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Abstract—In this paper, we study the problem of hovering
(i.e., absence of translational motion) detection and compen-
sation in Vision-aided Inertial Navigation Systems (VINS). We
examine the system’s unobservable directions for two common
hovering conditions (with and without rotational motion) and
propose a robust motion-classification algorithm, based on
both visual and inertial measurements. By leveraging our
observability analysis and the proposed motion classifier, we
modify existing state-of-the-art filtering algorithms, so as to
ensure that the number of the system’s unobservable directions
is minimized. Finally, we validate experimentally the proposed
modified sliding window filter, by demonstrating its robustness
on a quadrotor with rapid transitions between hovering and
forward motions, within an indoor environment.

I. INTRODUCTION AND RELATED WORK

Current approaches to 3D localization rely on inertial mea-
surements units (IMUs) that provide rotational velocity and
linear acceleration measurements. Low-cost, commercial-
grade IMUs, however, suffer from the presence of noise and
bias in the inertial measurements, which when integrated
even over a short period of time, can result in unreliable esti-
mates. When available, GPS measurements can be employed
for aiding an inertial navigation system (INS). Many robotic
applications, however, require operation in GPS-denied areas
(e.g., indoors or within urban canyons). A Vision-aided INS
(VINS) employs camera observations of tracked features
over multiple time steps for imposing geometric constraints
between the motion of the vehicle and the structure of the
observed scene. Such geometric constraints, provide correc-
tions to the pose (position and orientation) estimates of an
INS, and can significantly improve the localization accuracy
within GPS-denied areas. As a result, recent advances in
VINS have led to successful applications to ground [1], [2],
aerial [3], [4], and space exploration [5] vehicles.

Existing approaches to VINS rely either on filtering or
bundle-adjustment (BA)-based optimization methods. BA
methods, originally developed for problems in photogram-
metry [6] and computer vision [7], [8], perform batch op-
timization, without marginalization, over all the variables,
including the entire robot trajectory and every detected land-
mark using all available measurements. In order to reduce
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the BA’s computational complexity, different approximate
methods have been developed that either optimize over
a subset of measurements and variables or solve the BA
problem intermittently. An example of the first category of
relaxed solutions to the vision-only BA formulation is the
Parallel Tracking and Mapping (PTAM) algorithm, origi-
nally developed by Klein and Murray [9] for augmented
reality applications within confined spaces. PTAM manages
to bound the increasing complexity of BA-based methods
as new poses and features are added to the state vector,
by optimizing over a fixed number of camera poses (key-
frames) and mapped features. Such a framework is efficient
and robust under the assumption that the camera observes
the same scene over long periods of time [10]. As the
scene changes, new key-frames and mapped features may
be added, while past poses and features, as well as all their
associated measurements are ignored. Although observing
the same scene is a common scenario for augmented reality
applications, it is rather restrictive for robotic vehicles, where
exploration of large areas is often required. As a result,
PTAM, when modified to be fused with an INS in a loosely
coupled manner for the purpose of micro aerial vehicle
(MAV) localization, needs special consideration for failure
detection during rapid changes of the observed scene [11].

Among the methods that incrementally solve the BA
problem, iSAM2 has been applied to a GPS-aided INS,
employing visual measurements [12]. In order to reduce the
prohibitively high computational complexity of solving the
full BA problem, the authors employ factorization-updating
methods which allow reusing the information matrix avail-
able from previous steps. Computationally demanding pro-
cedures, however, such as relinearization followed by batch
factorization, are only performed when a variable signifi-
cantly deviates from the current estimate. Nevertheless, due
to the accumulation of fill-ins between periodic batch steps,
the iISAM2’s efficiency degrades when many variables are
affected at every relinearization step [13].

Recursive filtering approaches to VINS can be classified
into two main categories. The first one comprises non-
trivial extensions of EKF-based SLAM algorithms [14],
appropriately modified for VINS [2], where the estimator’s
state vector includes both the pose of the vehicle and a
map of the environment. EKF-SLAM can deal with both
cases of hovering and exploration. Its high computational
complexity (quadratic in the number of mapped features),
however, limits its applicability to small-size areas. In con-
trast, sliding window filtering approaches, avoid the inclusion
of a map of the environment by maintaining a sliding window



of past camera poses. Among these methods, the Multi-
State Constrained Kalman Filter (MSC-KF) [1] exploits all
available geometric information provided by the camera
measurements, while keeping its computational complexity
linear in the number of features observed over the filter’s
window. Although the MSC-KF has been successfully ap-
plied to various applications (e.g., [1], [5]), and has been
demonstrated to operate in real time [15], [16], it is not
suitable for scenarios that include hovering over the same
scene, since it requires sufficient baseline between the camera
poses within the sliding window.

At this point, we define two distinct cases of motion. By
hovering we describe the case of zero translation, while by
generic motion we refer to motion profiles that excite suffi-
cient degrees of freedom, so that the number of unobservable
directions of the VINS reaches its minimum [17], [15].

Recent work on VINS, addresses the case of hovering by
utilizing hybrid filter estimators that include both a sliding
window of camera poses, as well as a fixed number of
mapped landmarks [3], [18], or by separately building a map
of the environment [19]. Although such methods bound the
processing cost of SLAM (the number of mapped landmarks
in the state vector is kept small), their performance during
a hovering scenario hinges upon the criterion employed for
selecting which features to be included in the state vector.

The present paper’s contributions address the above limi-
tations by appropriately modifying the sliding window over
which the MSC-KF operates, so as to perform robustly both
under hovering and generic motion conditions, without the
need of building a map of the environment. Specifically:

« We analyze the observability properties of a VINS when
hovering, with and without rotational motions, and show
that it has 5 and 7 unobservable degrees of freedom
(dof), respectively. This is in contrast to the case of
a VINS under generic motions where the number of
unobservable dof is 4 [15].

o We prove that for a sliding window-based estimator,
such as the MSC-KF, whose state vector comprises
camera poses corresponding to both motion profiles
(i.e., generic motions and hovering), the number of
unobservable dof remains 4.

e We propose a method for classifying the vehicle’s
motion into hovering versus non-hovering, by utilizing
visual information from the feature tracks.

« We leverage the results of our observability analysis,
as well as the proposed motion-classification algorithm,
for deciding which frames to be added/dropped from
the MSC-KF, while keeping the filter’s computational
complexity linear in the number of observed features.

« Finally, we demonstrate the robustness of the proposed
approach by testing it on a MAV rapidly transitioning
between hovering and generic motions.

The rest of the paper is organized as follows: In Sec-
t. I, we describe the system and measurement models used
by the MSC-KF. Subsequently, (Sect. III) we present the
observability analysis of a VINS under hovering, which
we leverage for appropriately modifying the MSC-KF. The

proposed method is validated experimentally in Sect. IV.
Finally, we provide our concluding remarks and outline our
future research directions in Sect. V.

II. BACKGROUND

In what follows, we first present the system model used
for state and covariance propagation based on inertial mea-
surements (Sect. II-A), and then describe the measurement
model for performing tightly-coupled visual-inertial odome-
try through the MSC-KF framework.

A. IMU State Model

The 16 x 1 IMU state vector is:
xe= (g5 by v b °pf]’. ()

The first component of the IMU state is ‘G () which is the
unit quaternion representing the orientation of the global
frame {G} in the IMU frame, {I}, at time ¢. The frame
{I} is attached to the IMU, while {G} is a local-vertical
reference frame whose origin coincides with the initial IMU
position. The IMU state also includes the position, “p, (),
and velocity, “v,(r), of {I} in {G}, while b,(¢) and b,()
denote the gyroscope and accelerometer biases, respectively.

The system model describing the time evolution of the
state is (see [20]):

'Go(1) = 32 0(1))Ge(t),  “Bit) =Wi(1),  T¥(r) =Calr)
b (1) =nyg(t),  ba(t) =nua(r) (@)

where ‘@ and “a are the rotational velocity and linear
acceleration, ny,; and ny, (t) are the white-noise processes
driving the IMU biases, and
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The gyroscope and accelerometer measurements are:
@ (1) ="0(t) +bg () +ng(7) 3)
an(t) =C('4s(r)) (“a (t)_Gg)+bu(t)+na(t) 4
where C(g) is the rotation matrix corresponding to the

quaternion g, °g is the gravitational acceleration expressed
in {G}, and ng(r), n,() are white-noise processes contam-
inating the corresponding measurements. Linearizing at the
current estimates and applying the expectation operator on
both sides of (2), we obtain the IMU state propagation model:
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defining the 15 x 1 error-state vector as:!
e =['66; by v b ], (©)

'For the IMU position, velocity, and biases, we use a standard additive
error model (i.e., X = x — X is the error in the estimate X of a random
variable x). To ensure minimal representation for the covariance, we employ
a multiplicative attitude error model where the error between the quaternion
g and its estimate § is the 3 x 1 angle error vector, 60, implicitly defined
by the error quaternion 8§ =g §' ~ [189T 1d]r, where 83 describes
the small rotation that causes the true and estimated attitude to coincide.



the continuous-time IMU error-state equation becomes:
)L(R(l‘) = FR(I))N(R(I)+GR(I‘)H(I) (7)

where Fg(t) is the error-state transition matrix and Gg(?) is
the noise input matrix, with
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and n(r) 2 [n} nf, nl nl,]" is the system noise with

autocorrelation E[n(t)n’ (7)] = Qg8 (¢ — 1), where (.) is the
Dirac delta; Qg depends on the IMU noise characteristics and
is computed offline.

The state transition matrix from time #; to #, P, is
computed in analytical form [21] as the solution to the matrix
differential equation @ | = Fr(ti)®r1, P11 =1is:
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Finally, the discrete-time system noise covariance matrix
is computed as: Q; = szkH @k,TGR(T)QRGfe(T)@,szT.

B. MSC-KF Propagation Model

As the sensor platform moves in the environment, the
camera observes point features, which are tracked across
images. Generally, in a VINS [22], these measurements are
exploited to concurrently estimate the motion of the sensing
platform and, optionally, the structure of the environment.
The MSC-KF [1] is a VINS that performs tightly-coupled
visual-inertial odometry over a sliding window of N poses,
while maintaining linear complexity in the number of ob-
served features. The key advantage of the MSC-KF is that
it utilizes all constraints for each feature observed by the
camera over N poses, without requiring to build a map or
estimate the features as part of the state vector. Each time
the camera records an image, a stochastic clone [23], of the
sensor pose is created. This enables the utilization of delayed
image measurements; in particular, it allows all observations
of a given feature f; to be processed during a single update
step (when the first pose that observed the feature is about
to be marginalized). Hence, at a given time-step k, the filter
tracks the 16 x 1 evolving state, xg,_ [see (1)], as well as
the cloned sensor poses {x¢c = [*N+gg Gp,kaNﬂ.]T}, i=
0,...,N —1 corresponding to the last N images. That is:

T
T 17 T T T
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Correspondingly, the covariance consists of the 15 x 15 block
of the evolving state, Pgg, the 6N x 6N block corresponding
to the cloned robot poses, Pcc, and their cross-correlations,
Prc. Hence, the covariance of the augmented state vector
has the following structure:

Prr  Prc

P= (10)
[PzTec Pcc

During propagation, the current state estimate evolves for-

ward in time by integrating (5), while the cloned poses are

static. The covariance propagation of the entire state is given

by:

Prr < Pr i1 4PrrPp 1 1 + Qi (11)
Prc < Py 14Pre (12)
PCC — PCC (13)

C. MSC-KF Update Model

In this section, we describe the processing of a single
feature f;, which was first observed by the oldest clone
corresponding to time-step kK — N, and then reobserved over
the cloned camera poses corresponding to time-steps k —
N,...,k—1.2 We employ the pinhole camera model to de-
scribe the perspective projection of the 3D point f; on the
image plane and model the measurement z; at time step ¢
as:

i
1 [ Y _
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where the noise 172 follows a Gaussian distribution with zero
mean and covariance E[n)n ;T] = 6127[2. Note also that, with-
out loss of generality, we express the image measurement in
normalized pixel coordinates, and consider the camera frame
to be coincident with the IMU frame’. By differentiating
the nonlinear measurement model (14) with respect to the
augmented state (9), we obtain the linearized measurement
Jacobian:

Zy=H.,[Hy , H, (|, +H. Hfi+n) 15)
. [03x1s O3x6 My, Hp(] 036 _
:Hc,é‘ — Xk
(-th clone position
+H Hp b+ (16)
=H. & +H, H f+n) A7)
where
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i1 % T 18
ol = o S|y Hgge =[] (18)
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Hy =-C("4s), Hypr=C("qs).

The interested reader is referred to [1] on how the same methodology
can be applied efficiently to multiple features.

3We perform both intrinsic camera and extrinsic IMU-camera calibra-
tion off-line [24], [25].



After collecting all measurements of feature f; across time-
steps k—N,...,k— 1, we arrive at:

z_, Hjc,kfl Hé,klef k=1
iLN Hi,ka Hi-,kaHf,ka

So as to avoid including f; into the state vector, the feature
is marginalized by projecting (19) onto the left nullspace W
of H} This yields

W'z = WH X+ W'n; (20)

which we employ to update the state and covariance es-
timates using the standard EKF update equations. After
the update, we marginalize out the oldest cloned pose, by
removing xc, , from x;, and dropping the corresponding
rows and columns of P.

III. PROBLEM DESCRIPTION AND SOLUTION

As described in the previous section, the MSC-KF algo-
rithm processes visual observations over a sliding window
of camera poses. Thus, at every time-step, we need to
decide which camera pose to include/remove from the sliding
window, so that its size remains constant. A natural choice,
especially during exploration tasks, would be the first-in-first-
out (FIFO) scheme, i.e., to remove the oldest camera pose
and replace it with the newest (current) one. This scheme
performs robustly when the platform is undergoing generic
motions [5]. In the case of hovering, however, (i.e., when
the platform stays at the same position for a period of
time) FIFO-based MSC-KF would fail. To address this issue,
we propose a last-in-first-out (LIFO) image management
approach for the MSC-KF where we replace the image
last included in the sliding window with the one currently
provided by the camera. The motivation for switching from a
FIFO to a LIFO strategy is that we want to ensure that there
is always sufficient baseline between camera poses included
in the sliding window. The exact impact of this selection
(i.e., FIFO vs. LIFO) on the observability properties of the
system is discussed in the following sections (Sect. III-A and
Sect. III-B), while the criterion for switching between FIFO
and LIFO is presented in Sect. III-C.

A. FIFO: Exploration Mode

1) FIFO Scheme:
Assume that at time-step k, the sliding window of camera
poses corresponds to the states [see (9)]

T T
.| e
Then, the camera observations from time steps k — N,k —
N+ 1,....k—1, are processed for updating the state and
covariance using the measurement model of (20). For the
next time-step, the FIFO scheme first drops the state x¢,
which corresponds to the oldest camera pose inside this
window. Then, the newest state xg_is cloned into xc,,

[T 71T _ [T T
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Fig. 1: FIFO vs. LIFO: The evolution of the sliding window
of filter states (shaded area) during hovering (poses in red
circles). The bottom figures show that while eventually all
the states in the FIFO scheme correspond to hovering camera
poses, the states in LIFO always contain generic-motion
camera poses.

followed by propagation. So at time-step k+ 1 the window
of states becomes

T

T
T 1T T
Xp+1 = [XRk+1 XC] = {XRkJrl XG, (22)

T
X
Cr—N+1

after which an update is performed and the same FIFO
procedure is repeated (see Fig. 1).

In short, the FIFO scheme slides the window of camera
poses forward in time, which is the most commonly used
image management scheme employed by sliding window
filters.

2) FIFO During Generic Motions and Hovering - Observ-

ability Analysis:
In what follows, we evaluate the performance of the FIFO
MSC-KF by studying the observability properties of the
corresponding VINS model. As shown in [17], [15], when
generic motions of the camera poses are involved, the VINS
model has four unobservable directions: three corresponding
to global translations, and one to rotations about the gravity
vector.

Hereafter, we study the case when the platform hovers,
meaning that there is little or no change in the positions of
the camera poses, while the camera may rotate or stand still.
Assume that hovering starts at time step kg and the size of the
sliding window is N. Then, in this case, because of the FIFO
scheme, the camera poses in the sliding window of states xy,
with k > ko + N, will all correspond to hovering states. So
for any time step k > ko + N, the FIFO MSC-KF model is
equivalent to a VINS model with only hovering motions, i.e.,
no translation between consecutive camera poses.

At this point, we state the first main result of our observ-
ability analysis

Theorem 1.1. The linearized VINS model, for the case
when multiple features (> 3) are observed by a sensor plat-
form performing no translational motion, but with generic
rotational motions, has five unobservable directions: three
for global translations, one for rotations around the gravity
vector (yaw), and one for scale.



Theorem 1.2. The linearized VINS model, for the case
when multiple features (> 3) are observed by a sensor plat-
form performing no translational or rotational motion, has
seven unobservable directions: three for global translations,
three for rotations (roll, pitch, and yaw), and one for scale.

Proof: see Appendix part A and B.

Thus, for the FIFO MSC-KF, when the platform hovers,
more unobservable directions appear besides the inevitable
four ones. This will lead to degradation of the system perfor-
mance: when the scale is unobservable, we cannot estimate
the scale of the motion or the scene. Furthermore, when
the roll and pitch angles are also unobservable, we cannot
measure gravity in the local (sensor) frame ‘g, which in turn
makes it impossible to extract the true body accelerations “a
from the accelerometer readings [see (4)].

B. LIFO: Hovering Mode

In what follows, we introduce an alternative LIFO-based
scheme that will extract the same information during hover-
ing as in the case of generic motions, i.e., the corresponding
VINS model has only four unobservable directions.

1) LIFO Scheme:

Assume that the sensor platform starts hovering at time-step
ko, with generic motions before kg, and the size of the sliding
window is N. We employ the FIFO MSC-KF for the generic
motion time interval, i.e., k < kg. Thus, at the time-step ko +
1, we have the following sliding window of the states from
FIFO [see (22)]

T T

X
Crg—N+1

(23)

T T T T
Xko+1 = |:XRI<0+I XC} = |:XRko+l XCkO

Once we detect that the platform is in hovering mode
between time-step kg and ko + 1 (the criterion is described
in Sect. III-C), we switch to the LIFO scheme: instead of
dropping the oldest camera pose XCy_n+1 38 in FIFO, we
drop the newest pose XRyg+17 and replace it with the state
corresponding to the next time-step XRyg42° This procedure
corresponds to the MSC-KF performing propagation only,
without any state dropping or cloning. At this point, the
sliding window of states becomes

T T
Cry—N-+1

(24)

T T T T
Xig+2 = |:ka0+2 XC] = |:XRI<O+2 XCio

and a filter update is performed using the camera observa-
tions corresponding to the poses in the window. The same
process is repeated for as long as the platform continues to
hover (see Fig. 1).

Once the sensor platform leaves hovering (i.e., it starts to
perform generic motions again), the MSC-KF switches back
to FIFO mode.

2) LIFO During Hovering - Observability Analysis:

In what follows, we show that the LIFO-based MSC-KF,
designed for dealing with hovering conditions, acquires suf-
ficient information, i.e., the unobservable directions of the
corresponding VINS model are the same as in the case of
generic motions.

When following the LIFO scheme [see (24)], the sliding
window of states for any particular time-step k during
hovering is
(25)

XékO—N+lj|
where only the latest camera pose is being replaced. There
are two parts in this state vector: the right part (time-steps
ko—N+1,...,kp — 1), corresponds to camera poses that
underwent generic motions, while the left part (time-step kg
and k), corresponds to hovering poses. Thus, the LIFO MSC-
KF for hovering is equivalent to a VINS model where the
sensor platform initially performs generic motions and then
switches to hovering.

At this point, we state the second main result of our
observability analysis

Theorem 2. The linearized VINS model, for the case when
multiple features (> 3) are observed by a sensor platform
performing generic motions for at least 4 time-steps, and
then starting to hover either with or without rotational
motions, has only four unobservable directions: three for
global translations, and one for rotations around the gravity
vector (yaw).

Proof: see Appendix part C.

Thus, the unobservable directions of the LIFO MSC-KF
are exactly the same as the ones of VINS undergoing generic
motions, which validates our choice of the LIFO scheme for
dealing with hovering conditions.

3) LIFO-based MSC-KF Update:

Assume that the sensor platform hovers from time-step kg
to time-step ko + Ny. Ideally we would like to solve a
bundle adjustment problem, where the state consists of both
generic-motion poses Xc, )= 0,...,N — 1, and hovering
poses Xg, ., § = 1,...,Ng, with all the feature measurements
observed during the time interval ko — N + 1 to ko + Ng.
However, if the hovering period lasts for a long time (i.e.,
Npg is large), it is computationally challenging to solve this
optimization problem in a batch form. Moreover, it also
suffers from numerical instability due to the lack of sufficient
baseline between the hovering poses [8].

Alternatively, the MSC-KF provides us with a framework
to solve this optimization problem incrementally [26], in a
recursive manner. Specifically, at each time-step k during
hovering, we perform a state-only MSC-KF update using
the measurement model of (20). In contrast, since while
hovering we retain the same poses Xc, )= 0,..N—1,
in the state vector [see (25)], the covariance should only be
updated once using all measurements, otherwise the filter
will become inconsistent. In our LIFO-based MSC-KEF, this
covariance update takes place at time step ko + Ny, right
before existing the hovering period.

o T 1T T T
X =[xk, x¢| = {XRk X6,

C. Hovering Detection

The method we employ for detecting whether the camera
motion between two consecutive image frames includes a
translational component, plays a crucial role for switching
in a timely manner between the FIFO and LIFO schemes.
We achieve this by appropriately modifying our existing



tightly-coupled visual-inertial framework, for robust feature

tracking. Specifically, let b; denote the unit-norm bearing

measurement to a feature (i.e., bj; = ﬁ) at time step k.
. k!12

Between two consecutive camera poses, k and k+ 1, all

feature observations that correspond to inliers satisfy the

epipolar constraint [27]:

b;.(il |t p, x<]C (IHI L?lk) b;.c =0. (26)

where we use the filter’s state estimates to evaluate
C (1k+| ‘71k)-

When there is sufficient baseline between the camera
poses, we employ the 2-pt RANSAC [28] to estimate the
unit vector of translation ’k+1p,k in (26). In contrast, for zero-
translational motions, b;_, is (approximately) parallel to
C (’k“ c?,k) bf( and (26) becomes ill-conditioned. In that case,
we employ a 0-pt RANSAC framework, where we classify
point correspondences as inliers or outliers by directly using
a model provided by the state estimates:

D1 =€ (*415) bill2 = 0. 27
In particular, we compute
1M o
di= 3Dl —C G )bk  @8)
i=1

and threshold d;, so as to decide whether the vehicle excited
sufficient translational motion, between time-steps k and k+
1, by setting the boolean variable:

ék =1if dy <€, else 'ék =0. 29)

So as to ensure smooth transitions from hovering to non-
hovering decisions, we expect multiple consecutive decisions
to be the same, before classifying the robot’s motion.

IV. EXPERIMENTAL RESULTS AND IMPLEMENTATION
DETAILS

We validated the robustness of the proposed approach
using a MAV. Our experimental platform, consists of a low-
cost quadrotor, the Parrot AR.DRONE, equipped with a low-
weight (< 100 gr) sensing platform [see Fig. 2 (a)].

Specifically, the sensing modalities comprise a Point Grey
Chameleon monochrome camera® with resolution 640 x 480
pixels and an InterSense NavChip IMU>. IMU signals were
sampled at a frequency of 100 Hz while camera images were
acquired at 7.5 Hz using an ARM CPU.

Images and inertial measurements were streamed through
the wireless module of the quadrotor and processed in real-
time on a ground station computer. A sliding window of 12
images was employed, with MSC-KF updates occurring at
3.75 Hz, while the filter was providing state estimates at the
frequency of the IMU (100 Hz) in real-time.

Features were extracted from the first image (last image)
of the FIFO (LIFO) sliding window of the images, using
the Shi-Tomasi corner detector [29]. While in FIFO (LIFO)

“http://www.ptgrey.com
Shttp://www.intersense.com

mode, features were tracked forward (backward) in the
sliding window, using the KLT tracking algorithm [30].

For the purpose of validating the robustness of the pro-
posed algorithm, the quadrotor was commanded to perform
rapid transitions from hovering to forward motion and then
again to hovering. As it is demonstrated in Fig. 2 (b) and the
accompanying video, the proposed localization framework
that employs the FIFO/LIFO MSC-KF schemes (depending
on the decision of the motion classifier), was able to robustly
detect the transitions of the vehicle’s motion profile, and
successfully track its pose. In contrast, the regular FIFO-
only sliding window MSC-KF, using the same window size
of 12 images, failed to track the vehicle’s pose, during
significant periods of hovering and diverged, as predicted
by our observability analysis.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced a robust motion classifier for
detecting transitions between hovering and generic motions.
Additionally, we studied the observability properties of a
vision-aided inertial navigation system (VINS) undergoing
two different types of motion: (i) hovering-only (i.e., zero-
translation) maneuvers, and (ii) motion with sufficient base-
line followed by hovering maneuvers. Moreover, we lever-
aged the results of our observability analysis to introduce
a LIFO-FIFO switching strategy for selecting the images
processed by a sliding-window filter under different oper-
ating conditions. Finally, we demonstrated the robustness
of the proposed strategy for dealing with singular motion
configurations using a quadrotor rapidly transitioning from
hovering to forward motion within an indoor environment.
As part of our future work, we plan to further modify existing
VINS frameworks so as to incorporate kinematic constraints
depending on the vehicle’s motion profile.

APPENDIX
A. Proof of Theorem 1.1
For a VINS model we have the following state vector
x=[xp °ff ot ]’ (30)

where xg is defined in (1), °f; is the position of feature®
i, i=1,...,M, in the global frame, and M is the number of
features with M > 3.

The observability matrix M [31] of the VINS model has
as its k-th block row My = H;®y 1, for k > 1, where ®; ; is
the state transition matrix from time-step 1 to & [see (8)], and
Hj, is the measurement Jacobian of the feature observation
model at time-step k [see (14)]. From [21], we have the
analytical expression for My:

®Note that for the purpose of this observability analysis, we include
the feature positions in the state vector. The same analysis holds for the
MSC-KF as well since the latter performs sliding window SLAM with
marginalization with respect to the feature positions.
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Fig. 2: Experiment: A Parrot AR.DRONE rapidly transitioning from hovering to forward motion maneuvers. (a) Close-view
of the quadrotor testbed along with its onboard sensors. (b) 3D view of the overall estimated trajectory with the “hovering”
periods annotated. (c) On-board view from the experimental dataset.
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and i =1,2,...,M, is the feature index.
In the case of hovering with generic rotations, since there

is no translation and the velocity is zero, we set Gp,k

“p;

and “v;, =0, for all k. Then, we compute the right nullspace

of M, which is:

0;  C("gs)’g  03x17]
03 0351 031
03 0351 0351
03 0351 031
Ni= |5 —[px[% p, | =[Ny No Nyt (36)
13 7L6f1 XJGg Gf]
LIz — [t <)% “fy

Thus, we have 5 unobservable directions for this model:
3 for global translations (N; 1), 1 for rotations about gravity
(N,.1), and 1 for scale (N 1).

B. Proof of Theorem 1.2

When no rotation is present, compared with the case in

part A, we additionally have ’*gG; = 'gs. This brings some
further simplifications to the elements of M, and its right
nullspace becomes:

03 I3 03517
03 03 0351
03 03 0351
0 —[C(Gs)°gx] 03
No=|I; —[%p,x|C"('Gs) “p | = [Nz‘z N2 Ns,z]
I3 — |_Gf1 ><J (o (qu) Gfl
LIs  — % x|C" ('Gs)  “fum |

(37)

Thus, we have 7 unobservable directions for this model:
3 for global translations (N;2), 3 for rotations (N,2), and 1
for scale (N ).

C. Proof of Theorem 2

We employ the batch least squares (BLS) formulation for
processing all IMU and camera measurements up to time-
step k and form the state vector

x =[x, Xk, Xk, Xg, °ff fy]" (38)
where Xg,,...,Xg, correspond to generic motions with £ >4,
and Xg,,,...,Xg, are of any motion (generic or hovering).
Then, the unobservable directions of the linearized VINS
model span the right nullspace of the information matrix of
this BLS under marginalization [32], or equivalently, span
the nullspace of the corresponding Jacobian matrix. The

Jacobian A has the following sparse structure

[ ®21 —Iis 1
D3, I
: DPri—1 —Iis :
H, , H,,
M M
Hy HE,
1 1
H  [Hy,
M M
L Hx,k Hf,k i
(39)



where @y ;_; is the state transition matrix from time-step
k—1to k, and Hi’k, H;’k are the measurement Jacobians for
the i-th feature observation at time-step k with respect to Xg,
and °f;, respectively.

Now we use mathematical induction to show that the right
nullspace of Ay is of dimension 4, for any k > ¢.

1) Initial step: When k = /¢, all states xg correspond to
generic motions. As shown in [17], [15], a VINS undergoing
generic motions has only 4 unobservable directions: 3 for
global translations and 1 for rotations about gravity.

2) Induction step: Assume that the nullspace N;_; of
Ay_1 is of dimension 4. The Jacobian A, takes the form:

Akfl 0
B C
where B, C consist of different measurement Jacobian ma-

trices. So to find the nullspace N; of Ay, we need to solve:

AN;=0 & A;_ N/ =0 and BN} +CN? =0 (41)

A= (40)

T
where N, = [NiT N%T} . From (41), we have N,i =Ni_1,

and it can be shown that N% is uniquely determined for
each solution of N}c. Hence, there are a total number of 4
independent directions for Ny, and it is easy to check that
these directions are the same as those of the VINS when
undergoing generic motions.
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