
Cooperative Multi-Robot Localization

under Communication Constraints

Nikolas Trawny, Stergios I. Roumeliotis, and Georgios B. Giannakis

Abstract— This paper addresses the problem of cooperative
localization (CL) under severe communication constraints.
Specifically, we present minimum mean square error (MMSE)
and maximum a posteriori (MAP) estimators that can process
measurements quantized with as little as one bit per mea-
surement. During CL, each robot quantizes and broadcasts
its measurements and receives the quantized observations
of its teammates. The quantization process is based on the
appropriate selection of thresholds, computed using the current
state estimates, that minimize the estimation error metric con-
sidered. Extensive simulations demonstrate that the proposed
Iteratively-Quantized Extended Kalman filter (IQEKF) and
the Iteratively Quantized MAP (IQMAP) estimator achieve
performance indistinguishable of that of their real-valued
counterparts (EKF and MAP, respectively) when using as few
as 4 bits for quantizing each robot measurement.

I. INTRODUCTION

Networks of mobile robots have recently been proposed

for tasks such as aerial surveillance [1], search and rescue

operations [2], underwater- [3] or even space exploration [4].

For any robotic task, accurate localization, i.e., determining

the position and orientation (pose) of each robot, is a

fundamental requirement. In contrast to the simple solution

of localizing each robot in a team independently, cooperative

localization (CL) [5], [6], [7] incorporates robot-to-robot

observations and jointly estimates all robots’ poses, which

significantly improves localization accuracy for all team

members [8]. Unfortunately, this benefit comes at the cost

of increased computation and communication.

Recent research has focussed primarily on reducing the

computational requirements of CL (e.g., [9], [10], [11],

[12]). However, also the communication requirements of CL

are substantial, since, depending on the approach, either

measurements from both proprioceptive and exteroceptive

sensors, or state estimates and covariance matrices have to

be exchanged. Communicating all these quantities might

be infeasible if the robots are subject to communication

constraints due to (i) the nature of the operational envi-

ronment (e.g., limited bandwidth caused by strong signal

attenuation and perturbation underwater or underground), (ii)

the specific application domain (e.g., stealth requirements in

military operations), or (iii) economic motivations (e.g., in
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Fig. 1. Multi-centralized, cooperative localization using quantized mea-
surements with two robots. At every time step k, each robot i quantizes its
measurements (e.g., linear and rotational velocity, robot-to-robot distance
and bearing) and broadcasts the resulting bit sequences, bi

k , to its partners.
Every robot computes the same estimate, x̂0:k|0:k , of the pose of the entire
team, based on all quantized measurements available up to time step k, as
well as on shared knowledge of system- and measurement model and their
associated noise characteristics.

order to extend the operational life-span through lower power

consumption resulting from reduced data transmissions).

In this paper, we investigate algorithms that can perform

CL with significantly reduced communication, by trans-

mitting (severely) quantized instead of real-valued sensor

observations.1 For this purpose, we present a minimum mean

square error (MMSE) filter [13] and derive a new maximum

a posteriori (MAP) batch estimator specifically designed for

dynamic random process estimation with quantized obser-

vations. We show that, despite significantly reduced com-

munication requirements, their performance in CL comes

very close to that of real-valued estimators. In particular,

we propose a “multi-centralized” system (cf. Fig. 1), where

each robot executes the exact same estimation algorithm,

and broadcasts its quantized observations to all other robots.

Combined with the shared knowledge of system- and sensor

models, each robot is able to compute the same quantization

thresholds and the same estimate.

The contributions of this paper are twofold: (i) we develop

for the first time single- and multi-bit MAP estimators for

estimation of random processes with quantized observations,

and (ii) apply quantized filter and MAP algorithms as a

1In digital systems, real-valued scalars are usually already generically
quantized, e.g., with 32 or 64 bits. However, we consider the case of
severe and adaptive quantization with 1-to-N bits, optimized for the case
of estimation.
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novel solution to the problem of multi-robot cooperative

localization under communication constraints.

After a brief review of the related literature (Section II)

we present the MMSE (Section III) and MAP algorithms

(Section IV), demonstrate their performance in simulation

(Section V), and conclude the paper with an outlook on

future work (Section VI).

II. RELATED WORK

A. Cooperative Localization

The idea of CL – exploiting robot-to-robot measurements,

and concurrently estimating the pose of the entire robot

team in order to improve localization accuracy – has been

subject of active research in the recent past. A variety of

algorithms have been proposed for CL, among them Maxi-

mum Likelihood estimation (MLE) [6], or extended Kalman

filter (EKF)-based approaches [7]. Several strategies aim at

reducing the communication and computational complexity

of CL, for example distributed implementations [7], [12],

approximations based on decoupling [9], [10], hierarchical

group division [11], or sensor scheduling [14]. The draw-

backs of these approaches are suboptimal or overconfident

estimates due to neglected correlations as in [9], [10], [11],

that some measurements have to be entirely discarded in

order to fit the communication constraints [14], or that the

algorithm is incapable of adaptively adjusting to bandwidth

variability [7], [12]. By considering quantized measurements,

our proposed algorithms can trade off estimation accuracy for

bandwidth requirements, and thus react to varying commu-

nication constraints.

B. Estimation with quantized observations

In their regular form, the classic estimation techniques

used in CL (e.g., EKF or MLE) rely on real-valued mea-

surements and cannot address estimation with quantized ob-

servations. The latter has recently received growing interest

in the signal processing community. Early work on quantized

estimation was concerned with estimating constant param-

eters, e.g., based on noisy sensor observations that were

quantized and transmitted to a fusion center [15]. Several

studies have investigated the loss of performance compared

to real-valued estimation, for example for MLE [16] or for

MAP estimators [17].

In contrast, few approaches exist for the problem of

dynamic random process estimation using quantized observa-

tions. Ribeiro et al. [18] developed a filtering scheme (sign-

of-innovation Kalman filter or SOI-KF) for scalar observa-

tions of a linear Gaussian random process, quantized with

one bit per measurement. By approximating the posterior

probability density function (pdf) as a Gaussian after each

update, they achieved a filter structure very similar to that

of the regular Kalman filter. Msechu et al. [13] extended

this approach to observations quantized with multiple bits

(iteratively quantized Kalman filter or IQKF). Despite the

significant reduction in communication, the performance of

both SOI-KF and IQKF comes surprisingly close to that of

the real-valued KF. At the same time, SOI-KF and IQKF are

examples of “multi-centralized” estimators, where all sensors

share the same estimate. This structure eliminates the fusion

center, which can be a single-point of failure. We will discuss

these filtering algorithms in more detail in Section III-B.

For nonlinear problems (e.g., CL in 2D), linearized esti-

mators such as the EKF (or, correspondingly, SOI-EKF and

IQEKF) are suboptimal for two reasons: First, they repeat-

edly treat non-Gaussian pdfs as Gaussians, and second, they

approximate the nonlinear system and measurement models

by their first-order Taylor series expansion. It is known

from real-valued estimation, that batch MAP estimators can

mitigate these issues. With the same objective in mind, in this

paper we develop MAP estimators for estimating dynamic

random processes with quantized observations. In particular,

we introduce the single-bit quantized MAP (QMAP) and the

iteratively quantized, multi-bit MAP (IQMAP) algorithms.

III. MMSE ESTIMATION

Let us assume a discrete-time, linear dynamic system with

Mk scalar measurements per time step

xk = Fk−1xk−1 + Gk−1wk−1, x0 ∼ N (xini,P0) (1)

zkm = hT
kmxk + vkm, m = 1, . . . , Mk (2)

with zero-mean, white Gaussian, uncorrelated system and

measurement noise with covariance

E[wkw
T
l ] = δklQk, E[vkmvln] = δkm,lnσ2

km (3)

Notice that in this formulation the only control input is sys-

tem noise. Usually in mobile robotics, the system dynamics

are given by a kinematic model, with velocity or acceleration

measurements acting as control input. Here, we assume

instead a statistical motion model (e.g., zero acceleration

driven by white noise [19]), allowing us to include the control

variables (e.g., linear and rotational velocities) in the state

vector. As a consequence, measurements from proprioceptive

and exteroceptive sensors can be treated identically. Notice

further that this formulation also allows vector-valued mea-

surements, since these can be decomposed into several scalar

measurements after appropriate pre-whitening. Finally, we

note that the linear formulation (1)-(3) is used to render the

following derivations mathematically tractable. Later on, we

will use linearization to accommodate the nonlinear system

and measurement models prevalent in robotics.

A. Kalman Filter

It is well known that the optimal MMSE estimate of the

state xk given all measurements up to time step k (denoted

as x̂k|k and z0:k, respectively) is the conditional mean of the

posterior pdf p[xk|z0:k]

x̂k|k := E[xk|z0:k] =

∫ ∞

−∞

xkp[xk|z0:k]dxk (4)

For a linear system with Gaussian noise, both the prior and

the posterior pdf are Gaussian, and hence are completely

characterized by the mean x̂ and the covariance P. Both

are computed by the regular Kalman filter, described in

Algorithm 1. Notice that the state update requires knowledge

of the (real-valued) measurement zkm.
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Algorithm 1 Kalman filter

1: KF Propagation

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Gk−1Qk−1G

T
k−1

2: KF Measurement Update, m = 1, . . . , Mk

x̂k|k,m = x̂k|k,m−1

+
Pk|k,m−1hkm

hT
kmPk|k,m−1hkm + σ2

km

(zkm − hT
kmx̂k|k,m−1)

Pk|k,m = Pk|k,m−1 −
Pk|k,m−1hkmhT

kmPk|k,m−1

hT
kmPk|k,m−1hkm + σ2

km

x̂k|k,0:=x̂k|k−1, x̂k|k:=x̂k|k,Mk
, Pk|k,0:=Pk|k−1, Pk|k:=Pk|k,Mk

B. Single- and Multi-bit Kalman filter (SOI-KF and IQKF)

Assume now, that due to communication constraints we

cannot afford to transmit the entire measurement zkm, but

only a quantized version bkm. Further, assume that each

robot can broadcast its quantized measurements to all other

robots (i.e., by transmitting at a fixed frequency, or in a

round-robin fashion), and that error-correcting codes ensure

error-free transmission2. Finally, assume known system-,

measurement-, and noise models, and a commonly shared

state estimate throughout the entire network. The last as-

sumption is guaranteed by requiring each member of the

network to execute the same estimation algorithm using

the same quantized observations (a process we refer to as

“multi-centralized” estimation). As a result, every robot is

able to reproduce the quantization thresholds used by the

other robots, since they are uniquely determined based on

the shared estimate [18].

Algorithm 2 SOI-KF

1: SOI-KF Propagation ≡ KF Propagation (cf. Alg. 1)

2: SOI-KF Quantization Rule

bkm =

{

+1 if zkm − hT
kmx̂k|k,m−1 > 0

−1 otherwise

3: SOI-KF Measurement Update

x̂k|k,m = x̂k|k,m−1

+

√

2/πPk|k,m−1hkm
√

hT
kmPk|k,m−1hkm + σ2

km

bkm

Pk|k,m = Pk|k,m−1

− (2/π)
Pk|k,m−1hkmhT

kmPk|k,m−1

hT
kmPk|k,m−1hkm + σ2

km

The quantization of the measurements introduces non-

linearity into the system, causing the Gaussianity of the

2The specific design of the scheduling and routing algorithms is beyond
the scope of this work.

prior and posterior pdfs to break down, even when both

system- and measurement models are linear. As a result,

exact MMSE estimation in general becomes intractable.

However, if the quantized measurement is chosen as the

sign of the innovation, and at each time step the posterior

pdf p[xk|b0:k] is approximated as Gaussian with mean x̂k|k

and covariance Pk|k, then, as shown in [18], the resulting

SOI-KF estimator (cf. Algorithm 2) has a form very similar

to the classical KF. Remarkably, one can show that in a

continuous-time formulation, the performance, in terms of

MSE, of the SOI-KF is the same as that of a real-valued

KF with π/2 times larger measurement noise variance [18].

In other words, by transmitting only a single bit instead of

a real-valued scalar, one still achieves about 64% of the

performance of the regular KF.

More recent work [13] has shown that similar results hold

for quantization with more than one bit per measurement.

Specifically, the SOI-KF measurement update shown in

Algorithm 2 can be repeated for each bit in an iterative

fashion, leading to the iteratively quantized KF, or IQKF.

The performance is shown to improve with the number of

bits, and even for as little as 4 bits, it reaches 98% of the

performance of the real-valued KF.3

IV. MAP ESTIMATION

Notice that neither SOI-KF nor IQKF are exact, since they

approximate the (non-Gaussian) posterior pdf as Gaussian

after every step. For nonlinear systems, the additional lin-

earization of system- and measurement model in the EKF

(or, analogously, in the SOI-EKF [18] or IQEKF [13]) will

only exacerbate this problem, and lead over time to filter

inconsistency. To overcome these limitations, in this section

we investigate real-valued and quantized batch MAP esti-

mation. We expect the smoothing effect of batch estimation

to mitigate errors arising from linearization and Gaussian

approximation.

A batch MAP estimate is the best estimate of the entire

state history (denoted as x0:K) given all measurements up to

time K (denoted as z0:K). Contrary to the MMSE, which is

the mean of the posterior pdf, the MAP estimate is given by

its mode. Using Bayes’ rule and the Markov property of the

dynamic system, we can write the batch MAP estimate as

x̂0:K|0:K = argmax p(x0:K |z0:K)

=argmax
1

p(z0:K)
p(z0:K |x0:K)p(x0:K)

=argmax

K
∏

k=0

Mk
∏

m=1

p(zkm|xk)

K−1
∏

k=0

p(xk+1|xk) · p(x0) (5)

For the linear system with Gaussian noise (1)-(3), the

conditional pdfs in (5) are also Gaussian. After taking the

logarithm, the real-valued MAP estimation problem (5) is

equivalent to a weighted Least Squares problem, which can

be solved using standard techniques.

3In order to properly account for correlations, the state has to be
augmented with the measurement noise in this case. For further details,
we refer the interested reader to [13].
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A. Single-bit quantized MAP estimation (QMAP)

The situation becomes significantly more challenging

when replacing real-valued by quantized measurements. For

illustrative purposes, we first analyze the case where each

measurement is quantized with exactly one bit. Similarly to

the SOI-KF, we will compute the quantized measurement

using as threshold zτkm
the expected measurement based on

the current MAP estimate.

bkm =

{

+1 if zkm − zτkm
> 0

−1 otherwise
(6)

zτkm
= hT

kmx̂k|0:k,m−1 (7)

For computing the posterior pdf and the MAP estimate as

in (5), we will have to determine the quantized measurement

likelihoods p(bkm|xk) instead of p(zkm|xk). Due to the

assumption of Gaussian measurement noise, we can compute

these measurement likelihoods in terms of the Gaussian tail

probability4 as

p(bkm|xk) = Q

(

bkm(zτkm
− hT

kmxk)

σkm

)

(8)

since p(bkm = 1 |xk) = Pr {zkm − zτkm
> 0 |xk}

= Pr
{

vkm > zτkm
− hT

kmxk |xk

}

and similarly for p(bkm = −1 |xk). We are now ready to

state the main result for the single-bit quantized MAP in the

following proposition:

Proposition 1 (Single-Bit Quantized MAP (QMAP)):

Assume the linear model of (1)-(3). If a single bit is

allocated per measurement, with a quantization rule as

in (6), the posterior pdf is given by

p(x0:K |b0:K)

=
1

p(b0:K)

K
∏

k=0

Mk
∏

m=1

p(bkm|xk)

K−1
∏

k=0

p(xk+1|xk) · p(x0)

∝
K
∏

k=0

Mk
∏

m=1

Q

(

bkm(zτkm
− hT

kmxk)

σkm

)

·
K−1
∏

k=0

N (Fkxk,GkQkG
T
k ) · p(x0) (9)

The following Lemma is an important consequence of this

proposition:

Lemma 1: The posterior pdf of the QMAP given in (9) is

log-concave in x.

This follows from the facts that the Gaussian pdf is log-

concave [20], integrals of log-concave pdfs over convex

sets are log-concave [21], and log-concavity is closed under

multiplication [20]. Log-concavity ensures that the MAP

estimate is unique for every choice of zτkm
and can be found

using efficient convex optimization techniques [20], which

are guaranteed to converge to the global optimum.

Fig. 2 illustrates the difference between real-valued and

QMAP estimation for a simple case of a scalar prior, and a

single, scalar measurement. Note that while the real-valued

posterior is Gaussian, the quantized posterior is skewed and

4Gaussian tail probability Q(x) :=
∫∞
x (2π)−1/2 exp(−u2/2)du
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(a) Pdfs for real-valued estimation, and the corresponding
MAP estimate xr .
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(b) Pdfs for quantized estimation, and the corresponding MAP
estimate xq (pdfs for real-valued are shown shaded for com-
parison).

Fig. 2. Comparison of real-valued and quantized measurement-based
posterior pdfs for scalar prior and one scalar measurement z = x + v,
x ∼ N (5, 1), v ∼ N (0, 0.3), quantized with a single bit. The posterior
for the quantized measurement is skewed and heavy-tailed, compared to the
real-valued (Gaussian) posterior.

heavy-tailed. However, its log-concavity ensures that the

MAP estimate is unique and can be computed efficiently.

B. Multi-bit iteratively quantized MAP estimation (IQMAP)

In case multiple bits are available for quantizing a par-

ticular measurement, we require an iterative, multi-bit quan-

tization scheme with adaptive quantization thresholds. For

this purpose, we define the following quantization rule to

determine the ith bit allocated to measurement zkm

bkm,i =

{

+1 if zkm − zτkm,i
> 0, i = 1, . . . , I

−1 otherwise
(10)

We will address how to choose zτkm,i
momentarily.

The idea behind this approach is to define an interval

containing zkm and iteratively reduce its size. Before re-

ceiving the first bit, the measurement zkm is known trivially

to lie in the interval −∞ < zkm < ∞. When the first bit

arrives, e.g., bkm,1 = 1, we can update this interval to be

zτkm,1
< zkm < ∞. After receiving a sequence of bits

bkm =
[

bkm,1 . . . bkm,I

]

, we can establish successively

tighter lower and upper bounds, i.e., zτkm,ℓ
< zkm ≤

zτkm,u
, depending on the specific quantization outcomes
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and thresholds. In this case, the measurement likelihood

of the bit sequence bkm can be computed as p(bkm|xk)

= Pr
{

zτkm,ℓ
< zkm ≤ zτkm,u

|xk

}

= Q

(

zτkm,ℓ
−h

T
kmxk

σkm

)

−

Q

(

zτkm,u
−h

T
kmxk

σkm

)

, leading to the following proposition:

Proposition 2 (Iteratively quantized MAP (IQMAP)):

Consider the linear system (1)-(3). If multiple bits are

allocated per measurement according to the quantization

rule (10), the posterior pdf is given by

p(x0:K |b0:K)

=
1

p(b0:K)

K
∏

k=0

Mk
∏

m=1

p(bkm|xk)
K−1
∏

k=0

p(xk+1|xk) · p(x0) (11)

∝
K
∏

k=0

Mk
∏

m=1

[

Q

(

zτkm,ℓ
− hT

kmxk

σkm

)

− Q

(

zτkm,u
− hT

kmxk

σkm

)]

·
K−1
∏

k=0

N (Fkxk,GkQkG
T
k ) · p(x0) (12)

Notice that if the measurements are quantized with a single

bit, the IQMAP becomes identical to the QMAP algorithm.

Following similar arguments as in the QMAP case (see [22]

for details), we also have the following lemma:

Lemma 2: The posterior pdf of the IQMAP, given by (12),

is log-concave.

The main difference compared to (9) is the form of the new

measurement likelihood, which corresponds to an integral

of the Gaussian pdf over a convex set and hence preserves

log-concavity [21]. As before, the consequence is that the

IQMAP estimate is unique and can be found efficiently.

We now address the question of how to successively

select new quantization thresholds. We propose to choose

zτkm,i
so that, given all previous quantized observations, the

measurement zkm could lie on each side of the new threshold

with equal probability.

Proposition 3 (IQMAP Threshold Selection): Assume

measurement zkm has been quantized using i − 1 bits,

yielding lower and upper thresholds zτkm,ℓ
and zτkm,u

.

Further, approximate the conditional pdf p(zkm|b0:k) by

a Gaussian with mean hT
kmx̂k|0:k and covariance matrix

hT
kmPk|0:khkm + σ2

km, where x̂k|0:k denotes the current

MAP estimate of the state at time step k conditioned on

all quantized observations b0:k, and Pk|0:k its covariance,

computed from the inverse of the Hessian of (12). (Note

that only a small block of this inverse needs to be computed

explicitly [22].) The new threshold zτkm,i
that divides the

interval between zτkm,ℓ
and zτkm,u

into two equiprobable

regions can then be computed as

zτkm,i
= hT

kmx̂k|0:k +
√

hT
kmPk|0:khkm + σ2

km

· Q−1

(

1

2

[

Q
(

z′τkm,ℓ

)

+ Q
(

z′τkm,u

)

])

(13)

where z′τkm,∗
:=

zτkm,∗
−h

T
kmx̂k|0:k√

hT
km

Pk|0:khkm+σ2
km

To see this, we utilize the Gaussian approximation of

p(zkm|b0:k) to express the probability that zkm lies on either

side of the new threshold in terms of the Q-function. The

new threshold zτkm,i
should then fulfill

Pr

{

zτkm,ℓ
<zkm≤zτkm,i

∣

∣

b0:k

}

=Pr

{

zτkm,i
<zkm≤zτkm,u

∣

∣

b0:k

}

⇔Q
(

z′τkm,ℓ

)

− Q
(

z′τkm,i

)

= Q
(

z′τkm,i

)

− Q
(

z′τkm,u

)

From this, the proposition follows.

V. SIMULATION RESULTS

We tested the IQEKF and the IQMAP for CL with two

robots moving in 2D, using the real-valued EKF and MAP as

benchmark. The system model for each robot was given by

a constant-velocity motion model [19]. The continuous-time

dynamics for each robot were given by

ẋ = f(x) + Gc

[

wV

wω

]

(14)

with the state defined as x =
[

x y φ V ω
]T

,

f(x) =
[

V cosφ V sin φ ω 0 0
]T

, and Gc =
[

0T
3×2 I2×2

]T
. Further, we chose σV = 0.6325 m/s·

√
Hz,

and σω = 0.4967 rad/s·
√

Hz as the continuous-time noise

standard deviations for the motion model. The simulated

trajectories followed these characteristics.

After first-order discretization with time step δt we obtain

xk+1 = xk + δtf(xk) + wd (15)

with system Jacobian

Φk =











1 0 −Vkδt sin φk δt cos φk 0
0 1 Vkδt cos φk δt sin φk 0
0 0 1 0 δt
0 0 0 1 0
0 0 0 0 1











and discrete noise covariance E[wdw
T
d ] = Qd where

Qd =

∫ tk+1

tk

Φ(tk+1, τ)GcQcG
T
c Φ(tk+1, τ)T dτ (16)

The odometry measurements of linear and rotational ve-

locity, corrupted by zero-mean Gaussian noise with σV m =
0.07 m/s and σωm = 0.28 rad/s, were recorded at 10 Hz and

treated as regular measurement updates.

We assumed robot-to-robot distance and bearing measure-

ments at a frequency of 1 Hz, corrupted by additive Gaussian

measurement noise with σd = 0.05 m and σθ = 0.09 rad.

Notice that none of the robots received absolute position

measurements, rendering the system unobservable, with pose

estimation errors increasing over time.

We compared the performance of IQEKF and IQMAP

with all measurements quantized with 1-4 bits (constant per

run) against that of real-valued EKF and MAP in Monte

Carlo simulation. The RMS errors are shown in Fig. 3.

We can see that the error decreases with increasing number

of quantization bits, and that the performance comes close

to that of the real-valued estimators with as little as 4

bits per measurements. Moreover, the performance gain per

additional bit becomes increasingly small. Both quantized

and real-valued MAP estimators perform consistently and

considerably better than their filtering counterparts (up to

30% improvement in orientation error), as was expected due
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to their ability to mitigate linearization errors in nonlinear

problems such as CL. Also, the noticeable sawtooth pattern

in the filters, resulting from the 1 Hz robot-to-robot measure-

ments, is effectively smoothed out by the MAP estimators.

A typical result for the estimation error and the corre-

sponding 3σ-bounds for the case of single-bit quantization is

shown in Fig. 4. As expected, real-valued MAP outperforms

QMAP, which in turn is more accurate than SOI-EKF.

However, note the behavior of the quantized filter for the

velocity estimate: Since both system and measurement func-

tion for this quantity are considered linear by the SOI-EKF,

it (wrongly) converges and reaches steady state. The QMAP

estimator, however, correctly accounts for the nonlinearity

introduced by quantization, and more accurately depicts the

evolution of uncertainty, as indicated by the tighter but

variable 3σ bounds.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have derived a new MAP estimator

(IQMAP) for estimation of random processes with quantized

observations. We have shown its application, as well as

that of a quantized filter (IQEKF) [13], to the problem of

multi-robot cooperative localization under communication

constraints. Compared to the regular encoding using 32 or 64

bits per real scalar measurement, both algorithms can signif-

icantly reduce communication requirements by allowing to

encode scalar measurements using as little as 1 bit (or more,

depending on the available resources).

We have further shown that the IQMAP estimator offers

increased accuracy compared to the IQEKF, due to mitiga-

tion of linearization errors. For linear systems, finding the

IQMAP estimate was shown to be a convex optimization

problem, which guarantees a unique solution and allows the

use of highly-efficient solvers.

In our future work, we plan to analytically characterize the

performance of the quantized MAP estimators in comparison

to their real-valued counterparts, which will include provably

optimal schemes for selecting the quantization thresholds.

We also intend to investigate the IQMAP’s ability to ef-

ficiently exploit time-varying communication resources, by

not being forced to spend all available bandwidth (bits) on

quantizing the current measurement only (as is the case for

the IQEKF), but instead using them to refine pertinent pre-

viously quantized measurements. Further directions include

analysis and reduction of computational complexity, e.g., by

marginalizing out old robot poses. To foster applicability in

robotic navigation, we will also focus on the extension to

cooperative localization and mapping.
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Fig. 3. RMS error for NR = 2 robots and NMC = 60 Monte Carlo trials, for EKF, MAP, IQMAP (1-4 bits) and IQEKF (1-4 bits), computed as

RMS(t) =
√
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Fig. 4. Typical errors and 3σ-bounds (dashed) for the state estimates of one of the robots, for real-valued MAP, QMAP, and SOI-EKF (one bit). The
quantization incurs performance loss (as well as considerable savings in communication). QMAP has better performance than SOI-EKF, showing its ability
to better cope with linearization errors. The velocity covariance estimates of the SOI-EKF (but not of the QMAP) wrongly converge to steady state.
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