z1.7)
as';olrepreslent afpdf.t indicat highlv-distincti _ P(Z17|Xo0)p(Xo| Zo)
ow value of entropy indicates a highly-distinctive 2(Zrr | Zo)

image, while higher entropy values indicate a node assatiat
to an image similar to many others (i.e., not an informative o P(XolZo) p(Z17|Xo) (3)
image). The entropy/; is then used to compute an entropy-where p(X,|Z,) is the prior pdf over the domain of the
related weightw;; for each edge inF between two nodes candidate nodes(y, given the initial image. We assume
(i,7) that share a minimum number of SIFT descriptorsp(Xo|Zo) is uniform, due to the selection of the initial
Each weightw;; is computed as the average of the entropjocation candidates by thresholding the normalized score

at the nodes andj, i.e.? function (cf. Sec. IVj. This choice reflects the assumption
H; + H; thf’:\t all the hypothgseXo have the same probability. While
Wij = ——5 (2)  this assumption might change when other measurements are

available (e.g., SIFT matches), we note that this will not

Once the edge weights;; are computed, Dijkstra’s algo- . S .
rithm is used to select the least uncertain pAth cancel perceptual aliasing. The likelihoptZ:.r|Xo) in (3)
can be written as

So far we have considered the case of a single hypothesis
for the initial location. Whenmultiple initial-location can- p(Z1.7|X0) = Zp(Z1;T|X1,X0)p(X1|XO), (4)
didates Xy = {x1, x2, ...,zp, } €xist, we follow the same X,
procedure described above to compute the weighisfor  where X, represents the nodes that can be reached by the
G. Next, Dijkstra’s algorithm is used to compute a sef\df  robot starting fromX, through visual servoing.Employing
possible paths, for all the initial hypothesesiiy. Finally, the Markov assumption, (4) can be written as

only the pathP with the minimum entropy is chosen.
p(Z1.7|Xo) = ZP(Z1|X1)p(ZQ:T|X1)p(X1|X0)- )]
A. Image-based Visual Route Navigation X1

Once the candidate route is generated, a vision-basedNote thatp(X:|Xo) represents the motion model in the
navigation strategy is used to navigate to the next nodggmaplanned path from nodes X, to nodes inX;. Since the
and towards the goal. To achieve this, we use our epipolgotion is planned on a graph, and the visual servo algorithm
based visual servoing (IBVS) algorithm described in [21]is globally convergent [cf. Sec. V-A], we can assume that thi
This algorithm has certain desirable advantages comparedi$ also uniform over all possible nodes. linked to nodes
alternative approaches. In particular, it is free from lonm-  IN Xo. p(Z2.7|X1) represents the recursive call to (5) itself.
ima and singularities (typically encountered in other IBVS The pdf p(Z1]/X;) in (5) represents the measurement
schemes based on image Jacobians [7], [8]). Secondly,st ddikelihood. In order to find an expression for it, considee th
not require any additional geometric knowledge about the 3Base in which the robot has moved to a specific nod&;in
scene. Finally, it guaranteggobal asymptotic convergence In this case, a vocabulary-tree query using the current came
to the desired configuration, even in the case of unknowmeasurement8; will return a normalized score function that
focal length. matches with the one obtained by querying the VT using the

training measurement®; (associated with a specific node
V1. L OCATION DISCRIMINATION in X;). We use the Jeffrey divergenck[14] as a distance

Among the set of candidate patfiB,, Py, ..., Pas, } (each measure between the expected quer p(X:[Z;) and the
of them made of highly distinctive images), the strateggurrent oneh £ p(X1|Z,), i.e.,
proposed in the previous section selects the ffatthat is J(h||W) = D(R||W') + D('||h) ©6)
the least ambiguous path to travel. As the robot navigates
along P, additional information is still needed in order toWhere D(h[|h’) is the Kullback-Leibler divergence [22]
uniquely discriminate the correictitial robot locationamong ~ 9iven by
all the M, initial hypotheses inX. In order to discriminate
the assumed initial location in the visual map, our active D(h|n') = _ h(X1)log
strategy collects additional images from the moving onrtdoa X
camera. This new data is used in a sequential Bayesian

4In our case the threshold is set as a percentage of the maxiralua
3Note that the sum of the weights from an initial to a final nodeats  of the score function.
the sum of the entropies of all the intermediate nodes plusnatant term 5In our implementation we considered nodes in the graph atedevith
equal to the average entropy of the initial and final nodes. X up to distance 2.

h(X1)

h(X1) ' @



and finally we can model the likelihoge Z; | X;) as particular, we present two experiments that are repretenta
J(h||h)? qf the single- and muItipIe—Iocatiqn cgndidatg cases,@esp
Z0X0) = T 8 tively. The vocabulary tree used in this case is the same one
p(Z1}&1) N ' ®)  generated for the results described in Sec. VII-A.

The peak of the posterior distributign( Xo|Zo.+) com- In the first experiment, the camera/robot observes anlinitia

puted as in (3) from (4)-(8), will most likely be at the nodeMad€ Zo that is uniquely associated by the VT to node
hypothesisz; which corresponds to the true initial location®4 N tr]e graph (see Fig. 6(a)). Starting from th',s node,
of the robot. In case that this value is different from theiati  Diikstra’s algorithm computes a pafh to the desired image

hypothesis selected for starting the path, the robot wili usZ~ (10dess) comprising a sequence of indices of images to
the images stored up B to servo back to the initial image, be visually navigated. The resulting robot/camera motgn i

and start to navigate along the new path which haas its shown in Fig. 6(a), superimposed to the satellite view of the
initial node. experimental site.

In the second experiment, we consider the case in which

VII. EXPERIMENTAL RESULTS the localization algorithm, queried with the initial viedy,

In this section, we present experimental results to tegrovidestwo initial view hypothesesZ; and Zggs, corre-

the effectiveness of the proposed localization and imageponding to the two nodes; = 1 and 2, = 68 in the
based navigation algorithms. Our experimental platform igraph (see Fig. 6(b)) (the correct result from the query

a nonholonomic Pioneer 3-DX. Our robot is only equippedhould have been;). For each candidate, a path towards

with a IEEE 1394 camera that captures in real-tifie4 x  the desired image in the topological graph is generated and
768 pixel images. x is erroneously selected as the hypothesis for the robot’s

A. Vision-based localization performance initial location. Consequently, the path = P, is used for
We first present the performance of the initial globa avigating towards the goal. This wrong initial belief on

o . . .~ the robot’s initial location makes the robot move forward
localization algorithm using the VT. The robot was driven d f th i y it Id h b
to capture two sets of images, from an indoor (office) an&él r(l:e:SV;?y fgorm o'r? g?ri r%ma%ﬁ )I'*as'l'lh'vsv O(l'Jn't'aIa)lvehaesZn
an outdoor sequence. In particular, the latter one is cpfﬁo sthgt ercge Itgal aI'as(?frsl can :ndetled éelftlaat aps'm list
approximately 200 m, with changing sunlight conditions dug"ow ! perceptu lasing can | Mapil
to trees and building shadows. visual navigation baseahly on queries to a VT. The forward

. . tion for T = 2 steps is represented in the inset of
For each image sequence, a vocabulary tree is genera q . . . . :
(k = 10, L = 4). Then, for a given number of realizationsEg' 6(b). At this point, as described in Sec. VI, our Bayesia

. . . pproach uses the collected dafg., and evaluates the
and for an increasing number of SIFT descriptors (randoml)?(asteriom(XdZo;g) for each of the two candidate nodes (cf.

hosen f h database i , the VT ied 0|20 .
chosen for each database image), the VT was queried & c. VI). This yieldsp(Xo|Zo2) = {0.938,0.062}, which

the best matching image obtained. The percentage of succ \v indicates that the initial node location — 1
in localizing the correct image for the office sequence i early indicates that the initial node location = 1 was

depicted in Fig. 5(a) and, as expected, shows that the beldg correct hypothesis (instead_;o.j.: 68)' The robot then
retrieval performance (9%) is obtained wheall the descrip- visually nawgates_ bac_k to the initial image and selects the
tors in the image are used for the query. By decreasing tﬁg:LeCtbpc’;lttw’l,tWhIC? flnaI]IcyFIgadﬁs tt)he robot 6", as shown
number of descriptors, the retrieval performances degtadg] € bottom trajectory of Fig. 6(b).

to 70%. Similar performances is observed for the outdoor Ta_ble I cpntains_the_ posterior diStribUtioﬂXdZO:T.).
sequence (see Fig. 5(b)). obtained for increasing tim& and shows that the probability

We also implemented atop-list [2] which penalizes of the correct location:; increases rapidly as more images

those images from the query that have a high number gre considered for computing the posterior distribution.

descriptors commonly occurring in the database (e.g.etarp
or pavement textures). This is done by blocking from scoring ] o ] ) )
those inverted files that are above a certain length. In our L0cation recognition in large and dynamic environments is
implementation, the use of a stop-list led to an improvemeffitrinsically ambiguous. Existing approaches do not eiplo
in the retrieval quality, as shown in our results.
The obtained results suggest that trying to reduce th&®
query time to the VT by decreasing the number of SIFT
descriptors used, will increase the risk of perceptuakaliz
thus motivating the use of ouactive localization strategy.
Other approaches (e.g., stop-list) can only alleviate,nmit
eliminate, the perceptual aliasing. o

VIII. CONCLUSIONS

Success in image retrieval
Success in image retrieval [%]

Il stoplist: YES
[stoplist: NO 10 stoplist: NO

o

B- ACt'Ve path plannlng and naV'gat|0n F?ercenlazgae#ofSA:)I'-‘Fv:iesf:mrwptorsjl;edfor‘c’}xl)Jerying;zU F’oercemazge#c«fSMI)FTdesst,?rip(orsfjnsedfor‘sﬁjerymg‘j20
We hereafter present the results obtained for all three

) , (b)

; i ; ; Fig. 5. Localization performance(a) Office sequence: percentage of
pha_ses (location r?COthlo,n’ Path plannlng and visuat na\éuccess; (b) Outdoor sequence: percentage of success.

igation) of our active localization algorithm (Sec. VI). In



algorithms is demonstrated experimentally on a robot ngvin
in a large outdoor scenario.

Our future work will address the extension of our exper-
imental results to a city-scale scenario as well as to visit
previously unexplored locations. We are also planning to
design new methods for graph representation of the visual
map that will include both geometric constraints between
images, as well as discriminative features [16].
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