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Abstract— In this paper, we present an elegant solution to the
2D LIDAR-camera extrinsic calibration problem. Specifically,
we develop a simple method for establishing correspondences
between a line-scan (2D) LIDAR and a camera using a small
calibration target that only contains a straight line. Moreover,
we formulate the nonlinear least-squares problem for finding
the unknown 6 degree-of-freedom (dof) transformation between
the two sensors, and solve it analytically to determine its global
minimum. Additionally, we examine the conditions under which
the unknown transformation becomes unobservable, which can
be used for avoiding ill-conditioned configurations. Finally, we
present extensive simulation and experimental results for assess-
ing the performance of the proposed algorithm as compared to
alternative analytical approaches.

I. INTRODUCTION AND RELATED WORK

LIDAR-camera systems are widely used in various robotic
applications primarily due to their complementary sensing
capabilities. For instance, the camera’s scale ambiguity can
be determined from the LIDAR measurements, while mo-
tion estimates from the camera can be used for finding
correspondences between two LIDAR scans. Additionally,
when combining information from both sensors one can
achieve higher motion-estimation accuracy. Fusing, however,
measurements from a LIDAR and a camera requires precise
knowledge of the 6 dof transformation between them. Since
2D LIDARs are more widely used due to their significantly
lower cost and size, we hereafter focus on 2D LIDAR-camera
calibration methods.1

An approximate least-squares solution to the 2D LIDAR-
camera extrinsic calibration problem is presented in [5].
Specifically, the authors first determine the camera’s pose
with respect to a checkerboard using the PnP algorithm [6],
and define a geometric constraint relating the LIDAR and
camera measurements on the checkerboard (the camera-
checkerboard distance equals the projection of the LIDAR
points onto the checkerboard’s normal vector). Using this
geometric constraint, a linear least-squares problem is formu-
lated by defining, as a new variable, a nonlinear quadratic
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1Note that existing 3D LIDAR-camera extrinsic calibration methods
cannot be used since they rely on 3D LIDAR measurements for finding
the normal vector to a calibration target [1], [2], or aligning LIDAR depth
discontinuities with image edges [3], which is not possible when using
a 2D LIDAR. While this is not an issue for [4], the complexity of the
calibration problem when using 3D LIDAR measurements requires making
certain approximations (see [4] for more details) which are not necessary
when using a 2D LIDAR.

term which embeds both the unknown rotation and trans-
lation. However, the proposed method is suboptimal since
its solution does not directly satisfy the rotational matrix
constraint. Therefore, the computed rotation has to be ap-
proximated by projecting the obtained solution on the special
orthogonal group, SO(3).

The work described in [7], provides an analytical solution
to the minimal LIDAR-camera calibration problem (i.e.,
using six LIDAR and camera measurement sets). In order
to facilitate data association, a calibration board containing
white and black bands is used. The transition line between
the white and black bands is detected by both the camera
(using image processing techniques) and the LIDAR (based
on the differences in reflection intensities). Using these
matches, geometric constraints are formed (the LIDAR-
measured 3D points on a transition line belong to the plane
defined by the transition line detected in the image and the
camera’s center) and solved analytically. This deterministic
method, however, does not compute the optimal least-squares
solution. Moreover, it is sensitive to noise. Thus, when more
than the minimum required number of measurements are
available, it must be used in conjunction with RANSAC [8]
so as to improve its robustness to noise.

The work described in this paper, makes the following
main contributions:

• We introduce a simple, yet powerful, calibration pro-
cedure, where the calibration target used only contains
a straight line. Moreover, we do not require measuring
the laser intensity which makes our method applicable
to a wider range of LIDARs.

• We formulate the LIDAR-camera extrinsic calibration
problem as a least-squares minimization problem and
solve it analytically to find the optimal values for the
6 dof unknown transformation.

• We investigate the conditions under which the LIDAR-
camera transformation becomes (un)observable.

• We validate the accuracy of our approach both in
simulations and experimentally, and demonstrate the
performance improvement as compared to the analytical
approach of [7].

The rest of the paper is structured as follows. In Section II,
we describe our calibration setup and formulate the least-
squares problem for finding the LIDAR-camera calibration
parameters. We present the details of our analytical solution
in Section III, while Section IV describes our observability
analysis. Sections V and VI present the simulation and
experimental validation of the proposed algorithm, respec-



Fig. 1. The geometric constraint of the i-th measurement between the
camera’s frame of reference {Ci}, the LIDAR’s frame of reference {Li},
and the calibration board.

tively. Finally, Section VII provides concluding remarks and
potential directions of future research.

II. PROBLEM FORMULATION

Consider a rigidly connected line scan LIDAR and camera
pair. Let {L} and {C} denote the LIDAR’s and camera’s
frames of reference, respectively. Our objective is to find
the LIDAR’s orientation, CRL, and position, CtL, in the
camera’s frame of reference. The line scan LIDAR measures
the range to objects within its scanning plane. Without loss of
generality, we define this scanning plane as the x− y plane
with the LIDAR’s center as the origin. Thus, the LIDAR
measured points can be written as Lpi =

[
xi yi 0

]T
.

To build correspondences between the camera and LIDAR
measurements, we use a white rectangular calibration board
with a black line, l, in the middle (see Fig. 1). From the
camera image, the line l in the calibration board can be
extracted easily with edge detection followed by a line fitting
algorithm. Then, the vector Cni perpendicular to the plane
defined by the line l and the camera center, expressed in the
camera’s frame of reference, can be determined.

On the other hand, the line scan LIDAR can detect
the edge ending points of the calibration board, Lpi1 and
Lpi2, based on depth discontinuity. Thus, the point Lpi
on the middle line in the LIDAR’s frame of reference
can be computed by averaging the two points. Clearly, by
transforming the point Lpi to the camera’s frame of reference
Cpi = CRL

Lpi + CtL, we have the following geometric
constraint:

Cni
T Cpi = Cni

T
(CRL

Lpi + CtL) = 0 (1)

Note that in contrast to [7], we do not utilize the LIDAR’s
reflection intensity in our calibration process.

In practice, the geometric constraint (1) does not hold
exactly due to measurement noise. Instead, it equals to a
nonzero value denoted by ei. To find the best estimate of
the 6 dof LIDAR-camera transformation, we formulate the
following least-squares problem which minimizes the sum of
the residuals from all the available m measurements obtained
as the LIDAR-camera sensor pair moves in front of the

calibration board:

Ct∗L,
CR∗L = argmin

CtL,CRL

m∑
i=1

(ei)
2 (2)

⇒Ct∗L,
CR∗L = argmin

CtL,CRL

m∑
i=1

(Cni
T

(CRL
Lpi + CtL))2 (3)

s. t. CRL

T CRL = I, det(CRL) = 1

where we have added the rotational matrix constraints.
One standard method to solve this problem is to use

iterative algorithms, such as Gauss-Newton [9]. However,
these methods converge to a global optimum only if the
initialization points lie within the basin of attraction of
the global minimum. In the following, we will prove that
this problem is equivalent to another optimization problem,
whose optimality conditions can be solved analytically.

III. ANALYTICAL DETERMINATION OF LIDAR-CAMERA
EXTRINSIC CALIBRATION

We hereafter present our analytical solution for (3). Specif-
ically, we first convert (3) to an equivalent problem which has
the same solution but fewer variables and constraints. Then,
we solve its optimality conditions using algebraic geometry
techniques.

A. Transformation of the Optimization Problem
Note that in (3), the translation CtL is not involved in

the constraints. Thus, the optimality condition with respect
to CtL only involves CtL and the rotation matrix CRL.
Therefore, if we can express CtL in terms of CRL, CtL

can be eliminated from the optimization problem (3), thus
reducing the number of variables.

Lemma 1: Solving the optimization problem (3) is equiv-
alent to solving the following two problems sequentially:

CRL

∗
= argmin

CRL

m∑
i=1

Cni
T CRL

Lpi +

m∑
j=1

gTij
CRL

Lpj

2

s. t. CRL

T CRL = I, det(CRL) = 1

(4)

Ct∗L = −

(
m∑
i=1

Cni
Cni

T

)−1( m∑
i=1

Cni
Cni

T CR∗L
Lpi

)
(5)

where gij , Cni
T
(∑m

i=1
Cni

Cni
T
)−1

Cnj
Cnj

T .
Proof: Let J denote the cost function of (3). Its optimality

condition with respect to CtL is given by:

∂J

∂CtL

=

m∑
i=1

2
[
Cni

T
(CRL

Lpi + CtL)
]

Cni = 0

⇒CtL = −

(
m∑
i=1

Cni
Cni

T

)
︸ ︷︷ ︸

Q

−1( m∑
i=1

Cni
Cni

T CRL
Lpi

)

(6)



Substituting (6) in the cost function of (3), we have:

J =

m∑
i=1

[
Cni

T CRL
Lpi − Cni

T
Q−1(

m∑
j=1

Cnj
Cnj

T CRL
Lpj)

]2

=

m∑
i=1

[
Cni

T CRL
Lpi − (

m∑
j=1

Cni
T
Q−1Cnj

Cnj
T CRL

Lpj)

]2

=

m∑
i=1

(
Cni

T CRL
Lpi +

m∑
j=1

gT
ij

CRL
Lpj

)2

(7)

Minimizing (7) with respect to CRL yields CR∗L, and substi-
tuting CR∗L into (6) results in (5). This completes the proof.
�

To further simplify problem (4), we choose to use the
quaternion representation for the rotation matrix CRL, in-
stead of the Cayley-Gibbs-Rodriguez parameterization [10]
as in [4], which has a singular configuration when the
rotation angle is π. For more details, we refer the interested
reader to [10]. In particular, problem (4) is simplified by
application of the following Lemma:

Lemma 2: Using the quaternion representation C
Lq for the

rotation matrix CRL, problem (4) is equivalent to:

C

Lq
∗ = argmin

C
Lq

m∑
i=1

(
C

Lq
TMi

C

Lq
)2

(8)

s. t. C

Lq
T C

Lq = 1

where

Mi , L(Cn̄i)
TR(Lp̄i) +

m∑
j=1

L(ḡij)
TR(Lp̄j) (9)

In the above expression, x̄ denotes the quaternion form of a
vector x, while L(·) and R(·) are left and right quaternion
multiplication matrices (see Appendix I).

Proof: Using quaternion parameterization, the cost func-
tion of (4) can be written as:

J =
m∑

i=1

C
n̄
T
i (

C
Lq ⊗ L

p̄i ⊗
C
Lq
−1

) +
m∑

j=1

ḡ
T
ij(

C
Lq ⊗ L

p̄j ⊗
C
Lq
−1

)

2

=
m∑

i=1

C
n̄i

T
R(

C
Lq)

TL(
C
Lq)

L
p̄i +

m∑
j=1

ḡ
T
ijR(

C
Lq)

TL(
C
Lq)

L
p̄j

2

=
m∑

i=1

C
Lq

TL(
C

n̄i)
TR(

L
p̄i)

C
Lq +

m∑
j=1

C
Lq

TL(ḡij)
TR(

L
p̄j)

C
Lq

2

=
m∑

i=1

C
Lq

T

L(
C

n̄i)
TR(

L
p̄i) +

m∑
j=1

L(ḡij)
TR(

L
p̄j)

C
Lq

2

(10)

By including the quaternion unit-norm constraint, we com-
plete the proof. �

It is important to note that (8) has only one quadratic
constraint in four variables, which is easier to solve, as
compared to the original optimization problem (3) that
has six quadratic constraints and one cubic constraint in
twelve variables. Using the Lagrange multiplier theorem, the
Karush-Kuhn-Tucker (KKT) conditions [9] of (8) result in
the following equations:

{∑m
i=1

(
C
Lq

TMi
C
Lq
) (

Mi + MT
i

)
C
Lq + λC

Lq = 0
C
Lq

T C
Lq− 1 = 0

(11)

where λ is the Lagrange multiplier. Note that (11) consists
of four cubic polynomials and one quadratic polynomial in
five variables. The solution of (11) can be computed using
the eigenvalue decomposition of the so-called multiplication
matrix, which we explain in the next section.

B. Analytical Solution
We now describe our analytical approach to directly solve

the polynomial equations (11) using an algebraic-geometry
technique that involves the multiplication matrix. The mul-
tiplication matrix is the generalization of the companion
matrix adopted from univariate to multivariate polynomial
systems [11]. The roots of a multivariate polynomial system
can be computed from the eigenvector of the associated
multiplication matrix. In the following, we briefly explain
the procedure of constructing the multiplication matrix. The
interested reader is referred to [12] for a thorough presenta-
tion of this method.

Any polynomial equation of order di can be written as
fi = cTi xdi , where xdi is the vector of all the monomials up
to order di and ci is the vector of coefficients. For a polyno-
mial system with n equations fi = cTi xdi , i = 1, . . . , n, by
stacking all the coefficient vectors ci into a matrix C, the
polynomial system can be expressed as Cxdmax = 0 where
dmax is the highest order among all the di.

A polynomial system defines an ideal I , which is spanned
by its Gröbner basis, G ,< g1, . . . , gt >, with two
properties: (i) The remainder of any polynomial divided by
G is unique; (ii) Any polynomial whose remainder divided
by G equals zero, is a member of this ideal I . Based
on the first property, for any polynomial φ(x) we have
φ(x) = r(x)+

∑t
i=1 gihi(x), where hi(x) is a polynomial of

x and it is called the quotient polynomial. Furthermore, the
remainder r(x) can be expressed as a linear combination of
a group of monomials, the normal set xB , which can also be
determined from the Gröbner basis. Therefore, multiplying
any polynomial φ(x) with the normal set xB yields:

φ(x) · xB = MφxB +

[
h11 ··· h1t

...
...

hs1 ··· hst

][ g1

...
gt

]
(12)

where Mφ is the so-called multiplication matrix associated
with the polynomial φ(x) determined by xB , s is the
cardinality of the normal set and hij are polynomials in
x. By evaluating (12) at the polynomial’s roots, we have
φ(x) · xB = MφxB , since gi = 0, i = 1, . . . , t. Therefore,
if we define φ(x) as one of the unknown variables xi, it
becomes one of the eigenvalues of the multiplication matrix
Mφ. Furthermore, xB may contain a number of monomials
of all the unknown variables xi, in which case the roots
xi may be directly obtained from the eigenvector of the
multiplication matrix.

Thus far, we have shown that given the Gröbner basis, the
polynomial system’s roots can be computed by the eigen-
value decomposition of the multiplication matrix. However,
the Gröbner basis is not always available for polynomial
systems. For a polynomial system with integer coefficients,
the Gröbner basis can be computed using Buchberger’s



algorithm [12]. However this is not the case for polyno-
mial systems with floating-point coefficients, because of the
round-off error in iterative computations. Since, in practice,
the LIDAR and camera measurements are not guaranteed
to be integers, we employ the method proposed in [13] to
compute the multiplication matrix Mφ.

Notice that φ(x) ·xB is the linear combination of both the
monomials included in xB and others not included in xB ,
which we can denote as xR and rewrite (12) when evaluated
at the solution of the system as:

φ(x) · xB = M′φ

[
xR
xB

]
(13)

where M′φ is the so-called unreduced multiplication matrix.
If xR can be expressed as a linear combination of monomials
in xB , xR = HxB , then (13) can be written as:

φ(x) · xB = M′φ

[
H
I

]
xB = MφxB (14)

and xB becomes the eigenvector of the matrix Mφ.
To do so, we collect all the polynomials up to order l

from the product of fi with all the other monomials, and
stack them in a matrix to form the extended system:

Cexl =
[
CE CR CB

] xExR
xB

 = 0 (15)

where xE are the monomials not included in xR and xB .
Defining the left null space of CE as NT , and multiplying
it to the left side of (15), yields:[

NTCR NTCB

] [xR
xB

]
= 0 (16)

To express xR with respect to xB , we only need to perform

QR decomposition of NTCR = QR =
[
Q1 Q2

] [R1

0

]
=

Q1R1. If we select l large enough, R1 will be a full-rank
matrix [14], in which case xR = −R−11 QT

1 N
TCBxB ,

HxB . Then, xB in (14) is obtained by the eigenvalue
decomposition of Mφ.

In particular, for solving our LIDAR-camera calibration
problem, R1 becomes full rank when l = 11. Specifically,
the size of xE, xR and xB reaches 6045, 51 and 80
respectively, and the matrix Ce is expanded to have 11011
rows. The dominant computation to solve the problem is
determining the nullspace of CE , which has cost O(11011∗
60452). Note that the number of available measurements
does not affect the order or number of unknown variables in
(11), and thus it has barely any impact on the computational
cost. Finally, we point out that the used normal set xB is not
computed from the Gröbner basis, but by a numerical method
(details of implementation are given in [13] and [14]). Once
C
Lq is determined, the translation CtL can be computed from
(5).

IV. OBSERVABILITY ANALYSIS

In this section, we analyse the line scan LIDAR-camera
calibration system’s observability properties and present the

conditions under which the LIDAR-camera transformation
can be estimated. To do so, in the following, we identify
the cases when the system has infinite number of solutions
because of the LIDAR measurements (Case 1) or the camera
measurements (Cases 2-3).

Case 1: Suppose all the LIDAR measurements Lpi, i =
1, . . . ,m, are parallel. Then, for any matrix R representing
rotations around axis Lpi, we have Lpi = RLpi and thus
the geometric constraint (1) can be written as:

Cni
T

(CRL
Lpi + CtL) = Cni

T
(CRLR

Lpi + n) = 0

which means the rotation matrix CRL can be perturbed by
any rotation matrix around Lpi and the constraint will still
hold (i.e., we have infinite solutions).

Case 2: Suppose the normal vectors Cni, i = 1, . . . ,m,
determined from the camera measurements are all parallel.
Then, for any matrix R representing rotations around axis
Cni, Cni = RCni. Additionally, for any vector n⊥ perpen-
dicular to Cni, Cni

Tn⊥ = 0. Thus, (1) can be written as:
Cni

T
(CRL

Lpi + CtL)

=Cni
T (

RT CRL
Lpi + RT (CtL + n⊥)

)
= 0

which means that CRL and CtL can be perturbed by any
rotation matrix R around axis Cni, and CtL can also be
perturbed by any vector perpendicular to the normal vector
Cni and the constraint will still hold.

Case 3: Suppose the normal vectors determined from the
camera measurements all lie in one plane spanned by two
non-parallel Cn1 and Cn2. Define a vector n⊥ perpendicular
to both Cn1 and Cn2, i.e., n⊥ = Cn1×Cn2, then CnT1 n

⊥ =
CnT2 n

⊥ = 0 and (1) can be written as:
Cni

T
(CRL

Lpi + CtL) =Cni
T

(CRL
Lpi + (CtL + n⊥)) = 0

which means that CtL can be perturbed by any vector
perpendicular to the plane and the constraint will still hold.

Case 4: Suppose the three normal vectors determined
from the camera measurements span the whole 3D space,
and the LIDAR measurements are not all parallel. Then, as
shown in [4] the polynomial system has up to eight solutions
which can be computed in closed-form. Mathematically, the
observability analysis described here is close to that in [4],
but with very different physical interpretations due to the
different geometric configurations.

Based on the above analysis, and since there is a low
probability that all the LIDAR measurements will be parallel,
in practice it is the configuration of the normal vectors from
the camera measurements that plays a key role in determining
the problem’s observability properties. To obtain a well-
conditioned measurement set, it is required to rotate the
calibration board in front of the LIDAR-camera platform so
that Cni’s span all three directions.

V. SIMULATION RESULTS

To validate our proposed algorithm, extensive simulations
have been conducted, in each of which 1000 Monte-Carlo
trials are performed. The rotation angle between the line
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Fig. 2. The histogram for the estimated rotation and translation error for
noise-free measurements.

scan LIDAR and the camera is generated randomly from
a uniform distribution U [0, 2π], and the rotation axis is
generated as a random vector with normal distribution. The
LIDAR measured points Lpi are uniformly distributed within
the range 50− 150 cm. The corresponding camera captured
vectors are selected randomly from the null space of the
LIDAR measured points expressed in the camera’s frame of
reference CRL

Lpi + CtL. For each Monte Carlo trial, 10
LIDAR and camera measurement pairs are generated.

In order to test the numerical stability of our algorithm, we
first consider the case of noise-free measurements, because
our method may obtain inaccurate or even incorrect estimates
due to the numerical error in solving the polynomial system.
The histograms of the Root Mean Square Error (RMSE) of
the estimated rotation and translation are shown in Fig. 2. To
find the rotation error, first we compute the error quaternion
δq = C

Lq ⊗ C
L q̂
−1, where C

L q̂ is our estimated quaternion
and C

Lq is the true quantity. Then, we use the approximation
δq ≈ [ 12δθ

T 1]T to obtain δθ and compute its norm. Using
as criterion log10‖δθ‖ > −2, we determined the failure rate
to be 0.5%.

Moreover, we also compared our proposed method to the
minimal problem solver presented in [7], whose implemen-
tation is available at [15]. The minimal solver only requires
6 LIDAR-camera measurements, and thus we have many
choices in selecting a subset from the 10 available LIDAR-
camera measurements. To do so, we employ RANSAC [8]
and select the estimate that minimizes the cost function (3) as
the resulting estimate from the minimal solver. To generate
noise in the camera-measured normal vector, we perturb the
true normal vector around a randomly-generated axis by an
angle drawn from normal distribution. The RMSEs of the
translation and rotation estimates obtained using our least-
squares algorithm and the minimal solver versus different
noise levels in the LIDAR and camera measurements are
plotted in Fig. 3. As evident, our algorithm significantly
outperforms the minimal solver for all cases considered.
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Fig. 3. The RMSE of the estimated LIDAR-camera transformation versus:
(a) the standard deviation (std) of the noise in the LIDAR measurements;
(b) the standard deviation (std) of the angle noise in the camera-measured
normal vectors.

VI. EXPERIMENTAL RESULTS

To demonstrate the validity of our algorithm in practice,
we tested it using real data. In our experiment, a HOKUYO
UBG-04LX-F01 line scan LIDAR and a Chameleon CMLN-
13S2M camera are rigidly mounted on the same platform.
The LIDAR-camera pair and the calibration board used for
calibration are shown in Fig. 4. The camera is intrinsically
calibrated using the method of [16]. The accuracy of the
LIDAR is ±1 cm in the range 6 − 100 cm, has 1% error
for ranges larger than 100 cm, while its angular resolution is
0.36 degree. The calibration board moves between 50− 150
cm in front of the LIDAR-camera pair, and 10 measurements
from the LIDAR and camera are used in the calibration.

The computed transformation between the LIDAR and the
camera is shown in Table I, where ρ denotes the Euler angles
for rotation. Note that for evaluating the accuracy of the
minimal solver, we estimate the LIDAR and camera transfor-
mation by randomly selecting 30 sets of measurements and



(a) (b)

Fig. 4. (a) Line scan LIDAR-camera platform (b) Calibration board

TABLE I
CALIBRATION RESULT

Least-Squares Solution Minimal Problem Solution
C
Lq ρ (deg) CtL (cm) C

Lq ρ (deg) CtL (cm)
0.0029 3.13 7.20 0.0095 -0.02 8.91
-0.0118 0.02 4.61 0.0055 -0.01 3.74
0.1004 -0.20 1.85 0.0917 -0.18 2.69
0.9949 0.9957

keeping the one with the least cost (3). The cost function
value is 3.16 when evaluated with our least-squares solution,
and 4.62 with the minimal solver. As evident, our method
attains a smaller least-squares error, and hence provides a
more accurate least-squares solution.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an analytical least-squares
solution for computing the line scan LIDAR-camera extrinsic
calibration parameters. In particular, we have formulated this
problem as a nonlinear least-squares minimization and shown
that using an appropriate change of variables, its optimality
conditions form a system of multivariate polynomial equa-
tions. Moreover, we have solved this system analytically,
using techniques from algebraic geometry, and found its
global minimum. Finally, we have identified under which
conditions the unknown transformation can be recovered. As
part of our future work, we plan to investigate the line scan
LIDAR-camera extrinsic calibration problem in unknown
environments.

APPENDIX I

Following the quaternion parameterization described in
[17], p2 = Rp1 can be written as

p̄2 = q⊗ p̄1 ⊗ q−1 (17)

where ⊗ represents quaternion multiplication, q−1

is the quaternion’s inverse defined as q−1 =[
−q1 −q2 −q3 q4

]T
, and p̄i =

[
pTi 0

]T
, i = 1, 2, is

the quaternion form of pi, which is not necessary of unit
norm, but can be manipulated with quaternion operations.

For any quaternions q1 and q2, their product, q1 ⊗ q2, is
defined as:

q1 ⊗ q2 , L(q1)q2 = R(q2)q1 (18)

where

L(q) ,

[
q4 −q3 q2 q1
q3 q4 −q1 q2
−q2 q1 q4 q3
−q1 −q2 −q3 q4

]
R(q) ,

[
q4 q3 −q2 q1
−q3 q4 q1 q2
q2 −q1 q4 q3
−q1 −q2 −q3 q4

]

L(q−1) = L(q)T R(q−1) = R(q)T
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