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Abstract— This paper presents a generalized framework for
inter-robot information-transfer schemes in Multi-Centralized
Cooperative Localization (MC-CL) under asynchronous com-
munication, i.e., when the communication graph associated with
the mobile robot network is time-varying and intermittently
disconnected. Specifically, two information-transfer schemes,
which differ based on their communication bandwidth require-
ments per link, are discussed. Even under asynchronous com-
munication constraints, these schemes enable robots to compute
pose estimates identical to those generated using the centralized
CL framework, albeit delayed. For each of these schemes,
necessary and sufficient conditions for the communication-
graph connectivity, that enable each robot to generate the cen-
tralized estimates, are developed. Moreover, detailed description
of these schemes, along with their communication-complexity
analysis and analytical results for the expected time delay
in obtaining these estimates, are presented. Lastly, simulation
results are used to validate the performance (the trade-off
between communication link bandwidth and accuracy/delay)
of these information-transfer schemes.

I. INTRODUCTION AND RELATED WORK

Cooperative Localization (CL) is a technique for multi-

robot pose (i.e., position and orientation) determination.

In CL, groups of communicating robots use their relative

measurements (e.g., distance, bearing, and orientation) to

jointly estimate their poses, resulting in increased accuracy

for the entire team [1], [2], [3].

Traditionally in centralized CL, each robot communicates

its own measurements to a leader robot or a Fusion Cen-

ter (FC) that processes these data to generate improved

(centralized) pose estimates for the entire team. Depend-

ing upon the estimation framework used, various exact

centralized algorithms have been proposed. Specifically, an

Extended Kalman Filter-based (EKF) algorithm for CL has

been introduced in [1], while in [4], the authors present a

centralized Maximum Likelihood estimator-based approach

to CL. The main drawback of these approaches is that all or

most computations are performed centrally, rendering them

susceptible to single-point failures of the FC. Moreover, for

robot teams navigating in large environments, connectivity

constraints (i.e., limited communication range), may prevent

robots from sending their measurements to the FC.

An alternative approach that improves the robustness of

the system is multi-centralized CL (MC-CL), wherein each

robot acts as a FC, i.e., each robot broadcasts its own

information to the entire team so that every robot can

calculate the centralized pose estimates [5]. Although the
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MC-CL approach of [5] reduces the bandwidth requirements

by communicating and processing quantized measurements,

it requires a connected communication graph (associated

with the mobile robot network) at the time of broadcast,

i.e., it requires synchronous communication.

Sub-optimal EKF-based algorithms, that do not require un-

interrupted inter-robot communication, are presented in [6],

using the Interlaced Kalman filter, and in [7], using state-

estimates exchange. An approach based on a hierarchy of

EKFs is proposed in [8] where the robot group is divided into

sub-teams with leaders estimating the state of their sub-team

using an EKF. Furthermore, the leaders themselves can also

form sub-teams, resulting into a hierarchical structure. The

main drawback of these approaches is that in order to reduce

the computational complexity of EKF-based CL, some (or

even all in the case of [6]) correlations are ignored, which

may lead to overly optimistic and inconsistent estimates.

An approach that maintains these cross-correlations by

introducing a bank of EKFs at each robot, is presented in [9].

Each EKF in a bank corresponds to a relative measurement

with another robot and accurate book-keeping is used to

generate consistent estimates. However, the computational

complexity of this approach grows exponentially with the

team size. An exact distributed MAP-based algorithm for

CL is presented in [10]. While this algorithm reduces the

computational complexity of MAP-based CL, it requires

synchronous communication amongst the robots.

Recently, an exact MC-CL approach, that can handle both

limited communication range and time-varying communi-

cation graphs (asynchronous communication) was proposed

in [11]. To achieve this, the authors introduce an information-

transfer scheme wherein each robot broadcasts all its locally-

available information (its own past and present measure-

ments, as well as past measurements previously received

from other robots) to every robot within its communication

radius at each time step. The proposed approach is inde-

pendent of the estimation framework used and enables the

robots to obtain delayed centralized estimates. The main

drawback of this approach though is its high communica-

tion requirement per link, i.e., in communication resource-

constrained applications, there might not exist sufficient

bandwidth per link (or time during each exchange) for a

robot to communicate all its local information.

The objective of our work is to develop a generalized

framework for information-transfer schemes, which differ

based on their bandwidth requirements per link, for perform-

ing MC-CL under asynchronous communication. Specifi-

cally, we present two information-transfer schemes, where

each robot communicates: (i) only its own measurements, but

for all time steps, and (ii) all measurement information avail-



able to it, but only from the oldest q time steps. By varying

the parameter q, a family of information-transfer schemes can

be generated, that includes the particular scheme proposed

in [11]. Moreover, a trade-off can be achieved between the

communication bandwidth requirement per link (increases

with q) and the time delay in obtaining the centralized

estimates (decreases with increasing q). By choosing an ap-

propriate information-transfer scheme, based upon the com-

munication resources available to the team, each robot can

generate pose estimates identical to the centralized estimates

(no approximations), but delayed. The proposed information-

transfer schemes are independent of the estimator used, while

the computational complexity per robot is identical to the

corresponding centralized algorithm for CL.

In what follows, we first describe the problem formula-

tion and each of the data-transfer schemes in detail along

with their communication-complexity analysis. Then, for

each of the proposed schemes, we develop necessary and

sufficient conditions for communication-graph connectivity

which, if satisfied, guarantee that each robot will be able

to generate the centralized pose estimates, albeit delayed.

Furthermore, we present analytical results for the expected

time delay in obtaining the centralized estimates for some

of these schemes. Lastly, we present simulation results that

compare the performance (trade-off between communication

bandwidth per link and accuracy/delay) of the proposed

information-transfer schemes.

II. PROBLEM FORMULATION

Consider a team of N communicating robots navigat-

ing in 2D while performing CL. The state vector xk =

[x1
k

T
,x2

k

T
, . . . ,xN

k

T
]T , where xi

k = [xi
k, yi

k, φi
k]T , i =

1, . . . , N , contains the position and orientation of all robots

at time-step k. Note that the team can use any estimation

algorithm of its choice (e.g., EKF, MAP estimator, Particle

filters, etc.) for pose determination. Each robot is equipped

with proprioceptive (odometry) sensors that provide linear,

vi
mk

, and rotational, ωi
mk

, velocity measurements. The mo-

tion model for robot i is given by [10]:

xi
k = f(xi

k−1,u
i
k−1,w

i
k−1), wi

k−1 ∼ N (0,Qi
k−1), (1)

where f is a general non-linear function, ui
k−1 =

[vi
mk−1

, ωi
mk−1

]T is the control input and wi
k−1 =

[wi
vk−1

, wi
ωk−1

]T is the process noise.

Additionally, all robots have exteroceptive sensors that

allow them to uniquely identify other robots in the team

and measure their relative distance and bearing. The mea-

surement model for robot i measuring robot j is:

z
i,j
k = h(xi

k,xj
k) + n

i,j
k , n

i,j
k ∼ N (0,Ri,j

k ), (2)

with h = [di,j
k , θi,j

k ]T , where di,j
k , θi,j

k are the true distance,

bearing respectively, from robot i to robot j at time-step k
and n

i,j
k = [ni,j

dk
, ni,j

θk
]T is the measurement noise.

Let R = {1, . . . , N} denote the set of indices of all robots

in the team and let M i
k denote the set of measurements

generated by robot i at time-step k, i.e.,

M i
k = {ui

k, zi,j
k }, ∀j ∈ R, j 6= i, di,j

k ≤ di
max, (3)

Fig. 1: (Left) Measurement graph for a team of 5 robots at time-
step 0. (Right) Communication graph for a team of 5 robots from
time-steps 0 to 2.

where di
max is the maximum sensing radius of robot i. At

time-step k, robot i can communicate with robot j only if

di,j
k ≤ ri, where ri is the communication radius of robot i.

Let Ci
k denote the set of indices of all robots that lie within

the communication radius of robot i at time-step k. Note that

we assume bidirectional communication among the robots.

Depending on the robots’ motion, each robot may sense

and communicate with a different sub-team at every time

step, i.e., both the measurement graph and the communica-

tion graph, associated with the mobile robot network, can be

time-varying and incomplete. Specifically, the measurement

graph for the robot team, at time-step k, is a directed graph

where node ik denotes robot i at time-step k and edge eij
k

exists if robot i obtains a relative measurement to robot j
(cf. Fig. 1). The communication graph considers a time-

window from time-step k to k + p, and represents the

flow of information in the robot network. Here, edge eij
m,

m ∈ {k, . . . , k + p} exists, if robot i can communicate

information to robot j at time-step m. Also, edge ei
(m,m+1)

always exists, indicating that robot i’s information from time-

step m is always available to itself at time-step m + 1.

We denote by T i
k

−
the set of all information that is locally-

available to robot i at time-step k, before it communicates

with any other robot in the team. The set T i
k

+
denotes the

information that is locally-available to robot i after it has

received information from all robots within communication

range, i.e.,

T i
k

+
= T i

k

−
∪





⋃

j∈Ci
k

Sj
k



 , (4)

where Sj
k denotes the information that is communicated by

robot j to robot i at time-step k. The contents of Sj
k depend

upon the information-transfer scheme used. Furthermore,

T i
k

−
can be expressed as:

T i
k

−
= T i+

(k−1) ∪ M i
k, (5)

As the robot team moves around in the environment,

depending on the evolution of the communication graph

and the information-transfer scheme used, each robot starts

accumulating information about the entire team. Let us

assume that at time-step k + m, where m ≥ 0, robot i
obtains all information about the team up to time-step k,
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Fig. 2: Information tables for robot 1 at time-steps 1 (left) and 2
(right). tk: time-step k, Ri: Robot i.

i.e., T i+

k+m ⊇
(

⋃

j∈R M j
0:k

)

. Using this information, robot i

can calculate pose estimates1, denoted by x̂k|k, for the

entire team, that are identical to those generated if using

centralized CL. But since these estimates for time-step k
can be calculated no earlier than time-step k + m (due to

the delay in information transfer), we denote these delayed

estimates by x̂k+m
k|k .

Consider the example shown in Fig. 1. The information

tables in Fig. 2 depict the information that is available to

robot 1 at time-steps 1 and 2. Note that robot 1 does not

have any information about robot 4 at time-step 1. Now at

time-step 2, assume that robot 4 communicates S4
2 = M4

0:2 to

robot 1. Thus at time-step 2, robot 1 acquires all information

about the team up to time-step 0 and can hence calculate the

centralized pose estimates2 x̂2
0|0.

Thus the flow of information between robots is governed

not only by the communication graph, but also by the set Sj
k,

which is determined by the information-transfer scheme used

by the robot team. The choice of an appropriate information-

transfer scheme, in turn is influenced by the communication

bandwidth per link available to the robot team.

Before proceeding to the next section that presents our

proposed information-transfer schemes, we briefly recap the

notation used in this paper:

• R: set of indices of all robots in the team.

• Ci
k: set of indices of robots that can communicate with

robot i at time-step k.

• M i
k: set of proprioceptive and exteroceptive measure-

ments generated by robot i at time-step k.

• T i
k

−
/T i

k

+
: set of all information that is available to

robot i up to and including time-step k, before/after

communication with neighboring robots.

• Si
k: set of information communicated by robot i to all

robots within its communication radius at time-step k.

III. INFORMATION TRANSFER SCHEMES

A. Scheme 1: Own Information Transfer only

1) Description: In this scheme, each robot communicates

only its own proprioceptive and exteroceptive measurement

1
x̂l|m denotes pose estimates at time-step l, using all measurement

information up to time-step m.
2Note that in addition to the delayed centralized estimate, each robot can

compute a causal estimate for its pose given all measurements currently
available to it.

Fig. 3: Scheme 1. Communication graph for a team of 5 robots
from time-steps 0 to 2.

Fig. 4: Scheme 1. Information tables for robots 1 and 2 at time-
step 2, before and after communication.

information to other robots. Assume that: (i) robot i and

robot j last communicated with each other at time-step k, and

(ii) the next communication opportunity for these two robots

arises at time-step k+p, p ≥ 1. Using Scheme 1, robot ℓ, ℓ ∈
{i, j}, will communicate the set Sℓ

(k+p) = M ℓ
k+1:k+p at time-

step k + p. Therefore, after communication, the information

set T i+

(k+p) for each robot i, i ∈ R will contain:

T i+

(k+p) = T i−

(k+p) ∪







⋃

j∈Ci
(k+p)

Sj

(k+p)






. (6)

Consider the example shown in Figs. 3 - 4. Since robots 1
and 2 last communicated at time-step 0, when they now

meet at time-step 2, robot 1 will communicate only its own

information from time-steps 1 and 2, i.e., S1
2 = M1

1:2, to

robot 2. Similarly, robot 2 will also communicate only its

own information from time-steps 1 and 2, i.e., S2
2 = M2

1:2,

to robot 1. As a result, both robots will have identical

information for each other but not for the rest of the team.

Note that in the information-transfer scheme proposed

in [11], each robot communicates all its available infor-

mation, i.e., information from all rows in its information

table. By contrast, in Scheme 1 each robot communicates

information only from a single row (corresponding to itself)

in its information table.

2) Communication complexity analysis: When the two

robots communicate after p time steps, each robot i
has to communicate: (i) its p proprioceptive measure-

ments, ui
k+1:k+p, and (ii) its exteroceptive measurements,

z
i,ℓ
K , ∀ℓ ∈ R, ℓ 6= i, di,ℓ

K ≤ di
max, K = k + 1, . . . , k + p.

Therefore, the communication cost/amount of information
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that has to be transferred over the communication link

is O(|ui
k+1:k+p| +

∑k+p

K=k+1 |z
i,ℓ
K |), where |g| denotes the

cardinality of g. Here, the first term depends only on p which

is determined by the frequency of inter-robot communication,

while |zi,ℓ
K | also depends on the number of robots that

are sensed by robot i per time step, i.e., the outdegree of

robot i in the measurement graph. Therefore, for a particular

application, if the frequency of inter-robot communication

and the average outdegree of the measurement graph can

be approximated before-hand, communication bandwidth per

link can be reserved accordingly for CL. Moreover, this

information-transfer scheme is well suited for applications

where the robots communicate often (p remains small).

3) Communication graph connectivity analysis: We

now present the necessary and sufficient conditions (on

communication-graph connectivity), that if satisfied, guaran-

tee that each robot in the team can compute the centralized

pose estimates.

Lemma 1: Robot i can compute3 x̂
max{kj}

k|k if and only

if robot j, ∀j ∈ R, j 6= i, communicates with robot i at

time-step kj , where kj ≥ k.

Proof: Details of this lemma can be found in [12].

Lastly, robot i can discard all information (own and

other robots’ measurements) up to time-step k at time-step

max{kj}, i.e., after calculating x̂
max{kj}

k|k . Since we assume

bidirectional communication between robots, if robot i has

received information, up to time-step k from all other robots,

this implies that robot i has communicated its own infor-

mation about time-step k to all other robots too. Hence it

can safely discard all the information and retain only the

corresponding centralized estimates.

4) Expected time delay analysis: Let pji
m be the prob-

ability that edge eji
m exists in the communication graph.

For simplicity, we assume that: (i) this probability remains

constant over time (denoted by pji), and (ii) pji = pij .

Therefore, the probability that edge eji
m does not exist is

(1 − pji). The expected time delay, Ei(time delay), for

robot i, ∀i ∈ R is given by:

Ei(time delay) =

∞
∑

t=0

t × pi(time delay = t), (7)

where pi(time delay = t) is the probability that the

centralized estimates for time-step k can be calculated no

earlier than time-step k + t.
Consider the event where the time delay in obtain-

ing the centralized estimates is less than or equal to t,
i.e., time delay ≤ t. For this event to occur, robot j,

∀ j ∈ R, j 6= i, should communicate with robot i at

least once up to time-step k + t, i.e., at least one edge eji
m,

k ≤ m ≤ k + t should exist in the communication graph

for every robot j. The probability that there exists at least

one edge between robot j and robot i from time-step k to

time-step k + t is given by:

pi(∃ eji
m, k ≤ m ≤ k + t) = 1 − (1 − pji)t+1. (8)

3Note that x̂
m
k|k

indicates that the centralized estimates for time-step k

can be calculated no earlier than time-step m.

Therefore the probability that there exists at least one edge

between robot i and every other robot in the team from time-

step k to k + t, i.e., pi(time delay ≤ t) is given by:

pi(∃ e
ji
mj

, k ≤ mj ≤ k + t, ∀j ∈ R, j 6= i) =

N
∏

j=1
j 6=i

(1 − (1 − p
ji)t+1).

(9)

Employing an analogous expression for

pi(time delay ≤ (t − 1)), we have:

pi(time delay = t)

= pi(time delay ≤ t) − pi(time delay ≤ (t − 1))

=

N
∏

j=1
j 6=i

(1 − (1 − p
ji)t+1) −

N
∏

j=1
j 6=i

(1 − (1 − p
ji)t). (10)

Substituting (10) in (7) yields:

Ei(time delay)

=

∞
∑

t=0

t ×

( N
∏

j=1
j 6=i

(1 − (1 − p
ji)t+1) −

N
∏

j=1
j 6=i

(1 − (1 − p
ji)t)

)

.

(11)

Thus, by modeling pji based on the network topology over

time, the above formula can be used to accurately model the

expected time delay4.

B. Scheme 2: Information Transfer from q oldest time steps

Recall that in Scheme 1, information is transferred row-

wise, i.e., each robot communicates the entire row cor-

responding to itself in its information table (cf. Fig. 4).

Note, however that, for small robot teams communicating

infrequently, the amount of information available in each

row is usually significantly larger compared to the data

stored in each column. In such cases, and in order to reduce

the time delay in obtaining centralized estimates, informa-

tion should be communicated column-wise, i.e., each robot

should communicate all its locally available information,

starting with the oldest time step first (i.e., the first column of

its information table). The information-transfer scheme that

we now propose is based on this general framework, where

the parameter q defines the number of columns (time steps)

that are communicated. When q = 1, all information from

only the oldest time step is broadcast to neighbors. As q in-

creases, information from more time steps is communicated,

thus increasing the communication requirement per link, but

reducing the delay in obtaining centralized estimates. Finally,

the case where q = ∞ corresponds to the information-

transfer scheme of [11], where each robot transfers all its

locally-available information5. We now present details for

the two extreme cases, q = 1 and q = ∞, while details for

the general case can be found in [12].

4Recursive formulae for the expected time delay, both for the number of
robots and time steps, are presented in [12].

5We use the notation q = ∞ to indicate that information about an
arbitrarily large number of time steps might have to be communicated,
depending upon the evolution of the communication graph. For example, if
two robots, that have not communicated for a long time period meet, then
q can take on a very large value.
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Fig. 5: Scheme 2 with q = 1. Information tables for robots 1 and
2 at time-step 2, before and after communication.

1) Description: We first consider the case when q = 1.

Here, each robot communicates all its locally-available mea-

surement information from the oldest time step only. Assume

that robot i has the oldest information about time-step k, for

itself, i.e., M i
k, and for a subset, Ri, of the other robots

in the team, i.e.,
(
⋃

ℓ∈Ri
M ℓ

k

)

. If robot i communicates

with robot j at time-step kj ≥ k, robot i will transfer

Si
kj

= M i
k ∪

(
⋃

ℓ∈Ri
M ℓ

k

)

. Thus, after communication the

information set for robot j at time-step kj will contain:

T j
kj

+
= T j

kj

−
∪







⋃

r∈C
j

kj

Sr
kj






. (12)

For the communication graph in Fig. 3, Fig. 5 shows

the information tables for T 1
2
−

and T 2
2
−

, obtained using

Scheme 2 with q = 1. When robots 1 and 2 communicate

at time-step 2, robot 1 communicates S1
2 = M5

0 to robot 2
(it need not communicate robot 2’s data to robot 2 itself),

while robot 2 communicates S2
2 = M3

0 ∪ M4
0 to robot 1.

Now since both robots have all information up to time-step 0,

they can each calculate x̂2
0|0. Finally, we note that the oldest

information available to both robots after communication

is the union of their individual oldest information before

communication.

We now consider the case when q = ∞. While this scheme

was originally proposed in [11], in this section we present

additional communication complexity and expected time

delay analysis. Furthermore, we also discuss a book-keeping

technique that can be used by the robots to reduce communi-

cation overhead. In this scheme, each robot communicates all

its locally-available measurement information, i.e., its own

information and also the information that it received from

other robots in the team. Assuming that robots i and j last

communicated at time-step k, when they next communicate

at time-step k + p, p ≥ 1, each robot ℓ, ℓ ∈ {i, j}, will

communicate the set Sℓ
(k+p) where:

Sℓ
(k+p) = M ℓ

k+1:k+p ∪





k+p−1
⋃

kr=k





⋃

r∈Cℓ
kr

Sr
kr







 , (13)

where
(

⋃k+p−1
kr=k

(

⋃

r∈Cℓ
kr

Sr
kr

))

represents all the informa-

tion that robot ℓ received from other robots, from time-step k
up to time-step k+p−1. Therefore, after communication, the

Fig. 6: Scheme 2 with q = ∞. Information tables for robots 1 and
2 at time-step 2, before and after communication.

information set T i+

(k+p) for each robot i, i ∈ R will contain:

T i+

(k+p) = T i−

(k+p) ∪







⋃

j∈Ci
(k+p)

Sj

(k+p)






. (14)

Using Scheme 2 with q = ∞, for the same communication

graph as in Fig. 3, generates T 1
2
−

and T 2
2
−

as shown in

Fig. 6. Now when robots 1 and 2 communicate at time-step 2,

robot 1 communicates S1
2 = M1

1:2 ∪ M5
0:1 to robot 2, while

robot 2 communicates S2
2 = M2

1:2 ∪ M3
0:1 ∪ M4

0 to robot 1.

Similar to Scheme 2 with q = 1, both robots will be able to

calculate x̂2
0|0, but note that the information available about

future time steps is different in both schemes. In particular,

contrary to the case of q = 1, for q = ∞, T 1
2

+
= T 2

2
+

=
T 1

2
−
∪ T 2

2
−

.

Since each robot communicates information about other

robots too, depending on the evolution of the communication

graph, there might exist an overlap between the information

that is locally-available to two communicating robots. Thus

by using an efficient book-keeping routine, the commu-

nication of redundant information can be avoided. In our

proposed book-keeping approach, robot i first communicates

a list of tuples Li = {(ℓ, ki
ℓ)}, where ℓ is the id of the

robot whose measurement information is available to robot i,
and ki

ℓ is the latest time step for which this information

is available. Once robot j receives this list from robot i,
robot j calculates the set of robot ids, Vj = {v|(v ∈
Li, v ∈ Lj , kj

v ≥ ki
v) ∨ (v ∈ Lj , v /∈ Li)}, of robots

whose information has to be communicated to robot i and

communicates only:

D1: {uv
K , zv,r

K }, where v ∈ Lj , v ∈ Li, ∀r ∈ R, r 6=
v, dv,r

K ≤ dv
max where K = ki

v + 1, . . . , kj
v .

D2: {uv
K , zv,r

K }, where v ∈ Lj , v /∈ Li, ∀r ∈ R, r 6=
v, dv,r

K ≤ dv
max where K = m, . . . , kj

v and m is

the earliest time step for which data about robot v is

available.

2) Communication complexity analysis: When q = 1,

since each robot communicates only its oldest-available

information, when robots i and j communicate, the com-

munication cost/amount of information that has to be trans-

ferred per communication link is O(|M i
k|+

∑

ℓ∈Ri
|M ℓ

k|) =

O(|ui
k|+ |zi,p

k |+
∑

ℓ∈Ri
(|uℓ

k|+ |zℓ,s
k |), where p and s denote

the robots that were observed by robots i and ℓ respectively,

5



at time-step k. Importantly for this approach, the communi-

cation cost depends upon the outdegree of the measurement

graph and the number of robots in the team, but it is

independent of the frequency of inter-robot communication,

i.e., irrespective of the time that has elapsed since robots i
and j last communicated, when robot i next communicates

with robot j, information for only a single time step will be

communicated. This makes this scheme suitable for use in

severe communication-resource constrained applications, but

delays the calculation of centralized estimates.

For q = ∞, when robots i and j communicate after p
time steps, robot i first communicates its list Li and then

depending on the list Lj that it obtains from robot j, it

communicates the non-redundant measurement information

corresponding to {Li\Lj}. Therefore, the total information

that has to be communicated by robot i to robot j when

they meet after p time steps is |Li| plus all the information

mentioned in the previous section (sets D1 and D2 listed

in book-keeping). While this scheme has the highest com-

munication complexity per link, as compared to Scheme 1
and Scheme 2 with q = 1, it has the lowest time delay in

obtaining the centralized estimates. Therefore, this scheme

is applicable to scenarios where there is no constraint on the

available communication bandwidth.

3) Communication graph connectivity analysis: We now

present the necessary and sufficient condition for obtaining

centralized estimates for both these cases.

Lemma 2: Robot i can compute x̂
max{kj}

k|k if and only if

there exists jk → ikj
, ∀j ∈ R, j 6= i, where kj ≥ k.

The notation jk → ikj
denotes a path in the communication

graph from node jk to node ikj
, such that information about

robot j up to time-step k, i.e., M j
0:k, is available to robot i,

no earlier than at time-step kj ≥ k.

Proof: Derivation is shown in [12]6.

While the statement of the above theorem is identical

for both cases (i.e., they both require the existence of an

appropriate path in the communication graph), we now

highlight the difference in these paths for the two cases. Let

us assume that robots i and j communicate at time-step k.

When q = ∞, each robot transfers all its locally-available

information, and therefore the information communicated

by robot i, at time-step k, will include M i
k. But when

q = 1, since only the oldest information is transmitted,

the information communicated by robot i will include M i
k,

only if k is the oldest time step for which measurement

information is available to robot i. For example, in Fig. 6,

for q = ∞, when robots 1 and 2 communicate at time-

step 2, robot 1 communicates information about time-step 2
too. On the other hand for q = 1 (cf. Fig. 5), at time-step 2
robot 1 communicates information only about the oldest time

step, i.e., time-step 0. Robot 1 will communicate information

about time-step 2 only after information about time-steps 0
and 1 has been discarded. Thus even though both cases

require the existence of a path in the communication graph

between robot j at time-step k and robot i at time-step kj ,

these communication paths may not be the same.

6The derivation for Scheme 2 with q = ∞ has been presented in [11].

Regardless of the choice of q, in Scheme 2 robot i can

discard all information about time-step k, only after: (i) it

has computed the centralized estimates for time-step k, and

(ii) it has ensured that these centralized estimates (in the

form of raw measurements) have been communicated to

all other robots in the team. Robot i can ensure this by

communicating this information to all robots personally, or

by communicating with another robot in the team that has

satisfied conditions (i) and (ii) above, whichever happens

earlier7.

4) Expected time delay analysis: In Scheme 1, since

each robot communicates only its own information,

Ei(time delay), ∀i ∈ R, depends only upon the (N − 1)
possible communication links per time step, from other

robots in the team to robot i. Thus the edges eℓr
k , ∀ℓ, r ∈ R\i,

for any time-step k, do not affect Ei(time delay). By

contrast, in Scheme 2, since each robot can communicate

information about all robots, Ei(time delay) can be affected

by any of the N(N − 1) possible edges per time step,

depending upon the evolution of the communication graph.

We now present the expected time delay analysis for a team

of 3 robots using Scheme 2 with q = ∞. Our future work

includes generalization of this result to the case of N robots.

Assume that we want to calculate the centralized esti-

mates for time-step k. Let Ii
t = pi(time delay > t)

be the probability that the time delay in computing these

centralized estimates is greater than t for robot i. Thus,

pi(time delay ≤ t) = 1 − Ii
t and pi(time delay = t) =

−Ii
t + Ii

t−1. We assume pij = p,∀i, j ∈ R. Now in order to

obtain an expression for Ei(time delay) (cf. (7)), we need

to calculate Ii
t . The event (time delay > t) can be expressed

as the union of two mutually-exclusive sub-events, (E1) and

(E2), which in turn are expressed as the intersection of two

independent sub-events each:

E1: (E1a) Neither of the other two robots in the team

communicate with robot i at time-step k + t, i.e., edges

eji
k+t, ∀j ∈ R, j 6= i, do not exist, and (E1b) the event

(time delay > t−1) is true for robot i. The probability

of event (E1a) is (1−p)2. Thus probability of event (E1)

is given by (1 − p)2pi(time delay > t − 1).
E2: (E2a) Either of the other two robots in the team (say

robot j) communicates with robot i at time-step k + t,
i.e., the edge eji

k+t exists at time-step k + t, and (E2b)

the third robot in the team (say robot ℓ) does not

communicate with either robot i or robot j from time-

step k to time-step k + t − 1, i.e., edges eℓi
m, ℓ ∈ R,

ℓ 6= i, j, for k ≤ m ≤ k + t − 1 do not exist. Now the

probability of event (E2a) is given by 2(1− p)p, while

the probability of event (E2b) is given by (1 − p)2t.

Therefore the probability of event (E2) is given by

2p(1 − p)2t+1.

From the union of (E1) and (E2) we have:

7In the scheme proposed in [11], robot i discards the raw measurements
at time-step k, as soon as it has calculated the centralized estimate for this
time step and then communicates this centralized estimate to other robots.
Note that irrespective of whether the raw measurements themselves or the
centralized estimate computed from these measurements are communicated,
the information content remains the same.
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I
i
t = pi(time delay > t − 1)(1 − p)2 + 2p(1 − p)2t+1

. (15)

Note that pi(time delay > 0) = (1 − p2) and

pi(time delay = 0) = p2. Substituting (15) in (7) yields

Ei(time delay) as:
∞
∑

t=1

t ×
(

I
i
t−1 − I

i
t

)

=

∞
∑

t=1

t ×
(

pi(time delay > t − 1)(2p − p
2) − 2p(1 − p)2t+1)

.

(16)

IV. SIMULATIONS

In this section, we compare the performances of the three

information-transfer schemes discussed in this paper. The

objective of our simulation studies is twofold: (i) to compare

the expected time delay in obtaining the centralized estimates

for these schemes, and (ii) to study the trade-off between the

accuracy of pose estimates for the robot team at time-step k,

obtained using information available at time-step k (without

including the delayed information), and the communication

bandwidth requirements per link for these schemes.

To study the behavior of the expected time delay for these

schemes, we carried out Monte-Carlo runs on a general

mobile robot network of N robots over 1000 time steps,

with pij = 0.5,∀i, j ∈ R, for each scheme. Furthermore, by

varying N , we studied the effect of the size of the robot

team on the delay in obtaining the centralized estimates.

These results are presented in Table I. Firstly, we note that

for Scheme 1 and Scheme 2 (q = ∞) for N = 3, the

simulation results for the expected time delay corroborate

our analytical results. Next, from Table I we see that the

expected time delay is lowest for Scheme 2 (q = ∞),
irrespective of the size of the robot team. This result is

expected, because as compared to the other two approaches,

this scheme has the highest rate of information transfer.

However, this improvement in performance is comes at the

cost of increased communication complexity (cf. Sec. III-

B.2).

More importantly, in Scheme 2 (q = ∞), as the number of

robots increases, the expected time delay goes on decreasing

and finally becomes 1 time step. To corroborate this result,

consider the pi(time delay > 1) for Scheme 2 (q = ∞)
for a team of N robots [12]:

pi(time delay > 1)

=

N−1
∑

r=1

(

N − 1

r

)

(1 − p)r
p
(N−1−r)

(

1 −
(

1 − (1 − p)(N−r)
)r)

.

(17)

Furthermore, pi(time delay = 1) can be expressed as:

pi(time delay ≤ 1) − pi(time delay = 0)

= 1 − pi(time delay > 1) − p
N−1

. (18)

Table II shows the values of pi(time delay = 1) for

different team sizes. From the table we see that as N
increases, pi(time delay = 1) goes very quickly to 1.

TABLE I: Expected Time Delay Analysis

Team size Sch. 1 (theor./sim.) Sch. 2, q = ∞ Sch. 2, q = 1
3 1.6667/1.6488 1.2333/1.2203 66.0237
5 2.5048/2.4867 1.2876 66.7684
10 3.5813/3.5495 1.1673 69.9089
20 4.6183/4.5356 1.0231 70.6912
50 5.9621/5.8811 1 72.5475
100 6.9694/7.0152 1 74.2389

TABLE II: pi(time delay = 1) for Scheme 2 (q = ∞)

Team size pi(time delay = 1)
3 0.5625
5 0.8789
10 0.9961
20 0.9999
50 1
100 1

Hence the expected time delay also goes to 1, as seen in

the simulation results.

The next lowest expected time delay is for Scheme 1,

followed by Scheme 2 (q = 1). Moreover, the expected

time delay for Scheme 2 (q = 1) is substantially larger

than that for the other two approaches. This is due to the

fact that as compared to the other two approaches, that

do not have an upper bound on the time horizon over

which information is transferred between robots, in this

case information about only a single (oldest) time step is

communicated. Unless this information has been discarded

(i.e., all robots have computed the centralized estimates for

this time step), information about the next time step cannot

be communicated. As a result, the expected time delay in

obtaining the centralized estimates goes on increasing with

time.

In order to compare the accuracy of the robot pose

estimates generated using the proposed information-transfer

schemes, we consider a team of N = 5 robots moving in

2D with phase-shifted sinusoidal trajectories for 500 time

steps (each time step has duration 0.05 sec). Each robot

measures its linear, v, and rotational, ω, velocity, as well

as its distance, d, and bearing, θ, to other robots in the

team. The noise in these measurements is modeled as zero-

mean, white Gaussian and has standard deviation: σv =
2%v, σω = 1 deg/sec for the linear and rotational velocity

measurements, respectively, and σd = 2%d and σθ = 1 deg

for the corresponding distance and bearing measurements.

Furthermore, as the robots move around, they randomly

communicate with other robots in the team (pji = p). When

two robots communicate, the information transferred depends

upon the chosen information-transfer scheme.

The CL algorithm is implemented by each robot using

an EKF. When a robot calculates pose estimates at the

current time step, if the measurements for that time step are

unavailable for some robots in the team, the last available

proprioceptive measurements from those robots are used for

the propagation step of the EKF.

We employ the RMS error criterion to test the accuracy

of these three approaches. Figs. 7 and 8 show the RMS

error in the position and orientation estimates respectively,
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Fig. 7: RMS error in the robots’ position estimates.
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Fig. 8: RMS error in the robots’ orientation estimates.

generated by robot 1 for the entire team. The RMS errors

are plotted every 20 time steps for clarity. From the figures

we see that for the chosen robot team of size N = 5,

the performances of Scheme 2 (q = ∞) and Scheme 1
are almost indistinguishable from each other. Thus we can

conclude that for small robot teams, using Scheme 1 instead

of Scheme 2 (q = ∞), will save valuable communication

bandwidth per link without any significant loss of accuracy.

But as the number of robots increases, Scheme 2 will

outperform the other two schemes. This is due to the fact

that even though all information necessary for generating

the centralized estimates, i.e., x̂k
k|k, may not be available to

robot i at time-step k, the set T i
k

+
(i.e., locally-available

information at time-step k) generated using Scheme 2 (q =

∞) is a superset of T i
k

+
generated using the other two

schemes. Lastly, as expected, the pose estimates generated

using Scheme 2 (q = 1) are the least accurate. Since the

communication bandwidth available per link for scheme 2
(q = 1) is very restrictive, this translates into lower accuracy

for the pose estimates. Thus depending upon the availability

of communication resources and the accuracy requirements

of the application, a suitable information-transfer scheme

should be chosen.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a general framework for inter-

robot information-transfer schemes in multi-centralized CL

under asynchronous communication. Depending upon the

team’s and the application’s communication bandwidth avail-

ability, an appropriate information-transfer scheme can be

selected to obtain pose estimates identical to the centralized

estimates, but delayed. Furthermore, for these schemes we

present detailed communication-complexity analysis, neces-

sary and sufficient conditions to generate centralized esti-

mates, and expected time delay analysis. Our future work

will include the generalization of the analytical solution

for the expected time delay using Scheme 2 to N robots.

On a broader level, an extension to this research is the

development of time-varying information-transfer schemes

that fully exploit the available communication resources at

every time instance.
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