
Descending-stair Detection, Approach, and Traversal with an
Autonomous Tracked Vehicle

Joel A. Hesch, Gian Luca Mariottini, and Stergios I. Roumeliotis

Abstract— This paper presents a strategy for descending-stair
detection, approach, and traversal using inertial sensing and a
monocular camera mounted on an autonomous tracked vehicle.
At the core of our algorithm are vision modules that exploit
texture energy, optical flow, and scene geometry (lines) in order
to robustly detect descending stairwells during both far- and
near-approaches. As the robot navigates down the stairs, it
estimates its three-degrees-of-freedom (d.o.f.) attitude by fusing
rotational velocity measurements from an on-board tri-axial
gyroscope with line observations of the stair edges detected by
its camera. We employ a centering controller, derived based on
a linearized dynamical model of our system, in order to steer
the robot along safe trajectories. A real-time implementation of
the described algorithm was developed for an iRobot Packbot,
and results from real-world experiments are presented.

I. INTRODUCTION

Enabling robots to transition from the structured environ-
ments of laboratories and factory floors, to semi-structured
urban and domestic environments, which contain steps and
stairs is still an open problem. Existing approaches for
autonomous robotic stair navigation provide only partial
solutions. For instance, some only address the aspect of
stair detection [2], while others only address control [3].
The vast majority of the available methods are limited to
ascending stairs in a carefully controlled environment, e.g.,
with constant lighting, color-coded stairs [4], or known
stair dimensions [5]. The problem of vision-based stair
descending is particularly difficult, due to the challenge
of identifying and localizing a descending staircase in an
unknown environment using only visual cues. In addition,
descending-stair traversal for autonomous tracked vehicles
is challenging since track slippage can lead to the robot
toppling off the stairs.

In this paper, we present a strategy for descending-stair
detection, approach, and traversal for an autonomous tracked
vehicle. To the best of our knowledge, this is the first work to
explicitly examine the more difficult case of detecting and
navigating descending staircases. Specifically, we focus on
the minimum-sensing scenario in which only a monocular

This work was supported by the University of Minnesota (DTC), and
the National Science Foundation (IIS-0643680, IIS-0811946, IIS-0835637).
The authors would like to thank Dr. Thomas Brox for providing the binary
implementation of the variational optical flow method presented in [1],
and Dr. Nikolas Trawny for his invaluable support during the document
preparation process.

J. A. Hesch and S. I. Roumeliotis are with the Dept. of Computer Science
and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
{joel|stergios}@cs.umn.edu
G. L. Mariottini is with the Dept. of Computer Science and Engineering,
University of Texas, Arlington, TX 76019, USA
gianluca@uta.edu

P1: Far approach
P2: Near approach

P2

P1

P3

Descending Staircase

P4: Stair Traversal
P3: Stair Alignment

P4

θr

Fig. 1: The four phases of our stair detection, approach, and
traversal strategy: P1: descending-stair candidate locations are de-
termined, and the robot follows reference heading θr , towards one
hypothesis. P2: optical flow is exploited to determine the precise
stair location. P3: the robot aligns to the stairs. P4: the robot
descends the stairs and then leaves the staircase.

camera and a tri-axial gyroscope are available on the robot.
Our algorithm is divided in four phases (see Fig. 1): (P1) Far-
approach: the robot exploits texture-based energy measures
to determine possible descending-stair locations and starts
to navigate towards one of them. (P2) Near-approach: the
robot verifies the hypothesis using optical-flow analysis of
the leading stair edge. (P3) Stair alignment: the robot aligns
to the descending stairs. (P4) Stair traversal: the robot steers
along a safe trajectory down the descending staircase.

In order to estimate the three-degrees-of-freedom (d.o.f.)
attitude of the robot during P4, we employ an Extended
Kalman Filter (EKF) that fuses rotational velocity measure-
ments from a tri-axial gyroscope with image observations of
stair edges from the monocular camera. Additionally, we use
a PID controller to steer the robot along desired trajectories,
both while the robot is on the stairs, and when the robot
is approaching the stairs on flat ground [6]. Together, our
perception, estimation, and control strategies provide a ro-
bust solution to the challenging problem of descending-stair
detection, approach, and traversal.

The rest of the paper is organized as follows: In Sect. II,
we discuss related work on stair detection and traversal.
We present an overview of our strategy in Sect. III, and
in Sect. IV we describe each algorithmic component in
detail. Lastly, we present our experimental validation using
an iRobot Packbot (Sect. V), as well as our concluding
remarks and future work (Sect. VI).

II. RELATED WORK

A. Stair Perception

Existing methods for stair detection have focused pri-
marily on the task of identifying ascending staircases from
laser or camera data. Stair detection has been achieved by

appropriately engineering the environment (e.g., detecting
color-coded steps with a stereo camera [4]), or by limiting
the detection process to stairs of approximately known di-
mensions (e.g., known height [5]). Stair-detection based on
Gabor filtering of monocular camera images has also been
proposed [2]. These approaches benefit from the prominent
appearance of the ascending staircase in the sensor data.
However, to the best of our knowledge, there exists no work
that explicitly addresses the far more difficult problem of
detecting descending staircases from monocular images.

B. Stair Traversal

The task of stair ascending using tracked robots has been
investigated by several researchers. Vu et al. [7] designed
a four-tracked robot, which climbs stairs by executing a
sequence of alternate rear and front track rotations. Although
the authors model the tread depth and riser height, the robot’s
attitude is not estimated, therefore no heading corrections
can be computed during the ascent. In [8], a tracked robot is
equipped with a suite of sensors (i.e., sonar, monocular cam-
era, and two-axis accelerometer) to estimate its orientation
while on the stairs. However, their approach does not fuse all
available sensor measurements, but instead uses heuristics to
select the most accurate sensor. Still other approaches exist
which utilize only monocular vision [9], or a combination
of vision and gyroscopes [10] to estimate the orientation of
the robot on the stairs. However, both [9] and [10] relied
on the limiting assumption that the robot has zero-roll angle
and constant pitch while on the stairs.

The predecessor to our current work [6], employed a
tightly-coupled vision-aided inertial navigation system (V-
INS) to estimate the three-d.o.f. attitude of the vehicle as it
climbed the stairs, based on the gyroscope measurements and
monocular observations of the stair edges. For controlling its
motion, the robot switched between two heading strategies
while on the stairs: (i) when near the unsafe stair-edge zone,
it steered towards the middle of the stair, and (ii) when it
was in the middle of the stair, it steered strait up the stairs.

In the current work, we build upon the estimation and
control framework presented in [6], to enable new capabil-
ities for autonomous descending-stair detection, approach,
and traversal. Our problem is significantly more challenging,
since the descending staircase is not initially visible to the
robot’s on-board camera, but its presence must be inferred
from other visual cues. We present a novel detection algo-
rithm which exploits scene texture [11] to infer candidate
stair locations from a far distance, and optical flow [1]
to precisely localize the leading-stair edge during the near
approach. This in turn enables accurate stair alignment, and
traversal. We have validated our approach in real-world ex-
periments, and demonstrate the performance of the proposed
algorithm in practice. In what follows, we present an in-depth
description of our robust stair-descending procedure.

III. ALGORITHM OVERVIEW

We denote the robot’s initial frame of reference as {R0}.
As the robot travels, the robot-affixed frame {Rt} changes

in time. The three-d.o.f. orientation of the robot at time t
is described by the quaternion of rotation R0

Rt
q, which we

estimate with a 3D-Attitude EKF. From the quaternion, we
extract the pitch α and yaw θ components of the robot’s
orientation.

A. Data-Flow Description

1) Stair perception: As depicted in Fig. 2(left), the stair
perception module takes the camera data as input, and
performs texture analysis, optical flow, and line extraction on
the images. The lines are passed to the estimation module, to
be utilized for orientation updates. The heading reference θr
is passed to the controller to guide the robot during different
phases of the algorithm [see Fig. 2(right)].

2) Estimation: The estimation module receives measure-
ments from the tri-axial gyroscope in order to compute the
current attitude of the robot, with respect to the initial frame
{R0}. This information is fused with heading updates based
on the detected stair edges in a 3D-Attitude EKF in order
to obtain high-accuracy estimates. The estimation module
provides the controller with estimates of θ, θ̇, and α.

3) Controller: The controller takes as input the current
estimates of θ, θ̇, and α from the estimator, as well as a
heading reference signal θr, which is the desired heading
direction. This quantity will change according to which phase
the robot is in (e.g., driving towards a candidate stair location
or aligning to the stairs).

B. Algorithm-Flow Description

1) Far-approach: During the far-approach phase (P1), the
robot uses a texture energy measure to generate hypotheses
(image regions) for possible descending-stair locations, and
selects one to investigate from a closer distance. As the robot
moves, it tracks the candidate stair location, and the reference
heading direction θr is set to coincide with the unit-vector
towards the centroid of the tracked region. When the tracked
region becomes sufficiently large in the image, we transition
to the near-approach phase (P2).

2) Near-approach: In the near-approach phase, the robot
verifies whether the current descending-stair-location can-
didate is valid or not. To this end, we exploit optical
flow and image line features in order to identify the depth
discontinuity at the leading stair edge. If the stair edge
is detected, the robot transitions to the alignment phase,
otherwise, it transitions back to the far-approach phase to
investigate another hypothesis for the stair location.

3) Alignment: During the alignment phase, the robot
tracks the leading-stair edge detected during the near ap-
proach and uses the edge direction to compute θr and align
perpendicular to the stairs.

4) Stair Traversal: After the alignment phase the robot
traverses the stairs. During this maneuver, the robot main-
tains a safe distance from both the left and right staircase
boundaries. When the robot is in the center of the stairs, the
reference heading is perpendicular to the stair edges. When
the robot is near the left or right boundaries of the staircase,
θr is selected to steer the robot back towards the center.

Data Flow

Stair Perception

Camera

Update
Attitude

Estimation (e1)

Robot

Algorithm Flow

close?
yesno valid?

no yes

P1: Far approach
uses: s1, c1, e1

P2: Near approach
uses: s2, s3, e1

P3: Alignment
(c1)

Controller

uses: s3, c1, e1uses: s3, c1, e1
P4: Stair traversal

Control

Gyro

Heading

∫
• texture analysis (s1)
• optical flow (s2)
• line extraction (s3)

−

+

b̂⊕ω̂

ωm

b̂	
u

q̂	 q̂⊕ α, θ, θ̇

`m, θr

Fig. 2: (left) The Stair Perception module extracts image features corresponding to descending stairs and passes them to the Attitude-
Estimation and Control modules. The Attitude-Estimation module fuses rotational velocity measurements from the gyroscope, with
observations of straight-line edges extracted from the camera images, in order to estimate the three-d.o.f. orientation of the robot. The
Control module drives the heading and velocity of the robot to follow safe trajectories. (right) The Algorithm flow comprises four phases:
P1 uses texture analysis to generate hypotheses for possible stair locations. P2 uses line extraction and optical flow to determine the stair
location and the boundary of the first step precisely. P3 aligns the robot to the stairs. P4 drives the robot down the stairs.

IV. STAIR PERCEPTION

A. Far-approach stair detection

In this section, we present our vision-based approach
for descending-stair detection. Fig. 3(a) shows a typical
image of an indoor environment observed by a mobile robot
equipped with a monocular gray-scale camera. Descending-
stair detection is challenging in this case since the stairs are
not directly visible in the image, and cannot be extracted by
means of image features such as points or edges. Thus our
algorithm must infer the presence of the descending stairs
by exploiting other visual cues.

Humans can detect possible descending-stair areas by
perceiving the relative change in depth of surrounding scene
elements. To do this, they utilize a wide set of visual cues
(e.g., monocular, stereo, motion parallax, and focus) [12].
Among these, we are primarily interested in monocular infor-
mation, since the other visual cues require larger motions of
the camera, as the scene depth increases. However, inferring
the relative depth from a single image is difficult, because
depth typically remains ambiguous given only local features.
Thus, it is imperative to use a strategy that takes into account
the overall structure of the image.

In our proposed solution, we exploit monocular cues, in
particular texture variations, since they can be extremely
useful for assessing changes in depth [13] (e.g., a carpet will
exhibit a different texture resolution when observed at differ-
ent distances). Among the existing texture descriptors, some
of the most powerful ones use texture energy measures [14],
which encode the amount of texture variation within a
filtered window around a pixel. In [15], a supervised-learning
approach was proposed to estimate the 3D depth from a
single image. However, it relies on color-image processing
and suffers from large computational burden. Instead, in our
work we adopt Laws’ texture-energy measures [11], due to
their efficiency and computational speed.

In the first texture-transformation step, the current image
I [see Fig. 3(a)] is filtered with a set of 5 × 5 masks Mk,

(a) (b)

(c) (d)

(e)
Fig. 3: Far-approach phase: (a) An image of the indoor environment.
(b) The texture-energy measure highlights candidate stair locations
(low gray-level). (c) The binary image obtained after adaptive
thresholding. (d) Candidate boxes indicate possible descending stair
locations. (e) One candidate is selected and tracked over consecutive
images.

k = 1, ..., 16:

L5TE5, E5TL5, L5TR5, R5TL5, E5TS5, S5TE5,

S5TS5, L5TL5, R5TR5, E5TE5, L5TS5, S5TL5,

E5TR5, R5TE5, S5TR5, R5TS5,

where the letters indicate Local averaging, as well as the
sensitivity to Edges, Spots, and Ripples, for each of the four

5× 1 basic masks:

E5 = [−1,−2, 0, 2, 1], S5 = [−1, 0, 2, 0,−1],

R5 = [−1,−4, 6,−4, 1], L5 = [1, 4, 6, 4, 1].

From the obtained filtered images Fk, the second texture-
transformation step computes the local magnitudes of these
quantities. We apply a local-energy operator to each filtered
image to produce the texture-energy images Ek1

Ek(l,m) =

l+p∑
i=l−p

m+p∑
j=m−p

|Fk(i, j)| , k = 1, ..., 16. (1)

In our experiments, we selected a window of size p = 7 and
combined the various energies as

E(l,m) =

16∑
k=1

Ek(l,m), (2)

which provided satisfactory performance.
Fig. 3(b) shows the final energy image E which has

high-energy values for pixels corresponding to close objects
such as railings, trashcans, and ascending stairs. In contrast,
far objects exhibit low-energy values, and hence indicate
possible descending-stair locations.

After computing the energy image, in the third step we
apply an adaptive threshold2 to obtain a binary image in
which the 1s correspond to low-energy regions [Fig. 3(c)].
From these binary regions a series of connected contours
have been extracted and each one has been fitted with a
bounding box. Among all these boxes, we discard those
portions that lie below the horizontal line passing through the
image principal point. Note that, in the case of planar robot
motion, when far from the stairs, this line constitutes a good
approximation of the horizon line, and thus, it upper-bounds
the floor plane. The remaining regions constitute the set of
possible descending-stair locations, as shown in Fig. 3(d).

At this point the algorithm randomly selects one of the
candidates, computes the reference heading θr with respect
to its centroid, and uses it as an input to the controller (see
Sect. IV-E). The robot moves towards the centroid of the
chosen box, and tracks it through consecutive images using
a nearest-neighborhood approach [Fig. 3(e)].

B. Near-approach stair detection

As the robot approaches the selected candidate location, it
needs to assess whether it is a descending staircase or not. If
the robot was equipped with a 3D sensor (e.g., stereo camera
or 3D LADAR), it would be able to directly observe the
staircase and construct its 3D model, which would facilitate
stair descending. However, our goal in this work is to address
all exteroceptive-sensing needs with a monocular camera. To
this end, we exploit multiple visual cues (i.e., optical flow

1Although [11] used both squared and absolute magnitudes to estimate
the texture energy, we only utilize absolute magnitude, since it requires less
computation and gives comparable performance in practice.

2While the initial value of this threshold is selected manually, we designed
an adaptive thresholding strategy for coping with illumination changes. More
details about this process are provided in Sect. V.

and image lines), in order to verify the stair hypothesis, and
identify the leading stair edge.

1) Line extraction: As the robot approaches the stairs [see
Fig. 4(a)], it extracts all lines present in the image. The goal
is to determine the line corresponding to the stair boundary,
so the algorithm retains only image lines which satisfy the
following requirements: (i) they should lie in the lower half
of the image, (ii) they are not near vertical in the image
plane, and (iii) their length exceeds a specified percentage of
the image resolution. This line-selection approach generates
several hypotheses for the leading stair edge [see Fig. 4(b)],
however, because no depth estimates are available from the
line-extraction process, it is impossible to determine the stair
edge with this information alone.

2) Variational optical flow: In order to infer which line, if
any, corresponds to the stair boundary, we combine the image
lines extracted in the previous step, with dense optical flow
computed between sequential images. Traditional optical
flow methods rely on correlating points or patches across two
images in order to determine the scene motion. However, we
have observed numerous cases in which correlation-based
optical flow produces inaccurate results during the near-
approach phase, due to lack of sufficient texture on the floor
and walls. For this reason, we have employed a variational
optical flow method, introduced by Brox et al. [1], which
imposes additional constraints in the flow field to ensure
consistency in low-texture regions [see Fig. 4(c)].

Specifically, for each candidate line extracted in an image,
we compute the magnitude of the median flow within a small
window above the line, ρA, and below the line, ρB . Since
the line corresponding to the true stair edge will have large
optical flow below the line [denoted by the brightly colored
region, ρA, in Fig. 4(c)], and low optical flow above the line
[denoted by the dark region, ρB , in Fig. 4(c)], we utilize
a ratio test to determine which lines may correspond to the
leading stair edge (i.e., ρB/ρA ≥ ε), and keep the ones which
pass this test.

3) Voting for a candidate line: Typically, up to two or
three candidate lines may be selected from the previous step.
Hence, we employ a final step, which is a simple voting
scheme, to detect if one of the candidate lines is the leading
stair edge. Specifically, we cast three votes: (i) one for the
longest length line, (ii) one for the line with the largest ratio
ρB/ρA, and (iii) one for the line which is highest in the
image. If a line receives two or three votes, it is selected as
the leading stair edge [see Fig. 4(d)], otherwise the algorithm
declares that no staircase is present, and returns to the far-
approach phase as described in Fig. 2.

C. Stair-alignment phase

After the robot completes the near-approach phase and
verifies that an open stairwell is present, it must rotate to
align with the staircase. This is achieved by computing the
unit vector along the stair-edge direction with respect to
the initial robot frame {R0}, and subsequently, calculating
the reference heading direction θr, allowing the robot to
determine the appropriate control inputs (see Sect. IV-E).

(a) (b)

(c) (d)
Fig. 4: Near-approach phase: (a) Image recorded during the near-
approach. (b) Multiple lines are extracted which could correspond
to the leading stair edge. (c) Optical flow is computed between
consecutive images and correlated with the detected lines. The
color indicates flow direction, and the brightness indicates flow
magnitude. (d) The leading stair edge is determined and marked
in red.

1) Determining the direction of the stair edge: Figure 5
depicts the observation of the leading stair edge. Each line
projected onto the image plane is described by

Rt`j =
[
cosφj sinφj −ρj

]T
, (3)

where {φj , ρj} are the line’s polar coordinates in the current
camera frame of reference. Thus, any homogeneous image
point p =

[
u v 1

]T
lies on the line iff pT Rt`j = 0. We

denote the plane which contains the projected line and the
camera origin by Πj , and remark that the normal vector to
Πj is Rt`j . Furthermore, Rt`j is perpendicular to the stair-
edge direction, since the stair edge lies in Πj .

We note that, since the stair edge lies in a plane parallel
to the yz-plane of {R0}, the vector R0e1 =

[
1 0 0

]T
is

also perpendicular to the stair edge. By using the estimated
orientation of the robot with respect to the global frame (see
Sect. IV-E), we express the measured line-direction in the
initial robot frame {R0}, and compute the unit vector along
the stair edge as

R0si =R0e1 × R0
Rt
CRt`j . (4)

To obtain a better estimate of the stair-edge direction, we
compute its average over several observations as the robot
aligns to the stair.

2) Computing the desired heading direction: Let the unit
vector along the stair edge be R0si ,

[
0 ys zs

]T
. Then

the reference heading of the robot, θr, is the angle which
aligns the robot’s z-axis with the perpendicular to R0si,
so that the robot is facing straight down the stairs. Thus,
the unit-vector direction which the robot should head in
is R0vr =

[
0 zs −ys

]T
, and the reference heading is

θr = atan2 (zs,−ys).

staircase

image plane

Πj

φj

ρj

si

y

zx

{Rt}

`j

Fig. 5: Camera observation of a stair edge. The camera observes
the projection of the stair edge onto the image plane, as a line with
parameters ρj and φj . The plane passing through the focal point
and the projected line in the image plane is Πj , whose normal
vector is `j . The stair direction si lies in Πj and is perpendicular
to `j .

D. Stair traversal

During the stair traversal phase, the robot must drive onto
the plane of the stairs, traverse the staircase going down,
and then drive off the stairs. Initially the robot is aligned
perpendicular to the stair-edge direction, and positioned
roughly in the center of the stairwell opening. The robot
commands a small linear velocity to move forward until its
center of gravity passes over the first stair edge and it settles
onto the stairs. We detect the floor-to-stair transition based
on the robot’s pitch estimate (see Sect. IV-E).

While the robot is on the staircase, the reference heading
direction fed to the controller depends on the location of
the robot on the stairs. We employ a safe-center strategy, as
in [6], which defines three stair regions. On the left and right
sides of the stairs, there is a no-drive region, where the robot
is at risk of colliding with the wall or railing. The middle
of the stair-case represents a safe-to-drive region where the
robot should pass through.

We continuously monitor the location of the robot on
the stairs using a ratio of left and right end points of the
detected stair edges in the image. If the robot is in the
center of the stairs, then the reference heading direction is
the perpendicular stair direction (i.e., the robot drives straight
down the stairs). If the robot experiences slippage, it may
end up in the left or right no-drive regions. In this case,
the reference heading direction changes, to steer the robot
back to the middle of the stairs. As a last step, the robot
detects the transition from the bottom stair onto the floor
using a threshold of the estimated robot’s pitch estimate, and
automatically stops.

E. Attitude estimation and heading control

We employ an EKF for three-d.o.f. attitude estimation that
fuses gyroscope measurements with orientation updates from
the observed stair edges. The filter state is x =

[
qT bT

]T
,

where b denotes the time-varying biases that affect the

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 6: Experiment 1. Stair detection, approach and traversal; (a)
The robot in phase 1 steers towards the stair hypothesis which
is boxed in white, and depicted in (b). (c) The robot correctly
tracks the hypothesis for the stair location up to the stairwell
opening (d), and transitions to phase 2. (e) During near-approach,
the robot executes a small translational motion in order to compute
the optical flow field (f), and precisely locates the leading stair
edge. (g) The robot drives onto the stairway, and tracks lines as it
traverses down (h).

gyroscope measurements, and q denotes the robot’s attittude
represented by the quaternion of rotation. We employ a PID
controller for the robot heading, derived based on the lin-
earized system model, which generates velocity commands
as a function of the estimated orientation of the robot q̂,
and the desired heading direction θr. Details for the attitude
estimation and heading control are provided in [6].

V. EXPERIMENTAL VALIDATION

A. Hardware and software description

The proposed method was developed and implemented on
an iRobot Packbot. The Packbot is a tracked, skid-steered
robot of approximately 66 cm in length and 23 kg in weight.
The robot is equipped with an on-board navigation computer
(PC-104 stack), as well as a tri-axial gyroscope (ISIS IMU)
which measures the robot’s three-d.o.f. rotational velocity at
100 Hz, and a monocular grey-scale camera (Videre Design)

which records 640× 480 px images at 30 Hz. The sensors’
intrinsic parameters (i.e., gyro noise parameters, as well as
camera focal length, optical center, skew coefficients, and
radial distortion parameters) are computed off-line. A precise
estimate of the camera-to-IMU transformation has also been
computed using the approach presented in [16].

The proposed descending-stair navigation method was
implemented in C++ under the GNU/Linux operating system.
The texture analysis and line extraction has been devel-
oped using Intel’s OpenCV computer vision library. The
variational optical flow [1] was computed remotely on a
server, due to the limited computational resources available
on the Packbot. The remote transfer and processing step
takes approximately 10 seconds to complete, and must be
performed only once per trial (during the near-approach
phase). All other implemented algorithms run on the robot
in real-time, at rates between 15 Hz and 30 Hz.

B. Experimental setup and results

We evaluated the proposed approach under typical lighting
conditions on a stair-case at the University of Minnesota, and
we hereafter present the most representative results from two
tests.3

The robot is typically positioned 10 to 15 m away from
the descending-stair portion of the environment. In order to
compensate for commonly occurring changes in illumination,
we implemented a method for adaptively tuning the threshold
value used for converting the texture-energy image to the
binary one (see Sect. IV-A). Our policy increases (decreases)
the value of the threshold when the area of the tracked
region shrinks (grows) over a specific percentage between
two consecutive frames. This strategy provided satisfactory
performance of the region tracking, even in the presence of
illumination changes and across large distances.

Fig. 6 shows the experimental results in the case that
the tracked region corresponds to the descending stairs;
Fig. 6(a)-(b) presents the phase 1 portion of the experiment,
in which the robot is in the initial position and one possible
descending-stair region is selected from the texture analysis.
After phase 1 is completed, the robot is near the edge of the
descending stairs [Fig. 6(c)] and the candidate stair location
has been successfully tracked over time [Fig. 6(d)]. At this
point, the robot transitions into phase 2, and performs a small
translational motion in order to compute the optical-flow field
between subsequent images and detect the leading stair edge
[Fig. 6(e)-(f)]. Once the stair edge is correctly detected, the
robot aligns to it and begins stair descent [Fig. 6(g)-(h)].

We have tested our strategy also in the case that the
initial region selection does not coincide with an actual
descending stair (in this experiment the robot aims towards
a doorway). Fig. 7(a)-(b) shows the initial robot position
and the selection of the doorway from the texture analysis.
This region is tracked during the entire phase 1 [Fig. 7(c)-
(d)]. However, during the execution of phase 2 [Fig. 7(e)]

3A video documenting the presented experiment, as well as an additional
experiment on a stair-case with different texture, material, and lighting
conditions is available at http://mars.cs.umn.edu/videos/StairDescend.mp4

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Fig. 7: Experiment 2. Detecting a wrong descending-stair location;
(a) The robot in phase 1 steers towards a wrong hypothesis (i.e., a
doorway) which is boxed in white, and depicted in (b). (c) The robot
arrives near by the region and (d) tracks it correctly during phase 1.
(e) In the near-approach, the robot executes a small translational
motion in order to compute the optical flow field (f), which does
not exhibit any discontinuity across prominent image lines. (g) The
robot rotates and (h) computes a new candidate for the descending
stair location.

the robot rejects this candidate stairwell, since the flow field
does not exhibit a depth discontinuity across any prominent
image lines [Fig. 7(f)]. At this point the robot rotates 180◦,
and begins searching for a new candidate region [Fig. 7(g)-
(h)].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a method for descending-
staircase detection, approach, and traversal using inertial
sensing and a monocular camera. We developed a four-
stage strategy to address this problem, which includes far-
approach, near-approach, stair alignment, and stair traversal
phases. In each step we exploited salient stair features in
the image in order to improve robustness. One of the key
challenges we overcame was detecting regions of interest
(i.e., stairwells) in an image, which essentially manifest
themselves as gaps. To this end, we described and imple-

mented two methods, one for far-approach, which relies
on texture energy measures, and one for near-approach,
which exploits optical flow discontinuities to determine the
leading stair edge. Making our algorithm robust to initial-
illumination conditions is part of future work.

In our ongoing work, we are investigating methods for
on-line learning [i.e., kernel-based support vector machines
(SVM)], which will enable the robot to detect new staircases
based on previous experience with other stairs. Additionally,
we plan to exploit information for the presence of ascending
stairs [2] to assign probabilities to the different hypotheses
for the location of descending stairs. Finally, we intend to
extend the results of our work to the case of humanoid robots
whose cameras move outside the plane as the robot walks,
and whose viewing directions can be controlled to increase
the acquired information.

REFERENCES

[1] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy
optical flow estimation based on a theory for warping,” in Proc. of the
European Conf. on Computer Vision, Prague, Czech Republic, May
11–14, 2004, pp. 25–36.

[2] N. Molton, S. Se, M. Brady, D. Lee, and P. Probert, “Robotic sensing
for the partially sighted,” Robotics and Autonomous Systems, vol. 26,
no. 2-3, pp. 185–201, Feb. 1999.

[3] J. D. Martens and W. S. Newman, “Stabilization of a mobile robot
climbing stairs,” in Proc. of the IEEE Int. Conf. on Robotics and
Automation, San Diego, CA, May 8–13, 1994, pp. 2501–2507.

[4] G. Chen, M. Xie, Z. Xia, L. Sun, J. Ji, Z. Du, and W. Lei, “Fast and
accurate humanoid robot navigation guided by stereovision,” in Proc.
of the IEEE Int. Conf. on Mechatronics and Automation, Changchun,
China, Aug. 9–12, 2009, pp. 1910–1915.

[5] G. Figliolini and M. Ceccarelli, “Climbing stairs with EP-WAR2 biped
robot,” in Proc. of the IEEE Int. Conf. on Robotics and Automation,
Seoul, Korea, May 21–26, 2001, pp. 4116–4121.

[6] A. I. Mourikis, N. Trawny, S. I. Roumeliotis, D. M. Helmick, and
L. H. Matthies, “Autonomous stair climbing for tracked vehicles,” Int.
Journal of Robotics Research, vol. 26, no. 7, pp. 737–758, Jul. 2007.

[7] Q.-H. Vu, B.-S. Kim, and J.-B. Song, “Autonomous stair climbing
algorithm for a small four-tracked robot,” in Proc. of the IEEE Int.
Conf. on Control, Automation, and Systems, Seoul, Korea, Oct. 14–17,
2008, pp. 2356–2360.

[8] S. Steplight, G. Egnal, S.-H. Jung, D. B. Walker, C. J. Taylor, and J. P.
Ostrowski, “A mode-based sensor fusion approach to robotic stair-
climbing,” in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, Takamatsu, Japan, Oct. 31–Nov. 5, 2000, pp. 1113–1118.

[9] Y. Xiong and L. Matthies, “Vision-guided autonomous stair climbing,”
in Proc. of the IEEE Int. Conf. on Robotics and Automation, San
Francisco, CA, Apr. 24–28, 2000, pp. 1842–1847.

[10] D. M. Helmick, S. I. Roumeliotis, M. C. McHenry, and L. H. Matthies,
“Multi-sensor, high speed autonomous stair climbing,” in Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Lausanne,
Switzerland, Sep. 30–Oct. 5, 2002, pp. 733–742.

[11] K. Laws, “Rapid texture identification,” in Proc. of the SPIE Conf. on
Image Processing for Missile Giudance, no. 238, San Diego, CA, Jul.
28–Aug. 1, 1980, pp. 376–380.

[12] J. Loomis, “Looking down is looking up,” Nature News and Views,
vol. 414, pp. 155–156, 2001.

[13] J. Malik and P. Perona, “Preattentive texture discrimination with early
vision mechanisms,” Journal of the Optical Society of America A,
vol. 48, no. 2, pp. 75–90, 1990.

[14] E. Davies, Machine Vision: Theory, Algorithms, Practicalities,
M. Kaufman, Ed. Elsevier, 2005.

[15] A. Saxena, S. Chung, and Y. A. Ng, “3D depth reconstruction from
a single still image,” Int. Journal of Computer Vision, vol. 76, no. 1,
pp. 53–69, Jan. 2008.

[16] F. M. Mirzaei and S. I. Roumeliotis, “A Kalman filter-based algorithm
for IMU-camera calibration: Observability analysis and performance
evaluation,” IEEE Trans. on Robotics, vol. 24, no. 5, pp. 1143–1156,
Oct. 2008.

