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Abstract— Correspondences between 2D lines in an image
and 3D lines in the surrounding environment can be exploited
to determine the camera’s position and attitude (pose). In this
paper, we introduce a novel approach to estimate the camera’s
pose by directly solving the corresponding least-squares prob-
lem algebraically. Specifically, the optimality conditions of the
least-squares problem form a system of polynomial equations,
which we efficiently solve through the eigendecomposition of a
so-called multiplication matrix. Contrary to existing methods,
the proposed algorithm (i) is guaranteed to find the globally
optimal estimate in the least-squares sense, (ii) does not require
initialization, and (iii) has computational cost only linear in
the number of measurements. The superior performance of
the proposed algorithm compared to previous approaches is
demonstrated through extensive simulations and experiments.

I. INTRODUCTION

Determining a camera’s position and attitude (pose) from
known 3D lines and their projections (corresponding 2D
lines) in an image has numerous applications in robot lo-
calization, computer vision, and augmented reality. While
several algorithms exist for algebraically determining a cam-
era’s pose based on line correspondences [1], [2], [3], they
are specifically designed for noise-free scenarios where the
measurement constraints are exactly satisfied. In the presence
of noise, the camera pose computed by these algorithms may
become unreliable and inaccurate, since the impact of noise
is not explicitly modeled.

On the other hand, many iterative algorithms exist which
account for measurement noise by formulating the camera
pose estimation as a nonlinear least-squares problem [4], [5],
[6]. However, these methods do not provide any guarantee
of global optimality since the iterative minimization of
least-squares cost functions only converges to a stationary
point. In fact, in the absence of accurate initialization, these
approaches often converge to a point far from the true sensor
pose. One workaround is to use the output of an algebraic
method for initializing an iterative least-squares algorithm.
This, however, inherits the unreliability of existing algebraic
methods, and does not ensure convergence to the globally
optimal solution.

To address these issues, we introduce a novel approach
that directly computes the global minimum of the nonlinear
least-squares cost for the camera’s attitude in one step
using tools from algebraic geometry. Moreover, we show
that once the sensor’s attitude is found, its position can
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be readily computed from the measurements by means of
ordinary least squares. Specifically, we first address the more
challenging task of attitude determination by considering the
optimality conditions of the least-squares problem for mini-
mizing the measurement residuals due to orientation errors.
These optimality constraints form a system of polynomial
equations, whose solutions (i.e., all critical points of the
least-squares cost function) are efficiently computed using
eigendecomposition of a so-called multiplication matrix. The
globally optimal estimates for the sensor’s orientation are
then the critical points which minimize the least-squares
cost function. In the second stage, we compute the sensor’s
position using ordinary least squares.

Our proposed approach has several advantages compared
to existing algorithms: (i) the optimality of the sensor’s
orientation estimate is guaranteed in a least-squares sense,
(i1) no initialization is required, and (iii) the computational
complexity of our approach is linear in the number of mea-
surements, whereas state-of-the-art algebraic methods have
quadratic computational complexity [3]. Furthermore, the
developed algorithm can be applied without any modification
to solve another robot localization problem, namely estimat-
ing pose from line-to-plane correspondences [7], [8]. This is
particularly useful when a 2D laser scanner is used to localize
a robot inside an a priori known building. In this case the
straight-line segments in the laser scan that correspond to the
structural planes of the building are employed to determine
the pose of the laser scanner. The details of this application
are omitted due to space considerations and the interested
reader is referred to [9].

The remainder of this paper is organized as follows.
Section II provides an overview of the related literature. Sec-
tion III presents the least-squares formulation and polynomial
optimality conditions for estimating the sensor’s orientation,
while Section IV describes the employed polynomial solver.
In Section V, a least-squares algorithm is presented to
estimate the sensor’s position given the orientation estimates.
The proposed method is validated with extensive simulations
and experiments in Section VI. Finally, conclusions and
future research directions are provided in Section VII.

II. RELATED WORK

Exploiting line correspondences to estimate camera pose
has received significant attention in the last two decades. In
one of the earliest works, Liu et al. [1] propose a method
using eight or more measurements to linearly constrain
the elements of a rotation matrix expressing the sensor’s
orientation with respect to the global frame. An up-to-
scale estimate of the rotation matrix is then obtained by



(linear) least squares, followed by a constraint to ensure
the Frobenius norm of the estimated matrix is three. This
approach, however, does not necessarily result in a proper
orthonormal matrix for noisy measurements.

In [2], Chen proposes an algebraic method to find pose
from line correspondences using only three measurements
(i.e., the minimum number of measurements required). He
also investigates the necessary conditions under which the
problem has a finite number of solutions. While the recovered
pose is precise in the noise-free case, it is highly unstable in
the presence of noise (partially due to utilization of minimal
number of measurements), and often produces complex
solutions [2]. In addition, this method cannot exploit more
than three measurements.

The state-of-the-art algebraic approach to estimate pose
from line correspondences, presented by Ansar and Dani-
ilidis in [3], employs lifting to convert the polynomials
describing four or more measurement constraints to linear
equations in the components of the rotation matrix. While
this method recovers the orientation precisely in the ab-
sence of noise, its performance degrades with increasing
measurement-noise variance, and it may even result in
complex solutions. Additionally, the lifting method is only
guaranteed to work if the polynomial system has exactly
one solution. Therefore, in singular configurations where an
observed image can correspond to multiple different camera
orientations (e.g., when the 3D lines are orthogonal to each
other [10]), this method may fail. Moreover, this algorithm
has O(N?) computational complexity in the number, N,
of line measurements used, which can be prohibitive when
processing resources are limited.

The main drawback of the aforementioned algebraic meth-
ods is that they attempt to solve measurement constraints
which are only satisfied in the absence of noise. In the
presence of noise and disturbances, however, the coefficients
of the polynomials describing the measurement constraints
are perturbed. The solutions of a perturbed polynomial sys-
tem though are extremely unreliable approximations of the
roots of the unperturbed system [11, Ch. 2]. In particular, in
many instances the solutions of the perturbed system become
complex numbers whose real parts are arbitrarily far from
the roots of the unperturbed system. To address this issue,
one must explicitly account for the measurement noise and
formulate the problem as nonlinear least squares with the
objective to minimize the measurements’ residuals.

In the literature, several iterative (linearization-based)
methods have been applied to estimate pose from line corre-
spondences based on nonlinear least-squares minimization.
Kumar and Hanson [4] present an iterative least-squares
algorithm for recovering the sensor pose. In [5], two iterative
methods based on para-perspective and weak-perspective
camera models are proposed which show better convergence
performance compared to a perspective model in the absence
of good initialization. David et al. [6] propose an iterative
method for finding the camera pose with ambiguous data
association. All these methods are iterative, and since the
nonlinear least-squares cost function is nonconvex, they may

Fig. 1. The 4-th 3D line is described in the global frame {G} by its
direction ©£;, and its moment “m; = “p; x “;, where “p; is any
arbitrary point on the line. Camera observations of the i-th 3D line can be
represented as the projection plane (colored in gray) passing through the
3D line and the optical center of the camera. This plane is described by the
normal vector “n; expressed in the camera frame. The observed 2D line
is the intersection of this plane and the image plane (colored in violet).

converge to a local minimum or a saddle point, and cannot
make any claims regarding global optimality.! Furthermore,
in the absence of a good initialization, these methods are
typically slow, and often diverge.

In order to address these limitations, in this paper we
introduce an algebraic method for solving the nonlinear least-
squares pose estimation problem from line correspondences.
The main advantages of our approach are: (i) it does not
require initialization; (ii) it guarantees the global optimality
of the estimated sensor orientation in a least-squares sense;
and (iii) it computes all possible poses, if more than one
solution exists. Specifically, we formulate the nonlinear least-
squares problem for minimizing the measurement residuals
due to orientation errors and find all its critical points by di-
rectly solving the system of polynomial equations describing
the optimality (minimization) conditions. This multivariate
polynomial system is solved in linear (in the number of
measurements) time by efficient construction and eigen-
decomposition of the so-called multiplication matrix [11].
Subsequently, the objective function is evaluated at all critical
points and the one(s) that results in the smallest cost is
selected as the global minimizer. Finally, once the sensor’s
orientation is determined, we compute its position using
linear least squares.

III. PROBLEM FORMULATION

As mentioned before the most challenging part of pose
determination from line correspondences is estimating the
camera’s attitude since it requires solving a set of nonlinear
(polynomial) equations. In the following two sections, we
present our method for estimating the camera’s attitude,
while position determination, given the estimated attitude,
is described in Section V.

We assume that N 3D lines with known coordinates (e.g.,
a priori mapped edges of doors and intersections of walls,
ceiling, and floor) and their corresponding 2D projections on

Notice that convergence to a local minimum (or generally a stationary
point) is due to the nonconvexity of the cost function (e.g., see [12]), and is
a completely separate issue from the numerical stability or the convergence
properties of these algorithms. Thus this issue cannot be addressed by using
numerically robust (e.g., conjugate-gradient type) iterative least-squares
methods.



the image plane of a pinhole camera are given. Let us define
the i-th projection plane, © = 1,...,N, as the plane that
passes through the origin of the camera and the image of the
i-th line in that camera (see Fig. 1). The normal vector of this
plane can be obtained from the line measured by the camera.
Specifically, if we represent the image of the i-th line with
polar parameters (6;, p;), then every point [u v 1]” belonging
to that line satisfies the equation u cos6; +vsinf; + p; = 0,
and “n; = [cosf; sind; p;]” is the normal vector of the
corresponding projection plane.> From Fig. 1, it is clear that
in the absence of noise, a 3D line lays on its corresponding
projection plane. Therefore, if we denote the a priori known
direction of the i-th 3D line with “#;, the unknown orien-
tation of the camera in the global frame, represented by the
rotation matrix C”, satisfies the following constraint:

“n] C%; = 0. (D)

In the presence of noise, we do not have perfect measure-

ments of “n;. Instead, we measure “n; = “n; + “n;, where

“n; is the 3 x 1 vector of zero-mean Gaussian noise with

known covariance Ry, ;. Substituting “n; in (1) yields:

Al SC%; = “nl SC%; = ;. )

The measurement residual, 7;, is a zero-mean Gaussian
random variable with variance 0? £ %] SC™ R,,; SC ;.

Given several noisy line correspondences, the objective is

to estimate {C. This can be achieved by minimizing the
following cost function:

. 1 &
¢C =argmin 520;2 (“hf C%;)° 3)
=1
subject to CTC =13, det(C) = 1. 4)

This nonlinear weighted least-squares problem for N > 3
can be solved using iterative methods such as Gauss-
Newton [13]. However, iterative approaches often converge
to local minima, and require an accurate initial estimate.
To address these limitations, we hereafter present a new
algebraic method that directly solves the nonlinear least-
squares problem without requiring initialization.

We start by expressing the orientation of the sensor using
the Cayley—Gibbs—Rodriguez (CGR) parametrization since
(i) the components of the rotation matrix are naturally
expressed as rational functions of the CGR parameters, and
(i) CGR is a minimal representation of rotation, and thus,
does not require additional constraints such as the ones in
(4) to ensure that it corresponds to a valid rotation [14]. Fur-
thermore, the CGR parametrization introduces the minimum
number of unknowns in the resulting polynomial system and
hence allows fast computation of its solutions.

In CGR representation, a rotation matrix is expressed as

C=(T5—[sx))™" (Ts+ [sx]) 5)
where s” = [s; sy s3] is the vector of CGR parameters,
p

2Throughout this paper, 4x denotes the expression of a vector x with
respect to frame { A}, 4 C is the rotation matrix rotating vectors from frame
{B} to frame {A} , and “pp is the position of the origin of frame {B}
with respect to frame {A}. I, is the n X n identity matrix, and Oy, xn, is
the m X n matrix of zeros.

and [s x| is the corresponding skew-symmetric matrix.
Equation (5) can be expanded as
C

1+sTs
Substituting this expression in the constraint equation (1),
and multiplying both sides by (1 + s”s) yields:

“nT G %, = 0. (7)
This constraint is linear in the components of C which are,
in turn, quadratic monomials in the elements of s [cf. (6)].

In the presence of noise, substituting “n; = “n; — “n; in
(7) yields

C= , C2((1—-s"s)I3+2[sx]+2ss"). (6)

‘Al SC%; =l SC% =, 8)
where the measurement residual, 7;, is a zero-mean Gaussian
random variable with variance 62 £ %! SC” R, ; ¢C ;.
Based on (8), we form the following weighted least-squares
problem for estimating § from multiple noisy line observa-
tions:

a : 1& _—2 (caT&Gp \2

s:arngmJ, J & 5;@ ( n; C Ei) .09
Compared to (3)-(4) the optimization constraint is now
removed since the Cayley transformation [cf. (5)] ensures
the orthonormality of the estimated rotation matrix. Minimiz-
ing J, however, turns out to be computationally intractable,
as the degree of the polynomials describing its optimality
conditions quickly increases with the addition of each new
measurement. For example, given three measurements, the
optimality conditions for minimization of (9) will be poly-
nomials of degree 63, while for 10 measurements, they will
be of degree 220 — 1.

To mitigate this challenge, we relax the problem by
assuming that the variance of the measurement residuals,
52, is approximately the same for all measurements. This
relaxation yields the following least-squares problem:

1ol = caTGp \2
J & 2;( n! C%)”.
To algebraically find the global minimum of (10), we first
determine all the critical points of J' by solving the following
optimality conditions [12]:

0 - 0 -

fi(s) = o5, = ; (“afC ) 2, (CA7C;) =0 (11)
for j =1,2,3 and N > 3. For this purpose, we employ the
following proposition:

Proposition 1 (Bézout Theorem [11]): Under mild condi-
tions®, a system of equations composed of n polynomials
of degrees dy,ds, - ,dy,, has dids - - - d,, distinct solutions.
In this case, all the solutions can be obtained using the
procedure described in Section IV.

As shown in [2], at least three measurements from lines
with linearly independent directions are required in order to
recover the camera’s attitude. Note, however, that the three

§ = argmin J’, (10)
£

3The conditions are (i) the system of polynomial equations has no solution
at infinity, and (ii) all solutions are of multiplicity one [11]. These conditions
are generally satisfied for the pose-from-line-correspondences problem.



optimality conditions [cf. (11)] are always cubic polynomials
regardless of the number of measurements; thus, according
to Proposition 1, the polynomial system describing the
optimality conditions has 27 solutions, each of which is a
critical point of J’. The globally optimal solutions of (10)
are the critical points that minimize .J’.*

Note that the computational complexity of solving (11)
and finding the global minimum does not increase with the
addition of measurements, since the degree and number of
polynomials expressing the optimality conditions are fixed.
Moreover, computing the contribution of all measurements
to the coefficients of the cubic polynomials f;, j = 1,2,3
increases linearly with the number of measurements.

IV. POLYNOMIAL SYSTEM SOLVER

Once the optimality conditions (11) are expressed as a
system of multivariate polynomial equations, there exist
several methods for solving them. Amongst them, numerical
methods, such as Newton-Raphson, need initialization and
may not find all the solutions. Symbolic reduction methods
based on the computation of the system’s Grobner basis are
capable of finding all roots without any initialization [11].
However, they can only be used for integer coefficients
since their application to floating-point numbers suffers from
quick accumulation of round-off errors, which in turn, results
in incorrect solutions [11]. Instead, we employ a method
developed by Auzinger and Stetter [15] that computes a
generalization of the companion matrix to systems of mul-
tivariate polynomial equations, namely the multiplication
matrix, whose eigenvalues are the roots of the associated
polynomial system. In particular, this method constructs the
multiplication matrix by means of an intermediate so-called
Macaulay matrix that was originally developed to calculate
the resultant of a system of polynomial equations [11].

In the following, we first describe a method to construct
the Macaulay matrix, and then compute the multiplication
matrix using Schur decomposition of the Macaulay matrix.
It is important to note (cf. Section IV-C) that the Macaulay
matrix needs to be constructed only once in symbolic form
(i.e., treating the coefficients of the polynomials as unknown
parameters) and then, in each realization of the problem, we
substitute the coefficients obtained from the measurements.

A. Constructing the Macaulay Matrix

We start by introducing the necessary notation and provide
a brief overview of algebraic geometry concepts that will
be used to compute the solutions of (11). For a detailed
discussion of this topic, we refer the reader to [11].

We denote a monomial in n variables by xY =
x]'x3? - -x)m, 7; € L>o, and a polynomial in n variables
with complex coefficients by f = > ;¢x%,¢c; € C. The
degree of each monomial is defined as > ;~;, and the
degree of a polynomial is the maximum degree of all its
monomials. We assume that the given system of equations
has n polynomials, denoted by f; =0, i =1,...,n, each of

4In general, when N > 3 lines are observed, there exists a unique global
minimum.

them with degree d;. We define an auxiliary linear polyno-
mial, so-called u-polynomial, as fy = ug+uix1+- - +upZp,
where u; are independently drawn random numbers. Notice
that, in general, fy will not be zero at the roots of the given
system of polynomial equations.

We proceed with defining the total degree of the system
of equations, including the auxiliary polynomial as d £
Yoiodi—n =1+3" d; —n. Then we define the set
of all possible monomials of degree less than or equal to d
as § = {xY : 3 ;v; <d}. It can be easily shown that S
has ("9) members [11]. For illustration purposes, consider
the following system of n = 2 polynomials:

fi=x1+204+5 , fo=a?+x2— 100. (12)
In this example, d; = 1 and dy = 2, and the total degree after
adding the auxiliary polynomial fy = ug + w121 + usxs is
d = 2. The set of monomials with degree less than or equal
tod=2is S ={l,x1, 12, 1172, 23, 23}

In the next step, we partition S into n+ 1 disjoint subsets:

S, ={x7 :xY €S; zd divides x7}
Sno1={x" :x" €S8, ¢ Sy; :L’Z":ll divides x7}
So=1{x" :x"eS5,¢S,,...,¢S1}

which, for the example system in (12), yields Sy =
{1’%}, 81 = {1’%,%11’2,$1}, S() = {171'2}.

Note that in this partitioning |Sy| = d1ds - - - d,,, where |- |
denotes the cardinality of a set. This is easy to see if we
consider that since xfi, i=1,...,n do not divide X7 € S,
the power ~; of each factor z; in x¥ = 2]'z3* - -- 2}~ € S
can be any integer such that 0 < «; < d;. Clearly, under
this condition there exist dyds - --d, possible choices for
vj» J = 1,...,n, and accordingly, the same number of
distinct monomials belonging to Sy. Additionally, observe
that when |Sp| > n, the set Sp contains 1 and all the mono-
mials x1,z9,...,x,. Later on, we will use this important
fact to retrieve the solutions of the polynomial system from
the eigenvectors of the multiplication matrix.

Based on Sg,..
monomials

.,Sn, we define the following sets of

:X‘YESZ‘}, 1=1,...,n, S(/):S()

and generate an extended set of polynomials by multiplying
each polynomial f; by all monomials in the correspond-
ing S;:

905 2 X" fo, j=1,...,|S|, for each x7s € &

Gnj =XTifn, j=1,...,|S,|, foreachx7i € S).

Note that by construction, we have |[SjU--- US| = |S| =
(n+d) extended polynomials. For the example system (12),



we have 8§ = {1}, &1 = {z1, 22,1}, 8 = {1, 22}, and
go,1 = Uo + U1T1 + U2T2
go,2 = UoT2 + UI1T1T2 + u2$§
gi,1 = &3 + 2xom1 + Hay
g1,2 = T1X2 + 2353 + 52
gi,3 =21+ 2x2+5
g2,1 = x% + x% — 100.

Since the members of S; have degrees less than or equal
to d, the members of S! will have degrees less than or equal
to d — d;. Therefore, all the monomials of g; ; are of degree
less than or equal to d. This enables us to express them as
a linear combination of the elements of S (recall that by
construction, S contains all the monomials with degree up
to d). We write this linear combination as the inner product
of a vector of coefficients ¢ = [c; ¢y --- ¢]7, and X7 =
[x7 x72 ... x7]|T with x7i € Sand £ £ [S| = ("H4), ie.,

5 _ AT - - /
gij=xVfi=c;x", i=0,....n, j=1,...,[S]

Stacking together all available g; ; polynomials and arrang-
ing x7 = [x® xP]”, where x® are monomials of Sy and x?
are the rest of the monomials, yields:

901 (X")] [0,
go,2(x7) .2

o= X =M =M [zﬁ} .3
g11(x")| iy a

The Macaulay matrix, M, is a square matrix of dimension
IS| = (™t?) comprising the coefficients of fo,..., fn.
This matrix produces the extended set of polynomials g; ;
from the vector of monomials x”, and plays an important
role in computing the resultant of a system of polynomial
equations [11]. In the next section, we describe the process
for extracting the multiplication matrix from the Macaulay
matrix and for finding the roots of the polynomial sys-
tem (11).

B. Computing the Roots of the Polynomial System

Let p = [p1 -+ pn|” be a solution of the system of
polynomial equations, ie., fi(p) = -+ = fu(p) = 0
[cf. (11)], and thus g11(p) = -+ = gn s, |(P) = 0 (note
that fo(p) and go;(p) are not generally zero). Denoting
the vector of monomials x7 evaluated at p as p?, and
substituting in (13), yields: N

[ 90,1.(p) 1
go,|sé(p) - M ﬁ’);} o {f"(%)pa} =M EZ] (14)
0

where by construction, [go1 -+ go,s,)]” = fox®. We
introduce the partitioning M = [ }7° 37" | where My is

of dimensions |Sp| x |Spl|, and the other submatrices are of

compatible size, and write (14) as

[fo(P) Pa] _ {MOO Moﬂ {Pa] (15)
0 My M| |p?
Employing the Schur complement of M, we obtain
folp) p* = M p* (16)

where M = Moyo —MOlMﬁlMlo has dimensions |Sp| % |So|
and is the multiplication matrix.

As evident from (16), the vector of monomials of Sy (i.e.,
x“), evaluated at a root p of the original polynomial system,
is an eigenvector of M, while fo(p) is the corresponding
eigenvalue. Therefore, to find the 27 solutions of our poly-
nomial system [cf. (11)], we first compute the eigenvectors
of M which has dimension 27. Then, considering that one
of the monomials in x® should be equal to 1, we scale the
eigenvectors such that their components corresponding to this
monomial become one. Finally, the roots of (11) appear in
the elements of the scaled eigenvectors that correspond to
the monomials x1, s, ..., T,, n = 3 in the vector x* (note
that for the case of (11) |Sp| =27 > n = 3).

C. Implementation Remarks

The method described for determining the roots of (11) can
be implemented very efficiently. Note that the construction
of the Macaulay matrix is independent of the explicit values
of each polynomial’s coefficients since the degrees of the
polynomials remain the same. Hence, although the coeffi-
cients change in each realization of the problem (as they
depend on the measurements), we can treat each coefficient
as a symbolic parameter, and construct the Macaulay matrix
(of dimension |S| = 120) as a function of these parameters
off-line (e.g., using publicly available Maple packages [16],
[17]). For each realization of the problem, we (i) replace the
symbolic parameters of the Macaulay matrix with floating-
point coefficients obtained from the measurements, (ii) com-
pute its Schur complement to obtain the multiplication matrix
M (of dimension |So| = 27), (iii) determine the eigenvectors
of M, and (iv) read the roots of (11) from the eigenvectors’
corresponding elements after scaling. Note that the 27 roots
of (11) are the critical points of (10). To find the global
minimum, we substitute them in (10) and select the one(s)
that minimizes the cost function J’.

In practice, M;; in (15) may be bad conditioned or even
rank deficient, preventing accurate computation of the Schur
complement of M. This can happen in several situations:
(i) when the u-polynomial fj is close to zero at the solution
of the polynomial system; (ii) when the rotation angle
corresponding to SC is close to 180° (leading to extremely
large CGR parameters); (iii) if the 3D line directions “£; or
the line measurements “n; have one or two zero components
(e.g., when 3D lines are aligned with the cardinal axes). The
first problem is easily addressed by re-generating another
random u-polynomial. The last two problems are resolved
by rotating the measurements or 3D lines to an arbitrary
(randomly generated) frame of reference, finding the global
minimum(s), and then rotating the solutions back to the
original frame.
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Fig. 2.

V. ESTIMATION OF SENSOR POSITION

Once the orientation of the camera is known, we can easily
compute its position, “p. using the a priori known moments
of the 3D lines, expressed in the global frame as “m; £
Sp; X ;i > 3, where “p; is any point on the 3D line (see
Fig. 1). Following the same convention, the moment of the
i-th line expressed in the camera frame is “m; = “p; x %;,
where %€; = SC %, and “p; = £C (°p; —“pc). Expanding
“m; yields:
“m; = “p; x U;

=cC(“pi — “pc) X cCU;

= gCGmZ+gC LG£1 XJGpC. (17)
Although “m; cannot be measured directly, one can easily
check that it is perpendicular to the projection plane of the
i-th line. Therefore, in the absence of noise, any point “w; =
[u; v; 1]7 that lays on the image of the i-th line, and thus
the projection plane, satisfies the constraint:

“w!“m,; = 0. (18)
In particular, if the image of the ¢-th line is parametrized
as ucos#; + vsinf; + p; = 0 (with 6; and p; computed
using least-squares line fitting [18]), then we choose “w; =
[—picosb; —p;sinf; 1]7. Substituting (17) in (18) we ob-
tain:

“wl(SCm; + SC % % |“po) = 0 (19)

where we have replaced £ C with its estimate g@ (cf. (5) and
Section IV). Given measurements to at least three lines with
linearly independent directions [2], the following system of
equations can be solved using ordinary least squares to obtain
an estimate for the camera’s position in the global frame of
reference:

cwi ¢C (% x|

C, TCYC
C — Wng m;
C T C G, A~

w3 SC | %2 x| P =

—“w3;cCmy (20)
VI. SIMULATION AND EXPERIMENTAL RESULTS
A. Simulations

We hereafter present Monte Carlo simulation results that
confirm the superior performance of our proposed pose-from-
line-correspondences algorithm over existing approaches.
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(b) (©
Monte Carlo simulation results for different standard deviations of the image noise when 5 lines are observed: (a) Average tilt-angle error;
(b) Standard deviation of the tilt-angle error; and (c) Average position error.

Specifically, we compare the error in the estimated camera
attitude obtained from each of the following algorithms:

o Lift: Lifting method of Ansar and Daniilidis [3].

o LiftLLS: Weighted least squares proposed in [4], and

initialized using the estimates from Lift.
e AlgLS: Our proposed single-step algebraic minimiza-
tion of the relaxed least-squares cost function [cf. (10)].

o GenieLS: Weighted least-squares minimization of (3)
initialized with the true orientation (used as a bench-
mark).

o IterAlgLS: Iterative algebraic minimization of the

weighted least squares cost function [cf. (9)].
Note that IterAlgLS is our proposed extension to AlgLS
for iteratively solving (9). The first iteration of IterAlgLS is
the same as AIgLS. In the following iterations, the estimated
orientation is used to approximate 57, whose inverse appears
in (9). This allows us to algebraically minimize the original
cost function in (9) in a similar way to AIgLS.

We evaluate the performance of each algorithm by com-
paring the estimated and real pose. Specifically, we use
the norm of the tilt angle error for assessing orientation
accuracy. Let us denote by C and C the true and estimated
rotation matrices, respectively. Then the orientation error is
C = C”C. After we convert C to CGR parametrization and
denote it as S, then the tilt angle error can be obtained using
the small-angle approximation as ||86|| = 2||§||. The error
in the estimated position is ||p — P||.

The simulation setup is as follows: At each trial, the
simulated pinhole camera with focal length of 512 pixels is
placed at a random position and orientation with respect to
the world. The camera measures pixelated projections of [NV
randomly generated 3D line segments of different lengths,
perturbed with i.i.d. random Gaussian noise with standard
deviation of o, pixels. A least-squares line fitting is then
employed to find the 2D line parameters p;,0; from the
pixelated line measurements.

We present two sets of simulation results. The first set
demonstrates the performance of the aforementioned meth-
ods for different standard deviations of the image noise,
op, While fixing the number of observed lines to N = 5
(Fig. 2). The second set of results evaluates performance
when varying the number of lines, N, while fixing the
standard deviation of the image noise at o, = 3 pixels. The
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Fig. 3. Monte Carlo simulation results for different numbers of detected lines when the standard deviation of the image noise is 3 pixels: (a) Average

tilt-angle error; (b) Standard deviation of the tilt-angle error; (c) Average position error.

results correspond to 1000 trials for each value of IV and o),
(Fig. 3). In all simulations, when multiple global minimizers
are obtained, we choose the one closest to the true camera
pose. This is reasonable, since in practical situations we can
often discard all but one minimizer by considering visibility
constraints and re-projection errors.

Results from both simulations confirm the superior per-
formance of our method compared to Lift and LiftLS.
Specifically, AlgLS is almost always as good as the weighted
least squares initialized with the true orientation (GenieLS).
As it is expected, Lift is the worst in terms of accuracy
since it does not account for noise. The least-squares al-
gorithm initialized with the solution of lifting, labeled as
LiftLS, has better accuracy compared to Lift; however, its
performance is significantly inferior to our proposed method
since it can diverge if its initialization is inaccurate. In
Figs. 2(a) and 2(b) it can be seen that the performance of Lift
and LiftLS quickly degrade as the image noise increases.
However, AIgLS demonstrates significantly better robustness
to noise. Similarly, Figs. 3(a) and 3(b) demonstrate that
Lift and LiftLS perform very poorly as the number of line
measurements approaches the minimum required.

Figs. 2(c) and 3(c) demonstrate the impact of estimating
pose form line correspondences in two steps (i.e., first
attitude and then position) on the performance of position es-
timation. In particular, observe that the error in the estimated
position using orientation from AIgLS is significantly lower
than Lift, and very close to the benchmark performance
TrueOrient where the true orientation is used in (20).
Finally, we point out that as evident from Figs. 2 and 3,
the results obtained by IterAlgLS do not yield significant
performance improvement compared to AIgLS.

B. Experiments

In order to validate the proposed algorithms in real
situations, we have conducted a number of experiments.
Specifically, we have taken an image of an object [wooden
cube, see Fig. 4(a)] and of an indoor scene [corner of a room,

SNote that it is also possible to use the lifting algorithm of [3] with four
lines. However, that would require a different implementation than when
five lines or more are available, and hence it is not considered here. Note
also that according to the simulation results in [3] the lifting algorithm’s
accuracy for four lines is considerably inferior to that of five or more lines.

TABLE I
COMPUTED ORIENTATION, EXPRESSED AS CGR PARAMETERS, AND
AVERAGE EXECUTION TIMES FOR “CUBE” AND “CORNER”
EXPERIMENTS USING DIFFERENT METHODS.

\ | cube (using 8 lines) [corner (using 10 lines) [exec. time |

AlgLS || [1.37 3.96 —2.51] | [0.91 1.26 —1.34] | 25 msec.
Lift [|[—6.99 3.92 —0.79]| [-2.00 11.94 27.60] | 190 msec.
LiftLS || [158 —055 0.40] | [—1.10 1.47 1.38] |194 msec.

see Fig. 4(e)] of known dimensions using an intrinsically-
calibrated Dragonfly Express camera. We have then manually
selected several lines in each image corresponding to the
3D lines with known coordinates [see Figs. 4(a) and 4(e)].
We have employed these line correspondences to estimate
the camera orientation according to the procedure outlined
in Section IV. In both experiments, four global minimizers
are found for (10) and for each of them, the corresponding
camera position is estimated (cf. Section V). Among these
candidate poses, the one that results in the scene to be in front
of the camera is selected. Using this selected pose, the known
3D lines (including the ones that were not detected before,
for example due to invisibility) are back-projected onto the
image [see Figs. 4(b) and 4(f)] to validate the obtained
results. The estimated camera poses from Lift and LiftLS
are also used to plot the (back-)projection of the known 3D
lines in Figs. 4(c), 4(g), and 4(d), 4(h), respectively. It can
be clearly seen that in this experiment both Lift and LiftL.S
result in completely wrong camera poses, possibly due to the
existence of multiple solutions for the camera orientation.
Table I provides a summary of the estimated orientations
(vector s) by different methods along with their average
execution times (for the corner and the cube experiments)
from Matlab implementations on a 2 GHz Core 2 Duo
processor. Note that the execution time of LiftLS includes
initialization by Lift.

VII. CONCLUSION

In this paper, we have presented an efficient algorithm for
precisely estimating a camera’s pose given observations of
three or more known 3D lines. Contrary to previous algebraic
approaches that solve a deterministic (noise-free) version
of this problem, our formulation explicitly accounts for the
presence of noise in the image measurements. Moreover, in
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contrast to existing nonlinear least-squares methods, which
consider noisy observations but only guarantee convergence
to a stationary point (through iterative minimization), our al-
gorithm requires no initial estimate and is guaranteed to find
the global minimum of the least-squares cost function for the
orientation error. The key idea behind our approach is that the
optimality conditions of the nonlinear least-squares problem
form a system of multivariate polynomial equations which
is directly solved, using algebraic geometry techniques, to
determine all the critical points of the cost function, and thus
the estimate (global minimum) that minimizes the orientation
error. Once the camera’s attitude is computed, its position
is then determined using ordinary (linear) least squares.
Extensive simulation and experimental results demonstrate
that our algorithm significantly outperforms existing methods
and achieves accuracy almost indistinguishable from that of
an (ideal) iterative least-squares estimator initialized with the
true camera orientation.

Currently, we are investigating efficient methods for data
association within the same framework and also extensions
that consider the presence of known points in the scene.
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