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Abstract—In this paper, we present an Extended Kalman
Filter (EKF)-based estimator for simultaneous localization and
mapping (SLAM) with processing requirements that are linear
in the number of features in the map. The proposed algorithm,
called the Power SLAM, is based on three key ideas. Firstly, by
introducing the Global Map Postponement method, approxima-
tions necessary for ensuring linear computational complexity of
EKF-based SLAM are delayed over multiple time steps. Then
by employing the Power Method, only the most informative
of the Kalman vectors, generated during the postponement
phase, are retained for updating the covariance matrix. This
ensures that the information loss during each approximation
epoch is minimized. Next, linear-complexity, rank-2 updates, that
minimize the trace of the covariance matrix, are employed to
increase the speed of convergence of the estimator. The resulting
estimator, in addition to being conservative as compared to the
standard EKF, has processing requirements that can be adjusted
to the availability of computational resources. Simulation and
experimental results are presented that demonstrate the accuracy
of the proposed algorithm (Power-SLAM) when compared to the
quadratic computational cost standard EKF-based SLAM, and
two linear-complexity competing alternatives.

Index Terms—Simultaneous Localization and Mapping, Power
Method, Global Map Postponement

I. INTRODUCTION

ONE of the most challenging problems faced in au-
tonomous navigation is Simultaneous Localization and

Mapping (SLAM), where robots jointly estimate their own
pose (i.e., position and orientation) and model the environ-
ment. Mobile robot tasks such as search and rescue missions,
and space and underwater exploration are classical examples
of SLAM, where (i) the robots do not have access to global
positioning devices, such as GPS, or information from such
sources is unreliable (e.g., in urban environments or underwa-
ter), and (ii) a priori information about the environment (e.g.,
a map) is not available to the robot.

SLAM has been studied extensively in the literature and
numerous solutions have been proposed. These solutions differ
primarily in the assumptions made for the environment (static
or dynamic), the map representation (point/line/plane features,
global or robocentric mapping, etc.), the robots’ sensors (laser
scanners, cameras, etc.) and the estimation framework used
(Extended Kalman Filter, Particle Filter, Maximum A Pos-
teriori Estimator, etc.). Amongst these, probably the most
commonly used estimator for SLAM is the Extended Kalman
Filter (EKF), due to its ease of implementation. Additionally,
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the EKF is optimal, up to linearization errors, in the Minimum
Mean Square Error (MMSE) sense and it recursively computes
a concrete measure of the uncertainty in the state estimates,
namely the covariance matrix. This covariance matrix provides
crucial information necessary for minimizing the risk of failure
while making decisions related to data association and path
planning.

Unfortunately, storing and updating this covariance matrix
in EKF-based SLAM is a major bottleneck. Even under the
assumption that only few map features are detected at each
time step, both the memory and computational requirements
of EKF-based SLAM are quadratic, O(N2), in the number
of features, N , in the map. While storage requirements can
be handled efficiently by the memory devices available today,
the computational complexity has prevented the deployment
of mobile robots in large-scale environments. Another critical
drawback of using the EKF estimator, due to the non-linear
nature of the SLAM problem, is its inherent inconsistency1

over time. Estimator consistency is vital for SLAM because
an inconsistent estimator provides no guarantee for the ac-
curacy of the generated state estimates, hence rendering the
robot/landmark estimates unreliable.

As detailed in the following section, a number of EKF-based
approaches exist that address the computational complexity of
SLAM by: (i) delaying the quadratic covariance update step
or (ii) employing an approximate structure for the estimator.
The main limitation of the methods under the first category,
is that inevitably at some point the delayed covariance update
will have to be carried out, incurring a computational cost of
O(N2). For large values of N , this can become prohibitive.
On the other hand, many of the approximate approaches do
not maintain the cross-correlations between the robot’s and
the landmarks’ estimates, which can lead to inconsistency and
divergence of the EKF. Furthermore, amongst the approximate
approaches that do maintain these correlations, information is
discarded during every time step, often based on criteria that
do not guarantee the best use of the available CPU cycles, thus
resulting into suboptimal estimators.

To address this problem, in this paper we describe an
EKF-based algorithm for SLAM with linear computational
complexity in the number of features in the map. The proposed
conservative2 approximate estimator minimizes the informa-
tion discarded over multiple time steps. This is achieved by:

1A state estimator is consistent if its estimation errors are zero-mean
and have covariance matrix smaller or equal to the one calculated by the
filter [Bar-Shalom et al., 2001].

2An approximate EKF-based SLAM estimator is conservative if its esti-
mated covariance is larger than that of the corresponding standard EKF.
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(i) extending the time horizon over which approximations are
invoked by using the Global Map Postponement technique [cf.
Section III-B], and (ii) using the Power method to compute
and retain, after each approximation, only the most informative
updates (i.e., Kalman vectors whose outer product minimizes
the trace of the covariance matrix) [cf. Section III-C]. Finally,
in order to speed up the rate of convergence of the pro-
posed estimator, rank-2 covariance updates, that minimize the
trace of the covariance matrix under the linear computational
complexity constraint, are applied at every time step [cf.
Section III-D]. The proposed approach is flexible in the sense
that the parameters involved at each stage of the algorithm
can be adjusted to meet the availability of computational
resources. Before presenting the details of the Power-SLAM
algorithm, we briefly review some of the representative EKF-
based SLAM approaches.

II. RELATED WORK

In their seminal work, Smith, Self and Cheese-
man [Smith et al., 1990] introduced the concept of the
stochastic map and proved that the features’ and robot’s
estimates are not independent, as was previously assumed. By
using an EKF-based estimator for solving the SLAM problem,
Moutarlier and Chatila [Moutarlier and Chatila, 1989] showed
that the complete covariance matrix for both the robot and the
features must be maintained in order to ensure consistency
of the EKF filter. Reducing the computational burden for
real-time application of SLAM has been studied by numerous
researchers. The EKF-based solutions can classified into 2
main categories:3

A. Optimal EKF-based SLAM

By restructuring the EKF equations, Davi-
son [Davison, 1998] showed that it is possible to process
multiple observations of the same landmark (map feature)
in constant time, while delaying the complete update of the
covariance matrix. Knight et al. [Knight et al., 2001] extended
this idea to the case of sub-maps. As in [Davison, 1998],
covariance and state updates are limited to the sub-map
(i.e., constant time complexity) until the robot moves outside
that particular area. When this happens, the whole map
needs to be updated which requires O(N2) operations.
Similarly in [Williams et al., 2002], new sub-maps, each
with p features, are initialized at various locations along the
trajectory. As long as p ¿ N , where N is the total number
of features in the global map, each sub-map can be updated
in constant time (i.e., quadratic, O(p)2, in the number of
features in this particular sub-map). However, once all the
sub-maps are merged, the computational cost again becomes
quadratic, O(N2), in the total number of features.

3Although numerous approaches exist for reducing the computational
complexity of SLAM, e.g., Particle Filter [Montemerlo et al., 2002], thin
junction trees [Paskin, 2003], treemaps and multigrids [Frese, 2006],
[Frese et al., 2005], square root SAM [Dellaert and Kaess, 2006], etc, we
hereafter limit our discussion of related work to approaches based on the
Kalman filtering framework. The main reason for this is that EKF-based
approaches provide a direct measure of the uncertainty in the robot pose
and map estimates by computing their covariance.

B. Approximate EKF-based SLAM

The method described in [Dissanayake et al., 2000]
and [Durrant-Whyte et al., 2000] retains the optimal structure
of the EKF-based SLAM algorithm but reduces the number
of landmarks considered per update step. This is achieved by
selecting, based on their covariance, and processing only the
most informative features; the remaining features are removed
from the state vector. Although this algorithm maintains
correlations between the robot and the landmarks and is
optimal for the number of landmarks retained in the state
vector, it introduces an approximation since not all available
map features are processed.

Leonard and Feder [Leonard and Feder, 2000] introduced
the concept of multiple overlapping sub-map regions (Decou-
pled Stochastic Maps), each with its own stochastic map. Their
approach scales the EKF-based SLAM algorithm to linear
computational complexity. However, there exists no proof for
the consistency of this method and it is not possible to estimate
the impact of the approximation on the map’s uncertainty.

In the relative-map approach presented
in [Csorba and Durrant-Whyte, 1997] the relative, instead
of the absolute positions of the features, are estimated. By
excluding the vehicle pose estimate from the state vector, the
covariance matrix takes on a simple block-diagonal structure.
Hence, the resulting computational complexity for processing
each observation becomes constant time. A drawback of
this method is that it does not ensure consistency. The
Geometric Projection filter [Newman, 1999] can be used to
impose the consistency constraint, however, this increases
the computational burden to O(C3), where C is the number
of independent constraints that need to be applied. These
constraints have to be imposed every time the robot pose
is required. Also, this method lacks a common frame of
reference and thus it cannot provide a direct update to the
robot pose.

Guivant and Nebot’s [Guivant and Nebot, 2001] Com-
pressed EKF (CKF) approach combines the ideas of sub-
maps and relative maps. By using sub-maps, this algorithm
has complexity O(Na

2), where Na is the number of fea-
tures in the local map. As in the case of [Davison, 1998],
[Knight et al., 2001], it postpones the global update which
can be carried out with the complexity of a full SLAM
update. While this algorithm, in its optimal form has O(N2)
complexity, an approximation was introduced that involves
relative maps and operates in linear time. In this case only
a subset of the map features are updated.

Julier and Uhlmann introduced the Covariance Intersection
(CI) method [Uhlmann et al., 1997] which does not consider
the estimates’ correlations. Although this estimator is con-
servative and its computational requirements scale linearly
with the number of features, it has very slow convergence.
When partial correlation information is available, the Split
CI (SCI) [Julier and Uhlmann, 2001] can be employed. This
method works better than CI but does not use the complete
correlation information and is still as conservative as CI for
the robot estimates.

The Sparse Weight Kalman Filter (SWKF) [Julier, 2001]
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approach proposed by Julier relies on the sparsification of the
Kalman gain matrix. Based on the observation that most of
its elements are significantly smaller as compared to the ones
corresponding to the robot pose and the observed landmark,
these are set to zero. The resulting approximate algorithm has
linear computational complexity but generates very conserva-
tive estimates.

In our approach, we first present the Global Map Post-
ponement (GMP) technique that reformulates and extends the
postponement method [Davison, 1998], [Knight et al., 2001]
to the case of the global map. We show that by using the GMP,
the computational cost of the exact EKF-based SLAM remains
linear in the number of states, N , as long as the number of
delayed updates (or equivalently the number of stored Kalman
vectors), m, is significantly smaller than N . However, as
the robot moves around in the environment and re-observes
landmarks, the number of delayed updates, m, increases. In
order to ensure that m ¿ N (hence linear computational
complexity), we employ a low-rank approximation that uses
the Power method [Golub and Loan, 1996] for computing
the largest eigenvalues and the corresponding eigenvectors in
linear time. This technique retains the most informative of
the Kalman vectors and allows us to extend the postponement
horizon indefinitely. Finally, in order to speed up the conver-
gence of our proposed estimator, linear-cost, rank-2 updates,
selected so as to minimize the trace of the covariance matrix,
are imposed at every time step. Preliminary work on this topic
has been presented in [Nerurkar and Roumeliotis, 2007]. In
this paper we further present an in-depth complexity analysis
of the proposed algorithm along with real-world experimental
validation.

III. ALGORITHM DESCRIPTION

A. Standard EKF-based SLAM

This section introduces the notation used in this paper and
briefly describes the EKF-based SLAM equations in 2D. Note
that our proposed approach can be easily extended to 3D. The
state vector, xk, consists of:

xk =
[
xT

rk
,pT

1k
,pT

2k
, . . . ,pT

Nk

]T
. (1)

Here, xrk
= [xrk

, yrk
, φrk

]T , denotes the position and orien-
tation of the robot and pik

= [xik
, yik

]T denotes the position
of the ith landmark, i = 1, . . . , N , at time-step k. All the
above quantities are expressed with respect to a global frame
of reference.

The robot is equipped with proprioceptive (odometry) sen-
sors that provide linear, vmk

, and rotational, ωmk
, velocity

measurements. The robot’s motion model is given by:

xrk+1 = f(xrk
,uk,wk), (2)

where f is in general a non-linear function and uk =
[vmk

, ωmk
]T is the control input. The vector wk =

[wvk
, wωk

]T , with covariance Qk, represents the zero-mean,
white Gaussian noise in the linear and angular velocity mea-
surements, respectively. Additionally, the robot is equipped
with exteroceptive sensors that allow it to measure the distance

and bearing to landmark i. The robot’s measurement model is
given by:

zk+1 = h(xrk+1 ,pik+1) + nk+1 (3)

with h = [dk+1, θk+1]T , where dk+1 and θk+1 are the
true distance and bearing from the robot to landmark i and
nk+1 = [ndk+1 , nθk+1 ]

T , is the additive zero-mean white
Gaussian measurement noise with covariance Rk+1.

1) Propagation: The propagation equations for the robot
and landmarks’ state estimates are given by:

x̂rk+1|k = f(x̂rk|k ,uk,0) (4)

p̂ik+1|k = p̂ik|k , i = 1, . . . , N (5)

where m̂jl|p denotes the estimates of the random vector
mj at time-step l, given all the measurements up to time-
step p. Furthermore, (5) results from the assumption that the
landmarks are stationary. The covariance propagation equation
is given by:

Pk+1|k = ΦkPk|kΦT
k + GkQkGT

k , (6)

where P is the symmetric state covariance matrix with the
following structure:4

P =




Pxrxr Pxrp1 . . . PxrpN

Pp1xr Pp1p1 . . . Pp1pN

. . . .

. . . .

. . . .
PpNxr PpNp1 . . . PpNpN




(7)

and

Φk =
[

Φrk 03×2N

0T
3×2N I2N

]
, Gk =

[
Grk

02N×2

]
. (8)

Here,

Φrk =∇xr (f(x̂k|k,uk,0))
Grk =∇w(f(x̂k|k,uk,0))

and I2N is the 2N × 2N identity matrix.
2) Update: The estimates for the robot’s distance and

bearing measurements to landmark i, at time-step k + 1, are
given by:

ẑk+1 = h(x̂rk+1 , p̂ik+1) = h(x̂k+1). (9)

Once the actual landmark measurement, zk+1, is obtained, the
state and covariance are updated as follows:

rk+1 = zk+1 − ẑk+1 (10)
Sk+1 = Hk+1Pk+1|kHT

k+1 + Rk+1 (11)

Kk+1 = Pk+1|kHT
k+1S

−1
k+1 (12)

x̂k+1|k+1 = x̂k+1|k + Kk+1rk+1 (13)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1KT
k+1 (14)

where the measurement matrix, Hk+1, is given by:

Hk+1 = [Hr 02×2(i−1) Hi 02×2(N−i)] (15)

4The time subscripts are omitted here to simplify the presentation.
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TABLE I
DIMENSIONS OF TERMS APPEARING IN EKF-BASED SLAM

Terms in EKF-based SLAM Dimension
State vector xk (2N + 3)× 1

State Covariance Pk (2N + 3)× (2N + 3)
Jacobian of f w.r.t. xr Φrk 3× 3
Jacobian of f w.r.t. w Grk 3× 2
State Transition matrix Φk (2N + 3)× (2N + 3)
Jacobian of h w.r.t. xr Hr 2× 3
Jacobian of h w.r.t. pi Hi 2× 2

Measurement matrix Hk+1 2× (2N + 3)
Measurement Residual rk+1 2× 1
Residual Covariance Sk+1 2× 2

Kalman Gain Kk+1 (2N + 3)× 2

and Hr = ∇xr
(h(x̂k+1|k)), Hi = ∇pi

(h(x̂k+1|k)). Here,
the quantities rk+1, Sk+1, Kk+1, x̂k+1|k+1, and Pk+1|k+1

denote the measurement residual vector, the residual covari-
ance matrix, the Kalman gain matrix, the updated state vector,
and the updated covariance matrix respectively, at time-step
k + 1. Table I lists the dimensions of the various quantities
that appear in the EKF-based SLAM formulation.

The O(N2) computational complexity of EKF-based SLAM
arises due to the covariance update step [cf. (14)], which
involves multiplication of the Kalman gain matrix of di-
mensions (2N + 3) × 2 [cf. (12)]. For robots involved in
exploratory tasks or mapping of dense environments, N , i.e.,
the number of landmarks, continually increases, and hence the
cost of updating the covariance matrix can prohibit real-time
performance.

In order to overcome this computational bottleneck, in the
next section we propose the Global Map Postponement (GMP)
approach and show that as long as m ¿ N (m is the number
of delayed updates), the computational complexity of EKF-
based SLAM can be reduced from quadratic to linear in N ,
without requiring any approximation.

B. Global Map Postponement SLAM

Contrary to the approaches of [Davison, 1998],
[Knight et al., 2001] that support postponement only when
the robot operates within small areas (sub-maps), we hereafter
present our GMP method which poses no restrictions on the
motion of the robot. Our goal in this section is to demonstrate
that, within the GMP framework, exact EKF-based SLAM
requires only O(N) operations per time step.

Consider the case where at time-step k + 1, a new land-
mark observation is processed to update the covariance. In
GMP, (14) is reformulated as:

Pk+1|k+1 = Pk+1|k − (Kk+1S
1/2
k+1)(Kk+1S

1/2
k+1)

T , (16)

where S1/2 is a lower-triangular matrix obtained from the
Cholesky factorization of S. Since S is a 2 × 2 matrix, this
Cholesky factorization is carried out in constant time. The di-
mensions of the resulting term, (Kk+1S

1/2
k+1), are (2N +3)×2

and this matrix is split into two vectors, k1, k2, each of
dimensions (2N + 3)× 1. This gives us:

Pk+1|k+1 = Pk+1|k −
2∑

i=1

kikT
i , (17)

where ki is the ith column of Kk+1S
1/2
k+1 and furthermore

ki =
√

λivi, where vi is the eigenvector corresponding to the
eigenvalue, λi, of Kk+1Sk+1KT

k+1. Here, it is important to
note that in the GMP approach, the vector outer-product sum,∑2

i=1 kikT
i , is never computed. Instead the Kalman vectors,

ki, are stored for later processing5.
Maintaining this sum of vector outer-products forms the

framework of GMP and is directly responsible for reducing
the computational complexity of EKF-based SLAM. Therefore
for clarity, we divide the discussion on GMP into two parts:
(i) first we demonstrate how this structure can be maintained
through subsequent propagation and update steps, and then
(ii) we present the computational complexity of GMP for
propagation, update and landmark initialization.

1) Propagation: The covariance propagation equation at the
next time step, i.e., time-step k +2, is given by [cf. (6),
(17)]:

Pk+2|k+1 = Φk+1Pk+1|kΦT
k+1 + Gk+1Qk+1GT

k+1

−
2∑

i=1

(Φk+1ki)(Φk+1ki)T

= Pk+2|k −
2∑

i=1

k∗i k
∗
i
T , (18)

where k∗i = Φk+1ki. At this step, in the GMP approach
the quantities Pk+2|k and k∗i are evaluated but the vector
product, k∗i k

∗
i
T , is not computed. Instead the vectors,

k∗i , are stored for later processing.
2) Update: The residual covariance is given by

[cf. (11), (18)]:

Sk+2 = Hk+2Pk+2|kHT
k+2 + Rk+2

−
2∑

i=1

(Hk+2k∗i )(Hk+2k∗i )
T .

Here, Sk+2 is evaluated, i.e., the vector outer-product
sum in the above equation is explicitly calculated. Next,
the Kalman gain is expressed as [cf. (12), (18)]:

Kk+2 = Pk+2|kHT
k+2S

−1
k+2 −

2∑

i=1

k∗i (Hk+2k∗i )
T S−1

k+2.

Here again, Kk+2 is evaluated completely. Once the
Kalman gain matrix is obtained, the state update
[cf. (13)] is carried out. Finally, the covariance update
is expressed as [cf. (14), (17), (18)]:

Pk+2|k+2 = Pk+2|k −
2∑

i=1

k∗i k
∗
i
T −Kk+2Sk+2KT

k+2

= Pk+2|k −
2∑

i=1

k∗i k
∗
i
T −

2∑

i=1

kiki
T

= Pk+2|k −
4∑

i=1

kiki
T . (19)

5Throughout this paper, we refer to these vectors as “Kalman” vectors.
While this is true for the ones appearing during updates (though they are
scaled and rotated), we also extend this definition to describe vectors that
result later on from the low-rank approximation and/or after sparsifications.
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Note that, in (19), for simplifying the notation, we have
set k3 = k1, k4 = k2 and k1 = k∗1, k2 = k∗2.

As evident from (18), (19), the vector outer-product sum
structure in the GMP is preserved for subsequent propagation
and update steps. Specifically, from (19), we see that after
each update step, two additional Kalman vectors are generated.
Therefore, repeating this process for all subsequent propaga-
tion and updates, at time-step k + m, the covariance update
equation has the form6:

Pk+m|k+m = Pk+m|k −
2m∑

i=1

kikT
i . (20)

Maintaining this structure and assuming that m ¿ N , we
hereafter present the complexity analysis for GMP SLAM and
show that both propagation and update can be performed with
computational cost at most O(mN). Furthermore, we show
that landmark initialization can also be efficiently carried out
in the GMP framework with cost at most O(mN).

1) Propagation: The covariance propagation equation at
time-step k + m + 1 is given by [cf. (6), (20)]:

Pk+m+1|k+m = Φk+mPk+m|kΦT
k+m + Gk+mQk+mGT

k+m

−
2m∑

i=1

(Φk+mki)(Φk+mki)T

= Pk+m+1|k −
2m∑

i=1

k∗i k
∗
i
T , (21)

where Pk+m+1|k is the propagated covariance at time-step
k+m+1 given measurements up to time-step k. As in standard
EKF-based SLAM, Pk+m+1|k is computed in linear time. Due
to the special block-diagonal structure of the Φk+m matrix
[cf. (8)], each k∗i can be calculated in constant time. Since
2m such Kalman vectors have to be calculated, the overall
computational complexity of this step is also constant time,
i.e., O(m).

2) Update: The residual covariance is given by
[cf. (11), (21)]:

Sk+m+1 = Hk+m+1Pk+m+1|kHT
k+m+1 + Rk+m+1

−
2m∑

i=1

(Hk+m+1k∗i )(Hk+m+1k∗i )
T . (22)

As in standard EKF-SLAM, the term
(Hk+m+1Pk+m+1|kHT

k+m+1 + Rk+m+1) is calculated
in constant time. Since Hk+m+1 contains only two non-zero
blocks [cf. (15)], each term, Hk+m+1k∗i , is calculated in
constant time resulting in a total additional cost of O(m)
for calculating 2m such terms. Finally, since the dimensions
of Hk+m+1k∗i are 2 × 1, each vector outer-product,
(Hk+m+1k∗i )(Hk+m+1k∗i )

T , can be evaluated in constant
time and the computational complexity for calculating the sum
of 2m such matrices is O(m). Thus the overall computational
complexity for calculating the residual covariance matrix is
also O(m).

6For simplicity, we assume one measurement per time step, i.e. one update
step at every time step.

The Kalman gain is expressed as [cf. (12), (21)]:

Kk+m+1 = Pk+m+1|kHT
k+m+1S

−1
k+m+1

−
2m∑

i=1

k∗i (Hk+m+1k∗i )
T S−1

k+m+1. (23)

Similar to the standard EKF-based SLAM, the first term,
Pk+m+1|kHT

k+m+1S
−1
k+m+1, is calculated in O(N) (note that

since S is of dimensions 2 × 2, S−1 is calculated in con-
stant time). Furthermore, since the terms Hk+m+1k∗i have
already been calculated [cf. (22)], the cost of computing
k∗i (Hk+m+1k∗i )

T S−1
k+m+1 is O(N). Thus the summation term

in (23) is evaluated in O(mN), leading to an overall compu-
tational complexity of O(mN) for this step. Also, once the
Kalman gain Kk+m+1 is available, the state update [cf. (13)]
is carried out in linear time.

Finally, the covariance update is expressed as
[cf. (14), (21)]:

Pk+m+1|k+m+1 = Pk+m+1|k −
2m∑

i=1

k∗i k
∗
i
T

−Kk+m+1Sk+m+1KT
k+m+1

= Pk+m+1|k −
2m∑

i=1

k∗i k
∗
i
T −

2∑

i=1

kiki
T ,

(24)

where ki = (Kk+m+1S
1/2
k+m+1) is the ith column of

(Kk+m+1S
1/2
k+m+1). Again, to simplify the notation, we de-

note k2m+1 = k1, k2m+2 = k2 and kj = k∗j , j = 1, . . . , 2m,
to obtain:

Pk+m+1|k+m+1 = Pk+m+1|k −
2(m+1)∑

i=1

kiki
T . (25)

At this step, we do not actually evaluate the sum of the outer-
product of the Kalman vectors and hence we only consider the
computations required for generating the new Kalman vectors.
Since the generation of new Kalman vectors only involves the
Cholesky factorization of the 2 × 2 matrix S, the covariance
update step in GMP is constant time.

3) Landmark Initialization: Next we describe how land-
mark initialization can be efficiently carried out in the GMP
framework. Every time a new landmark, N + 1, is detected,
an estimate for this landmark, p̂N+1, has to be appended
to the state vector. Also, the covariance matrix Pk+m|k+m

[cf. (20)] needs to be appropriately augmented. While the new
landmark’s initial estimate can be generated as in the standard
EKF-based SLAM, the following steps have to be carried out
for updating the covariance:

1) Firstly, zeros are appended as the last two additional
elements of each ki vector.

2) Matrix Pk+m|k [cf. (7)] is augmented to include the
block matrices that correspond to:7

a) The new landmark’s covariance
PpN+1pN+1 = HT

N+1

(
HrPxrxrH

T
r + R

)
HN+1.

7Time indices have been omitted to simplify the discussion.
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TABLE II
COMPUTATIONAL COMPLEXITY OF THE GMP EKF-BASED SLAM ALG.

N : NUMBER OF LANDMARKS IN THE MAP, m: NUMBER OF KALMAN
VECTORS IN THE VECTOR OUTER-PRODUCT SUM

Steps in GMP EKF-SLAM Computational Complexity
State Propagation O(1)

Covariance Propagation O(N)
Residual Covariance O(m)

Kalman Gain O(mN)
State Update O(N)

Covariance Update O(1)
Landmark Initialization O(mN)

b) The new landmark’s cross-correlation with the
robot PxrpN+1 = −Pxrxr

HT
r HN+1.

c) The new landmark’s cross-correlation terms
with each of the N existing landmarks
PpipN+1 = − PpixrH

T
r HN+1, i = 1 . . . N ,

where Hr and HN+1 are the non-zero blocks of the
measurement matrix [cf. (15)] corresponding to the
observation of landmark N + 1.

Although N + 2 terms, as seen above, need to be determined
to update the covariance matrix, the cost of calculating each
of them is constant once Pxrxr and Ppixr are retrieved. As
shown below, we can obtain Pxrxr and Ppixr [cf. (20)] at
a cost of O(m) each (note that Pxrxr and Ppixr are also
needed for data association and can be determined by the same
process). We obtain the 3× 3 sub-matrix Pxrxr as follows:

Pxrxrk+m|k+m
= Pxrxrk+m|k −

2m∑

i=1

krikT
ri, (26)

where kri denotes the first 3 elements of the vector ki that
correspond to the robot. Since each kri vector has dimensions
3 × 1, Pxrxrk+m|k+m

can be evaluated in constant time, i.e.,
O(m). Similarly, the 2 × 3 sub-matrix Ppjxr is evaluated in
O(m) as follows:

Ppjxrk+m|k+m
= Ppjxrk+m|k −

2m∑

i=1

kpjikT
ri, (27)

where kpji denotes the 2 elements of the vector ki that
correspond to landmark pj . Subsequently, each new term of
the covariance matrix, corresponding to landmark N + 1, can
be evaluated at a cost of O(m). Since N +2 such terms need
to be calculated, the overall cost for inserting a new landmark
in the map is O(mN).

From the preceding presentation, it is evident that by using
the GMP technique, we can limit the computational complex-
ity of standard EKF-SLAM to O(mN). Table II summarizes
the computational complexity of each step of GMP. At this
point, it is important to note that since no approximation
has been made up to this stage, the GMP EKF-based SLAM
will produce exactly the same estimates as the standard EKF-
based SLAM, in linear time, for as long as the number of
delayed updates, m, is significantly smaller than N . Inevitably,
however, as the robot navigates and makes new observations,
m will continuously increase. Therefore, in order to maintain
the structure of the covariance matrix [cf. (20)] while allowing
for linear-time updates, it is necessary to devise a technique

whereby the number, m, of ki vectors in the vector outer-
product sum

∑2m
i=1 kikT

i (right-hand side of (20)) remains
upper-bounded by a quantity Mmax ¿ N . In the following
section, we describe how this is achieved by employing a
low-rank approximation of

∑2m
i=1 kikT

i , based on the Power
Method.

C. Low-Rank Approximation

Once the increasing number of Kalman vectors, m, reaches
Mmax, the Power-SLAM algorithm employs a low-rank ap-
proximation of the accumulated, rank-Mmax matrix D:8

D =
Mmax∑

i=1

kikT
i =

Mmax∑

i=1

λivivT
i , (28)

where λ1 > λ2 ≥ λ3... ≥ λMmax
are the eigenvalues of D

and vi, i = 1 . . . Mmax are the corresponding eigenvectors.
The proposed low-rank approximation of D retains its Mmin

largest eigenvalue-eigenvector pairs:

D '
Mmin∑

i=1

λivivT
i , =

Mmin∑

i=1

k∗i k
∗
i
T = D∗, (29)

where Mmin < Mmax and, k∗i =
√

λivi, are the new Kalman
vectors. Here it is important to note that this approximation is
optimal since it retains the most informative vectors, i.e., the
scaled eigenvectors that correspond to the largest eigenvalues
of D. The motivation for this low-rank approximation is to
ensure that only m, where Mmin ≤ m ≤ Mmax ¿ N , vectors
will be involved in further computations [cf. (20)] and hence
the computational cost will remain linear. Furthermore, this
approximation is well justified for the following two reasons:

1) Most of the elements of the vectors ki have very
small values, except (i) the elements that correspond
to the robot, and (ii) elements corresponding to the
landmarks strongly correlated with other landmarks that
were observed over the last (Mmax−Mmin) time steps.

2) The rank-2 covariance update process (described in
Section III-D), sparsifies the ki’s by replacing the largest
elements, in the absolute value sense, of the ki’s with
zeros. Hence, only few directions, vi, of D contain
substantial information (typically Mmin = 1 or 2). The
remaining ones can be discarded without significant loss
of accuracy.

At this point, we should note that the SWKF approach
in [Julier, 2001] is also based on the first observation men-
tioned above. In that case, however, all elements of ki,
except those corresponding to the robot and the observed
landmark, are discarded at every time step. Since there
exist strong correlations between neighborhoods of land-
marks in dense maps, this crude approximation generates
very conservative updates in the SWKF. Furthermore, and
in stark contrast to the one-step approximations involved

8At this point, we should remind the reader that the matrix D is never
explicitly calculated. Instead the vectors ki are stored for processing in the
ensuing approximations.
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in [Julier, 2001] and [Guivant and Nebot, 2001], by employ-
ing the GMP framework, we delay the time when an approxi-
mation becomes necessary. This, in effect, allows us to retain
the most informative among all the ki vectors accumulated
over an extended period of time, thus significantly reducing
the information loss.

A simplistic and very fast solution to the low-rank approx-
imation described in (29) would be to select and retain the
largest Mmin out of the Mmax available ki vectors based
on their 2-norm, ||ki||. Although this is often a reasonable
approximation and, as explained later, guarantees that the
resulting estimator remains conservative, it is not optimal
unless:

1) ki =
√

λivi for i = 1 . . . Mmin, where vi are the eigen-
vectors corresponding to the Mmin largest eigenvalues
of D, or

2) ||ki|| ' 0, for i = (Mmin + 1) . . . Mmax.

While condition (1) is rarely satisfied in practice, condition (2),
from extensive simulation studies, is seen to be usually true
for i = (Mmid + 1) . . .Mmax, where Mmid À Mmin.

Since the objective of the Power-SLAM estimator is to
minimize the information loss, i.e., minimize the trace of
the covariance matrix Pk+m|k+m [cf. (20)], it is necessary
to maximize the trace of the approximated Kalman vector
outer-product sum D∗ [cf. (28)]. The optimal solution to this
maximization problem can only be obtained by determining
the eigenvectors vi that correspond to the Mmin largest
eigenvalues of D and constructing D∗ [cf. (29)]. Furthermore,
in order to maintain the linear-time nature of our proposed
approach, it is necessary to use an algorithm that calculates
these eigenvalue-eigenvectors pairs in linear time. We next
show how this can be accomplished by employing the Power
method [Golub and Loan, 1996] (Algorithm 1).

Algorithm 1
Require: Matrix D, scalars np, Mmin

1: for j = 1 to Mmin do
2: Generate random vector9 s0

3: for k = 0 to (np − 1) do
4: Compute sk+1 ← Dsk

5: Find α ← ||sk+1||∞
6: sk+1 ← sk+1/α
7: end for
8: λj ← α {λj is the dominant eigenvalue of D}
9: vj ← snp/||snp || {vj is the eigenvector of D, corre-

sponding to λj}
10: D ← D− λjvjvT

j

11: end for
12: return λj ,vj , j = 1, . . . , Mmin

In order to evaluate the computational complexity of the
Power method, when applied to this problem, consider the
first iteration when j = 1 and k = 0. Given s0, Step 4 of

9In this particular problem the convergence speed of the Power Method
increases significantly by selecting s0 = kj where ||kj || > ||ki||, ∀i ∈
{1 . . . Mmax}\{j}.

Algorithm 1 calculates:

s1 = Ds0 =

(
Mmax∑

i=1

kiki
T

)
s0 =

Mmax∑

i=1

ki(kT
i s0) (30)

and the computational cost for this step is O(MmaxN). Next,
the costs for obtaining the ∞-norm in Step 5 and dividing
sk+1 by α in Step 6 are O(N) each. Thus the total cost for
Steps 4-6 remains O(MmaxN). Furthermore, since Steps 4-6
are repeated np times10, the total cost to acquire α (dominant
eigenvalue λ1) and snp (dominant eigenvector v1), becomes
O(npMmaxN). Once the dominant eigenvalue/eigenvector is
obtained, D is modified in Step 10 to include the additional
vector outer-product, λjvjvT

j . As a result, D will now contain
Mmax + 1 vector outer-products.

Similarly, by repeating the above process, the second largest
eigenvalue/eigenvector pair can be acquired at a cost of
O(np(Mmax + 1)N) and the new D will contain Mmax + 2
vector outer-products. Thus, we can see that the cost of
obtaining the ith largest eigenvalue/eigenvector pair, where
i = 1, . . . , Mmin, is O(np(Mmax + (i − 1))N). The total
cost for obtaining all Mmin such pairs becomes:

O(np(MminMmax + (1 + . . . + (Mmin − 1)))N)

= O(npMmin(Mmax +
Mmin − 1

2
)N)

≈ O(npMminMmaxN)

since Mmin ¿ Mmax. Hence, as long as npMminMmax ¿
N , the computational cost of the Power method remains linear
in N .

Remark 1 (Speeding up the Power Method): In order to
expand the time horizon over which this low-rank approxi-
mation is delayed (i.e., intuitively large values of Mmax allow
us to retain the most informative ki vectors), a further approxi-
mation can be employed based on the condition (2) mentioned
earlier, i.e., when the ki are sorted by their 2-norm, it has been
observed that ||ki|| ' 0, for i = (Mmid +1) . . .Mmax, where
Mmin ¿ Mmid ¿ Mmax. Based on this observation, the
matrix D is first approximated as:

D =
Mmax∑

i=1

kikT
i '

Mmid∑

i=1

kikT
i = D̃ (31)

and Algorithm 1 is applied to D̃ instead of D to determine
its Mmin largest eigenvectors and eigenvalues, i.e.,

D̃ =
Mmid∑

i=1

λ̃iṽiṽT
i '

Mmin∑

i=1

λ̃iṽiṽT
i =

Mmin∑

i=1

k̃∗i k̃
∗
i
T = D̃∗, (32)

where λ̃i, ṽi, and k̃∗i are defined as in (29).
Selecting the Mmid largest (in the 2-norm sense) ki vectors

incurs a cost of O(MmaxN) for determining their magnitude
and a cost of O(Mmax log(Mmax)) for sorting the vectors
in descending order based on their 2-norms. After this pro-
cess is complete, the cost of the Power Method reduces to

10In most cases, np = 7-10 steps are necessary for this iterative process to
converge. Based on two successive estimates for the eigenvector, convergence
is detected when |1 − sT

np
snp−1/(||snp || × ||snp−1||)| < 10−6, i.e, the

angle between these two vectors is smaller than ∼ 10−6 rad.



8

O(npMminMmidN). Typical values of these parameters used
in our tests are: (i) Mmax = (2 − to − 10)% of N , (ii)
Mmid = max{2, (5 − to − 10)% of Mmax} (i.e., the Power
Method is not used when Mmid = 2 which corresponds to
N < 250, i.e, ∼ 100 -landmark maps), (iii) Mmin = 1 − 2,
and (iv) np = 7 − 10 (i.e., npMminMmid is 1-2 orders
of magnitude smaller than N ). Note that these are only
representative values and they can be adjusted on-line to meet
the availability of computational resources.

Remark 2 (Conservative Estimator): A key advantage of
the presented low-rank approximation is that the covariance
matrix remains conservative. Since D º D∗ [cf. (29)], (20)
yields:

Pk+m|k+m = Pk+m|k −D º Pk+m|k −D∗ = P∗k+m|k+m

(33)

Here P∗k+m|k+m = Pk+m|k −
∑Mmin

i=1 k∗i k
∗
i
T is the new

covariance. The estimator also remains conservative for D̃∗,
since [cf. (31), (32)] D º D̃ º D̃∗.

Remark 3 (Quantifying the Information Loss):
Importantly, the Power-SLAM approach provides a concrete
measure of the information loss incurred due to the
low-rank approximation. Quantifying the approximation
involved is necessary in order to adjust the parameters
Mmin and Mmax on-line, so as to meet performance
requirements. This can be achieved by computing
the ratio (tr(D) − tr(D∗))/tr(D) with complexity
O((Mmax + Mmin)N), where tr(D) =

∑Mmax

i=1 ki
T ki

and tr(D∗) =
∑Mmin

i=1 k∗i
T k∗i .

D. Linear-Time, Rank-2 Covariance Updates

The main drawback of any low-rank approximation
of D [cf. (29)] is that it does not guarantee loss of
rank of the covariance matrix, Pk+m|k+m [cf. (33)],
after “infinite” time, as is expected when the
system reaches steady-state [Dissanayake et al., 2001],
[Mourikis and Roumeliotis, 2006]. This is due to the fact
that the rank of matrix Pk+m|k, in general, is (2N + 3),
i.e., it is full-rank, while the rank of D is at most Mmax.
Hence the rank of Pk+m|k+m = Pk+m|k − D will be at
least (2N + 3−Mmax) with Mmax ¿ N . Furthermore, due
to the propagation steps [cf. (21)], the covariance Pk+m|k,
in general, will increase continuously. The same is true for
D =

∑2m
i=1 kiki

T , where D will also become larger when the
same landmarks are re-observed in a given period of time. To
overcome this drawback, we need to guarantee that the trace
of Pk+m|k will decrease monotonically. This can be achieved
by subtracting certain elements of D from Pk+m|k at every
time step. However, note that any modification of D requires
that the positive semi-definite property of D be maintained,
else the low-rank approximation described in the previous
section will not guarantee consistency. In order to achieve

this, we propose the following rank-2 covariance updates:

Pk+m|k+m = Pk+m|k −
2m∑

i=1

kiki
T

=
(
Pk+m|k − δPj

)−

k+

j k+
j

T
+

2m∑

i=1,i 6=j

kiki
T




= Pk+m|k+1 −
2m∑

i=1

k+
i k+

i

T
(34)

where k+
i = ki, ∀i 6= j, k+

j = (I−Aj)kj ,

δPj = (Ajkj)(Ajkj)T + k+
j (Ajkj)T + (Ajkj)k+

j

T
(35)

and kjkj
T = δPj +k+

j k+
j

T
. In the above expressions, Aj is

a selector matrix, kj is the vector used in the update (to be
determined), and Pk+m|k+1 denotes the updated covariance
matrix after incorporating a single rank-2 covariance update.
Furthermore, as required, after the rank-2 covariance update,
the new matrix D∗ =

∑2m
i=1 k+

i k+
i

T
remains positive semi-

definite, since it is still expressed as the accumulated sum
of vector outer-products. In order to carry out this rank-2
covariance update, kj and Aj need to be determined such
that the following two constraints are satisfied:

(C1) The cost of computing δPj [cf. (35)] is minimized,
allowing at most O(N) operations to maintain the linear
computational complexity of the algorithm.

(C2) The trace of Pk+m|k+1 = Pk+m|k − δPj is minimized.
Note that the minimization of tr(Pk+m|k+1) ensures
minimization of tr(Pk+m|k+m) when the vectors ki are
discarded during the low-rank approximation.

Since the vector kj can, in general be dense, while computing
Ajkj , (C1) requires that the matrix Aj has at most n ¿ N2

non-zero elements11. If these non-zero elements are distributed
among 1 ≤ p ≤ N rows of Aj , then the cost for computing
Ajkj is O(n) and the resulting vector will have p non-zero
elements. Since (Ajkj)(Ajkj)T is a symmetric matrix, the
cost for computing it will be p(p+1)

2 .
When computing k+

j = (I − Aj)kj = kj − Ajkj , d,
d ∈ {0, 1, . . . , p} subtractions are necessary, depending on the
number of elements of k+

j that can be directly set to zero (i.e.,
by appropriately selecting the elements of p− d rows of Aj ,
it can ensured that elements of Ajkj in these rows are same
as those of kj). Thus, if k+

j contains p− d zeros, computing
k+

j (Ajkj)T requires (N − (p − d))p operations. Hence the
total cost for calculating δPj can be expressed as a function
of p, d, n and N as follows:

c(p, d, n,N) =
1
2

(−p2 + (2N + 2d + 1)p + 2(n + d)
)
.

(36)
Note that (36) is a concave function of p with the maximum
achieved at p = 2N+2d+1

2 > N . Thus, it is a monotonically in-
creasing function within the interval of interest, i.e., [1 . . . N ],
with the minimum occurring at p = 1 (i.e., since Aj cannot
be a matrix of all zeros, at least one row of Aj will have

11For clarity in the following derivations, we set the state vector size to N .
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non-zero elements). Substituting p = 1 in (36) the total cost
becomes:

c(1, d, n,N) = N + n + 2d. (37)

Now since p = 1, the number of subtraction d can either be 0
or 1. Also, the structure of matrix Aj , that contains only one
non-zero row (e.g., the ξth row), is given by:

AT
j = [0 . . .aξ . . .0] , (38)

where aξ denotes the ξth row of Aj , with n ≤ N non-zero
elements.

We now turn our attention to (C2). Minimizing the trace
of Pk+m|k+1 is equivalent to maximizing the trace of δPj .
Substituting (38) in (35), we obtain:

tr(δPj) = kT
j

(
Aj + AT

j −AT
j Aj

)
kj

= −(aT
ξ kj)2 + 2kξj(aT

ξ kj) (39)

where kξj is the ξth scalar element of vector kj and (39) is a
concave function of aξ. Computing its derivative with respect
to the elements of aξ, the maximum of tr(δPj) is reached
when:

(aT
ξ kj)kj = kξjkj . (40)

This is trivially achieved by setting aξ = eξ, where eξ is the
ξth canonical unit vector. Therefore, Aj [cf. (38)] becomes
a matrix of zeros, except the ξth diagonal element which is
equal to one. As a result of this, the vector Ajkj has only one
non-zero element, i.e., kξj , in the ξth location; the rest of its
elements are zero. Also, the vector k+

j has the same elements
as kj , except the ξth element, which is zero.

Finally from (35), we can see that δPj will have non-zero
elements only in its ξth row and column. Hence, the total cost
for computing δPj becomes c(1, 0, 0, N) = N . Subtracting
δPj from Pk+m|k+m will also have cost N . Moreover, due
to this special structure of the resulting δPj matrix (i.e., non-
zero elements only in its ξth row and column), the rank of
this matrix is 2 (hence the name rank-2 updates).

What remains to be determined are the indices j and ξ
that satisfy (C2). Substituting aT

ξ kj = kξj in (39), we have
max(tr(δPj)) = k2

ξj . Hence maximizing the tr(δPj) is
guaranteed by selecting among the kj vectors, the one which
has the maximum element kξj , in the absolute value sense.
This maximum element, among 2m Kalman vectors (each of
dimension N × 1), can be determined at a cost of O(mN).

Thus, we demonstrated that the overall computational com-
plexity of a single rank-2 covariance update is O(mN).
Furthermore, this rank-2 covariance update process can be
repeated multiple times during each time step, depending on
the availability of computational resources, to further decrease
the trace of Pk+m|k+1 and speed up convergence.

Before presenting the simulation and experimental results,
we summarize the three key algorithmic components of our
proposed approach along with their computational complexity
[cf. Table III]. Firstly, we showed that by using the GMP
technique, approximations necessary for ensuring linear com-
putational complexity of EKF-based SLAM can be delayed
over multiple time steps. Secondly, we presented a linear-cost

TABLE III
COMPUTATIONAL COMPLEXITY OF POWER-SLAM. N : NUMBER OF

LANDMARKS IN THE MAP, m: NUMBER OF KALMAN VECTORS IN THE
VECTOR OUTER-PRODUCT SUM, Mmin ≤ m ≤ Mmax ¿ N , np :

NUMBER OF ITERATIONS OF THE POWER METHOD

Steps in Power-SLAM Computational Complexity
Global Map Postponement O(mN)

Low Rank Approximation (Power Method) O(npMminMmaxN)
Linear-time Rank-2 updates O(mN)

low-rank approximation technique that retains the most infor-
mative Kalman vectors from the postponement phase using the
Power Method. Lastly, in order to speed up the convergence of
our proposed estimator, linear-complexity rank-2 covariance
updates were introduced. Depending on the availability of
computational resources at each time step, multiple rank-2
updates can be carried out to further speed up convergence.

IV. SIMULATIONS

A. Simulation Setup

The simulations used to validate the performance of the
Power-SLAM algorithm have been implemented in MATLAB.
The robot starts at a known position and follows an 8-shaped
trajectory shown in Fig. 1, where the radius of each circle is
150 m. The maximum sensing range of the robot is set to 8 m
and it has a 360 degrees field of view for range and bearing
measurements. The noise in the measurements is modeled
as zero-mean, white Gaussian. Every 0.2 seconds, the robot
receives the following measurements: (i) odometry (linear,
v, and rotational, ω, velocity) with noise standard deviation
σv = 3%v, and σω = 3%ω, (ii) range d, with σd = 8 cm, and
(iii) bearing θ, with σθ = 1 degree.

In this simulation, the robot observes approximately 500
landmarks (i.e., the size of the state vector increases from
3 to 1000) over 2000 time steps with an average of 1.6
landmark observations per time step. The robot closes loops
approximately every 310 time steps. The maximum number
of Kalman vectors, Mmax, and the number of rank-2 updates
at each time step, are both set to 10% of the size of the
state vector at that time step. The number of Kalman vectors,
ki, considered for the low-rank approximation, are set to
Mmid = max(2, 0.05Mmax). The Power Method extracts the
dominant eigenvalue and eigenvector (Mmin = 1).

B. Simulation Results

The objective of our simulation studies is to demonstrate
the accuracy of the Power-SLAM algorithm, verify its con-
sistency, and compare its performance to that of (i) EKF-
based SLAM, (ii) SWKF SLAM [Julier, 2001], and (iii) CKF
SLAM [Guivant and Nebot, 2001]. Note that the standard
EKF-SLAM has computational complexity O(N2), while all
other algorithms evaluated hereafter have processing require-
ments linear, O(N), in the number of features. However, there
are certain differences in the actual processing cost of each of
the linear estimators. Although the SWKF estimator has fixed
processing requirements, the CKF computational cost can be
adjusted. To ensure a fair comparison, the CKF covariance
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Fig. 1. True robot trajectory (solid red line), true landmark positions (*),
Power-SLAM estimated robot trajectory (dashed blue line), Power-SLAM
estimated landmark positions (+), and their 3σ uncertainty ellipses. Insets
are zoomed sections for better viewing of the uncertainty ellipses.
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Fig. 2. Measurement residuals (solid) and corresponding 3σ bounds (dashed).

updates are set so as to have the same cost as the rank-2
updates of the Power-SLAM algorithm.

We start with a qualitative evaluation of the Power-SLAM
algorithm. As shown in Fig. 1, the Power-SLAM estimates
for both the robot trajectory and the landmark positions are
very close to the real ones. Also note that the 3σ ellipses
of uncertainty for the estimated landmark positions contain
the true positions, indicating consistency. Fig. 2 depicts the
measurement residuals along with their corresponding 3σ
bounds for the Power-SLAM method (only 200 time steps are
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Fig. 3. Trace of the robot’s covariance matrix.
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Fig. 4. Trace of the map’s covariance matrix.
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Fig. 5. Sum of the squared error in the robot’s position estimates.

shown to ensure clarity). This figure verifies that the Power-
SLAM estimator is consistent.

We now turn our attention to the quantitative results pre-
sented in Figs. 3-6. Although all 3 linear-complexity estimators
are conservative as compared to the standard EKF-SLAM, the
SWKF is the most conservative one, followed by the CKF.
The Power-SLAM estimator is the least conservative, which
is evident when comparing the trace of the robot-position
covariance matrix to the corresponding one for the EKF-
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Fig. 6. Sum of the squared error in the landmarks’ position estimates.
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Fig. 7. The 10 largest squared 2-norms (4)) of the Kalman vectors, and
the 10 largest eigenvalues (*) of the Kalman vector outer-product sum at 2
time instances: immediately after loop closure (top figure) and traversing a
semi-circle after loop closure (bottom figure).

SLAM [cf. Fig. 3]. The same conclusion can be reached by
comparing the traces of the landmarks’ covariance matrices
for each of these estimators [cf. Fig. 4]. For the case of
the landmarks, in particular, the SWKF covariance does not
decrease with time as the robot revisits the same areas. While
this is not true for the CKF, the rate of decrease of the
covariance matrix trace is very slow when compared to that
of the Power-SLAM estimator. This behavior is due to the
fact that both the SWKF and the CKF are based on crude
approximations that take place during each time step and
result in large information loss. In contrast, the Power-SLAM
algorithm is able to minimize the information loss by (i)
delaying approximations over large time horizons, and (ii)
extracting and retaining the most informative Kalman vectors
during each approximation.

The level of “conservatism” of each algorithm, when com-
pared to the EKF-SLAM estimator, also affects the accuracy
of the estimates. Specifically, both the robot’s and landmarks’
position errors for the SWKF and CKF are significantly larger
when compared to the ones for the Power-SLAM algorithm
(Figs. 5 and 6), which achieves accuracy almost indistinguish-
able to that of EKF-SLAM.

The average squared error in the position estimates for
each landmark, when compared to the standard EKF, is 72%
higher for the CKF and 483% for the SWKF, whereas it is
only 16% higher for Power-SLAM. Similarly, for the robot
position estimates, the average squared error, when compared
to the standard EKF, is 17% higher for the CKF and 94%
for the SWKF while it is only 5% higher for Power-SLAM.
This is due to the fact that the Power-SLAM algorithm is
based on optimal approximations within the linear-complexity
processing constraints.

Fig. 7 shows the 10 largest eigenvalues and 10 largest
values (in the squared 2-norm sense) of the 100 Kalman
vectors in D at two time instances: (i) just after loop closure,
and (ii) when the robot has traveled a semi-circle after loop
closure. As expected, the Kalman vectors carry substantially
more information after loop closure than at other time steps.
Moreover, in both cases, 2% to 10% of the Kalman vectors

carry the bulk of the information and hence the others can be
discarded in order to speed up the Power Method as discussed
in Remark 1.

V. EXPERIMENTS

A. Experimental Setup

An iRobot Packbot robot, equipped with a Pointgrey Firefly
stereo rig and a PC104 computer was used for the experiments
[cf. Fig. 8]. The stereo rig has been calibrated using the
calibration technique by Zhang [Zhang, 2000] and Heikkila
et al. [Heikkila and O.Silven, 1997] to obtain its intrinsic and
extrinsic parameters.

Fig. 8. The Packbot robot equipped with a Pointgrey Firefly stereo rig.

During the experiments, the Packbot explored an indoor
office environment and captured stereo images of its sur-
roundings while moving in a plane. The robot received pro-
prioceptive measurements, i.e., linear, vm, and angular, ωm,
velocity, at 10 Hz and exteroceptive measurements, i.e., the
stereo images, at approximately 0.5 − 1 Hz. The noise in
the proprioceptive measurements is assumed to be zero-mean,
white Gaussian with standard deviation σv = 3% max(vm)
and σω = 3% max(ωm). The image resolution is 640 × 480
and an additive white Gaussian noise of 2 pixels is assumed
for the camera measurements.

For the duration of the experiment (approximately 2.5
mins), a total of 103 images were captured by each camera.
SIFT keypoints [Lowe, 2004], matched in the corresponding
stereo images, are used to determine the 3D position of the
point features based on stereo triangulation. Examples of
detected and matched keypoints are shown in Figs. 9 and 10,
respectively. On average, 1247 keypoints/image were detected,
while 14.36 keypoints were matched for each set of stereo
images. A total of 1088 point features were added to the state
vector.

B. Experimental Results

Fig. 11 compares the trace of the robot’s position covariance
matrix for the SWKF, CKF, EKF-SLAM and the Power-
SLAM estimators. Note that the trace of the robot’s covariance
matrix for the Power-SLAM estimator is closest to that of
the EKF as compared to the SWKF and CKF. Thus, we
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Fig. 9. Example image with detected SIFT keypoints.
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Fig. 10. Example of matched SIFT keypoints in the left and right images.

can conclude that the Power-SLAM estimator is the least
conservative approximate estimator, followed by the CKF and
finally the SWKF. Fig. 12 compares the trace of the features’
covariance matrix for the aforementioned four estimators.
Here, only the covariance for features that have been re-
observed has been included for comparison. From this figure,
we see that the performance of the Power-SLAM estimator is
almost indistinguishable from that of the EKF. Furthermore,
with respect to the uncertainty in the features’ position es-
timates, the Power-SLAM estimator is the least conservative
as compared to the SWKF and the CKF. Thus, we conclude
that by employing the Global-Map Postponement technique
and the Power Method, the Power-SLAM estimator minimizes
the information loss while satisfying the linear-complexity
constraint, and outperforms competing linear-processing cost
alternatives.

VI. CONCLUSIONS

The Power-SLAM algorithm, introduced in this paper,
provides a real-time consistent estimator for simultaneous
localization and mapping that has computational complexity
linear in the number of features in the map. The Global-
Map Postponement approach followed by the Power Method
and linear-time rank-2 updates form the crux of the Power-
SLAM algorithm. The Global-Map Postponement technique
delays the approximations over multiple time steps. The Power
Method extracts and retains the dominant information from
the Kalman vectors generated during the postponement phase.
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Fig. 11. Trace of the robot’s position covariance matrix.
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Fig. 12. Trace of the map’s covariance matrix.

By working in tandem, these two techniques minimize the
information loss over multiple time steps. Finally, in order
to increase the convergence rate of this estimator, linear-time
rank-2 updates, which minimize the trace of the covariance
matrix, are applied at every time step. One of the key ad-
vantages of the Power-SLAM estimator is its ability to adjust
its processing requirements on-line to meet the availability of
computational resources. By adaptively trading CPU cycles for
estimation accuracy, Power-SLAM bridges the gap between
linear-complexity estimators (based on coarse approximations,
such as the SWKF and the CKF) and the quadratic-complexity
optimal EKF-based SLAM. Furthermore, by minimizing the
information loss induced during the necessary approximations,
the Power-SLAM algorithm is able to maximize estimation
accuracy for the exact same number of operations. The simu-
lation and experimental results have shown that both the robot
and map estimates computed by the Power-SLAM estimator
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closely follow those of the standard EKF-SLAM and clearly
outperform, in terms of accuracy, both the SWKF and the
CKF.
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