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Abstract— This paper presents an indoor human localization
system for the visually impaired. A prototype portable device
has been implemented, consisting of a pedometer and a standard
white cane, on which a laser range finder and a 3-axis gyroscope
have been mounted. A novel pose estimation algorithm has been
developed for robustly estimating the heading and position of a
person navigating in a known building. The basis of our esti-
mation scheme is a two-layered Extended Kalman Filter (EKF)
for attitude and position estimation. The first layer maintains
an attitude estimate of the white cane, which is subsequently
provided to the second layer where a position estimate of the user
is generated. Experimental results are presented that demonstrate
the reliability of the proposed method for accurate, real-time
human localization.

I. INTRODUCTION

Mobility is an essential capability for any person who
wishes to have an independent life-style. It requires successful
execution of several tasks including path planning, navigation,
and obstacle avoidance, all of which necessitate accurate
assessment of the surrounding environment. For a visually
impaired person these tasks may be exceedingly difficult to
accomplish, and there are high risks associated with failure
in any of these. Seeing-eye dogs and white canes are widely
used for the purpose of guidance and environment sensing.
The former, however, has costly and often prohibitive training
requirements, while the latter can only provide cues about ones
immediate surroundings. Human performance on information-
dependant tasks, can be improved by sensing which provides
information (e.g., position, orientation, or local geometry) and
environmental cues via the use of appropriate sensors and
sensor fusion algorithms. This paper presents a novel indoor
localization method for the visually impaired which has the
potential for prodigious humanitarian impact. With the use of
this localization aid, guidance and navigation algorithms can be
implemented which will greatly increase the safety and overall
mobility of its user.

When designing a suitable sensor package for use in a
human localization application, the sensor placement must
be carefully considered. Body-mounted sensor packages have
been presented, which require the user to wear an electronic
vest or belt fitted with sensing devises [1], [2]. Although
mounting a sensor directly on the body simplifies the interpre-
tation of the sensor data (i.e., the transformation from body
to sensor is constant and known), it introduces complications
when considering the variations in body types between users.
Significant sensor calibration and harness adjustment may be
required in order to use such a system. Additionally, a body-
mounted sensor package will likely interfere with common
tasks (e.g., sitting in a chair), and may prevent certain articles
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of clothing from being comfortably worn (e.g., a jacket). In
contrast to this approach, we propose using a sensor package
mounted on a white cane (cf. Fig. 4). The main advantages of
utilizing a white cane as a sensor platform are: (i) the sensor
package is unobtrusive to the user, (ii) there is no need to
calibrate the system for specific body types, and (iii) the user
maintains the ability to physically touch the environment with
the white cane.

After considering the proposed sensor placement, one can
appreciate the stark difference between indoor human local-
ization, and traditional formulations of mobile (wheeled) robot
localization. When constructing an estimator for the pose of a
mobile robot, accurate linear and rotational velocity measure-
ments are available from its wheel encoders. In the case of a
blind person carrying a white cane, the sensors providing these
measurements are not rigidly connected, which makes the
task of combining information from them significantly more
challenging. Specifically, a pair of sensors (a laser scanner
and a 3-axis gyroscope) mounted under the white cane handle
provide attitude information about the cane, and a lightweight,
foot-mounted pedometer measures the user’s walking speed.
Ideally, information from these three sources should be fused
in a single pose estimator. All the sensors, however, move in
3-D and the coordinate transformation from the pedometer to
the laser/gyro is unknown and time varying.

In order to address this problem, we have designed and
implemented a two-layered (2.5-D) estimator. In the first stage,
rotational velocity measurements from the 3-axis gyroscope
are combined with relative attitude measurements inferred
from the laser scan data to estimate the 3-D attitude of the
cane. The second stage incorporates corner features extracted
from the laser data, linear velocity measurements from the pe-
dometer, and a filtered version of the cane’s yaw to compute 2-
D position estimates of the user.1 By exploiting a priori infor-
mation about the location of environmental features (corners),
and considering that many of the primary structural planes
(floor, ceiling, walls) of a building lie perpendicular to each
other, the described method generates a reliable localization
estimate of a person traveling indoors.

Section II of this paper reviews the relevant literature on
obstacle avoidance, navigation, and localization systems for the
visually impaired. The problem of estimating the 3-D attitude
of the white cane is discussed in Section III-A. Section III-
B details the use of a low-pass filter to extract the heading
of the user from the attitude estimate of the cane. The 2-D
position filter for estimating the user’s location is presented in
Section III-C. A description of the hardware utilized is given
in Section IV-A. Experimental results of the method presented
here are provided in Section IV-B. Finally, the conclusions and

1It is important to note that while the laser data are utilized in both stages
of the filter, statistical correlations in the estimates are avoided by using the
even-indexed data points in the first stage, and the odd-indexed data points in
the second stage.



future work are discussed in Section V.

II. RELATED WORK

Recent work has focused on developing hazard detection
aids for the visually impaired [3]. These employ sensors for
obstacle avoidance such as laser pointers [4], and sonars on
a wheelchair [5], on a robot connected at the tip of a white
cane [6], [7], or as part of a travel aid [1], [2]. Cameras have
also been suggested [8], [9] for object description (in terms of
color and size) in addition to obstacle detection. While these
devices augment the cognitive abilities of a blind person and
reduce the probability of an accident due to an undetected
obstacle, they cannot be explicitly used as a wayfinding aid
without the development of appropriate algorithms for local-
ization and mapping.

Significant research work (e.g., [10], [11]) has concentrated
on mobile robot navigation. However, there are only few
attempts to apply this knowledge to assist visually impaired
people in their everyday navigation tasks. Instead most rel-
evant efforts have focused primarily on GPS-based outdoor
navigation (e.g., [12], [13], [14], [2]) which cannot be used
inside a building. An approach to indoor wayfinding for the
visually impaired is presented in [15], [16], [17]. In this case,
an autonomous robot attached at the end of a leash, as a
substitute for a guide dog, localizes using information from
a network of Radio Frequency Identification (RFID) tags. One
of the main limitations of this approach is that mobility is
restricted to places that a mobile robot can reach. This rules
out areas where stairs or steps are part of the spatial layout,
and tight spaces such as inside an office or crowded rooms.
Additionally, the weight and volume of the robot, negatively
affects its portability by a commuter. Furthermore, it requires
instrumentation of buildings with RFIDs which is costly and
time consuming; this is also the case for similar ultrasound
[2] and Infra Red (IR) [18] based systems. In contrast, we are
interested in designing a white cane-mounted sensor system
to aid visually impaired people for indoor navigation. This
is more challenging due to the variations in body geometry
(e.g., height and stride) and motion patterns across different
people. Additional difficulties arise when dealing with cane-
based sensor systems due to the unknown and time-varying
coordinate transformation between the sensors and the user.
However, the white cane is an ideal platform for indoor human
localization for several reasons: (i) it is a trusted tool, already
in use by the target demographic, (ii) it is lightweight, portable,
and unobtrusive to the user, and (iii) a cane-based localization
system requires no building instrumentation.

III. METHOD DESCRIPTION

The algorithm described in this work consists of three main
components. First, the attitude of the white cane is estimated
using a 3-axis gyroscope, and laser-scan measurements of
structural planes in the building. Second, the heading direction
of the person is extracted from the yaw component of the white
cane’s attitude estimate with the use of a low-pass filter. The
purpose of this step is to provide a heading measurement to the
second stage of the filter. Lastly, the position of the person is
estimated using the heading estimates from the low-pass filter,
the linear velocity measurements from the pedometer, and the

relative coordinates of known corner features detected by the
laser scanner.

A. Attitude Estimation of the White Cane

In this work, attitude is represented using the quaternion of
rotation:

q = S
Gq =

[
k̂ sin θ

2 cos θ2

]T

(1)

where {S} and {G} denote the gyroscope and global frames
of reference, k̂ is the axis of rotation, and θ signifies its
magnitude. This representation of attitude is ideal because
it is compact and singularity-free. For clarity, the notation
employed in this paper results in “natural order” quaternion
multiplication. As such, the symbol ⊗ denotes multiplication
fulfilling L1

L3
q = L1

L2
q ⊗ L2

L3
q, which is the attitude rotation

between successive frames [19].
Attitude estimation is accomplished through the use of an

EKF which fuses measurements from proprioceptive and ex-
teroceptive sensing devices. Rotational velocity measurements
from a 3-axis gyroscope are integrated to propagate the attitude
estimate, and straight lines extracted from the laser-scan data
are used to update the computed estimate.

1) Attitude Propagation: The state vector xk consists of
the quaternion q and the gyroscope bias b. The error state
x̃k is comprised of the attitude angle-error vector δθ and the
gyroscope bias error b̃ = b − b̂, i.e.,

xk =
[
q
b

]
, x̃k =

[
δθ

b̃

]
It is interesting to note that while the state vector xk is 7× 1,
the error state x̃k is 6 × 1. Many EKF formulations maintain
equal sized state and error state vectors. The quaternion of
rotation, however, is defined to have unit length which causes
the corresponding covariance matrix to lose rank. To account
for this, the attitude angle-error vector δθ is used in the error
state defined from the following relation:

δq =q ⊗ q̂−1 �
[

1
2δθ
1

]
(2)

The error quaternion δq denotes a small rotational error
between the true, q, and the estimated, q̂, attitude of the cane.

a) Continuous-time model: The state model for the
quaternion representation of attitude is governed by the quater-
nion time derivative (3), which is computed in terms of the
instantaneous rotational velocity ω.

q̇ (t) =
1
2
Ω (ω)q (t) (3)

where

Ω (ω) =
[−�ω×� ω

−ω 0

]
, �ω×� =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


The gyroscope measures the rotational velocity of the cane

expressed with respect to the local (cane-affixed) frame of
reference. These measurements are corrupted by sensor bias
b, as well as measurement noise nr:

ωm = ω + b + nr (4)



where the turn-rate noise nr is distributed as zero-mean white
Gaussian process with covariance σ2

rI3×3. The sensor bias b
is modeled as a random walk with

ḃ =nw (5)

where nw is also distributed as zero-mean white Gaussian
noise process with covariance σ2

wI3×3.
The continuous-time error-state propagation is described by

the following equation [20]:[
˙δθ
˙̃b

]
=

[−�ω̂×� −I3×3

03×3 03×3

] [
δθ

b̃

]
+

[−I3×3 03×3

03×3 I3×3

] [
nr
nw

]
˙̃x =Fc · x̃ + Gc · n (6)

where Fc is the continuous-time system matrix, Gc is the input
noise matrix, and 0m×n and Im×n are the m × n zero, and
identity matrices, respectively.

b) Discrete-time implementation: During each propaga-
tion step, the bias estimate is considered constant (cf. (5))

b̂k+1|k = b̂k|k (7)

and the quaternion estimate is propagated by integrating (3):

q̂k+1|k =

 ω̂k|k
||ω̂k|k|| sin

( ||ω̂k|k||
2 δt

)
cos

( ||ω̂k|k||
2 δt

)
 ⊗ q̂k|k (8)

where ||ω̂k|k|| =
√

ω̂T
k|kω̂k|k and ω̂k|k = ωm(tk) − b̂k|k.

Finally, the error-state covariance matrix is propagated as:

Pk+1|k =ΦkPk|kΦT
k + Qdk

(9)

where

Φk = Φ(tk+1, tk) = e
∫ tk+1

tk
Fc(τ)dτ

and

Qdk
=

∫ tk+1

tk

Φ(tk+1, τ)Gc(τ)QcGT
c (τ)ΦT(tk+1, τ) dτ

with Qc =
[
σ2
rI3×3 03×3

03×3 σ2
wI3×3

]
.

2) Attitude Update: Even-indexed laser scan data points
from a laser range finder are employed to measure the relative
orientation between the sensor frame of reference {S} and the
global frame {G}. Specifically, the laser sensing plane inter-
sects the planar surfaces inside a building (e.g., walls, floor,
ceiling) along straight lines which can be reliably detected
and extracted from the laser data. The direction of each of the
extracted lines is processed as a measurement for updating the
attitude estimates.

Inside a building, frame {G} can be assigned such that its
principal axes {e1, e2, e3} are perpendicular to the prominent
structural planes of the building (i.e., e1 ⊥ Wallx, e2 ⊥
Wally , and e3 ⊥ Floor, Ceiling). Measurements to these
planes are denoted by their corresponding unit-vectors (e.g.,
an x-measurement is a measured line which is perpendicular
to e1). Let ei ∈ {e1, e2, e3} be one of the three unit vectors
of frame {G}, and let G� denote the (unit vector) direction
of the line of intersection between the laser-scan plane and
the measured plane expressed with respect to {G}. From the

geometric constraint, their inner product should be zero

eT
i
G� = 0, i = 1, 2, or 3 (10)

The inferred measurement equation is derived by rewriting this
constraint using the transformation relation G� = CT (q) S�:

z = eT
i C

T (q) S� = 0 (11)

where the rotation matrix CT (q) projects vectors expressed
with respect to frame {S} to frame {G}. Note that since S� is
the unit vector direction of a line on the x-y plane of the laser
sensor frame, it can be written as S� =

[
sinφ − cosφ 0

]T
where φ is the complimentary angle to the line direction.

The estimated measurement equation is

ẑ = eT
i C

T (q̂) S�m (12)

where S�m = S� − S �̃ denotes the measured line direction
and S �̃ = �e3 ×�S�mφ̃ is the error in this measurement.
Note that the line direction error φ̃ ∼ N (0, σ2

φ) accounts for
measurement noise as well as inaccuracies in line fitting.

Employing (11) and (12), the measurement error is:

z̃ � [−eT
i CT (q̂) �S�m×� 01×3

] [
δθ

b̃

]
+ eT

i CT (q̂) �e3 ×�S�mφ̃

=hTx̃ + n (13)

where we have used the following small angle approximation:

CT (q) = CT (δq ⊗ q̂) � CT (q̂) + CT (q̂) �δθ×�
Updating the state estimates requires to compute the residual

r = z − eT
i C

T (q̂) S�m = −eT
i C

T (q̂) S�m (14)

and the Kalman gain:

k =Pk+1|kh
(
hTPk+1|kh +R

)−1
(15)

where R = E{n2} =
(
eT
i C

T (q̂) �e3 ×�S�m
)2
σ2
φ.

The error-state estimate is given by the following expression

x̂(+) =

[
δθ̂(+)
b̂(+)

]
= kr (16)

From δθ̂(+) the error quaternion estimate is computed as

δq̂ =
1√

1 + 1
4δθ̂(+)Tδθ̂(+)

·
[

1
2δθ̂(+)

1

]
(17)

The quaternion and the bias estimates are updated as

q̂k+1|k+1 = δq̂ ⊗ q̂k+1|k (18)

b̂k+1|k+1 = b̂k+1|k + b̂(+) (19)

The last step in this process is the covariance update:

Pk+1|k+1 = (I − khT)Pk+1|k(I − khT)T + kRkT (20)

3) Attitude Observability: Due to physical limitations of
planar laser scanning, it is impossible to resolve all three
degrees of rotational freedom from a stationary vantage point.
The attitude of the cane, however, is stochastically observable
when the cane is in motion [21]. In what follows, we prove
that the observability requirements are satisfied when the laser
sensor detects all three main directions in space, at different
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Fig. 1. The trace of the attitude covariance demonstrates that while the
cane is stationary (first 10sec during bias initialization) its attitude is initially
unobservable, however, it becomes observable when the cane is in motion.

time steps, over a given time interval.
Since observability of the attitude entails observability of

the bias, we focus on a simplified measurement model with
only the quaternion as state variable, and measurement matrix

hTi (tk) = −eT
i C

T (q(tk)) �S�i(tk)×� (21)

In order to establish stochastic observability of the attitude,
it suffices to show that the observability Gramian

M =
N∑
k=1

∑
i

ΦT(tk, 0)hi(tk)hT
i (tk)Φ(tk, 0) (22)

is of full rank for some finite N [21].
Noting that in this case the state transition matrix Φ(tk, 0) =

C(q(tk)), the observability Gramian can be written as the sum
of the following vector outer products:

M =
N∑
k=1

∑
i

Ghi(tk)GhT
i (tk)

with Ghi(tk) = G�i(tk) × ei. If over a period of time the
sensor observes surfaces with normals ei that span R

3, and
recalling that G�T

i ei = 0 (cf. (10)), then the vectors Ghi also
span the 3D-space, ensuring M to be of full rank.

Fig. 1 depicts the trace of the attitude covariance matrix
with respect to time. During this experiment, the white cane
was initially stationary for 10sec for the purpose of gyroscope
bias initialization. As evident from the experimental results, the
trace of the attitude covariance becomes bounded (as expected
since the system is observable) once the cane is in motion.

Finally, in order to ensure consistency of the EKF estimator,
the measurement residuals should lie within the 3σ bounds of
the residual covariance. This is verified by the results shown
in Fig. 2.

B. Heading Estimation of the Person

During regular operation, the yaw angle of the cane will be
an asymmetric cyclostationary random process in which the
amplitude, phase, frequency, and degree of asymmetry may all
change (cf. Fig. 3). These characteristics result from swinging
the white cane which helps the person identify a clear walking

0 1000 2000 3000 4000 5000
−6

−4

−2

0

2

4

6

Line Measurement Number

Line Measurement Residual
+/− 3*sqrt(S)

Fig. 2. The residuals of the attitude update measurements plotted with the
3σ bounds computed from the residual covariance. Note that the units of
the vertical-axis are intentionally omitted considering that this measurement
residual is by nature unit-less (difference of unit vector dot-products).
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Fig. 3. The yaw component of the cane’s attitude estimate plotted before
and after low-pass filtering.

path. Extracting the heading direction of the person from the
cane’s yaw can be accomplished through the employment
of traditional signal processing techniques. However, due to
the constraint that the filter must propagate in real time, a
suboptimal method has been employed.

The heading of a person can be well approximated as
the mean value of the cane yaw over a period of swinging.
Thus, a proper solution would be a combination of frequency
estimation, and low pass filtering to remove the high frequency
component of the yaw. This motivates the use of a Finite
Impulse Response (FIR) filter. The attitude is propagated at
100Hz, however, due to the nature of the motion of the cane
the high frequency component of the yaw does not fall below
0.5Hz. In order to reduce the number of taps needed by the
filter, the yaw signal is down-sampled by a factor of 40.
The signal is then filtered using a 7th order FIR filter with
Kaiser window β = 0.5, and a normalized cut-off frequency
of 0.02. Fig. 3 depicts the yaw component of the cane’s
attitude estimate along with the filtered version. A byproduct of
filtering the yaw signal is that a delay is introduced. Although



the filter has only seven coefficient-delay pairs, there is a delay
of 1.2sec because the down-sampled yaw signal has a sampling
frequency of 2.5Hz. As a result, an equivalent time-lag exists
in the position estimate. However, due to the relatively slow
walking rate of a person carrying a white cane, this delay is
not prohibitive for real-time operation.

C. Position Estimation of the Person

Estimating the position of a person within a building can be
treated as a 2-D position estimation problem in which each
floor of the building is a separate environment containing
landmarks, in this case corner features, whose position is
known. While a person is traversing a single floor, their motion
will be constrained on the plane of that floor. This allows for
the use of a 2-D odometry propagation model.

1) Position Propagation: The non-holonomic formulation
of the odometry state equations requires that linear and ro-
tational velocity measurements be available during the prop-
agation stage. These constraints are relaxed for the case of
a person. Linear velocity measurements are provided by a
foot-mounted wireless pedometer. Note that rotational velocity
measurements need not be accessible as the person’s heading
direction is available from the FIR filter. This odometric model
is also known as direct heading odometry [22]. The state
propagation equations are:

xk+1 =xk + V δtcψ , yk+1 = yk + V δtsψ

x̂k+1 =x̂k + Vmδtcψm , ŷk+1 = ŷk + Vmδtsψm

where (x, y) and ψ are the position and heading of the person,
and V is the average velocity during the time interval δt. In
the above equations “ ̂ ” denotes estimates while the subscript
m refers to measured quantities, i.e.,

Vm = V + wv , ψm = ψ + wψ

where the velocity, wv , and heading, wψ , errors are zero-
mean white Gaussian processes with variances σ2

v and σ2
ψ,

respectively. The error model based on these relations is:[
x̃k+1

ỹk+1

]
=

[
x̃k
ỹk

]
+

[−δtcψm Vmδtsψm
−δtsψm −Vmδtcψm

] [
wv
wψ

]
x̃k+1 = x̃k + Γn (23)

and the covariance propagation is computed as

Pk+1|k =Pk|k + ΓQΓT, where Q =
[
σ2
v 0
0 σ2

ψ

]
(24)

2) Position Update: The person’s position estimate is
updated by incorporating relative position measurements to
known landmarks in the environment. Although the selection
of features is arbitrary, using corners at hallway intersections
is a good choice for an indoor environment because they are
prevalent and can be extracted reliably from the laser-scan
data. By extracting lines from the odd-indexed laser scan data
points, corners are identified with the following characteristics:
(i) two lines must be nearly perpendicular, (ii) the endpoints
of the lines must be within 5cm of each other, and (iii) the
line orientations must match the possible wall orientations in
the environment.

The relative position measurement is written as a 3-D vector
from the sensor to the landmark which is aligned to the sensor

frame and projected down to 2-D:

z = ΠC (q)
(
GpLi − GpS

)
+ np, Π =

[
1 0 0
0 1 0

]
(25)

where GpLi is the position of the landmark Li, GpS is the
position of the sensor (i.e., the estimated state x), and np is
the noise in this measurement.

Applying the expectation operator on both sides of (25), we
compute the estimated measurement as:

ẑ = ΠC (q̂)
(
GpLi − Gp̂S

)
(26)

Finally, differentiation of (25), provides the measurement
error equation

z̃ �− ΠC (q̂)Gp̃S + Π�C (q̂)
(
GpLi

− Gp̂S
)×�δθ + np

=Hk+1x̃ + n (27)

where n ∼ N (0,R) encompasses both the measurement noise
np and the error δθ in the attitude estimate of the cane.

The measurement update requires to compute the measure-
ment residual rk+1 = zk+1 − ẑk+1 and the Kalman gain

Kk+1 =Pk+1|kHT
k+1

(
Hk+1Pk+1|kHT

k+1 + R
)−1

The state estimate is updated as

x̂k+1|k+1 = x̂k+1|k + Kk+1 (zk+1 − ẑk+1) . (28)

Lastly, the updated covariance is computed as

Pk+1|k+1 = (I2×2 − Kk+1Hk+1)Pk+1|k (I2×2 − Kk+1Hk+1)
T

+ Kk+1RKT
k+1 (29)

IV. EXPERIMENTAL RESULTS

A. Hardware Description

When designing the sensor platform used in this work, the
main criterion for the sensor selection and placement was that
the electronics should be unobtrusive to the user. For this
reason two of the three primary sensors are mounted on the
white cane (cf. Fig. 4), and the third sensor is foot mounted.
These sensors were interfaced to a laptop via USB, RS-232,
and bluetooth, respectively. The real-time software components
are written in C++, whereas the software for simulation and
data plotting is written in Matlab. The sensor bay is mounted
beneath a white cane which measures 1.27m when extended
and 0.33m when retracted. We have used a light-weight carbon
fiber cane so that the total weight, including sensors, is
approximately the same as a standard white cane.

The laser scanner is an URG-X002S which measures 5cm
by 5cm by 7cm. It has an angular scan range of 240 degrees,
with an accuracy of ±1% of the measurement for distances 1m
to 4m. Closer than 1m, the measurement accuracy is ±10mm.
The laser scanner can measure distances ranging from 0.02m
to 4m. The scanner weighs only 160g and consumes 2.5W
at 5V. The 3-axis gyroscope is an ISIS Inertial Measurement
Unit (IMU), with an angular-rate range of ±90deg/sec. Over
an RS-232 connection, the ISIS IMU provides measurements
at 100Hz. The weight of the sensor is 363g, and the power
consumption is 6.72W at 12V. The IMU measures 5.5 ×
6.5× 7cm. The pedometer is 8.5× 3.5× 3.5cm, and transmits
communication packets via bluetooth at a rate of 1Hz.



Fig. 4. A view of white cane and hardware. The sensor bay is mounted on the handle portion of the cane. Note that the tip of the cane is unobstructed, and
the user maintains the ability to physically sense the world. The weight of the sensor package is approximately 550g.

B. Description of the Experiment

The method described in this paper was tested in an indoor
environment on a closed loop of path length 130m. Twenty-
one corners along this loop were known a priori from the
building blueprints, and were used as features for position
updates as described in Section III-C.2. While walking around,
the user testing the cane swung it to-and-fro in a natural
manner searching for obstacles which might lie in their path.
Fig. 7 shows the estimated trajectory super-imposed on the
floor diagram. The striped regions in the figure depict obstacles
such as couches and garbage cans, which are not detailed in
the building blueprint. Additionally, some of the doors along
the hallways were open, while others were closed. During
testing there was a normal flow of pedestrian traffic through
the hallways. All of the corners in the map are shown as boxes,
and every measurement which was used to update the position
estimate is marked with a line to the corresponding corner.

Surprisingly, the uncertainty in the position estimate is very
low (max σ = 0.16m), even though the number of position
update measurements is small (only 9 of the corners were
detected in approximately 110 laser scans). The reason that
the position filter is so precise despite the relatively infrequent
position update measurements is due to the accuracy of the
heading estimates provided by the attitude filter. The attitude
estimate of the cane is highly accurate due to over 5, 000
orientation measurements obtained during this experiment (cf.
Fig. 2). Based on the analysis of [23] we can infer that when
the orientation error is bounded, i.e., σψ ≤ σψ0 , then the
position covariance grows as:

P (t) � 0.5
(
σ2
v + σ2

ψ0
V 2δt2

)
t = α t (30)

In our experiments, δt = 0.1sec and α = 9.8204 × 10−4.
This means that for the case of direct heading odometry [22],
the position uncertainty grows approximately linearly with
time between consecutive position updates. Thus even when
detecting only a small number of corners, the position filter
maintains a good estimate. This argument is corroborated by
the time evolution of the trace of the position covariance. The
value of the trace never exceeds 0.054m2 which corresponds
to approximately 0.16m 1σ error in each direction (cf. Fig. 5).
Furthermore, the filter maintains consistency as the x and y
components of the measurement residuals fall within the 3σ
bounds of the residual covariance (cf. Fig. 6).

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a new approach to indoor local-
ization for the visually impaired. Information from a pair of
cane-mounted sensors, and a foot-mounted pedometer with
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Fig. 5. The trace of the position covariance verifies that the positioning un-
certainty remains bounded, but grows linearly with time between consecutive
position updates.
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Fig. 6. The x- and y-axis position measurement residuals plotted with their
corresponding 3σ bounds computed from the residual covariance.

unknown and time-varying relative coordinate transformation
was fused in a two-stage pose estimator. The first stage utilized
inertial measurements from a 3-axis gyroscope and relative
orientation measurements from laser scan data to accurately
estimate the attitude of the white cane. The second stage
estimated the position of the person holding the cane, by incor-
porating linear velocity measurements from the pedometer, a
filtered version of the cane’s yaw estimate, and corner features
extracted from the laser scan data.

Our estimation algorithms were experimentally validated,



Fig. 7. Experimental results from a 130m test run, starting in the lower left corner, traveling counter-clockwise and ending back at the start location. The
striped regions on the figure depict locations of furniture and other objects not represented in the blueprint.

and shown to be robust even in a dynamic environment. The
accuracy of these results are among the benefits of using a
cane-based system for indoor human localization. These also
include: (i) a cane provides a lightweight, and unobtrusive
platform for sensors, (ii) it is a trusted tool for blind people,
and (iii) the user maintains the ability to physically touch the
environment during operation.

Future work includes the design of path planning routines
to generate routes between indoor locations, as well as a
haptic feedback system to give the person simple directions.
A software implementation on a small-scale computing device
such as a personal data assistant, or an embedded computer is
also within our short term goals. Finally, we intend to expand
on this work and also address the case of indoor localization,
using the white cane, for cases where a map of the building
is not available.
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