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Abstract This paper addresses the problem of estimating the intrinsic parameters of
the 3D Velodyne lidar while at the same time computing its extrinsic calibration with
respect to a rigidly connected camera. Existing approaches to solve this nonlinear
estimation problem are based on iterative minimization of nonlinear cost functions.
In such cases, the accuracy of the resulting solution hinges on the availability of a
precise initial estimate, which is often not available. In order to address this issue,
we divide the problem into two least-squares sub-problems, and analytically solve
each one to determine a precise initial estimate for the unknown parameters. We fur-
ther increase the accuracy of these initial estimates by iteratively minimizing a batch
nonlinear least-squares cost function. In addition, we provide the minimal observ-
ability conditions, under which, it is possible to accurately estimate the unknown
parameters. Experimental results consisting of photorealistic 3D reconstruction of
indoor and outdoor scenes are used to assess the validity of our approach.

1 Introduction and Related Work

As demonstrated in the DARPA Urban Challenge, commercially available high-
speed 3D lidars, such as the Velodyne, have made autonomous navigation and map-
ping within dynamic environment possible. In most applications, however, another
sensor is employed in conjunction with the 3D lidar to assist in localization and
place recognition. In particular, spherical cameras are often used to provide visual
cues and to construct photorealistic maps of the environment. In these scenarios,
accurate extrinsic calibration of the six degrees of freedom (d.o.f.) transformation
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between the two sensors is a prerequisite for optimally combining their measure-
ments.

Several methods exist for calibrating a 2D laser scanner with respect to a camera.
The work of Zhang and Pless [17] relies on the observation of a planar checkerboard
by both sensors. In particular, corners are detected in images and planar surfaces are
extracted from the laser measurements. The image features are used to determine
the normal vector and distance of the planes where the laser-scan endpoints lie. Us-
ing this geometric constraint, the estimation of the transformation between the two
sensors is formulated as a non-linear least-squares problem and solved iteratively.
A simplified linear least-squares solution is also provided to initialize the iterative
nonlinear algorithm. More recently, Naroditsky et al. have presented a minimal ap-
proach for calibrating a 2D laser scanner with respect to a camera, using only six
measurements of a planar calibration board [6]. The computed transformation is
then used in conjunction with RANSAC to initialize an iterative least-squares re-
finement.

The existing 2D laser scanner-camera calibration methods are extended to 3D
lidars in [16, 7]. In both works, a geometric constraint similar to that of [17] is
employed to form a nonlinear least-squares cost function which is iteratively min-
imized to estimate the lidar-camera transformation. An initial estimate for the iter-
ative minimization is determined based on a simplified linear least-squares method
[16]. Specifically, the estimation of relative rotation and translation are decoupled,
and then each of them is computed from a geometric constraint between the planar
segments detected in the measurements of both the 3D lidar and the camera. An
alternative 3D lidar-camera calibration approach is described in [11], where sev-
eral point correspondences are manually selected in images and their associated
lidar scans. Then, the PnP algorithm of [9] is employed to find the transformation
between the camera and the 3D lidar based on these point correspondences. In a
different approach, presented in [13], the structural edges extracted from 3D lidar
scans are matched with the vanishing points of the corresponding 2D images to com-
pute a coarse 3D lidar-camera transformation, followed by an iterative least-squares
refinement.

The main limitation of the above methods is that they assume the 3D lidar to
be intrinsically calibrated. If the lidar’s intrinsic calibration is not available or suf-
ficiently accurate, then the calibration accuracy as well as the performance of sub-
sequent lidar-camera data fusion significantly degrades. In [7], this issue is partially
addressed for the Velodyne 3D lidar by first calibrating only some of its intrinsic
parameters. However, this intrinsic calibration procedure is also iterative, and no
method is provided for initializing it. While several of the intrinsic parameters of
a lidar may be initialized using the technical drawings of the device (if available),
other parameters, such as the offset in the range measurements induced by the delay
in the electronic circuits, cannot be determined in this way.

To address these limitations, in this work we propose a novel algorithm for joint
estimation of both the intrinsic parameters of the Velodyne 3D lidar and the lidar-
camera transformation. Specifically, we use measurements of a calibration plane
at various configurations to establish geometric constraints between the lidar’s in-
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trinsic parameters and the lidar-camera 6 d.o.f. relative transformation. We process
these measurement constraints to estimate the calibration parameters as follows:
First, we analytically compute an initial estimate for the intrinsic and extrinsic cali-
bration parameters in two steps. Subsequently, we employ a batch iterative (nonlin-
ear) least-squares method to refine the accuracy of the estimated parameters.

In particular, to analytically compute an initial estimate, we relax the estimation
problem by seeking to determine the transformation between the camera and each
one of the conic laser scanners within the Velodyne, along with its intrinsic parame-
ters. As a first step, we formulate a nonlinear least-squares problem to estimate the 3
d.o.f. rotation between each conic laser scanner and the camera, as well as a subset of
the laser scanner’s intrinsic parameters. The optimality conditions of this nonlinear
least-squares form a system of polynomial equations, which we solve analytically
using an algebraic-geometry approach to find all its critical points. Amongst these,
the one that minimizes the least-squares cost function corresponds to the global min-
imum and provides us with the initial estimates for the relative rotation and the first
set of intrinsic lidar parameters. In the next step, we use a linear least-squares algo-
rithm to compute the initial estimate for the relative translation between the camera
and the conic laser scanners, and the remaining intrinsic parameters.

Once all initial estimates are available, we finally perform a batch iterative joint-
optimization of the lidar-camera transformation and the lidar’s intrinsic parameters.
As part of our contributions, we also study the observability properties of the prob-
lem and present the minimal necessary conditions for concurrently estimating the
lidar’s intrinsic parameters and the lidar-camera transformation. These observability
conditions provide a guideline for designing high-accuracy calibration procedures.
Our experimental results demonstrate that our proposed method significantly im-
proves the accuracy of the intrinsic calibration parameters of the Velodyne lidar, as
well as, the lidar-camera transformation.

2 Problem Formulation

The Velodyne HDL-64E lidar consists of 64 conic laser scanners mounted on a
rotating head so that they span a 360◦ panoramic (azimuth) view (see Fig. 1). Each
laser scanner has a horizontal offset from the axis of rotation, and a vertical offset
from adjacent laser scanners. Additionally, each laser scanner points to a different
elevation angle, such that, collectively, all the laser scanners cover a 27◦ vertical
field of view. Therefore, once the lidar’s head completes a full rotation, each laser
scanner has swept a cone in space specified by its elevation angle. Let {L} be the
lidar’s fixed frame of reference whose z-axis is the axis of rotation of the sensor’s
head (see Fig. 1). Also, let {Li}, i= 1, . . . ,64, be the coordinate frame corresponding
to the i-th laser scanner, such that its origin is at the center of the associated cone on
the z-axis of {L}with vertical offset hi from the origin of {L}, its z-axis aligned with
that of {L}, and its x-axis defining an angle θoi with the x-axis of {L}. We determine
the direction of the k-th shot of the i-th laser beam from its corresponding elevation
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Fig. 1 Internal structure of the Velodyne 3D lidar. The total number of laser beams is 64 and
they span a vertical field of view of 27◦. The intrinsic parameters of the Velodyne describe the
measurements of each laser scanner in its coordinate frame, {Li}, and the transformation between
the Velodyne’s fixed coordinate frame, {L}, and {Li}. Note that besides the physical offset of the
laser scanners from the axis of rotation, the value of ρoi depends on the delay in the electronic
circuits of the lidar.

angle, φi, and azimuth measurement, θik, and denote it with:1

Li p̄k ,

cosφi cosθik
cosφi sinθik

sinφi

 . (1)

The distance measured by the k-th shot of the i-th laser scanner is represented by
ρik. The real distance to the object that reflects the k-th shot of the i-th laser beam is
αi(ρik +ρoi), where αi is the scale factor, and ρoi is the range offset due to the delay
in the electronic circuits of the lidar and the horizontal offset of each laser scanner
from its cone’s center. In this way, the position of the k-th point measured by the i-th
laser scanner is described by

Lipik = αi(ρik +ρoi)
Li p̄k. (2)

The transformation between {Li} and {L} (i.e., hi and θoi), the scale αi, offset
ρoi, and elevation angle φi, for i = 1, . . . ,64, comprise the intrinsic parameters of
the lidar that must be precisely known for any application, including photorealistic
reconstruction of the surroundings. Since the intrinsic parameters supplied by the
manufacturer may not be accurate,2 in this work we estimate them along with the
transformation with respect to a camera.

1 Throughout this paper, Ap denotes the expression of a vector p with respect to frame {A} and p̄ is
the corresponding unit vector. A

BC is the rotation matrix rotating vectors from frame {B} to frame
{A}, and AtB is the position of the origin of {B} in {A}. In is the n×n identity matrix, and 0m×n is
the m×n matrix of zeros.
2 Note that when the technical drawings of the lidar are available, an initial estimate for hi, θoi, and
φi can be readily obtained. Computing an initial estimate for ρoi and αi, however, is significantly
more challenging even for the manufacturer, since their values do not solely depend on the physical
dimensions of the device.
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Fig. 2 Geometric constraint between the j-th plane, the Ladybug {C}, and the i-th laser scanner,
{Li}. Each laser beam is described by a vector Li pi jk. The plane is described by its normal vector
Cn̄ j and its distance d j both expressed with respect to the Ladybug.

The Ladybug2 spherical vision system consists of six rigidly-connected cali-
brated cameras equipped with wide-angle lenses (see Fig. 2). The extrinsic trans-
formations between the different cameras are provided by the manufacturer with
high accuracy. Therefore, the measurements from any of the cameras can be easily
transformed to the Ladybug’s fixed frame of reference, denoted as {C}.

The Ladybug is rigidly connected to the lidar, and our objective is to determine
the 6 d.o.f. relative transformation between the two, as well as the intrinsic parame-
ters of the lidar. For this purpose, we employ a planar calibration board with fiducial
markers, at M different configurations to establish geometric constraints between
the measurements of the lidar and the Ladybug, their relative transformation, and
the lidar’s intrinsic parameters.

Specifically, at the j-th plane configuration, j = 1, . . . ,M, the fiducial markers
whose positions are known with respect to the calibration board’s frame of reference
{B j}, are first detected in the Ladybug’s image. The 6 d.o.f. transformation between
{C} and {B j} is then computed using a PnP algorithm [9], from which the normal
vector and the distance of the target plane in the Ladybug’s frame are extracted as:

Cn̄ j ,
C
B j

C
[
0 0 −1

]T (3)

d j ,
Cn̄T

j
CtB j (4)

where C
B j

C and CtB j represent the relative rotation and translation between the Lady-
bug and the calibration board at the j-th configuration. Consequently, in the absence
of noise, any point Cp that lies on the j-th plane satisfies:

Cn̄T
j

Cp−d j = 0. (5)

We now turn our attention to the lidar point measurements reflected from the j-th
calibration plane and identified based on the depth discontinuity. Let us denote such
points as Lipi jk, k = 1 . . . ,Ni j, measured by the lidar’s i-th laser scanner [see (2)].
Transforming these points to the Ladybug’s frame, and substituting them in (5)
yields:
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Cn̄T
j

(
C
Li
C Lipi jk +

CtLi

)
−d j = 0 (6)

(2)
=⇒ αi(ρi jk +ρoi)

Cn̄T
j

C
Li
C Li p̄i jk +

Cn̄T
j

CtLi −d j = 0 (7)

where C
Li
C and CtLi are the relative rotation and translation between the Ladybug and

the i-th laser scanner.
In addition to the camera and laser scanner measurements, the following con-

straints can also be used to increase the accuracy of the calibration process. Specif-
ically, since the z-axis of {Li} is aligned with the z-axis of {L}, while their x-axes
form an angle θoi, the following constraint holds for all C

Li
C:

C
Li
C = C

LCCz(θoi) (8)

where Cz(θoi) represents a rotation around the z-axis by an angle θoi. Additionally,
the origin of each laser-scanner frame lies on the z-axis of {L} with vertical offset
of hi from the origin of {L}, resulting in the following constraint:

C
LC

T (CtLi −
CtL) = [0 0 hi]

T (9)

In the presence of noise, the geometric constraint in (7) is not exactly satisfied.
Therefore, to estimate the unknown parameters, we form a constrained nonlinear
least-squares cost function from the residuals of this geometric constraint over all
point and plane observations [see (22)]. In order to minimize this least-squares cost,
one has to employ iterative minimizers such as the Levenberg-Marquardt [8], that
require a precise initial estimate to ensure convergence. To provide accurate initial-
ization, in the next three sections we present a novel analytical method to estimate
the lidar-Ladybug transformation and all intrinsic parameters of the lidar (except
the elevation angle φi which is precisely known from the manufacturer). In order
to reduce the complexity of the initialization process, we temporarily drop the con-
straints in (8) and (9) and seek to determine the transformation between the camera
and each of the laser scanners (along with each scanner’s intrinsic parameters) in-
dependently. Once an accurate initial estimate is computed, we lastly perform an
iterative non-linear least-squares refinement that explicitly considers (8) and (9),
and increases the calibration accuracy (see Section 2.4).

2.1 Analytical Estimation of Offset and Relative Rotations

Note that the term Cn̄T
j

CtLi − d j in (7) is constant for all points k of the i-th laser
scanner that hit the calibration plane at its j-th configuration. Therefore, subtracting
two constraints of the form (7) for the points Lipi jk and Lipi jl , and dividing the result
by the nonzero scale, αi, yields:

Cn̄T
j

C
Li
C(ui

jkl +ρoivi
jkl) = 0 (10)
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where ui
jkl , ρi jk

Li p̄i jk−ρi jl
Li p̄i jl and vi

jkl ,
Li p̄i jk− Li p̄i jl . Note that the only un-

knowns in this constraint are the relative rotation of the i-th laser scanner with re-
spect to the Ladybug, C

Li
C, and its offset, ρoi. Let us express the former, C

Li
C, using

the Cayley-Gibbs-Rodriguez (CGR) parameterization [12], i.e.,

C
Li
C(s) =

C̄(si)

1+ sT
i si

, C̄(si), ((1− sT
i si)I3 +2bsi×c+2sisT

i ) (11)

where sT
i = [si1 si2 si3] is the vector of CGR parameters that represent the relative

orientation of the i-th laser scanner with respect to the Ladybug, and bs×c is the cor-
responding skew-symmetric matrix [12]. Substituting (11) in (10), and multiplying
both sides with the nonzero term 1+ sT

i si yields:

Cn̄T
j C̄(si)(ui

jkl +ρoivi
jkl) = 0 (12)

This algebraic constraint holds exactly in the absence of noise. In that case, the
method presented in Section 2.5 can be employed to recover the unknowns given
the minimum number of measurements. In the presence of noise, however, (12)
becomes:

Cn̄T
j C̄(si)(ui

jkl +ρoivi
jkl) = η

i
jkl (13)

where η i
jkl is a nonzero residual. In this case, we estimate si and ρoi by solving the

following nonlinear least-squares problem:

ŝi, ρ̂oi = min
si,ρoi

Ji, Ji ,
1
2

M

∑
j=1

Ni j
2

∑
k=1

Ni j

∑
l=

Ni j
2 +1

(
Cn̄T

j C̄(si)(ui
jkl +ρoivi

jkl)
)2

(14)

where, without loss of generality, we have assumed Ni j is even. Note that the Ni j
points from the i-th laser scanner, and the j-th configuration of the calibration plane
are divided into two mutually exclusive groups so as to ensure that each point ap-
pears in the least-squares cost only once and hence avoid noise correlations.

When a sufficient number of plane configurations are observed, we employ a
recently proposed algebraic method to directly solve this nonlinear least-squares
problem without requiring initialization [14]. Specifically, we first form the follow-
ing polynomial system describing the optimality conditions of (14):

fi` =
∂Ji

∂ si`
= 0, `= 0, . . . ,3, and si0 , ρoi. (15)

Note that the cost function in (14) is a polynomial of degree six in the elements of
si and ρoi. Therefore, (15) consists of four polynomials of degree five in four vari-
ables. This polynomial system has 243 solutions that comprise the critical points of
the least-squares cost function Ji, and can be computed using the eigenvalue decom-
position of the so-called multiplication matrix (see Section 2.2). The globally opti-
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mal solution of the least-squares problem is the critical point that minimizes (14),
and it is selected through direct evaluation of the cost function Ji. We point out that
the computational complexity of solving (15) and finding the global minimum does
not increase with the addition of measurements, since the degree and number of
polynomials expressing the optimality conditions are fixed regardless of the num-
ber of calibration-plane configurations and laser-scanner points reflected from them.
Moreover, computing the contribution of all points to the coefficients of the polyno-
mials fi`, `= 0, . . . ,3, increases only linearly with the number of measurements.

2.2 Polynomial System Solver

In order to solve the polynomials describing the optimality conditions of (15), we
compute the multiplication matrix, a generalization of the companion matrix to sys-
tems of multivariate polynomial equations, whose eigenvalues are the roots of the
associated polynomial system [1]. In the following, we briefly describe an efficient
method for computing the multiplication matrix. For a detailed discussion on solv-
ing systems of polynomial equations, we refer the interested reader to [5].

Let us denote a monomial in x = [x1 · · ·xn]
T by xγ , xγ1

1 xγ2
2 · · ·x

γn
n , γi ∈ Z≥0, with

degree ∑
n
i=1 γi. A polynomial of degree d in x is denoted by f = cT xd where xd is

the
(

n+d
n

)
-dimensional vector of monomials of degree up to and including d, and

c is the vector of coefficients of equal size. We assume that the given system of
equations has n polynomials, denoted by fi = cT

i xdi = 0, i = 1, . . . ,n, each of them
with degree di. The total degree of the polynomial system is d ,maxi di. By padding
the coefficient vectors of fi’s with zeros, and stacking them together in C, we can
present the polynomial system in the matrix form of Cxd = 0.

A system of polynomial equations defines an ideal I as the set of all the poly-
nomials that can be generated as ∑i fihi where hi is any polynomial in x. Clearly
the elements of the ideal become zero at the solutions of the original (generator)
polynomial system. The Gröbner basis G , 〈g1, . . .gt〉 of an ideal is a finite subset
of the ideal such that (i) the remainder of the division of any polynomial to it is
unique, (ii) any polynomial whose division by the Gröbner basis results in zero re-
mainder, is a member of the associated ideal. The first property can be expressed as:
ϕ(x) = r(x)+∑

t
i=1 gi(x)hi(x) where ϕ is any polynomial in x, hi’s are the quotient

polynomials, and r is the unique remainder. We hereafter use the name “remainder”
as the remainder of the division of a polynomial by the Gröbner basis. The Gröbner
basis for an ideal generated from polynomials with integer or rational numbers can
be computed using implementations of the so-called Buchberger’s algorithm [5]
on symbolic software packages such as Macaulay2 or Maple. Computation of the
Gröbner basis for polynomials with floating-point coefficients is much more difficult
due to quick accumulation of round-off errors in the Buchberger’s algorithm.

The remainders of the polynomials that are not in an ideal are instrumental in
finding the solutions (i.e., variety) of that ideal. It can be shown that all such re-
mainders can be expressed as a linear combination of a specific (unique) group of
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monomials that comprise the so-called normal set [5]. The normal set can be easily
obtained from the Gröbner basis of an ideal, and under mild conditions,3 its car-
dinality equals the number of solutions (real and complex) of the ideal, and it will
contain the monomial 1 [5, p.43]. The important point here is that the normal set
is generically fixed across different instantiations of the polynomials. Therefore, we
can compute the normal set of an instance of the problem (e.g., integer or rational
coefficients) and use it when the coefficients are floating point.

Let us assume that the cardinality of the normal set is s, and represent its mono-
mials in a vector form xB. Then multiplication of xB with a generic polynomial ϕ(x)
yields:

ϕ(x) ·xB = Mϕ xB +

[h11 ··· h1t
...

...
hs1 ··· hst

][g1
...
gt

]
(16)

where hi j’s are polynomials in x, and gi’s are the elements of the Gröbner basis. In
this expression, Mϕ is called the multiplication matrix associated with ϕ . This re-
lationship holds since the remainder of any polynomial (including xγ ϕ(x),xγ ∈ xB)
can be written as a linear combination of xB. Now, if we evaluate (16) at x = p, a
solution of the ideal, all gi’s become zero, and we get ϕ(p) ·pB = Mϕ pB, where pB

is xB evaluated at p. Clearly, pB is an eigenvector of Mϕ , and ϕ(p) is the associated
eigenvalue. Therefore, if we select ϕ(x) equal to one of the variables (e.g., xi), we
can read off the xi-coordinate of the solutions as the eigenvalues of Mϕ . Further-
more, depending on the ordering of the monomials when computing the Gröbner
basis, xB may include all first-order monomials x1, . . . ,xn. In that case, one can si-
multaneously read off all the coordinates of the solutions, for an arbitrary choice of
ϕ , as long as it is nonzero and distinct at each solution of the ideal.

When the Gröbner basis is available (such as in polynomial systems with inte-
ger coefficients), one can use it directly to compute remainders of ϕ(x) · xB, and
construct Mϕ . This is not possible, however, when working with polynomials with
floating-point coefficients. Therefore we employ the method proposed in [3] to com-
pute Mϕ . We first note that some of the monomials of ϕ(x) ·xB remain in xB, while
some others do not. We form the vector xR from the latter monomials, and write:

ϕ(x) ·xB = M′ϕ

[
xR

xB

]
(17)

where M′ϕ is called the unreduced multiplication matrix. Our objective is to express
the remainders of xR as a linear combination of xB without using the Gröbner basis.
For this purpose, we expand each original polynomial fi by multiplying it with all
the monomials up to degree `− di (` to be determined later). Clearly all these new
expanded polynomials belong to the ideal generated by the original polynomials,
and they have monomials up to degree `. Thus, we can write them collectively in
matrix form as Cex` = 0. We reorder x` and Ce as:

3 These conditions are: (i) the ideal must be radical, (ii) its variety must be non-empty and zero
dimensional [5]. These conditions are generally satisfied for the current problem.
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Cex` =
[
CE CR CB

]xE

xR

xB

= 0 (18)

where xE are the monomials that belong neither to xR nor to xB. Multiplying (18)
with NT , the left null space of CE , and decomposing NT CR =QR= [Q1 Q2]

[
RT

1 0
]T

using QR factorization, yields:

[
NT CR NT CB

][xR

xB

]
= Q

[
R1 QT

1NT CB

0 QT
2NT CB

][
xR

xB

]
= 0. (19)

If ` is selected sufficiently large, R1 will be full rank [10], which allows us to solve
(19) and find xR as a function of xB, i.e., xR = −R−1

1 QT
1NT CBxB. Substituting this

relationship in (17) yields the multiplication matrix:

Mϕ = M′ϕ

[
Is

−R−1
1 QT

1NT CB

]
. (20)

For solving equations (15), we had to expand the polynomials up to degree `= 15
and arrived at a multiplication matrix Mϕ of dimensions 243× 243. Finally, we
mention that it is possible to compute the multiplication matrix without explicit
computation of the normal set. Further details on this subject and also on possible
numerical instabilities and their remedies are given in [3, 10] and [15].

2.3 Analytical Estimation of Scale and Relative Translation

Once the relative rotation, C
Li

C, and the offset, ρoi, of each laser scanner, i= 1, . . . ,64,
are computed, we use linear least-squares to determine the relative translation and
scale from (7). Specifically, we stack together all the measurement constraints on
the i-th laser scanner’s scale and relative translation (from different points and
calibration-plane configurations), and write them in a matrix form as:

Cn̄T
1 (ρi11 +ρoi)

Cn̄T
1

C
Li
C Li p̄i11

Cn̄T
1 (ρi12 +ρoi)

Cn̄T
1

C
Li
C Li p̄i12

...
...

Cn̄T
M (ρiMNiM +ρoi)

Cn̄T
M

C
Li
C Li p̄iMNiM


[

CtLi
αi

]
=


d1
d1
...

dM

 (21)

Under the condition that the coefficient matrix on the left-hand side of this equality
is full rank (see Section 2.5), we can easily obtain the i-th laser scanner’s scale
factor, αi, and relative translation, CtLi , by solving (21).
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2.4 Iterative Refinement

Once the initial estimates for the transformation between the Ladybug and the laser
scanners, and the intrinsic parameters of the lidar are known (Sections 2.1 to 2.3),
we employ an iterative refinement method to enforce the constraints in (8) and (9).
Specifically, we choose the coordinate frame of one of the laser scanners (e.g., the
1-st laser scanner) as the lidar’s fixed coordinate frame, i.e., {L} = {L1}. Then for
{Li}, i = 2, . . . ,64, we employ the estimated relative transformation with respect to
the Ladybug (i.e., C

Li
C and CtLi ) to obtain the relative transformations between {Li}

and {L}. From these relative transformations, we only use the z component of the
translation to initialize each laser scanner’s vertical offset, hi [see (9)], and the yaw
component of the rotation to initialize each laser scanner’s θoi [see (8)].

We then formulate the following constrained minimization problem to enforce
(8) and (9):

min ∑
i, j,k

[
αi(ρi jk +ρoi)

Cn̄T
j

C
Li
C Li p̄i jk +

Cn̄T
j

CtLi −d j

]2

s. t. C
Li
C = C

LCCz(θoi),
C
LC

T (CtLi −
CtL) = [0 0 hi]

T (22)

where the optimization variables are αi, ρoi, θoi, hi, i = 2, . . . ,64, α1, ρo1,
CtL, and

C
LC.4 Note that the constraints in (22) should be taken into account using the method
of Lagrange multipliers. For the implementation details of the Levenberg-Marquardt
algorithm we refer the interested reader to [8].

2.5 Observability Conditions

In this section, we examine the conditions under which the unknown lidar-Ladybug
transformation and the intrinsic parameters of the lidar are observable, and thus can
be estimated using the algorithms in Sections 2.1 to 2.4.

2.5.1 Observation of One Plane

Suppose we are provided with lidar measurements that lie only on one plane whose
normal vector is denoted as Cn̄1. In this case, it is easy to show that the measure-
ment constraint in (6) does not change if C

Li
C is perturbed by a rotation around Cn̄1,

represented by the rotation matrix C′:

Cn̄T
1 C′ CLi

C Lipi1k +
Cn̄T

1
CtLi −d1 = 0 =⇒ Cn̄T

1
C
Li
C Lipi1k +

Cn̄T
1

CtLi −d1 = 0 (23)

4 In general, the optimization should be performed over φi as well. However, in our experiments,
we observed that the provided value of φi by the manufacturer is sufficiently accurate, and thus
excluded it from the calibration.
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The second equation is obtained from the first, since Cn̄1 is an eigenvector of C′, thus
Cn̄T

1C′ = Cn̄T
1 . Therefore, when observing only one plane, any rotation around the

plane’s normal vector is unobservable. Similarly, if we perturb CtLi by a translation
parallel to the plane, represented by t′, the measurement constraint does not change:

Cn̄T
1

C
Li
C Lipi1k +

Cn̄T
1 (

CtLi + t′)−d1 = 0 =⇒ Cn̄T
1

C
Li
C Lipi1k +

Cn̄T
1

CtLi −d1 = 0. (24)

This relationship holds since Cn̄T
1 t′ = 0. Therefore, when observing only one plane,

any translation parallel to the plane’s normal is unobservable.

2.5.2 Observation of Two Planes

Consider now that we are provided with measurements from two planes, described
by Cn̄1, d1, Cn̄2, d2. If we perturb the laser scanner’s relative translation with
t′′ ∝ Cn̄1× Cn̄2 [see (24)], none of the measurement constraints will change, since
Cn̄T

1 t′′ = Cn̄T
2 t′′ = 0. Therefore, we conclude that the relative translation cannot be

determined if only two planes are observed.

2.5.3 Observation of Three Planes

In this section, we prove that when three planes with linearly independent normal
vectors are observed, we can determine all the unknowns. For this purpose, we first
determine the relative orientation C

Li
C and the offset ρoi and then find the scale αi

and relative translation CtLi . Let us assume that the i-th laser scanner has measured
four points on each plane, denoted as (ρi jk,

Li p̄i jk), j = 1,2,3, k = 1, . . . ,4. Each of
these points provides one constraint of the form (7). We first eliminate the unknown
relative translation and scale, by subtracting the constraints for point k = 1 from
k = 2, point k = 2 from k = 3, and point k = 3 from k = 4, and obtain:

Cn̄T
j

C
Li
C
(
ui

j12 +ρoi vi
j12
)
= 0 (25)

Cn̄T
j

C
Li
C
(
ui

j23 +ρoi vi
j23
)
= 0 (26)

Cn̄T
j

C
Li
C
(
ui

j34 +ρoi vi
j34
)
= 0 (27)

where ui
jkl , ρi jk

Li p̄i jk − ρi jl
Li p̄i jl , vi

jkl ,
Li p̄i jk − Li p̄i jl , and j = 1,2,3. Note that

Li p̄i jk and Li p̄i jl lie on the intersection of the unit sphere and the cone specified by
the beams of the i-th laser scanner. Since the intersection of a co-centric unit sphere
and a cone is always a circle, we conclude that all vi

jkl for a given i belong to a
plane and have only two degrees of freedom. Thus, we can write vi

j34 as a linear
combination of vi

j12 and vi
j23, i.e.,

vi
j34 = avi

j12 +bvi
j23 (28)
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for some known scalars a and b. Substituting this relationship in (27), and using
(25)-(26) to eliminate the terms containing ρoi yields:

Cn̄T
j

C
Li
C
(
ui

j34−aui
j12−bui

j23
)
= 0 (29)

for j = 1,2,3. The only unknown in this equation is the relative orientation C
Li
C of the

i-th laser scanner. These equations are identical to those for orientation estimation
using line-to-plane correspondences, which is known to have at most eight solutions
that can be analytically computed when Cn̄ j, j = 1,2,3, are linearly independent [4].
Once C

Li
C is known, we can use any of (25)-(27) to compute the offset ρoi. Finally,

the scale and the relative translation can be obtained from (21).

3 Experiments

In order to validate the proposed calibration method, we conducted a series of ex-
periments. Specifically, we rigidly connected a Velodyne 3D lidar and a Ladybug2
spherical vision system, and recorded measurements of a 36”×40” calibration plane
with 16 fiducial markers at 40 different configurations. By processing the Ladybug’s
images using a PnP algorithm followed by a least-square refinement [9], we com-
puted the normal vector and the distance of the calibration plane at each configura-
tion. We then identified the approximate location of the calibration plane in the lidar
scans based on a coarse prior estimate for the relative rotation of the Velodyne and
the Ladybug. Within these approximate locations, we detected the lidar data points
reflected from the calibration plane, based on their depth discontinuity.

Once the Velodyne’s measurements for each configuration of the calibration
plane were available, we used the methods described in Sections 2.1-2.4 to accu-
rately estimate the lidar’s intrinsic parameters and the lidar-camera transformation.
Note, however, that in order to increase the robustness of our algorithm to outliers,
we did not directly use the raw laser points measured by the lidar. Instead, for each
laser scanner, we fit small line segments to the intersection of the laser scanner’s
beam and the calibration plane, and used the endpoints of these line segments as the
lidar’s measurements.5

We compare the accuracy of the estimated intrinsic lidar parameters with those
provided by the manufacturer. For this purpose, we transform the raw lidar mea-
surements to the lidar’s Euclidean frame [see (2)] using both the estimated and the
manufacturer-provided intrinsic parameters. We then fit planes to the lidar points
belonging to the calibration planes and use the residual fitting error to evaluate the
accuracy of the estimated intrinsic parameters. In Fig. 3, the histogram of these
residual errors for the manufacturer-provided and the estimated intrinsic parameters
are shown, clearly demonstrating the superior accuracy of our method.

5 Note that in general the intersection of the cone induced by the laser scanner’s beam with a plane
results in a conic section, and not a straight line. However, in practical situation this conic section
can be approximated with a sequence of straight line segments.
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Fig. 3 Histograms of the residual error for the lidar points belonging to 40 planar surfaces using
the intrinsic lidar parameters from: (a) the manufacturer; (b) the proposed method.

To further evaluate the performance of our calibration algorithm, we created pho-
torealistic reconstructions of several indoor and outdoor scenes from the University
of Minnesota campus (see Fig. 4). For each scene, the raw measurements of the lidar
are first transformed to Euclidean coordinates using the estimated intrinsic param-
eters of the lidar and then they are expressed in the Ladybug’s frame of reference.
In the next step, the lidar points are overlaid on the spherical image provided by the
camera to associate them with an image pixel. Note, however, that after this step
many of the image pixels will not be associated with any lidar points due to the
low resolution of the lidar scans compared to the Ladybug’s images. We assigned
such “orphan” pixels a 3D point obtained through linear interpolation of the sur-
rounding lidar points. The final result is a set of image pixels with 3D coordinates
(i.e., 3D pixels). Finally, we converted the 3D pixels to 3D surfaces using Delaunay
triangulation [2]. In Fig. 4, a selection of the reconstructed surfaces are shown for
indoor and outdoor scenes. Note that white gaps in the reconstructed surfaces result
from missing lidar measurements due to occlusion or specular reflection of the laser
beams from glass and shiny surfaces.

4 Conclusions and Future Work

In this paper, we presented a novel method for intrinsic calibration of a Velodyne
3D lidar and extrinsic calibration with respect to a camera. Specifically, we de-
veloped an analytical method for computing a precise initial estimate for both the
lidar’s intrinsic parameters and the lidar-camera transformation. Subsequently, we
used these estimates to initialize an iterative nonlinear least-squares refinement of
all the calibration parameters. Additionally, we presented an observability analysis
to determine the minimal conditions under which it is possible to estimate the cal-
ibration parameters. Experimental results from both indoor and outdoor scenes are
used to demonstrate the achieved accuracy of the calibration process by photorealis-
tic reconstruction of the observed areas. Optimally combining multiple images and
lidar scans over consecutive time steps for mapping large areas while at the same
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time increasing the 3D points’ resolution and revealing occluded areas, is part of
our ongoing research work.
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(a)

(b)

(c) (d)

(e)

Fig. 4 A selection of the results from photorealistic reconstruction of indoor and outdoor scenes
(best viewed in color). The white gaps are the regions where at least one of the sensors did not
return meaningful measurements (e.g., due to occlusion, specular reflections, or limited resolution
and field of view). Note that the depth of the scene can be inferred from the dotted grids. (a,b):
Center of a building with several corridors, viewed from different directions; (c,d): A indoor scene
containing two stair cases, viewed from two different directions; (e) An outdoor scene with snow
on the ground.


