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Abstract— In this paper, we study the problem of Cooperative
Localization (CL) for two robots, each equipped with an
Inertial Measurement Unit (IMU) and a camera. We present an
algorithm that enables the robots to exploit common features,
observed over a sliding-window time horizon, in order to
improve the localization accuracy of both vehicles. In contrast
to existing CL methods, which require robot-to-robot distance
and/or bearing measurements to resolve the robots’ relative
position and orientation (pose), our approach recovers the
relative pose through indirect information from the commonly
observed features. Moreover, we analyze the system observ-
ability properties to determine how many degrees of freedom
(d.o.f.) of the relative transformation can be computed under
different measurement scenarios. Lastly, we present simulation
results to evaluate the performance of the proposed method.

I. INTRODUCTION

Teams of coordinating autonomous robots have potential
uses in many applications such as aerial surveillance [3],
search and rescue missions [22], and environmental mapping
[27]. Accurate localization, i.e., estimating the position and
orientation (pose) of each robot in the team, is a key prerequi-
site for successfully accomplishing these tasks. For instance,
during a natural disaster, such as a flood or an earthquake, it
is important to quickly locate survivors within the affected
area. A team of Unmanned Air Vehicles (UAVs), equipped
with high-resolution cameras, can be deployed to visually
surveil the area. Knowing the positions of the vehicles at
the times the images are recorded is critical for guiding the
rescue personnel to reach the injured people.

Existing navigation systems typically rely on GPS signals
for localization, however, many environments preclude the
use of GPS (e.g., in the urban canyon or under the tree
canopy). An alternative for localizing a UAV in GPS-denied
environments is to utilize onboard sensors that measure the
vehicle’s motion with respect to the surrounding environment
to track its pose. Since each UAV can be equipped with
its own sensors, one potential strategy is to have each team
member localize independently. However, if the robots coop-
erate, not only will they be more effective in accomplishing
their required tasks, but their localization accuracy will also
be improved [14]. In heterogeneous teams, this is particularly
effective since the vehicle with the least accurate sensors can
gain localization accuracy comparable to the vehicle with the
highest quality sensors.
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Fig. 1: Geometry of the trajectories of two robots navigat-
ing in 3D and acquiring visual observations of a common
landmark f . At time step k, the pose of robot Ri, i = 1,2,
with respect to the global frame of reference {G} is denoted
as {Ri,k}. (R1pR2 ,

R1
R2

C) is the relative transformation between
the robots’ initial frames {R1,1} and {R2,1}. The dashed lines
represent the camera observations.

Many existing Cooperative Localization (CL) approaches
assume that the robots can directly measure the distance
and/or bearing to each other [26]. This is a limitation, since
in many cases a direct line-of-sight requirement is hard to
satisfy, or the distance between the robots might be too large,
causing the measurement data to be inaccurate. Alternatively,
the robots can perform CL using indirect measurements, i.e.,
they can infer their relative pose by observing the same
scene features (see Fig. 1). Since in most cases a map of
the environment is not known a priori, the robots would
need to perform Cooperative Simultaneous Localization and
Mapping (C-SLAM) [6]. However, this requires them to
estimate and store a map of the environment, which is
impractical for robots with limited resources.

To address these issues, we propose a method to perform
CL in a team of vehicles, each equipped with an Iner-
tial Measurement Unit (IMU) and a camera, which avoids
building and maintaining a map of the environment. Each
robot localizes by fusing its inertial information with indirect
vision-based observations of its team members. This work
extends our Multi-State Constraint Kalman Filter (MSC-
KF) [15], to the case of two or more robots localizing
cooperatively1. The MSC-KF estimates a robot’s 3D pose by
combining visual and inertial measurements without building
a map of the environment, and has computational complexity
that is only linear in the number of features.

To this end, we introduce the Cooperative Localization
MSC-KF (CL-MSC-KF) algorithm and investigate the in-

1For the purpose of clarity, we focus on the two-robot case; however,
the results of this work can readily be extended to the case of multiple
robots.
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formation that is available to the two robots when they
observe different numbers of common features in one or
more images. The summary of this analysis is as follows: (i)
Given five or more common features at one time step, at most
five degrees of freedom (d.o.f.) of the robots’ relative pose
are observable. (ii) If at least three features can be matched in
two consecutive images, all six d.o.f. of relative pose can be
recovered. (iii) All six d.o.f. can also be determined when
at least two features are tracked in two images and each
robot measures the gravity-vector direction with its IMU.
The practical implication of this analysis is when the relative
transformation is observable, CL-MSC-KF can be effectively
utilized to provide high accuracy pose estimates for the entire
team.

The remainder of this paper is organized as follows: In
the next section, we discuss the related work on cooperative
localization and vision-aided inertial navigation. Section III
presents the CL-MSC-KF algorithm. In Section IV, we
present the observability analysis of CL based on indi-
rect visual measurements. Simulation results are shown in
Section V, which demonstrate the validity of the proposed
algorithm. Finally, in Section VI we provide our concluding
remarks and discuss future research directions.

II. RELATED WORK

A. Cooperative Localization and Mapping

Several different techniques have been developed to lo-
calize a team of cooperating robots. Kurazume et al. [9]
presented one of the earliest CL methods which relied
on coordinated motion, where some of the robots remain
stationary while the others move and use the first group
as static landmarks to improve their localization accuracy.
Similar approaches, based on specific motion strategies, have
also been presented in [19], [24]. The drawback of these
techniques is that restricting the robots’ motions may prevent
them from being used in time-critical tasks.

Howard et al. [8] proposed an algorithm to localize a
team of robots by treating the individual team members
as mobile landmarks without any motion restrictions. Us-
ing robot-to-robot relative pose observations and odometry
measurements from each robot they derived a Maximum
Likelihood estimator that jointly computes the poses of all
the robots. A Kalman filter-based approach was developed
in [20] that avoids the excessive computational complexity
of the previous method by only estimating the robots’ poses
at the current time step, and marginalizing past poses. A
Maximum a Posteriori estimator, which distributes the data
processing amongst the robot team has also been proposed
for CL [17]. A common characteristic of these methods
is that they rely on robot-to-robot distance and/or bearing
measurements. This is a limitation, since in many practical
situations, inter-robot observations may not be available (e.g.,
due to large distances or visibility constraints).

Alternatively, exteroceptive measurements of common en-
vironmental features can be used to improve the localization
accuracy of the team. For example, C-SLAM algorithms can
be utilized to create a map of the environment, which all

robots can use to perform cooperative localization (e.g., [6],
[7], [23]). However, the processing and storage require-
ments of C-SLAM depend on the map size, which may
be prohibitive for resource-constrained vehicles exploring
large areas. Furthermore, most of these methods address
the localization problem in 2D settings, which limits their
applicability in real-world scenarios that require the team to
move in 3D.

B. Visual Odometry and Vision-aided Inertial Navigation

For camera-equipped vehicles, visual odometry is an al-
ternative approach for tracking a robot’s trajectory, which
avoids estimating the landmarks’ positions. For example,
Nister et al. [18] estimate the motion of the camera by im-
posing constraints over consecutive camera poses. The main
drawback of this method is the continuous accumulation of
displacement errors for which no measure of uncertainty is
provided. For a group of UAVs [12], a homography-based
method is presented in which the observations of the com-
mon scene enables the robots to estimate their relative poses
and localize with respect to a common frame of reference.
Unfortunately, the planar scene assumption is unsuitable for
many real-world scenarios (e.g., when flying near the ground
or indoors). Moreover, since only visual information is used
to estimate motion, the above approaches may lead to large
estimation errors when no image features are extracted or
matched.

Alternatively, vision-aided inertial navigation methods
have been proposed which utilize an IMU, in addition to
a camera. For example, in [1] the information about the
rotation and the direction of translation between two vehicles
viewing a common scene is fused with IMU measurements
to estimate the relative transformation between two robots.
The formulated algorithm, however, does not localize the
robots with respect to a global frame of reference, thus,
limiting its practical applications. On the other hand, in [2]
and [4] constraints between current and past images are
combined with IMU measurements to perform single-robot
pose estimation in the global frame of reference. However,
since the constraints are only defined between pairs of
images, information is discarded when the same features are
visible in more than two images. The MSC-KF algorithm
[15], on the other hand, exploits the geometric relationship
between features observed from multiple camera poses to
constrain the robot trajectory. This provides higher estimation
accuracy in cases when a feature is observed in more than
two views. Since the landmarks’ positions are not estimated,
the computational complexity is linear in the number of
features, enabling real-time performance.

In this paper, we extend the MSC-KF algorithm to the case
of two robots performing 3D cooperative localization (termed
CL-MSC-KF). In contrast to the CL methods mentioned
above, our approach is more flexible since it utilizes indirect
relative-pose measurements, i.e., scene features visually ob-
served by both robots, instead of inter-robot measurements.
Moreover, as compared to the map-building approaches, the
processing and memory requirements of our algorithm are
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lower since we do not construct or maintain a map of the
environment. In this work, we also perform an observability
analysis to examine how many degrees of freedom of the
robots’ relative pose can be determined, under different
measurement scenarios.

III. PROBLEM FORMULATION AND SOLUTION

We begin by formulating the problem of CL for two
robots, each equipped with an IMU that measures its ro-
tational velocity and linear acceleration, and a camera that
observes point features in the environment, whose global
positions are unknown. Common visual features are tracked
by both vehicles across multiple frames in order to gain
information about the robot-to-robot transformation, and
increase their localization accuracy. In this work, we consider
a centralized estimation architecture for CL, where each
robot sends its measurements to a fusion center that processes
the data and estimates the poses of both robots. We assume
that the initial poses of the robots are approximately known,
e.g., using the method described in Section IV [see (17)],
and the data association problem is solved, e.g., using visual
feature descriptors [11] in conjunction with RANSAC.

A. State Vector

In what follows, the subscripts i and j (i, j = 1,2) corre-
spond to robots R1 or R2, while the subscript l denotes the
camera pose index. The state vector of robot Ri is2

xRi =
[

Ri
G qT bT

gi
GvT

Ri
bT

ai
GpT

Ri

]T
(1)

where Ri
G q is the unit quaternion that describes the orientation

of the global frame {G} with respect to the frame {Ri} of
robot Ri, GpRi is the position and GvRi is the velocity of Ri
expressed in {G}, and bgi and bai are the gyroscope and
accelerometer biases, respectively. Without loss of generality,
we assume that {G} coincides with the initial frame of robot
R1. The error-state vector corresponding to (1) is

x̃Ri =
[
δθ

T
Ri

b̃T
gi

GṽT
Ri

b̃T
ai

Gp̃T
Ri

]T
(2)

where δθ Ri is the angle-error vector, defined by the error
quaternion δ qRi

=
Ri
G q⊗Ri

G q̂−1'
[

1
2 δθ Ri

T 1
]T

. Here, Ri
G q̂ and

Ri
G q are the estimated and true orientation, respectively, and
the symbol ⊗ denotes quaternion multiplication [25]. For
the other terms in the error state an additive error model is
employed, i.e., the error in the estimate x̂ of a quantity x is
x̃ = x− x̂.

When either robot records a new image, the state vector
is augmented with the corresponding camera pose (see
Section III-C). This process, termed stochastic cloning [21],
enables us to apply measurement constraints across multiple
images recorded at different time instances, while correctly
accounting for the correlations in the error-state (see Section

2For the clarity of presentation, we omit the time variable from time-
varying quantities defined hereafter. Time appears when describing the
continuous-time equations of motion and the discrete-time measurement
equations.

III-D). Robot Ri’s l-th camera pose and corresponding error
vector are

xCil =
[

Cil
G qT GpT

Cil

]T
, x̃Cil =

[
δθ

T
Cil

Gp̃T
Cil

]T
(3)

where Cil
G q and GpCil denote its attitude and position, respec-

tively, and the error quantities are defined as above.
The joint state vector comprises the current states of both

robots and a history of their past camera poses

x =
[
xT

R1
xT

R2
xT

C11
. . . xT

C1N
xT

C21
. . . xT

C2M

]T
=
[
xT

R1
xT

R2
xT

C

]T
(4)

where xC is the vector containing the N+M previous camera
poses of robots R1 and R2.

B. Propagation

We now proceed with an overview of the CL-MSC-KF
algorithm. We first present the continuous-time kinematic
model of the robots’ motion. By linearizing it, we obtain
the model describing the time evolution of the error-state.
Finally, we discretize these models to obtain the equations for
propagating the state and its associated covariance estimates
using the IMU measurements.

Specifically, the system model describing the time evolu-
tion of the robot state (1) is given by

Ri
G q̇(t) =

1
2

Ω
(
ωRi(t)

)Ri
G q(t), ḃgi(t) = nwgi(t), ḃai(t) = nwai ,

Gv̇Ri(t) =
GaRi(t),

Gṗi(t) = GvRi(t) (5)

where GaRi is the acceleration of robot Ri, ωRi =
[ωxRi

ωyRi
ωzRi

]T is its rotational velocity expressed in the
local frame of robot Ri, nwgi and nwai are the zero-mean white
Gaussian random walk processes driving the IMU biases, and

Ω(ωRi)=

[−bωRi×c ωRi
−ωT

Ri
0

]
, bωRi×c=




0 −ωzRi
ωyRi

ωzRi
0 −ωxRi

−ωyRi
ωxRi

0


 .

The measured rotational velocity and linear acceleration are
modeled as ωmRi

= ωRi +bgi +ngi and amRi
= C(

Ri
G q)(GaRi −

Gg) + bai + nai , respectively. Here, C(
Ri
G q) is the rotation

matrix corresponding to the quaternion Ri
G q, ngi and nai are

zero-mean white Gaussian noise processes, and Gg is the
gravitational acceleration.

The state-estimate propagation model is obtained by lin-
earizing (5) around the current estimates and applying the
expectation operator, i.e.,

Ri
G

˙̂q(t) =
1
2

Ω
(
ω̂Ri(t)

)Ri
G q̂(t), ˙̂bgi(t) = 03×1,

˙̂bai(t) = 03×1,

G ˙̂vRi(t) = C
(Ri

G q̂(t)
)T âRi(t)+

Gg, G ˙̂pRi(t) =
Gv̂Ri(t) (6)

where âRi = amRi
− b̂ai and ω̂Ri = ωmRi

− b̂gi .
The linearized continuous-time model for the

error-state (2) is ˙̃xRi = FRi x̃Ri + GRinRi , where
nRi =

[
nT

gi
nT

wgi
nT

ai
nT

wai

]T
is the system noise

whose covariance matrix QRi depends on the IMU
noise characteristics of robot Ri and is computed off-line
[25]. The Jacobian matrices FRi and GRi are
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FRi =




−bω̂Ri×c −I3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

−C(
Ri
G q̂)T bâRi×c 03×3 03×3 −C(

Ri
G q̂)T 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 I3 03×3 03×3



,

GRi =




− I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 −C(
Ri
G q̂)T 03×3

03×3 03×3 03×3 I3

03×3 03×3 03×3 03×3




where I3 is the 3×3 identity matrix. When robot Ri records
an IMU measurement, the corresponding state estimate x̂Ri
is propagated using 4th-order Runge-Kutta numerical inte-
gration of (6). Note that the camera poses in (4) are static,
and do not change during the propagation step. To derive the
covariance propagation equations, we introduce the following
partitioning of the covariance matrix at time-step k given
IMU and camera measurements up to time-step k

Pk|k =




PR1R1 PR1R2 PR1C

PT
R1R2

PR2R2 PR2C

PT
R1C PT

R2C PCC


 (7)

where PRiR j is the 15×15 covariance/correlation matrix for
the robot error-states x̃Ri and x̃R j , and PRiC is the 15×
6(N + M) correlation matrix between x̃Ri and x̃C. Finally,
PCC is the 6(N +M)× 6(N +M) covariance matrix of the
N +M combined camera error-states x̃C for robots R1 and
R2. With this notation, the propagated covariance matrix for
both robots is given by

Pk+1|k =




Pk+1|k
R1R1

Φ1PR1R2Φ
T
2 Φ1PR1C

Φ2PT
R1R2

Φ
T
1 Pk+1|k

R2R2
Φ2PR2C

PT
R1CΦ

T
1 PT

R2CΦ
T
2 PCC




(8)

where Pk+1|k
RiRi

is the propagated covariance of the state of
robot Ri and Φi is the state-transition matrix; both quantities
are computed by numerical integration.

C. State and Covariance Augmentation

Every time a new image is recorded, the state vector is
expanded to include the pose estimate of the camera that
recorded the image. Note, that if the state already contains
the maximum number of past camera poses, the oldest one
is marginalized before including a new one. Denoting the
current camera pose as l, its estimate is calculated as

Cil
G q̂ = C

Ri
q⊗ Ri

G q̂
Gp̂Cil =

Gp̂Ri +C(
Ri
G q̂)T RipC

(9)

where the IMU-camera transformation {C
Ri

q, RipC} is com-
puted off-line [13]. The camera poses for robot R2 are
appended at the end of the state vector (4), whereas for robot

R1 they are appended to the end of the list of the existing
R1 camera poses.

The covariance matrix is augmented as

Pk|k :=
[

Pk|k Pk|kJT
Ri

JRiPk|k JRiPk|kJT
Ri

]
(10)

where JRi is the Jacobian of (9) with respect to the state
vector (4). For example, for robot R1 it takes the following
form

JR1=

[
C(C

R1
q) 03×9 03×3 03×[6(N+M)+15]

−C(
R1
G q̂)T bR1pC×c 03×9 I3 03×[6(N+M)+15]

]
.

Note that for robot R1, after applying (10), the columns
and rows of the resulting matrix need to be appropriately
interchanged to obtain the correct covariance matrix.

D. Measurement Update

We now present the measurement model describing the
observation of an unknown feature f by robot Ri. Using the
perspective projection camera model with unit focal length,
the observation of feature f in the l-th camera image is

zi
l =

1
Cil z

[
Cil x
Cil y

]
+ni

l (11)

where




Cil x
Cil y
Cil z


 = Cil p f = C(

Cil
G q)(Gp f − GpCil ) is the position

of the feature with respect to the camera, and ni
l is the

zero-mean Gaussian pixel noise with covariance matrix σ2I2.
Linearizing (11), we obtain the measurement residual

z̃i
l 'Hi

δθ l
δθCil +Hi

pl
Gp̃Cil +Hi

fl
Gp̃ f +ni

l

= Hi
xCl

x̃Cl +Hi
fl

Gp̃ f +ni
l , (12)

where Hi
δθ l

=
1

Cil ẑ

[
I2 −ẑi

l

]
bC(

Cil
G q̂)(Gp̂ f − Gp̂Cil )×c

Hi
pl
=− 1

Cil ẑ

[
I2 −ẑi

l

]
C(

Cil
G q̂), Hi

fl =−Hi
pl

where ẑi
l is the estimated feature measurement. Since Gp f

is unknown, we evaluate the Jacobians at Gp̂ f , which is
obtained by triangulating the feature position from two
or more views. By stacking together all the measurement
residuals for both robots, we have




z̃1
1
...
z̃1

N

z̃2
1
...

z̃2
M



=

[
02N×30 H1 02N×6M

02M×30 02M×6N H2

]




x̃R1
x̃R2
x̃C11

...
x̃C1N

x̃C21
...

x̃C2M




+




H1
f1

...
H1

fN

H2
f1

...
H2

fM




Gp̃ f+




n1
1
...

n1
N

n2
1
...

n2
M




(13)

where H1 = diag
[
H1

xC1
. . .H1

xCN

]
is the block-diagonal ma-

trix of size 2N × 6N corresponding to the N camera
poses of robot R1 and, similarly for robot R2, H2 =
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diag
[
H2

xC1
. . .H2

xCM

]
is the block-diagonal matrix of size

2M×6M. For notational clarity, we have assumed that each
feature is observed in all images. In general, however, any
subset of them can be used in the update step3. In a more
compact form, we rewrite (13) as

z̃ = H x̃+H f
Gp̃ f +n (14)

where x̃ is the error-state corresponding to (4), and the
covariance of the noise n is σ2I2(N+M). Note that since
Gp̂ f was triangulated using estimated camera poses, the error
Gp̃ f in the estimated feature position is correlated with the
state errors x̃, therefore, the residual (14) cannot be directly
used in the EKF update step. We could properly account
for this correlation, by adding the feature estimate to the
state vector, however, this would increase the computational
complexity and storage requirements of our algorithm. A
more efficient way to overcome this issue is to marginalize
Gp f on the fly. To do so, we eliminate Gp̃ f from (14) by
projecting z̃ onto the left null space of H f . Let W be the
unitary matrix whose columns span the left null space of H f .
Since H f in our problem formulation is of size 2(N+M)×3
and its rank in general is three, the dimension of W is
2(N +M)× (2(N +M)−3). Multiplying equation (14) from
the left with WT yields

z̃0 = WT z̃ = WT H x̃+WT n = H0x̃+n0 (15)

where the noise covariance is E
[
n0nT

0
]
= E

[
WT nnT W

]
=

σ2I2(N+M)−3. The standard EKF equations can now be
applied to perform the update. Note that multiplying H by
WT causes the resulting measurement matrix, H0, to be
dense. This couples the robot pose estimates by introducing
the cross-correlation terms into the covariance matrix Pk|k
during the update step.

IV. OBSERVABILITY ANALYSIS

It is well known that CL methods, which exploit robot-to-
robot measurements, result in improved localization accuracy
for the entire team [14]. Although in the CL-MSC-KF
the robots do not measure each other, their relative pose
is observable under some mild conditions. Therefore, by
combining the pose estimates from both vehicles, the CL-
MSC-KF achieves improved localization accuracy compared
to the case in which both vehicles independently localize
using the MSC-KF (see Section V). In what follows, we
determine these conditions by examining which d.o.f. of
the relative pose are observable under different measurement
configurations.

Consider two robots navigating in 3D using cameras to
observe a number of common scene features in an ideal
noise-free environment (see Fig. 1). We will identify the min-
imum number of common features observed by both robots
and the minimum number of images needed to recover the
six d.o.f. relative transformation between the robots’ initial
frames {R1,1} and {R2,1}. We denote the position of robot

3For the case when one robot observes features that are not seen by the
other robot, (14) can still be used by dropping the corresponding components
of z̃, H, H f , and n.

R2 with respect to R1 as p := R1pR2 = C(
R1
G q)(GpR2 −GpR1)

and the orientation of R2 with respect to R1 as C := R1
R2

C =

C(
R1
G q)C(

R2
G q)T . We assume that R1 can estimate its poses

{R1,k}, at the time steps k = 2, . . . ,N with respect to its initial
frame of reference {R1,1} (e.g., by integrating its inertial
measurements). Similarly, R2 can estimate its motion, {R2,k},
k = 2, . . . ,M, with respect to its own initial frame {R2,1} (see
Fig. 1).

We first consider the case when the two robots observe L
common features during a single time step. This is a well
studied problem and it is known that L≥ 5 features must be
observed by both robots in order to obtain a unique (L > 5)
or a discrete (L= 5) set of solutions for the five d.o.f. relative
robot-to-robot transformation, i.e., the orientation C and the
position p up to scale [5]. To compute all six d.o.f. of relative
transformation, we need to resolve the scale, which requires
the robots to move.

A. Observation of Three or More Features

When three or more scene features are observed from
two or more poses, the robots’ relative transformation can
be determined uniquely. To demonstrate this, let the robots
observe L = 3 features (denoted as α , β , and γ) at two time
steps. We can write the following geometric relationships

R1 p f = p+C R2p f , f ∈ {α,β ,γ} (16)

which form a system of nine equations in six unknowns.
Here, R1p f and R2p f are the triangulated positions of feature
f with respect to the initial frames {R1,1} and {R2,1},
respectively. After defining Ripαβ = Ripα − Ripβ and Ripβγ =
Ripβ − Ripγ , i = 1,2, C and p can be computed from (16) as
follows

R1pαβ = C R2pαβ ,
R1pβγ = C R2pβγ ⇒ (17)

C=
[

R1pαβ
R1pβγ

R1pαβ×R1pβγ

][
R2pαβ

R2pβγ
R2 pαβ×R2pβγ

]−1

p = R1pα −C R2pα

where we used the fact that (Cx)× (Cy) = C(x×y) for any
vectors x and y, and assumed that the points are not collinear.
Since we can recover the relative pose when L = 3, we can
also determine it for the case when L > 3.

B. Observation of Two Features

When two features are observed across at least two time
steps, we can write the following two relationships:

R1p f = p+C R2p f , f ∈ {α,β}. (18)

Even though this system has six equations in six unknowns,
the set of solutions is infinite since either robot can rotate
freely about the axis R2pαβ , and the constraints will not be
violated. To see this, we rewrite (18) as R1pαβ = C R2pαβ

and let CR2 pαβ
(θ) denote an arbitrary rotation around axis

R2pαβ by an angle θ . If C satisfies the geometric constraints,
then so does C′ = C CR2 pαβ

(θ), which is verified as follows

C′ R2pαβ = C CR2 pαβ
(θ) R2pαβ = C R2 pαβ = R1pαβ
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since R2pαβ lies along the direction of the eigenvector of
CR2 pαβ

(θ) corresponding to the eigenvalue 1 (i.e., it is the
axis of rotation). Therefore, we cannot determine all six d.o.f.
of the relative transformation.

Recall, however, that in addition to the camera, the robots
use IMUs for navigation, which measure the gravity vector
g. This provides an additional constraint, R1g = C R2g. By
including this, the six d.o.f. relative transformation can be
obtained using an approach similar to (17), as long as g is
not parallel to pαβ .

C. Observation of a Single Feature

When the robots observe a single feature, pα , over two or
more poses we obtain only one constraint, containing three
equations in six unknowns, which is an undetermined system
of equations. By including the gravity-vector constraint, we
obtain

R1pα = p+C R2pα (19)
R1g = C R2g, (20)

which has six equations in six unknowns, but as we will
show, the number of solutions is infinite.

Let us assume that (p,C) is a solution satisfying (19)-
(20). Given (p,C), we can show that there are infinitely
many (p′,C′), which also satisfy (19)-(20). Specifically, it
can be seen from (20) that an arbitrary rotation CR2 g(θ)
around the gravity vector R2g is undetermined. Therefore,
C′ = C CR2 g(θ) will also satisfy (20), since vector R2g is the
axis of rotation of CR2 g(θ). Now let p′ be such that together
with C′ they satisfy (19), i.e., R1pα = p′+C′ R2pα holds.
Using the latter together with (19), we can express p′ and
C′ in the form

p′ = p+C R2pα −C CR2 g(θ)
R2pα

C′ = C CR2 g(θ).
(21)

We can verify that (p′,C′) is a solution by substituting (21)
into (19)-(20). Furthermore, since there are infinitely many
choices for the rotation angle θ , there are also infinitely many
solutions to (19)-(20).

To geometrically interpret the obtained set of solutions,
note that (p,C) describes the pose of robot R2 with respect to
robot R1, while (p′,C′) describes another pose of R2. Using
homogeneous coordinates, we can rewrite (21) as a series of
homogeneous transformations
[

C′ p′
0 1

]
=

[
C p
0 1

][
CR2 g(θ)

(
I3−CR2 g(θ)

)
R2pα

0 1

]

=

[
C p
0 1

][
I3

R2pα

0 1

][
CR2 g(θ) 0

0 1

][
I3 −R2pα

0 1

]
.

Therefore, given a pose of robot R2 with respect to R1 satis-
fying (19)-(20), any other pose can be obtained by translating
R2 by R2pα towards the feature α , then rotating around the
gravity vector by an angle θ and, finally, translating back
by −R2pα . The set of all such poses comprises a circular
continuum of solutions (see Fig. 2).

{R1,1}

{R2,1}
R1g

R2g

R2pαR2pα

R1pα

(p,C)

(p�,C�)

α

tc
rcc

Fig. 2: Geometry of the unobservable motion of robot R2
frame with respect to R1. Given a relative transformation
(p,C) between the robots, (p′,C′) is any other transforma-
tion satisfying the measurement constraints (19)-(20). The
circular continuum of solutions is defined by its radius
rc = ||Π R2pα ||2 and center tc = p+C Π R2pα , where Π =

I3−
R2g R2gT

R2gT R2g
is a projection matrix.

We conclude, therefore, that in order to determine the
six d.o.f. relative transformation between the robots, at least
three common features need to be observed at two time steps.
If, in addition, the gravity vector is measured by both robots,
then only two common features observed at two time steps,
are necessary to find the transformation. Finally, when only
one common feature is measured at two or more time steps,
along with the gravity vector, the relative transformation
between the robots remains unobservable.

V. SIMULATION RESULTS

We hereafter present the results of simulation trials which
demonstrate the performance of the proposed algorithm. We
performed Monte Carlo simulations which compare the CL-
MSC-KF to the case of both vehicles localizing indepen-
dently using the MSC-KF. In the base case, two robots
traversed a sinusoidal trajectory 45 km long, 50 m apart
and 300 m above the ground. Each robot was equipped
with an IMU, which provided measurements at 100 Hz,
and a down-pointing camera that recorded images at 3 Hz.
Each camera had 70◦ field of view and observed 50 features
per image with pixel noise σ = 1 px. The overlap between
the cameras’ field of views was approximately 80%. The
maximum number of camera poses through which a feature
could be tracked was set to 15.

In the first simulation, we compared the performance of
the proposed CL-MSC-KF algorithm to the single-vehicle
MSC-KF, i.e., when each robot localizes independently (see
Fig. 3). We conducted 100 Monte Carlo trials in which the
estimator was initialized at the ground truth. The perfor-
mance was evaluated using the Root Mean Squared Error
(RMSE) metric by averaging over all Monte Carlo runs at
each time step. Since the results for robots R1 and R2 are
comparable, we show only the results for robot R1. Note
that since the system is not globally observable (i.e., no
GPS measurements are available and no observations of
known landmarks are used), the RMSE steadily increases
for both methods. However, the rate of error increase is
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Fig. 3: Robot R1 pose estimate errors, averaged over 100 Monte Carlo simulations. (Left): RMSE for the position estimate
of R1. (Right): RMSE for the orientation estimate of R1.
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Fig. 4: Accuracy of the relative transformation averaged over 100 Monte Carlo trials. (Left): RMSE for the relative position
estimate. (Right): RMSE for the relative orientation estimate. Note that the CL-MSC-KF errors remain bounded, while the
MSC-KF errors continuously increase.
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Fig. 5: Robot R1 pose errors for the worst axis. (Left): R1 localizes independently. The RMSE, along the trajectory, for the
position is 129.7 m and for the orientation is 0.5 deg. (Right): R1 performs CL-MSC-KF with R2, when R2 has access to
GPS (σGPS = 1m). The RMSE in this case is 0.3 m for position and 0.05 deg for orientation.

lower for the CL-MSC-KF algorithm. At the end of the
trajectory, the CL-MSC-KF estimates are 58% more accurate
in orientation and 60% more accurate in position, compared
to the MSC-KF. In the second simulation, we evaluated
the accuracy of the estimated relative transformation (p,C)
between the robots, in order to validate the analysis pre-
sented in Section IV. The results in Fig. 4 indicate that
in the CL-MSC-KF framework the errors in the relative
transformation remain bounded, whereas in the MSC-KF
the errors continually increase. This is because in the MSC-
KF framework the commonly observed features are treated
independently while in the CL-MSC-KF this information
is exploited by appropriately processing such measurements
as the observations of the common scene. Therefore, even
though the global-pose estimates drift, the CL-MSC-KF is
able to maintain accurate relative-pose estimates over the
whole trajectory. This is clearly a desirable property for CL,
since if the group of the robots can maintain an accurate
estimate of their relative transformation, then when any one
of them measures its global position (e.g., using GPS), all
the robots will benefit.

We illustrate this case in the next simulation in which
the robots perform CL-MSC-KF, while R2 has access to
periodic GPS measurements with uncertainty σGPS = 1 m.
Figure 5 shows the performance improvement for the non-

GPS enabled robot R1 compared to how it performed on the
same trajectory when localizing independently. Although R1
is GPS denied, its pose accuracy significantly improves as
if it had GPS since it collaborates with R2 by sharing and
processing common visual observations.

Finally, we evaluated the dependence of the accuracy of
the pose estimates in the CL-MSC-KF framework on the
number of features observed by both robots. For any number
of features greater or equal to two the filter performance
was not affected significantly. On the other hand, in the
case of a single common feature observed over the whole
trajectory, the accuracy of the pose estimates of the CL-
MSC-KF degraded to the accuracy levels obtained when the
vehicles perform MSC-KF independently (see Fig. 6). These
results corroborate the analysis in Section IV, in that not
all six d.o.f. of relative transformation are observable when
only one common feature is viewed by both vehicles. In this
case, the relative pose of the robots is unobservable, which
prevents the filter from reducing the errors in the estimates
of the full six d.o.f. relative transformation.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of cooperative
localization (CL) for two robots using vision-aided iner-
tial navigation with overlapping camera observations of a
previously unknown scene. Specifically, we presented an
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Fig. 6: Robot R1 pose estimate errors, averaged over 100 Monte Carlo simulations for the case when both vehicles observe a
single common feature over the whole path. (Left): RMSE for the position estimate of R1. (Right): RMSE for the orientation
estimate of R1.

extension to the MSC-KF algorithm [15], termed the CL-
MSC-KF, for jointly estimating the poses of both vehicles.
Given observations of common scene features, the geometric
constraints between the robots’ pose estimates over a sliding
time window were exploited by the filter to increase the
localization accuracy for both of them. Our observability
analysis showed that the robots must measure three common
features over two or more steps in order to determine
their six d.o.f. relative transformation. When the gravity
vector is also observed, then only two common features
are required. Finally, when only one common feature can
be tracked over multiple time steps and the gravity vector
is available, the relative transformation between the robots
remains unobservable. The performance of the CL-MSC-KF
was evaluated in simulations to demonstrate the validity of
the proposed method and compare its accuracy with respect
to single-vehicle localization.

In our future work, we plan to extend the CL-MSC-KF
to consider distributed estimation architectures [10], instead
of using the centralized approach adopted in this paper. We
also plan to account for communication constraints between
the robots and study the impact of quantization schemes on
the filter’s performance [16].
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