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Abstract— In this paper, we present a linear-complexity 3D
inertial navigation algorithm using both point and plane fea-
tures observed from an RGBD camera. In particular, we study
the system’s observability properties, and prove that: (i) When
observing a single plane feature of known direction, the IMU
gyroscope bias is observable. (ii) By observing a single point
feature, as well as a single plane of known direction but not per-
pendicular to gravity, all degrees of freedom of the IMU-RGBD
navigation system become observable, up to global translations.
Next, based on the results of the observability analysis, we
design a consistency-improved, observability-constrained (OC)
extended Kalman filter (EKF)-based estimator for the IMU-
RGBD camera navigation system. Finally, we experimentally
validate the superiority of our proposed algorithm compared
to alternative methods in urban scenes.

I. INTRODUCTION AND RELATED WORK

Over a short period of time, all six degrees of freedom
of a robot’s position and orientation (pose) can be obtained
directly by integrating the rotational velocity and linear
acceleration measurements from an Inertial Measurement
Unit (IMU). However, due to the biases and noise in the
IMU signals, errors in the robot pose estimates accumulate
quickly over time rendering them unreliable. To deal with
this problem, most inertial navigation systems (INS) rely
on GPS for bounding the estimation error. Unfortunately,
for robots operating in urban or indoor environments, the
GPS signals are usually either unreliable or unavailable.
For this reason, alternative sensors, such as regular and
RGBD cameras, are often used to aid the inertial sensors
and improve the navigation accuracy.

Compared to regular cameras, RGBD cameras provide
both color images and the corresponding 3D point cloud,
which simplifies the tasks of triangulating point-feature po-
sitions and extracting higher level features, such as planes,
from the scene. To date, very few works exist that combine
inertial and RGBD measurements for navigation. In [1] and
[2], rotational velocity measurements from the IMU are used
for facilitating matching 3D point clouds from the RGBD
images. The IMU measurements, however, are not fused with
the RGBD observations in the estimation process. In [3],
the authors solve the IMU-RGBD camera navigation and
extrinsic calibration problem by fusing inertial and point
feature measurements in an EKF. In [4], IMU and RGBD
measurements are used to estimate the position and velocity
of a micro air vehicle (MAV). However, both [3] and [4]
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ignore the fact that common urban or indoor environments
mainly consist of planes (e.g., walls orthogonal to each
other), which can be easily extracted from RGBD images [5],
and provide robust orientation information to the navigation
system. Moreover, as shown in [3], when using IMU and only
point feature measurements, one degree of rotational freedom
(yaw) of the IMU-RGBD camera is unobservable. As a
result, the uncertainty and error in the yaw estimates will
keep increasing, hence, adversely affecting the positioning
accuracy. In this paper, we will show that by observing plane
features of known directions, the yaw becomes observable
and, thus, its uncertainty remains bounded.

To the best of our knowledge, the only work that considers
fusing inertial measurements with plane features is that of
[6], which seeks to simultaneously estimate the robot pose
and build a map with the observed plane features. However,
this algorithm achieves acceptable accuracy only in scenarios
where a number of plane features can be detected and
tracked. In this paper, we present a linear-complexity inertial
navigation algorithm that uses both point and plane features.
In particular, we study the system’s observability properties,
and find its observable modes and unobservable directions.
In our algorithm, we process point feature measurements
using a tightly-coupled visual-inertial odometry, multi-state
constraint Kalman filter (MSC-KF) [7], with complexity
linear in the number of observed point features. Additionally,
we use the directions of the plane features as measurements
in the extended Kalman filter update without including the
plane feature poses in the state vector, hence ensuring linear
complexity in the number of the observed plane features. In
particular, the main contributions of this paper are:

• We study the observability of the IMU-RGBD camera
navigation system when using both point and plane
feature measurements, and prove that with a single plane
feature of known direction, the IMU gyroscope bias
is observable. If additionally a single point feature is
detected, and the plane’s normal vector is not aligned
with gravity, all degrees of freedom of the IMU-RGBD
camera navigation system, except the global position,
become observable.

• Based on the observability analysis, we improve the
accuracy and consistency of the IMU-RGBD cam-
era navigation system by employing the observability-
constrained extended Kalman filter that enforces the
observability requirement [8].

• We present a linear-complexity algorithm for fusing in-
ertial measurements with both point and plane features,
and experimentally validate its performance.



The rest of the paper is structured as follows. In Section II,
we present the inertial navigation system model using both
point and plane feature measurements. In Section III, we
briefly describe the methodology we employ for studying the
observability properties of unobservable nonlinear systems.
In Section IV, we apply this method to the specific IMU-
RGBD camera navigation system, and find its unobservable
directions. In Section V, we present the OC-EKF algorithm
we developed for improving the accuracy and consistency
of the inertial navigation system based on its observability
properties. In Section VI, we experimentally assess the
performance of our proposed algorithm, while in Section VII,
we provide concluding remarks and possible directions of
future research.

II. VINS ESTIMATOR DESCRIPTION

In this section, we first describe the system state and co-
variance propagation equations using inertial measurements,
and then present the measurement model for processing plane
and point feature observations.

A. System State and Propagation Model

In the IMU-RGBD camera navigation system, the state
vector we estimate is:

x =
[

IqT
G

GvT
I

GpT
I

GpT
f bT

a bT
g
]T

where IqG is the unit quaternion representing the orientation
of the global frame {G} in the IMU’s frame of reference
{I}, GvI and GpI represent the velocity and position of {I}
in {G}, Gp f denotes the position of the point feature in {G},
ba and bg represent the gyroscope and accelerometer biases.

The system model describing the time evolution of the
states is:

Iq̇G(t) =
1
2
Ω(Iω(t))IqG(t)

Gv̇I(t) = Ga(t)
GṗI(t) = GvI(t) Gṗ f (t) = 03×1

ḃa(t) = wwa ḃg(t) = wwg (1)

where Iω(t) =
[
ω1 ω2 ω3

]T and Ga(t) =
[
a1 a2 a3

]T
are the system rotational velocity and linear acceleration
expressed in {I} and {G} respectively, wwa and wwg are zero-
mean white Gaussian noise processes driving the gyroscope
and accelerometer biases bg and ba, Gg is the gravitational
acceleration in {G}, C(IqG(t)) denotes the rotation matrix
corresponding to IqG(t), and

Ω(Iω(t)),
[
−bIωc Iω
−IωT 0

]
, bIωc,

 0 −ω3 ω2
ω3 0 −ω1
−ω2 ω1 0


The gyroscope and accelerometer measurements, ωm and

am, are modeled as:

ωm(t) = Iω(t)+bg +wg(t) (2)
am(t) = C(IqG(t))(Ga(t)− Gg)+ba +wa(t) (3)

where wg and wa are zero-mean, white Gaussian noise
processes. In order to determine the covariance propagation

equation, we define the error-state vector as: 1

x̃ =
[

IδθT
G

GṽT
I

Gp̃T
I

Gp̃T
f b̃T

a b̃T
g

]T
, (4)

Then, as shown in [9], the linearized continuous-time error-
state equation can be written as:

˙̃x = Fc x̃+Gc w , (5)

where w =
[
wT

g wT
wg wT

a wT
wa
]T denotes the system

noise, Fc is the continuous-time error-state transition matrix
corresponding to the system state, and Gc is the continuous-
time input noise matrix. The system noise is modelled as
a zero-mean white Gaussian process with autocorrelation
E[w(t)wT (τ)] = Qcδ (t − τ). To compute the propagated
covariance, we need to find the discrete-time state transition
matrix from time tk to tk+1, Φk, and the system noise
covariance matrix, Qk, which, as shown in [10], can been
computed as:

Φk =Φ(tk+1, tk) = exp
(∫ tk+1

tk
Fc(τ)dτ

)
(6)

Qk =
∫ tk+1

tk
Φ(tk+1,τ)GcQcGT

cΦ
T (tk+1,τ)dτ (7)

Then, the propagated covariance can be determined as

Pk+1|k =ΦkPk|kΦ
T
k +Qk. (8)

B. Measurement Model for Plane Features

For simplicity, we assume the IMU frame {I} and the
RGBD-camera frame {C} coincide2. Let Gn denote the
normal vector to a plane, whose direction is assumed known
in the global frame of reference, and thus we need not include
it in the state vector. We fit planes in the 3D point cloud
provided by the RGBD camera, and use its normal vector,
zplane, as the plane feature measurement:

zplane = C(ηθ )
In = C(ηθ )C(IqG)

Gn (9)

where ηθ = αk is the measurement noise representing a
rotation by an angle α around the unit vector k. Since Gn
is a unit norm vector, the measurement noise is modelled
as an extra rotation of the plane’s normal vector. Moreover,
in order to avoid a singular representation of the noise
covariance when processing this observation in the EKF, we
introduce the following modified measurement model:

z′plane =

[
zplane(1)/zplane(3)
zplane(2)/zplane(3)

]
(10)

and the linearized error model is computed as:

z̃′plane = z′plane− ẑ′plane 'Hplanex̃+ηplane (11)

where ẑ′plane is the expected measurement computed by eval-
uating (10) at the current state estimate and ηθ = 0, ηplane

1For the IMU-RGBD camera position, velocity, biases, and the point
feature position, an additive error model is utilized (i.e., ỹ = y− ŷ is the
error in the estimate ŷ of a quantity y). For the quaternion q we employ
a multiplicative error model δ q̄ = q̄⊗ ˆ̄q−1 '

[ 1
2 δθT 1

]T , where δθ is a
minimal representation of the attitude error.

2In practice, we perform IMU-RGBD camera extrinsic calibration
following the approach of [3].



is the measurement noise, and the measurement Jacobian,
Hplane, is computed using the chain rule as:

Hplane = Hc
[
Hθ1 03×15

]
(12)

where

Hc =
∂z′plane

∂ In

=
1

ẑplane(3)2

[
ẑplane(3) 0 −ẑplane(1)

0 ẑplane(3) −ẑplane(2)

]
Hθ1 =

∂ In
∂ Iθ̂G

= bC(Iq̂G)
Gnc (13)

C. Measurement Model for Point Features

The RGBD camera can directly measure the 3D position
of a point feature Ip f in the IMU frame {I} as:

zpoint =
Ip f +ηpoint = C(IqG)(

Gp f − GpI)+ηpoint (14)

The linearized error model is computed as:

z̃point = zpoint − ẑpoint 'Hpoint x̃+ηpoint (15)

where ẑpoint is the expected measurement computed by
evaluating (14) at the current state estimate and ηpoint = 0,
while the measurement Jacobian, Hpoint , is

Hpoint =
[
Hθ2 03×3 Hp Hp f 03×6

]
(16)

where

Hθ2 =
∂zpoint

∂ IθG
= bC(Iq̂G)(

Gp̂ f − Gp̂I)c

Hp =
∂zpoint

∂ Gp
=−C(Iq̂G), Hp f =

∂zpoint

∂ Gp f
= C(Iq̂G)

III. OBSERVABILITY ANALYSIS

In this section, we first provide a brief overview of the
method proposed by Hermann and Krener [11] for analyzing
the observability of nonlinear systems, and then present our
extension [3] for determining the unobservable directions of
nonlinear systems.

A. Observability Analysis with Lie Derivatives

Consider a nonlinear, continuous-time system:{
ẋ = f0(x)+∑

l
i=1 fi(x)ui

y = h(x) (17)

where u =
[
u1 . . . ul

]T is its control input, x =[
x1 . . . xm

]T is the system’s state vector, y is the system
output, and fi, i = 0, . . . , l are the process functions. The
zeroth-order Lie derivative of a measurement function h is
defined as the function itself [11]:

L0h = h(x) (18)

and the span of the ith order Lie derivative is defined as:

∇Lih =
[

∂Lih
∂x1

∂Lih
∂x2

. . . ∂Lih
∂xm

]
(19)

For any ith order Lie derivative, Lih, the i+ 1th order Lie
derivative Li+1

f j
h with respect to any process function f j can

be computed as:

Li+1
f j

h = ∇Lih · f j (20)

Finally, the observability matrix O of system (17) is defined
as a matrix with block rows the span of the Lie derivatives
of (17), i.e.,

O =


∇L0h
∇L1

fi
h

∇L2
fif j

h
∇L3

fif jfk
h

...

 (21)

where i, j,k = 0, . . . , l. Based on [11], to prove that a system
is observable, it suffices to show that any submatrix of O
comprising a subset of its rows is of full column rank. In
contrast, to prove that a system is unobservable and find
its unobservable directions, we need to: (i) show that the
infinitely many block rows of O can be written as a linear
combination of a subset of its block rows, which form a
submatrix O ′; and (ii) find the nullspace of O ′ in order to
determine the system’s unobservable directions. Although
accomplishing (ii) is fairly straightforward, achieving (i)
is extremely challenging especially for high-dimensional
systems, such as the IMU-RGBD camera navigation system.

B. Observability Analysis with Basis Functions

To address this issue, we leverage the methodology in [12]
and [3] in our observability analysis, which relies on change
of variables for proving that a system is unobservable and
finding its unobservable directions.

Theorem 1: Assume that there exists a nonlinear transfor-
mation β(x) =

[
β1(x)T . . . βt(x)T ]T (i.e., a set of basis

functions) of the variable x in (17), such that:
(A1) h(x) = h′(β) is a function of β.
(A2) ∂β

∂x · fi, i = 0, . . . , l, are functions of β;
(A3) β is a function of the variables of a set S comprising

Lie derivatives of system (17) from order zero up to order
p, with p < ∞.

Then:
(i) The observability matrix of (17) can be factorized as:

O = Ξ ·B, where B , ∂β
∂x and Ξ is the observability matrix

of the following system:{
β̇ = g0(β)+∑

l
i=1 gi(β)ui

y = h′(β) (22)

where gi(β),
∂β
∂x fi(x), i = 0, . . . , l.

(ii) System (22) is observable.
(iii) null(O) = null(B).
Proof: The proof is given in [3].
Based on Theorem 1, the unobservable directions can be

determined with significantly less effort. To find a system’s
unobservable directions, we first need to define the basis
functions that satisfy conditions (A1) and (A3), and verify
that condition (A2) is satisfied, or equivalently that the



basis function set is complete. Once all the conditions are
fulfilled, the unobservable directions of (17) correspond to
the nullspace of matrix B, which has finite dimensions, and
thus it is easy to analyze.

IV. OBSERVABILITY ANALYSIS OF THE IMU-RGBD
CAMERA NAVIGATION SYSTEM

In this section, we leverage Theorem 1 to study the
observability of the IMU-RGBD camera navigation system
when using plane and point feature observations. To do this,
in Section IV-A we find the system’s basis functions, which
are also the observable modes, using only a single plane
feature. Then, in Section IV-B we complete the basis function
set for the IMU-RGBD camera navigation system using
both plane and point features. Finally, in Section IV-C, we
find the unobservable directions of the IMU-RGBD camera
navigation system when using only plane observations, and
when using both plane and point feature measurements.

A. Basis Functions when using Plane Features

For simplicity, we express the orientation between the
IMU frame {I} and the global frame {G} using the Cayley-
Gibbs-Rodriguez parameters [13], IsG. Furthermore, we re-
tain only a few of the subscripts and superscripts in the state
vector which is expressed as:

x =
[
sT vT pT pT

f bT
a bT

g
]T

Employing the propagation model in [3], the IMU-RGBD
camera navigation system using only plane features can be
written as:

ṡ
v̇
ṗ
ṗ f

ḃa
ḃg

=


− 1

2 Dbg
g−CT ba

v
0
0
0


︸ ︷︷ ︸

f0

+


1
2 D
0
0
0
0
0


︸ ︷︷ ︸

f1

ω+


0

CT

0
0
0
0


︸ ︷︷ ︸

f2

a

zplane = CGn (23)

where C,C(s) represents the rotation matrix corresponding
to s, and D, 2 ∂ s

∂θ = I+bs×c+ ssT . Note that f0 is a 18×1
vector, while f1 and f2 are both 18×3 matrices which is a
compact way for representing three process functions:

f1ω = f11ω1 + f12ω2 + f13ω3

f2a = f21a1 + f22a2 + f23a3 (24)

To define the basis functions for this system, we follow the
conditions of Theorem 1: (i) Select basis functions so that the
measurement function zplane can be expressed as a function
of β; (ii) Select the remaining basis functions as functions
of the system’s Lie derivatives, until condition (A2), (i.e.,
∂β
∂x · fi is a function of β for any i), is satisfied by all the
basis functions.

For this particular problem, we define the first set of basis
functions directly as the measurement function:

β1 , zplane = CGn (25)

where β1 is a 3× 1 vector representing in a compact form
3 basis functions. To check if condition (A2) of Theorem 1
is fulfilled, we compute the span of β1 with respect to x

∂β1

∂x
=
[

∂β1
∂θ

∂θ
∂ s

∂β1
∂v

∂β1
∂p

∂β1
∂p f

∂β1
∂ba

∂β1
∂bg

]
=
[
bCGnc ∂θ

∂ s 0 0 0 0 0
]

and project it onto all the process functions:

∂β1

∂x
· f0 =−bCGncbg (26)

∂β1

∂x
· f1i = bCGncei =−beicCGn (27)

∂β1 j

∂x
· f2i = 0 (28)

where i = 1,2,3, e1 =
[
1 0 0

]T , e2 =
[
0 1 0

]T , e3 =[
0 0 1

]T , ∂θ
∂ s

1
2 D = ∂θ

∂ s
∂ s
∂θ = I3.

Obviously, ∂β1 j
∂x · f0 contains bg, and thus is not a function

of the previously defined basis function β1. To proceed, we
will employ condition (A3) of Theorem 1 to define additional
basis functions as nonlinear combinations of the system’s Lie
derivatives.

Since the basis function β1 is the zeroth-order Lie deriva-
tive of the measurement h = zplane, then by definition, (26)
is one of the first-order Lie derivatives:

∂β1

∂x
· f0 = L1

f0
h

Hereafter, we will make use of this fact to define more
basis functions. By definition, the second-order Lie derivative
L2

f0f1i
h can be computed as

L2
f0f1i

h = ∇L1
f0

h · f1i =−bbCGnceicbg (29)

If we stack equation (29), for i = 1,2,3, into a matrix formL2
f0f11

h
L2

f0f12
h

L2
f0f13

h

=−

bbCGnce1c
bbCGnce2c
bbCGnce3c


︸ ︷︷ ︸

Y

bg (30)

since Y is a 9× 3 matrix of full column rank, bg can be
determined in terms of the Lie derivatives L2

f0f1i
h and β1 =

CGn. Therefore, bg is a function of the Lie derivatives, and
we define it as a new basis function:

β2 , bg (31)

Then, if we compute the span of β2, and project it onto the
process functions, we have

∂β2

∂x
· f0 = 0

∂β2

∂x
· f1i = 0

∂β2

∂x
· f2i = 0 (32)

which are all zeros, and thus do not contain any term
not belonging to the previously defined basis functions.
Therefore, we have found a complete basis function set of the
IMU-RGBD camera navigation system using a single plane
feature.



B. Basis Functions when using both Plane and Point Fea-
tures

As shown in [3], the basis functions of the IMU-RGBD
camera navigation system using only a single point feature
are [

β3 β4 β5 β6 β7
]

=
[
C(p f −p) bg Cv Cg ba

]
(33)

Since the basis functions are also the system’s observable
modes, the complete basis function set of the IMU-RGBD
camera navigation system when using both plane and point
features is the union of the basis function sets, {β1,β2}
(resulting from measurements of the plane feature), and
{β3,β4,β5,β6,β7} (computed for observations of the point
feature). Hereafter, we will determine the union of these two
basis function sets after removing redundant elements.

First, since β2 = β4 = bg, we have β2 ∩β4 = bg. Then,
under the assumption that the normal vector of the observed
plane is not parallel to gravity, C = C(s) can be expressed in
terms of Gn, g, β1 =CGn and β6 =Cg using, e.g., the method
introduced in [14]. Since both Gn and g are known quantities,
we have β1 ∩β6 = s. Therefore, the basis functions of the
IMU-RGBD camera navigation system using both plane and
point features are:

β′ =


β′1
β′2
β′3
β′4
β′5

=


C(p f −p)

s
Cv
bg
ba

 (34)

with which, we leverage result (i) of Theorem 1 to construct
the observable system in terms of the basis functions as:

β̇′ =
∂β′

∂x
ẋ =

∂β′

∂x

(
f0(x)+

l

∑
i=1

fi(x)ui

)

=


−bC(p f −p)cbg−Cv

− 1
2 Dbg

−bCvcbg +Cg−ba
0
0

+

bC(p f −p)c

1
2 D
bCvc

0
0

ω+


0
0
I
0
0

a

=


−bβ′1cβ′4−β′3
− 1

2 D(β′2)β
′
4

−bβ′3cβ′4 +C(β′2)g−β′5
0
0

+

bβ′1c

1
2 D(β′2)
bβ′3c

0
0

ω+


0
0
I
0
0

a (35)

where D(β′2), I+ bβ′2c+β′2β′T2 . System (35) is actually a
minimal representation of the IMU-RGBD camera naviga-
tion system using both plane and point features. Hereafter,
we will show how to find the unobservable directions of the
IMU-RGBD camera navigation system leveraging result (iii)
of Theorem 1.

C. Determining the System’s Unobservable Directions

In this section, we first determine the unobservable
directions of the IMU-RGBD camera navigation system
when observing only a single plane feature by comput-
ing the nullspace of the basis functions’ span, B1 ,

[
∂β1
∂x

T ∂β2
∂x

T
]T

. Then, we will find the unobservable di-
rections of the IMU-RGBD camera navigation system when
observing both a single plane feature and a single point
feature by computing the nullspace of B2 ,

∂β′

∂x .
Theorem 2: The IMU-RGBD camera navigation system

observing a single plane feature is unobservable, and its
unobservable directions are spanned by the IMU-RGBD
camera orientation around the plane’s normal vector and the
accelerometer bias in the IMU frame {I}, as well as the
IMU-RGBD camera position, velocity, and the point feature
position in the global frame {G}.

Proof: In the previous section, we have shown that the
basis function set {β1,β2} satisfies all three conditions of
Theorem 1. Therefore, the system’s unobservable directions
span the nullspace of matrix B1, which is formed by stacking
the spans of the basis functions β1 and β2 as:[

bCGnc ∂θ
∂ s 0 0 0 0 0

0 0 0 0 0 I

]
(36)

It is easy to see that the nullspace of B1 is spanned by3

Nplane ,



∂ s
∂θCGn 0 0 0 0

0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I
0 0 0 0 0

=
[
Ng

plane Np
plane

]

(37)

where Ng
plane (the first column of Nplane) corresponds to the

IMU-RGBD camera’s rotation around the plane feature’s
normal vector, and Np

plane (the remaining 12 columns of
Nplane) denotes the unobservable directions in the IMU-
RGBD camera velocity, position, the point feature position,
and the accelerometer bias. �

In contrast, when both point and plane feature measure-
ments are available, we have

Theorem 3: The IMU-RGBD camera navigation system
using a single point feature and a single plane feature
(of known direction which is not parallel to gravity) is
unobservable, and its unobservable subspace is spanned by 3
directions corresponding to the IMU-RGBD camera position
in the global frame {G}.

Proof: Employing result (iii) of Theorem 1, the system’s
unobservable directions can be determined by computing the
nullspace of the span B2 of the corresponding basis functions
β′, where

B2 =


bC(p f −p)c ∂θ

∂ s 0 −C C 0 0
I 0 0 0 0 0

bCvc ∂θ
∂ s C 0 0 0 0

0 0 0 0 0 I
0 0 0 0 I 0

 (38)

Let N =
[
NT

1 NT
2 NT

3 NT
4 NT

5 NT
6
]T be the right

nullspace of matrix B2. Hereafter, we employ the relation

3 ∂ s
∂θ CGn is the perturbing term with respect to s, while the correspond-

ing term for θ is CGn.



B2N = 0 to determine the elements of N. Specifically, from
the second, fourth, and fifth block rows of the product B2N,
we have:

N1 = N5 = N6 = 03 (39)

Then, from the first and third block rows of B2N, we have
N3 = N4 = I3, and N2 = 03. Using Gaussian elimination,
it is easy to show that the rank of matrix B2 is 15. Thus,
the dimension of its right nullspace is exactly three, and the
system’s unobservable directions are spanned by:

N,
[
03 03 I3 I3 03 03

]T (40)

which corresponds to the global position of the IMU-RGBD
camera and the point feature. Intuitively, this means that
translating the IMU-RGBD camera and the point feature
positions concurrently has no impact on the system’s mea-
surements. �

In [3], it was shown that the unobservable directions of the
IMU-RGBD camera navigation system using only a single
point feature are spanned by:

Npoint ,


∂ s
∂θ

Cg 03
−bvcg 03
−bpcg I3
−bp f cg I3

03 03
03 03

=
[
Ng

point Np
point

]
(41)

Note that N = Nplane∩Npoint , which makes sense because
any unobservable quantity of the IMU-RGBD camera navi-
gation system using both point and plane feature observa-
tions, must be unobservable when the system uses either
plane or point feature measurements.

V. ALGORITHM DESCRIPTION

In this section, we present our IMU-RGBD camera nav-
igation algorithm employing the observability constrained
(OC)-EKF, which seeks to maintain the original system’s
observability properties in the linearized implementation
(EKF). In particular, we first describe the implementation
of the OC-EKF for processing point feature measurements.
Then, we prove that once the OC-EKF is employed for
point feature measurements, the observability constraint is
automatically satisfied for the plane feature measurements.

A system’s observability Gramian [10], M, is defined as

M =


H1

H2Φ2,1

...
HkΦk,1

 (42)

where Φk,1 ,Φk−1 · · ·Φ1 is the state transition matrix from
time step 1 to k, and Hk is the measurement Jacobian at time
step k. As described in [10], a system’s unobservable direc-
tions, N, are supposed to span the observability Gramian’s
nullspace

MN = 0 (43)

However, in [8] and [15], the authors show that (43) does not
hold when a nonlinear system is linearized using the current
state estimate. As a consequence, the EKF gains spurious
information along unobservable directions, which results in
smaller uncertainty (that causes the filter to be inconsistent)
and larger estimation errors. To address this issue, the OC-
EKF modifies the state transition and measurement Jacobian
matrices in such a way so that the resulting linearized
system adheres to the observability properties of the original
nonlinear system. In particular, in [8] it was shown that (43)
can be satisfied by enforcing the following two constraints:

Nk+1 =ΦkNk (44)

HkNk = 0, ∀k > 0 (45)

where Nk and Nk+1 are the unobservable directions evaluated
at time-steps k and k+1. Hereafter, we briefly describe the
implementation of our algorithm, while the interested reader
is referred to [16] for more details.

A. Observability Constraint for Point Feature Measurements
In this section, we present the implementation of the OC-

EKF for the IMU-RGBD camera navigation system using
point feature measurements.

(1) Modification of the State Transition Matrix Φk: We
start by modifying the state transition matrix, Φk, according
to the observability constraint (44)

Nk+1
point =ΦkNk

point (46)

where Nk
point and Nk+1

point , defined in (41), are the unobservable
directions when using only point features, at time-steps k and
k+1 respectively, and Φk has the following structure:

Φ11 03 03 03 03 Φ16
Φ21 I3 03 03 Φ25 Φ26
Φ31 δ tI3 I3 03 Φ35 Φ36
03 03 03 I3 03 03
03 03 03 03 I3 03
03 03 03 03 03 I3

 (47)

In [3], it was shown that the observability constraint (46) is
equivalent to the following three constraints:

Φ11Ckg = Ck+1g (48)

which is satisfied by modifying Φ∗11 = Ck+1CkT , and

Φ21Ckg = bvkcg−bvk+1cg (49)

Φ31Ckg = δ tbvkcg+ bpkcg−bpk+1cg (50)

which can be formulated and solved analytically as a con-
strained optimization problem where we seek to find the
closest, in the Frobenius norm, Φ∗21 and Φ∗31 that satisfy
constraints (49) and (50).

(2) Modification of the Measurement Jacobian Hk
point :

During the update, we seek to modify the Jacobian matrix
Hk

point so as to fulfill constraint (45), i.e.,

Hk
pointN

k
point = 0 (51)



Substituting Hk
point and Nk

point , as defined in (16) and (41)
respectively, into (51), it can be shown that (51) is equivalent
to the following two constraints[

Hk
θ2

Hk
p

][ Ckg(
bpk

f c−bpkc
)

g

]
= 0 (52)

Hk
p f

= Hk
p (53)

As before, we can analytically determine Hk
θ2

∗ and Hk
p
∗ that

are closest to Hk
θ2

and Hk
p in the Frobenius norm, which also

satisfy the constraint (52), and select Hk
p f

∗
= Hk

p
∗ (see [3]

for details).

B. Observability Constraint for Plane Feature Measurements

In this section, we will prove that once the OC-EKF is
applied to the IMU-RGBD camera navigation system using
point feature measurements, the observability constraint (43)
is automatically satisfied for the plane feature measurements.

Substituting Φk and Hk
plane into the observability Gramian

Mplane [see (42)] for plane feature measurements, the first
block row of Mplane is just the measurement Jacobian matrix

Mplane(1) = H1
plane = H1

c
[
bC(Iq1

G)
Gnc 03×15

]
(54)

while the kth block row is computed as

Mplane(k) = Hk
planeΦ

k,1 = Hk
planeΦ

k−1 · · ·Φ1

= Hk
c
[
bC(Iqk

G)
GncΠk 03×12 Ψk

]
where Πk = Φ

k−1
11 · · ·Φ1

11, and Ψk is a time-varying matrix
that does not affect the current analysis. When applying
the OC-EKF to point features, we have modified Φk

11 =

Ck+1CkT . Therefore, multiplying Ng
plane and Np

plane to the
right hand side of Mplane, we have:

Mplane(1)N
g
plane = H1

cbC(Iq1
G)

GncC(Iq1
G)

Gn = 0

Mplane(k)N
g
plane = Hk

cbC(Iqk
G)

GncΦk−1
11 · · ·Φ

1
11C(Iq1

G)
Gn

= Hk
cbC(Iqk

G)
GncCkCk−1T · · ·C2C1T C(Iq1

G)
Gn

= Hk
cbC(Iqk

G)
GncC(Iqk

G)
Gn = 0

Mplane(1)N
p
plane = Mplane(k)N

p
plane = 0

Thus, MplaneNplane = 0 is automatically satisfied. In sum-
mary, after enforcing the observability constraint for point
feature measurements on the state transition matrix, Φk, the
observability constraint (43) is automatically satisfied for the
plane feature measurements.

VI. EXPERIMENTAL RESULTS

Our experimental setup comprised an InterSense NavChip
IMU and a Kinect, which contained an RGB camera and an
infrared (IR) depth-finding camera. The intrinsic parameters
of the Kinect RGB camera and IR camera, as well as the
transformation between them, were determined offline using
the algorithm described in [17]. The IMU signals were
sampled at 100 Hz, and the Kinect provided RGBD images
at a frequency of 6.3 Hz. The plane features are extracted
from the RGBD images using the method proposed in [5].
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Fig. 1. The overhead x-y view of the IMU-Kinect 3D trajectory and the
point features estimated by the OC-MSC-KF SLAM.
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Fig. 2. IMU-Kinect trajectory estimated by the compared algorithms. The
black triangle denotes the initial position of the IMU-Kinect pair.

In our experiment, which took place in an office environ-
ment, a person holding the IMU-Kinect pair traversed for
about 185 meters in two floors of a building, and returned
to the initial position. Using the data collected, we examine
the final position error of the following five algorithms:
• MSC-KF: The Multi-state constraint Kailman filter of

[7] using only point feature measurements.
• MSC-KF w/ Planes: The MSC-KF that processes both

point and plane feature measurements.
• OC-MSC-KF: The observability-constrained MSC-KF

using only point feature measurements [15].
• OC-MSC-KF w/ Planes: This is our proposed algorithm,

in which we process both point and plane feature
measurements with the OC-MSC-KF.

• OC-MSC-KF SLAM: In this algorithm, we process most
of the point features as in the OC-MSC-KF, while also
simultaneously building a map with a small portion of



TABLE I
CLOSE-LOOP ERRORS

Estimation Algorithm Final Error (m) Pct. (%)
MSC-KF 3.22 1.74

MSC-KF w/ Planes 1.57 0.85
OC-MSC-KF 2.37 1.28

OC-MSC-KF w/ Planes 1.46 0.79
OC-MSC-KF SLAM 0.093 0.05

the observed point features using SLAM. This algorithm
is supposed to be much more accurate compared to
the previous algorithms (as shown in our experiment),
because the filter can close loops when observing the
same point features again. The main issue of concern
for SLAM is that its computational cost is much higher
(quadratic in terms of the number of estimated point
features), compared to the MSC-KF (linear in the num-
ber of estimated point features). In our experiment, we
use it as a benchmark to examine the performance of
the other algorithms.

The 3D trajectory of the IMU-Kinect pair and the point
features, estimated by OC-MSC-KF SLAM, are plotted in
Fig. 1. The 3D trajectories estimated by the algorithms
considered are shown in Fig. 2, and their final errors are
reported in Table I. As expected, OC-MSC-KF SLAM has
the lowest final error, and our proposed algorithm, OC-
MSC-KF w/ Planes, outperforms the other four algorithms.
Additionally, the algorithms using both point and plane
feature measurements (MSC-KF w/ Planes and OC-MSC-
KF w/ Planes), have much smaller final error and perform
closer to the OC-MSC-KF SLAM. This is because the plane
features provide periodic corrections to the IMU-RGBD
camera pair’s orientation, thus also improving its position
estimation accuracy. Finally, we note that enforcing the
observability constraints (OC-MSC-KF and OC-MSC-KF w/
Planes) results in better accuracy since the filters do not
process spurious information.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an algorithm for fusing in-
ertial measurements, as well as point and plane feature
observations in an IMU-RGBD camera navigation system.
Specifically, we first prove that by observing only a single
plane feature of know direction, only the plane’s direction
in the IMU frame and the gyroscope bias are observable.
Then, we show that by observing a single point feature
and a single plane feature, of known direction other than
the gravity, all the estimated quantities in the IMU-RGBD
camera navigation system become observable, except the
IMU-RGBD camera position in the global frame. Based on
the observability analysis, we design an OC-EKF that signif-
icantly improves the estimation accuracy and consistency by
removing spurious information along unobservable directions
from the estimator. Finally, we experimentally validate our
algorithm, and show that it outperforms alternative methods.

As part of our future work, we are currently investigating
OC-EKF-based algorithms for processing observations of
unknown plane features.
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