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Abstract—In this paper, we address the problem of de-
termining the relative position and orientation (pose) of o v
robots navigating in 2D, based on known egomotion and noisy N >
robot-to-robot distance measurements. We formulate this &
a weighted Least Squares (WLS) estimation problem, and
determine the exact global optimum by directly solving the
multivariate polynomial system resulting from the first-order
optimality conditions. Given the poor scalability of the original
WLS problem, we propose an alternative formulation of the
WLS problem in terms of squared distance measurements
(squared distances WLS or SD-WLS). Using a hybrid algebraic
numeric technique, we are able to solve the corresponding fit-
order optimality conditions of the SD-WLS in 125 ms in Matlab.
Both methods solve the minimal (3 distance measurements)
as well as the overdetermined problem (more than 3 mea-
surements) in a unified fashion. Simulation and experimentia
results show that the SD-WLS achieves performance virtuajl
indistinguishable from the maximum likelihood estimator, and
significantly outperforms current algebraic methods.
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Fig. 1. Robot 1 (white) and 2 (gray) takeé relative distance measurements,
1,...,dyn as they move on a plane. The robots know their positians
v;, in their respective global frameg¢,1} and {2}, e.g., from odometry.
The objective is to determine the translatigs, and rotation,C, between
frames{1} and {2}.
I. INTRODUCTION AND RELATED WORK
Sensor fusion between multiple mobile robots, enablingxist methods for simultaneous localization and mapping of
tasks such as cooperative localization [1], mapping [2], a& single mobile robot using range measurements to static
tracking [3], critically relies on accurate extrinsic daktion, beacons [10].
i.e., the knowledge of the robots’ relative position and For many practical applications, such as cooperative track
orientation (pose). In the absence of a common, globalg [3] or sensor fusion [2], knowledge of both relative
frame of reference (e.g., provided by GPS), the robots caensor positiorand orientation between multiple robots is
determine their relative pose based on robot-to-robot relaequired. Recent work by Zhou and Roumeliotis [11] has
tive sensor measurements and odometry. Arguably the mastdressed the problem of relative pose estimation based on
challenging case of such motion-induced extrinsic calibra distance measurements for two mobile robots moving in a
occurs when the robots can only measure distance betwgaanar 2D environment. The authors propose computing the
each other. Such distance measurements can be acquiredraximum likelihood estimate (MLE) of the relative pose in
various sensors such as sonar, radar, or laser, or ingigstl a two-step process: First, they derive methods to compute
a function of the received communication signal. Distancea coarse estimate for the relative pose, based on solving an
based relative pose estimation in 2D is precisely the focus/erdetermined system of polynomial constraints using 4 or
of this paper (see Fig. 1). 5 distance measurements. In a second step, they use the resul
Previous research on leveraging sensor-to-sensor déstars an initial guess in an iterative weighted Least Squares
measurements to solve the relative localization probleifWLS) optimization. While such a two-step process is a
has focussed primarily ormtatic sensor networks. These standard way of solving nonlinear WLS problems, it is well
approaches only determine thgosition of sensor nodes, known that the quality of an iterative WLS optimization
not their relative orientation. Localization algorithmerf depends critically on the accuracy of the initial guess.
static sensor networks infer the node positions using mea-Unfortunately, while exact in the noise-free case, in the
surements to so-called anchor nodes with known globakesence of noise, the methods of [11] can produce an initial
position. The position of the remaining sensors in the neguess that is far from the MLE. Moreover, these methods are
work can be uniquely determined if certain graph-rigidityincapable of accounting for uncertainty in the measurement
constraints are satisfied [4]. A number of algorithms foAs a result, the i-WLS refinement can converge to local
2D node localization have been proposed based on convexnima, can take an excessive number of iterations to
optimization [5], [6], multidimensional scaling [7], suof- converge, or even diverge completely (see Sec. V).
squares relaxation [8], or graph connectivity [9]. Thersoal Instead, in this paper we present a fundamentally different



way to compute the MLE, by solving the nonlinear WLSthe translationp := 'ps = [z ¥y " and rotationC :=

y p y g

directly for the guaranteed global optimum, in a non-iteeat 1C(¢) = cos(¢) —sin(¢) |

fashion. The approach is to first determine all stationary p,q (o Z;f[]_(t‘ig_rg’gg? istance; can be expressed as the

points by solving the first-order optimality conditions,dan length of vectow;, i = 1, ..., N, connecting the two robots
then to retain the one with minimum cost function value,; ina time of mezlasuren;ent’ (sée Fig. 1)

as the global minimum. The key difficulty — solving the

first_—ord_er optimglity conditions — can be overcome if the ;. — |jw,||, = /WlTWZ_’ w;=p+Cvi—w (1)

optimality conditions can be expressed as (or transformed _ _

into) a multivariate system of polynomials, which can be The approach of [11] is to assume noise-free measure-

solved efficiently due to recent advances in polynomidnents, and to stack the constraints provided by each mea-

system solving [12], [13], [14], [15]. surement into the following system of polynomial equations
The contributions of this paper are twofold: (i) We presenin the four unknownsr, y, s¢, andcg:

the nonlinear WLS cost function for the relative pose probbeterministic System:

lem, and a method_ to find its gI.obaI minimum (Secuon III)_. wiw—d2=0, i=1,... N (2a)

Under the assumption of Gaussian noise, the optimal salutio ) )

to the WLS will yield the MLE. We derive the corresponding 559 +c"9—1=0 (2b)

first-order optimality conditions and show how to transformy, ., [11], it is known thatN —= 3 measurements are

them into a system_ of po!ynomials, which can b_e SOIVeﬂecessary for this problem to have a discrete set of 6 pgssibl
for all stationary points using homotopy continuation. OqumpIex solutions (minimal problem). MoreoveX, > 3

results show that this method is a feasible approach {e,qurements uniquely determine the relative pose.
find the MLE for a small number of measurementé ( In practice, however, the robot-to-robot distandeswill

5). (i) In order to efficiently address the case of MOrg sve to be replaced by noisy measurements
measurements, we present the WLS cost function and the

corresponding first-order optimality conditions for thdare zi=di+mn;, i=1,...,N 3)
tive pose problem using squared distance measurements (SD- T .

. - : . n=1{n ... n ~N(n;0,R 4
WLS, Section IV). The resulting polynomial system is shown [ ! N} ( ) “)
to have constant solution complexity, independent of theshere we have modeled the measurement noises zero-
number of measurements. We describe how to compute allean Gaussian, with covariance mafRx In case of inde-

stationary points efficiently using a hybrid algebraic-rarit  pendent measuremen®, = diag(o?,...,0%), but in the
technique based on the eigendecomposition of a generalize@sence of correlated noidg,can be full. Replacing; by
companion matrix [13]. the noisy measurements, the overdetermined system (2)

Results from simulations and experiments described with N > 3 will be inconsistent, and no guarantees can be
Sections V and VI show that the SD-WLS estimator signifgiven for the solutions computed by the polynomial 4-point
icantly outperforms the linear algorithm of [11], and yigld or the linear 5-point algorithm in [11]. In particular, thkes
performance almost indistinguishable from the original $VL algorithms will not be able to account for the measurement
estimator. While computing the global optimum of the WLSnhoise in a statistically sound fashion. Therefore, they can
numerically takes several minutes even for as little as dnly be used to provide an initial guess for a subsequent
measurements, our Matlab implementation can solve the SBWLS refinement.

WLS in 125 ms, irrespective of the number of measurements. As an alternative, we propose to combine the con-
straints (2a) arising from the measurements in a WLS
fashion, thus correctly accounting for the measuremersienoi

As Illustrated in Fig. 1, consider two robots movingin what follows, we present two methods to solve the WLS
in 2D and acquiring robot-to-robot distance measuremenggoblem directly for theglobally optimal estimate of the
d;, i=1,...,N. We assume without loss of generality thatrelative pose. The approach is to formulate the first-order
the global frames of each robdl} and {2}, are attached optimality conditions of the WLS cost function as a square
to the points where the first mutual measurement occursystem of polynomials, which can be solved directly to
Further, we assume that each robot can localize with respegtitain all stationary points. A desirable property of this
to its own global frame of reference, for example, usingormulation is that without any modification it will yield ¢éh
wheel odometry. Therefore, we assume that at the time thgobal optimum for the overdetermined systeM ¢ 3), as
robots acquire the distance measurements, the coordinajgsll as all 6 solutions to the minimal probleniV(= 3),
of the first robot,u; := 'u;, and the second robot; :=  which will be global minima of the WLS cost function with
%v;, are known' The objective is to find the 3 degree-of-cost function value identically equal to zero.
freedom transformation between framgk} and {2}, i.e.,

Il. GEOMETRIC PROBLEM FORMULATION

[1l. WEIGHTED LEAST-SQUARES (WLS) FORMULATION

1Throughout the paper the notatiép denotes a vector expressed with AND SOLUTION
respect to framg(¢}, and’C denotes the rotation matrix that transforms . .
vectors from frame{j} to %rame{i}. Also, in polynomial formulations we lde?'”y' given (1) and (3), we would like to solve the
substitutesin(¢) and cos(¢) by the variabless¢ and c¢. following WLS problem



WLS Cost Function: All polynomials are quadratic, except (10b) which is cubic.

1 TR ®) Notice that squaring the constraints on thg (cf. (7)
ffi}% 2 €d ©d vs. (10d)) introduces spurious solutions with erroneogissi
where Therefore, we will only accept real solutions that fulfilleth
original constraint (7) as candidate stationary points.
eq = [\/wfwl—zl Vwiwy —20 ... \/W%WN—ZN]T 9 (7) yPp

_ _ / ~ Once all the stationary points of (5) are found by di-
_Taklng the gradient Wlth respect to the_unknowns an_d settingctly solving system (10), the final step is to evaluate the
it to zero, we obtain the following first-order optimality cost function on the candidate points, and to choose the

conditions one with minimum value as the final, guaranteed globally
v :eTRfl[ Wi wo wiw} _ optimal WLS estimate of the relative pose. The numeri-
p d Vwiwe  /wiws VWEWN cal solution of (10) can be obtained, for example, using

(6a) homotopy continuation [16]. System (10) has 70 solutions
. T T for N = 3 measurements, 240 solutions fof = 4, and
To—1 | wiJCvy wj, JCva wyJCvy K .
Vs =¢;R = 'a e | = 784 solutions forN = 5, as determined both through
Vwlws  /wlws Vwhw - . . .

(6b) analysis of the Grdbner basis using Macaulay 2 [17] and
o1 numerically using PHCPack [16]. In our experiments, we

whered = [{ 7] ]. _ _ solved example systems wifi = 4 measurements in about
In order to solve this system of equations and thus to 4 minutes (diagonal vs. dense covariance matrix), and
to determine all stationary points, we transform it into ay — 5 measurements in 12 to 20 minutes, using PHCPack

system of polynomials by introducing auxiliary variablesgn an Intel T9400 2.53 GHz laptop with 2GB of RAM.
Our objective is then to apply efficient polynomial systemrpe reason for the increase in time is the introduction of

solving techniques that can find all roots simultaneoustie O aqdjtional monomials in the polynomial system due to cross-
possible choice is to introduce the auxiliary variables coupling induced by the off-diagonals &.

_ T . Unfortunately, as evident from these results, this formu-
a; =+/wiw;, i=1,...,N (7 ) .
_ T o lation scales quite poorly, because the number of unknowns
Further, instead of optimizing ovep, we optimize over (ie., a;, A;) grows with the number of measurements. The
the two variabless¢ and c¢, related by the trigonometric complexity of solving polynomial systems is exponential
constraint in the number of unknowns [18], rendering this approach
s2¢ + 2 =1 (8) feasible only for small-scale problems. This leads us to

) i L the introduction of an alternative formulation using seagar
We then rewrite (5) as a constrained optimization prome”&istance measurements

with Lagrangian

T IV. SQUARED DISTANCESWLS (SD-WLS)
ar— 21 ar— =21 FORMULATION AND SOLUTION
L= 12— R a2 _ 2 A much preferable approach from the point of scalability
2 : : is to solve the WLS based on noisy measurements of the
aN — ZN aN — ZN squared distance
N / 2 1 .
=di+n;, i=1,...,N (11)
+) N/2(whwi —a?) + p(sPp+ Pop—1 9 %G v R

Taking the gradient with respect to the unknowns an@here for simplicity we temporarily assume that the noise
eliminating n«, we obtain the following system &N + 4 iy the squared measurements is zero-mean Gaussian. Under
polynomials in thezV + 4 unknownse, y, s¢, cé, anda:=  this assumption, the corresponding WLS will actually yield
[ax .. an] A= o Aw] the MLE. We will relax this assumption in Section IV-A.

WLS First-Order Optimality Conditions: The idea of applying the LS methodology to squared

N distance measurements has previously been used in source
Vp = Z)\iwi =0 (10a) localization, e.g., [6], [8], where the authors solve an un-
i=1 weighted LS approximately using convex or sum-of-squares
N . relaxation.
cp- VgL —s¢-VegL = Aw/ICvi=0 (10b)  The cost function of the WLS problem using squared
=1 distances (SD-WLS) is defined as
a1 — 21 a1\ SD-WLS Cost Function:
—1 . .
Val =R A e D) min = LR/ ley (13)
aN — ZN QN)\N RN 2
oVyL=w'w;—a?=0, i=1,...,N (10d) Where

Vu.L = 2o+ cp—1=0 (10e) ey := [wal -z wlwe—2, ... wliwy - ZEV]T



Setting the gradient to zero and dividing by constant
factors, we obtain the following polynomial system of 4
equations in the 4 unknowns y, s¢, c¢.

SD-WLS First-Order Optimality Conditions: 2 : ’
ezdR/il [Wl Wo ... WN]T =0 (143) 02 ‘
IR [wlICv, wiICvs, ... whiCvy]' =0 B : 2
(14b) @ (b)
52¢ + 02¢ —1=0 (14C) Fig. 2. Examples of approximating the pdf of squared distameasure-

ments by a Gaussian. (a) Scalar measurement case,dwitk 3;n and
The two polynomials (14a) have total degree 3, (14b) haa = 0.1m. (b) Two distance measurements with= [3m  2m]", and

total degree 4, and the trigonometric constraint (14c) isprrelated noise with covariandg = [00_61122 gg;é] For small variances,

quadratic. the approximation is reasonably accurate: for the exangiles/n here, the

. . pbpash Ty '
Analysis of this system’s Grobner basis for different<- dvergence iss.34 - 1077 and2.0 - 1077, respectively.

numerical instances using coefficients from a finite field . . . )

shows that this system has 28 possibly complex squtions.The idea behind t_he normal set-based method_ s 1o first

This is a general result that holds for all cases\oandR’. expand the polynomial system (14), compactly written as

In particular, we prove the following proposition: W(z,y, 56, ch) = 0 (15)
Proposition 1: The number of solutions of the sys- e

tem (14), and its solution complexity, is independent oby adding new polynomials of the form

the number of measurementy,, for N > 3, and of the . . . N N

covariance matrixR’. Vi = Yi(a,y, 80, c¢) -z Yy (sp)** (ch)* =0  (16)

Proof: We base our proof on the following observatlon'_l_he new polynomials,/, are products of the original

If for a system of polynomials arising from a specific . . S )
. ) . - polynomials,+;, with monomials in the unknowns raised
problem class, different (non-singular) instantiatioristhe
; . ; . . to some powery. For the SD-WLS problem, we choge
problem differ only in the numeric coefficients but not in .
R0 as to create new polynomials up to total degree 8. As an

the structure of the polynomial system (i.e., the monomia ; A
comprising each polynomial remain the same), the Ieadinexample’ we created 70 polynomials by multiplying (14b)

monomials of the corresponding Grobner basis will geeral \:9|th all monomials 9f total degree 0 to 4. Notice t_hat addlr_1g
also be the same, with the consequence that the standgf S? new polynomials does not ch_ar_lge the solution seg sinc
basis of the quotient ring and the number of solutions of thg ¥; vanish on the roots of the ongmal sygtem, and do not
neq 9 d new solutions. The next step is to write the expanded
system is constant [19], [14]. We therefore have to show thgtd . . : P P
the structure of system (14) and the monomials in each polg_olynomlal system in matrix form
nomial (14a)-(14c) are independentifandR’ generically. C.x =0, (17)
Clearly (but in contrast to the polynomial system (10)), the
number of equations and the number of unknowns of (14) gathering the monomials in the unknowns in the vectpr
constant and independent &f andR’. Also, (14c) remains and the numeric coefficients in the expanded coefficient
unchanged for different problem instantiations. To seé¢ thanatrix C.. From this matrix one can extract 28 x 28
the monomials in (14a) and (14b) are independenVaind generalized companion matrix that defines multiplicatign b
R/, consider rewriting these equations E\”j:l r;jjl(z; — a function (which we chose to be) within the so-called
WZ_Twl.)WjT andZZ{ijl Ti,_jl% —WZ-TWi)(WjTJCVj). where quotient rin_g. An_eigendecomposition of this matrix yields
Tg;l denotes the(’i,j)-th entry of R’~1. Generically, the all 28 solutions simultaneously [15], [13].
pélynomiaISZl’»—wiTwi, w;, andwZ JCv, each contain the Our current Matlab implementation requires approxi-
same monomials regardless ifAnalogously, the products Mately 125 ms (as determined by Matlab’s profiler) to solve
(2! —w?wi)w? and (2! — wfwi)(w?JCv,-) each contain an instance of _the problem, of whlch_a_pprOX|m§1ter_16 ms
the same monomials generically, regafdlessioand j. are spent creating the expanded coefficient mafxixwhich

Finally, linear combinations of polynomials do not intregu fOr this problem is of dimension32 x 495, with 4% non-
new monomials, which concludes the proof. m Z€ro .entr|es. E_xtractlng the multiplication matrix and 28
Given the constant structure of the polynomial sysSolutions requires 109 ms.

tem (14), we can avoid using homotopy continuation meth- . N .
ods, such as PHCPack, and instead apply a hybrid algebra&- Gaussian Approximation of Squared Noisy Measurements
numeric method based on the eigendecomposition of aNotice that if only noisy measurements of the (non-
generalized companion matrix [13], [15], [12]. In partiayl squared) distance are available, replacing (3) by (11) @ann
we employed the normal set-based method, described lie achieved by simply squaring the noisy measurements, i.e.
detail in [13], which exploits the specific system structure! # 2. The reason is that? = d? + 2d;n; + n?, and

to provide all 28 solutions simultaneously, in a fast, nonthe corresponding noise ters := 2d;n; + n? is not zero-
iterative fashion. mean Gaussian. Indeed, following the standard formulas to



compute the pdf of functions of random variables [20], the N 10" FfSewis
pdf of the vector¢ := [27 ... z%] is given by £ -4 -SD-WLS
= 4 Linear
N 510 ¢
2 1 =
p(C) J:Zl 2N H,L \/CN(’YW Y ) ( ) qc_) 10_27
where eachy;, j = 1,...,2N, is a vector of the form 51073,
ESV/STme i«/g‘N]T with one of the2" possible dif-

ferent sign assignments for its individual elements.
However, the non-Gaussian pdf resulting from squaring
a Gaussian random variable can be well approximated by a

Gaussian pdf with matching first and second order moments. £ 10
Specifically, computing the meag;, and covariancey, of =107
s; yields =
210 ]
- —%—SD-WLS
3, := F[s;] = Ry (19) % 10° Linear
i = E(si — 5:)°] = Rui(4d} + 2Ry;) (20) TS 107 10
Eij = E[(Si - Ei)(sj - gj)] = Rij (4d1d7 + 2Rij) g (M)
(b)
We can now approximate (11) by setting ‘
S || WLS
PRSI (21) £10 |-4-sp-wLs
R ~ (22) g ; Linear 2
5107}
where we replace the distancésin the expression foBl E
by their noisy measurements. 2107}
As illustrated in Fig. 2, using (21), (22) to approximate the o
non-Gaussian pdf (18) by a Gaussian is reasonably accurate, © 107t

particularly for high signal-to-noise ratios.

V. SIMULATION RESULTS
We compared the performance of the WLS, the SD-WLS, o

and the linear algorithm of [11] for the overdetermined case
| |
oL —%—SD-WLS |
-8 * Linear ||

where N > 3 noisy (but outlier-free) measurements are
-1

o o

available? Specifically, we conducted Monte Carlo simula-

tions usingN = 5 measurements, measurement noise with

diagonal covariance matriR = 021 for different values of

o4, and 1000 trials per setting. The trajectories were chosen

so that the robot-to-robot distances varied randomly betwe @

1-2 m, and the displacement between measurements varied _ _ _ o

between 3-6 m. The parametersand R’ were determined g. 3. Simulation results from 1000 trials for each noisetirsg,
ew : p ' ) comparing WLS, SD-WLS and the linear algorithm of [11], wsBhdistance

based on the approximations (21) and (22). measurements corrupted by zero-mean Gaussian measuraoisatwith

The results are shown in Fig. 3. As evident. SD-WLS coneovarianceR = 031. Plotted are the median and the 25% and 75%
’ quantiles. The accuracy of the WLS and the SD-WLS formufatsoalmost

SiStently and Signiﬁcan_tly O_Utperforms the linear algm’it identical, and higher than that of the linear method by a odactor. The
From the doubly logarithmic plot one can deduce that theD-wLsS solution is close to that of WLS particularly for simadise values.

median position error of the linear algorithm in [11] with (@ Norm of position error with respect to ground truth. (biff@ence in
sition with respect to WLS. (c) Orientation error with pest to ground

. . . . [0}
respect to the true solution is approximately twice as |ar£?uth. (d) Difference in orientation with respect to WLS.
as the WLS and the SD-WLS error, and the orientation error

approximately 3.5 times as large, independent of the mea- ¢ despite the demonstrated performance of SD-WLS the

surement noise standard deviation. Even more remarkablealg,tual MLE were reauired. one could use the result from
the fact that the performance of the SD-WLS is virtuall g ’

y K L i
indistinguishable from that of the true WLS, despite it notSD. WLS as an extremely accurate initial guess .for FWLS

. . . . - refinement. We tested the performance of initializing Gauss
being optimal in the maximum likelihood sense (due to th

R . . Klewton-based i-WLS with the linear solution, the SD-WLS
approximation of Section IV-A). Only for large noise levels . . L
does the performance start to degrade slightly. solupon, and with ground-tru.th_. .The r.eSUItS shown in '.:'g‘ 4
' confirm that SD-WLS-based initialization outperforms hne
2if outliers are present, one should first perform RANSAC witte Initialization in terms of required iterations, instanassdi-
solutions of the minimal problem for outlier rejection. vergence, and number of inconsistent estimates. Pantigula

o

|@(D-@WLS)| (rad)
5 5 885

o

107° 107 10
o, (m)



121 —¢ SD-WLS ‘ 3 ticularly for low measurement noise, the linear methoddsel
é 107 - o #'r':;a’ ? ] surprisingly accurate results that may very well be acddeta
‘g 8r ,;§ ] for some applications, especially given its consideratlyer
= i’ a computational complexity.
S 4
2r ‘ VI. EXPERIMENTAL RESULTS
107 107 10" , ,
o, (m) . We havg also tested the allgonthms expgnmentally, us-
@ ing two Pioneer-ll robots moving randomly in an area of
4 m x 5 m (see Fig. 5(a)). Each robot estimated its position
¢ 5[ —<—sb-wLs ‘ 3 ] from 10 Hz wheel odometry, using a differential drive
3 Linear kinematic model with noisy wheel velocity measurements
g 2([7©Te ] having standard deviation of, = 8 mm/s. The ground truth
g 1t | was established from observations using a calibratechgeili
g » mounted camera. These data also provided synthetic ®lativ
< Obm—m—m—m ‘ i distance measurements by adding white, zero-mean Gaussian
10° 10 10" noise with standard deviatiosn; = 0.05 m.
gy (M We compared the estimates of the initial relative pose
(b) obtained using the SD-WLS, the linear algorithm with 5
8 : : measurements, and the i-WLS initialized with SD-WLS.
—*—SD-WLS For the SD-WLS solution we processed two iterations. The
°l o _#'rzzar | first accounted only for noise in the distance measurements,

1 and its optimum was used as linearization point for the

| Jacobians with respect to the robot positions, in order to
B - P N correctly account for uncertainty due to odometry in the
- ‘ = second iteration. We see that SD-WLS is significantly more

accurate than the linear method, almost independently of
the number of measurements, since the growing position
uncertainty due to integrated odometry errors cancelssgain
from processing additional measurements. The errors after
o i-WLS refinement are in the order of 10 cm for position and

% inconsistent cases
N

oy (m)

©

—>*— c(SD-WLS)<c(Linear)
c(Linear)<c(SD-WLS)

3 -0 c(true)<c(SD-WLS) 3 degrees for orientation.
@ 41| - e -c(true)<c(Linear) Vulh
8 | [ ¥ C(SD-WLS)<c(true) *,/ ] VII. CONCLUSIONS
0 ooy Ty e i—g’.f’..o, -l ] In this paper, we have presented two methods to estimate
107 1072 10t the relative pose between two robots based on robot-to-
o4 (m) robot distance measurements and knowledge of the robots’
(d) egomotion. In particular, we have solved for the global

Fig. 4. Comparison of i-WLS initialized with the result ofetinear optimum of the corresponding WLS problem by finding
algorithm of [11], that of SD-WLS, and with ground truth. @umber of || stationary points as the roots of a square multivariate
iterations to convergence (median and 25% / 75% quantilesPercentage . .
of diverged casesX{ 1000 iterations). (c) Percentage of inconsistent casePOIynomlal system. We have shown how to construct this
(error > 30). (d) Percentage of cases where i-WLS converges to apolynomial system for the WLS of the original problem,
optimum with lower WLS cost function value, depending ortiétization.  \which is also the MLE for distance measurements corrupted
The notation c(SD-WLS) refers to the WLS cost function afté/LS by G . . Th lexit f thi t
convergence when initialized with the method inside theepéreses, here Y aussian noise. e comp exity o IS Sys em_ was
the SD-WLS algorithm. shown to scale very poorly, since the number of variables
grows with the number of measurements. On the other
hand, the alternative SD-WLS formulation using squared

interesting is the fact that initializing i-WLS with the ks " )
accurate solution of the linear method can indeed lead gistance measurements was shown to have constant solution

convergence to a local minimum, as illustrated in Fig. 4if). complexity, independent C?f the numl_)er of measurements or
contrast, this happens only extremely rarely when iniiatj the str_ucture of the covariance _matrlx. Solvmg_the probl_em
using the SD-WLS solution. In fact, in the presence of Iarg? carn_ed out very efficiently using r_ecent hybrid _algeb;a|
noise, even the ground truth might not reside within th umeric techm_ques to solve mgltwarlate polyn_omlal Syste .
basin of attraction of the global WLS optimum, and i-WLS ased on the eigendecomposition of a generalized companion

initialized with the SD-WLS solution can achieve a IowerrEatr'x_ [,13]'| Outrjlalgorltim can find the six sorllut|0n§ of
cost function value than i-WLS initialized with ground thut the minimal problem § = 3 measurements) or the unique

In conclusion, the S|mulat|on.results confirm the superior s, our Matlab implementations, the linear method takes @o.11 ms,
accuracy of SD-WLS over the linear method. However, paind a single iteration of i-WLS requires approx. 0.15 ms.



—»— Trajec. Robot 1
—8&— Trajec. Robot 2
« Distance msmts.

TR

@
Fig. 5. Experiment with two Pioneer robots equipped with kees for optical tracking using an overhead camera. (a) Hneeca images provided ground
truth for relative pose, and served to create 7 synthetativel distance measurements at the marked points (fotylanly the first two measurements
are drawn as dotted lines). (b) Error in relative pose as atiium of the number of measurements. Shown are i-WLS refinewieSD-WLS (blue x) and
correspondingo-bounds (red +), as well as the output of pure SD-WLS (magsqtere) and the linear algorithm (black star, for 5 measengsnonly).

solution in the overdetermined cas¥ (> 3 measurements)
in a unified framework.

Despite losing optimality in the MLE sense, the squared,,
WLS method performed almost indistinguishably from the
WLS estimate in simulation, and was shown to be approxi-
mately two (for position) or three (for orientation) timesra
accurate than the linear method presented in [11] when using
5 measurements, over a wide range of noise levels.

In a broader context, this paper demonstrates that th
newly available tools for polynomial system solving allow
moving away from iterative optimization schemes towards
global optimization, if the first-order optimality conditis (10]
can be transformed into polynomial form. Moreover, we have
provided an example that for overdetermined systems, com-
bining polynomial constraints in a Least Squares formatati
is far more accurate than solving the system of polynomial
constraints deterministically. [12]

(6]
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