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Abstract This paper addresses the problem of autonomous quadrotor navigation
through a previously-mapped indoor area. In particular, we focus on the case where
a user walks through a building and collects images. Subsequently, a visual map of
the area, represented as a graph of linked images, is constructed and used for au-
tomatically determining visual paths (i.e., sequences of images connecting the start
to the end image locations specified by the user). The quadrotor follows the desired
path by iteratively (i) determining the desired motion to the next reference frame,
(ii) controlling its roll, pitch, yaw-rate, and thrust, and (iii) appropriately switching
to a new reference image. For motion estimation and reference-image switching, we
concurrently employ the results of the 2pt and the 5pt RANSAC to distinguish and
deal with both cases of sufficient and insufficient baseline (e.g., rotation in place).
The accuracy and robustness of our algorithm are evaluated experimentally on two
quadrotors navigating along lengthy corridors, and through tight spaces inside a
building and in the presence of dynamic obstacles (e.g., people walking).

1 Introduction and Related Work

In order for a quadrotor to autonomously navigate within a known, GPS-denied area
(e.g., indoors), it must be able to find where it is, determine the path towards its goal,
and control itself to follow the desired trajectory. One way to solve this problem
would be to construct, typically offline, a metric 3D map of the environment that
the quadrotor will then use to (i) identify where it is (i.e., localize), and (ii) compute
a path towards its destination. Creating dense 3D maps that can be used for path
planning, however, is quite challenging, especially for large buildings, due to the
computational cost of the mapping process.
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An alternative approach to this problem, is to represent a building using visual
data collected beforehand, and describe a path as a sequence of images that the
quadrotor needs to follow in order to reach its destination. The main advantages of
an image-space representation of a path within a building are scalability (no metric
global map needs to be constructed) and ease of implementation (the images can
be collected by a person walking throughout the building with, e.g., a cell phone).
On the other hand, though, controlling a quadrotor to follow a visual path becomes
significantly more challenging due to the lack of scale and geometric information in
the reference trajectory.

Controlling a robot to reach a specific destination defined in the image space can
be achieved using visual servoing (VS) [8, 9]. Most VS approaches can be clas-
sified into two categories: (i) Position-based VS (PBVS), where the control input
is computed directly using a relative position, up to scale, and orientation (pose)
estimate; and (ii) Image-based VS (IBVS), where the control input is determined
in the image domain, while often it is assumed that the depth to the scene is, at
least approximately, constant [8]. Prior work on VS for quadrotors equipped with a
downward-pointing camera has addressed the problem of landing on a known tar-
get [24, 7] and hovering over an arbitrary target [5]. Furthermore, for quadrotors
equipped with a forward-pointing camera, [6] classifies the environment into cor-
ridors, stairs, or “other” in order to determine the appropriate turn, side-ways, or
upward motion so that the robot can continue exploration.

In the context of navigating along a visual path, VS techniques have been em-
ployed for ground robots (e.g., [25, 14, 10, 13]), while some of these techniques
([10, 13]) have been applied to aerial vehicles [26, 12]. In particular, in [26] an
extension of the “funnel”-lane concept of [10] to 3D is presented and applied to
controlling a quadrotor. Specifically, the geometric constraints based on the image
coordinates of the reference features are used for determining the funnel region
within which the robot should be moving in order to match the reference image.
Then, the desired motion of the quadrotor is computed as the convex combination
of the heading/height required for staying within the funnel region and the one the
quadrotor had followed during the training phase. As criterion for switching to the
next reference image, an error measure is defined based on the root mean square
of the difference in the feature’s pixel coordinates between the reference and the
current image. In [12], the VS method of [13] is extended to the case of a quadrotor
following a visual path comprising a sequence of keyframe images selected, dur-
ing the experiment, by a person. In contrast to 3-view-geometry-based approaches
(e.g., [14] and [18]), [12] uses the PBVS algorithm described in [9] for control-
ling the quadrotor. This method does not require triangulating points but instead,
given sufficient baseline, it uses epipolar geometry for estimating the relative pose
between the current and the reference camera frames.

A key limitation of both [26] and [12] is that they cannot deal with rotations in
place (often required for navigating through tight spaces), or, for the case of [12],
with translations through areas with only faraway features (e.g., featureless corri-
dors). Moreover, in both cases, the quadrotor followed rather short and fairly simple
(in terms of the motions required) paths comprising a short translation and a wide
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turn in [26], or no turn in [12], where the quadrotor was moving back and forth
between two locations connected via a direct path.

In this work, our objective is to enable a quadrotor to autonomously navigate
inside a large-scale building by following a pre-recorded sequence of images that
correspond to long (∼ 75 m) and challenging (in terms of the motions involved and
the type of scenes encountered) paths. To do so, our PBVS method concurrently
minimizes the relative heading and baseline between the current and the reference
images. In particular, we match features between these two images and use the 2pt1

and the 5pt RANSACs’ estimates to determine the state of the system and control
the quadrotor.

The key advantages of the proposed PBVS algorithm are as follows: (i) We em-
ploy a geometry-based algorithm which computes and compares the 2pt versus the
5pt RANSAC inliers for selecting the next reference image. In contrast, [26, 12] rely
on the features’ pixel coordinates, which are unreliable when dealing with features
at various depths; (ii) Our algorithm is capable of dealing with a wide range of con-
ditions, such as motion along lengthy corridors, open spaces, and rotations in place,
and in environments where the appearance-based feature matching may return unre-
liable results; (iii) Our approach does not require recording the images by manually
controlling the robot through the reference paths as is done in [26, 12]. Instead, one
can easily define desired paths by simply walking through the area of interest carry-
ing a cell phone or the quadrotor. Lastly and, in order to demonstrate the efficiency,
accuracy, and robustness of the proposed algorithm, we have implemented it on two
quadrotors: The Parrot Bebop [2] and the DJI F450, the latter carrying a cell phone.
During testing, the quadrotors operated inside challenging environments (specular
reflections, large lighting surfaces), comprising long paths, tight turns, and in the
presence of dynamic obstacles.

2 Quadrotors and Objective

Both quadrotors have attitude-stabilization controllers, which take as input informa-
tion from an observer that processes gyroscope and accelerometer measurements,
from the onboard inertial measurement unit (IMU), to estimate the roll and pitch
angles, yaw-rate, and thrust of the quadrotor. Additionally, each quadrotor carries
a downward-pointing camera to estimate optical flow, and an ultrasonic sensor to
measure the distance to the ground. Note that despite the availability of metric in-
formation from the velocity estimated based on the optical flow and the distance to
the scene, we do not use it to triangulate features and create a local map as it can be

1 The 2pt RANSAC estimates the relative orientation I1
I2

R between two images, I1 and I2, under the
assumption of very small baseline compared to the depth of the scene. A closed-form solution for
the 2pt minimal case is provided in 6.2, while the analytical solution for the least-squares solver is
presented in [22]. The 5pt RANSAC [27] estimates the relative orientation I1

I2
R and the unit vector

of translation I1 tI2 between two images I1 and I2.
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Fig. 1: The DJI F450 quadrotor (left) equipped with a NAZA controller, an optical-
flow sensor, ultrasonic sensors, and a cell phone. The Parrot Bebop quadrotor (right)
equipped with a 180 deg WFOV camera, an optical-flow sensor, and an ARM-based
processor.

both unreliable2 and computationally expensive. Furthermore, both quadrotors have
access to (i) forward pointing wide field of view (WFOV) cameras (mounted in the
front of the Bebop, or as part of the cell phone carried by the DJI) for collecting im-
ages and (ii) processors for executing in real time all image-processing and control
algorithms necessary by the proposed PBVS method. Finally, and to increase safety,
the DJI quadrotor carries 8 ultrasonic sensors spaced 45 deg apart and aligned with
its arms and legs (see Fig. 1).

As mentioned earlier, the objective of this work is to develop a robust algorithm3

that will allow the quadrotors to follow long and complex visual paths, defined as
sequences of pre-recorded images between the start and final desired locations.

3 Technical Approach

Our approach comprises two phases. In the first (offline) phase, a visual-graph-based
representation of the area of interest is constructed using images collected by a per-
son walking through it. Then, given a start and an end pair of images, a feasible
visual path is automatically extracted from the graph along with motion informa-
tion (path segments that include significant translational motion or only rotations in
place). In the second (online) phase, our PBVS algorithm controls the quadrotor to
successively minimize the relative rotation and baseline between the images cap-
tured by its onboard camera and the corresponding reference images of the visual

2 Under low-light conditions, the velocity measurements are reliable only for a fixed tilt angle of
the vehicle. Note that when in motion, the quadrotor changes its roll and pitch which causes image
blurriness (due to the increased exposure) and, hence, large errors in the optical-flow estimates.
3 Note that although both the embedded controller and the cell phone contain IMUs, which can
be used, in conjunction with the camera, to form a vision-aided inertial navigation system [19], in
this work, we intentionally focus on a “light”, in terms of processing, vision-only approach so as
to assess its performance and use it as a baseline for future comparisons.
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Fig. 2: Offline phase: The area of interest is described as a visual graph (VG) whose
nodes correspond to images, while edges link images containing a sufficient number
of common features for reliably visually-servoing between them. In the VG, Is1, Ig
denote the start and goal images, respectively, while Is2, . . . , Is5 signify intermediate
goal locations along the quadrotor’s path specified by the user.

path. Additionally, and in order to increase robustness, our navigation approach em-
ploys a vocabulary tree (VT) [28] for relocalizing inside the previously-constructed
visual graph when losing track of the reference image path. Lastly, we include an
obstacle avoidance routine for the DJI so as to increase safety.

3.1 Offline phase

3.1.1 Map generation

A person carrying a cell phone, or a quadrotor, walks through the area of interest
collecting images at 30 Hz. Subsequently, we extract FREAK image points [4] and
employ a VT to generate the visual map which is represented as a visual graph
(VG) whose nodes correspond to the recorded images. An edge between two images
signifies that these were matched by the VT and at least 30 point-correspondences
passed the 5pt or 2pt RANSAC. Furthermore, we assign weights to these edges
inversely proportional to the number of common features (inlier matches) found
between linked images. This choice is justified by the fact that the VG will be used
to determine paths that the quadrotor can reliably navigate through in the image
space towards its destination. This process is depicted in Fig. 2.
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The VG is constructed in a matter of minutes even for large areas containing
tens of thousands of images. Moreover, it can be easily updated by adding/replacing
subsets of images corresponding to new/altered regions of a building.

3.1.2 Path specification

The VG is used for computing paths between the quadrotor’s start and end loca-
tions, possibly via intermediate points. Specifically, consider the graph shown in
Fig. 2. Assume that the quadrotor knows its current location (e.g., it is provided by
the user, automatically determined using the VT, or saved from the previous run)
corresponding to image node Is. Then, the user specifies a destination image Ig in
the VG and the reference path is determined automatically by employing Dijkstra’s
algorithm [11]. This process is easily extended to include intermediate locations
(e.g., Ig1 , Ig2 . . . Ign ), by simply resetting as the start of the next path segment the end
image of the previous one (e.g., Isi+1 = Igi , i = 1 . . .n).

Once the path is extracted from the VG, we prune images that are very close
to each other and only keep the ones that have substantial translational and/or rota-
tional motion between them. To do so, we use an iterative process that starts from the
reference image Ir

1 = Is and moves along the path matching FREAK features using
both the 5pt and 2pt RANSAC algorithms until it finds the first image, Is+m, m≥ 1,
that either has more 5pt than 2pt inliers, or the relative yaw angle between them is
greater than 10 deg. In the first case, we declare that the quadrotor is in translation,
otherwise, in rotation and set Is+m, as the next reference image Ir

2. The resulting path
P = {Ir

1, I
r
2, . . . , I

r
n} is provided to the quadrotor along with two additional pieces of

information: (i) We specify which images correspond to rotation-only motion and
provide the yaw angle between consecutive rotation-only images; (ii) We provide
the FREAK features extracted from each reference image along with their coordi-
nates. The former is useful in case the quadrotor gets lost (see Section 3.2.4), while
the latter is used by the quadrotor for efficiently finding and matching its next refer-
ence image through the process described hereafter.

3.2 Online phase

3.2.1 System state determination

When there is sufficient baseline (as in [12]), and in order to minimize the relative
motion between It (the image taken by the quadrotor’s onboard camera at time-step
t) and a reference image Ir

k ∈P , we use the 5pt RANSAC to estimate the 5 dof,
Ir
k

It R̂, Ir
k t̂It , desired motion. This estimate, however, is not reliable when the baseline

between It and Ir
k is short [9]. Furthermore, the appearance-based feature matching

between It and Ir
k (the 5pt RANSAC’s input), is not always reliable (e.g., due to

adverse lighting conditions and/or occlusions).
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Fig. 3: Online: Schematic diagram of the steps and transitions between the different
states of the automaton H .

To address these challenges, we model our system as a hybrid automaton H as
follows:

Definition 1: H = (L ,x,E ), where:

• L is the set of discrete states including:

– `0: wide baseline (nominal condition)
– `1: short baseline (rotation in place is necessary or reference-image switching)
– `2: lost mode due to, e.g., motion overshoot or failure in the appearance-based

feature matching.

• x(t,k) is the abstract state vector with elements x(t,k) = [It , Ir
k ,r(t,k)] where

r(t,k) is the desired motion for minimizing the relative pose between It and Ir
k .

• E is the set of relations governing transitions between the states in L = {`0, `1, `2}.
Given H , and in order to complete P , the system must ideally iterate between

two steps until the last element of P is reached: (i) In case of state `0, we compute
the motion r and control the quadrotor so as to bring the system to state `1 (see
Section 3.2.2); (ii) When at `1, and if there is no significant rotation between It and
Ir
k , we switch Ir

k to the next reference image in P (see Section 3.2.3), and the system
returns to state `0. In case of external disturbances, the system may reach state `2. In
this case, a recovery procedure will be executed to attempt to bring the system back
to `0 or `1 (see Section 3.2.4).

In order to accurately classify the state of the system as `0, `1, or `2 based on
It and Ir

k , we use the process summarized in Fig. 3, and define the relations in E =
{e0,e1,e2} in the following 3 steps.

Step 1: We first extract and match (Hamming distance between binary descriptors
less than 60) FREAK features in It and Ir

k , and define as S f (It , Ir
k) the set of all

feature correspondences. Note that if the condition for sufficient feature matches
e0 : |S f | ≥ 25, where |S f | is the cardinality of the set S f , is satisfied, then the system
proceeds to Step 2 of the current state, else it transitions to state `2 (see Fig. 3).

Step 2: Given the bearing vectors, It b f and Ir
k b f , from both camera frames, It and

Ir
k , to each feature f , we employ the 5pt RANSAC to compute the geometric con-

straint (
Ir
k

It R̂, Ir
k t̂It ) between It and Ir

k , as well as the set of features whose reprojection
error [20] is within a threshold ε1 (the error tolerance for outlier rejection [16]). At
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this point, we require that the condition e1 : |S5pt | ≥ 25 (i.e., the number of 5pt in-
liers is no less than 25; see [15] for a probabilistic justification) is satisfied in order
to proceed to Step 3; else the system transitions to state `2 (see Fig. 3).

In Step 3, we distinguish between the states `0 and `1. Specifically, when the
baseline is short (i.e., Ir

k dIt � It d f ,
Ir
k d f ⇔ Ir

k b f ' Ir
k

It RIt b f ), the 5 degrees of freedom
(dof) epipolar constraint:

Ir
k bT

f bI
r
k tIt ×c

Ir
k

It RIt b f = 0 (1)

degenerates into a 3 dof, rotation-only constraint that is satisfied by all the 5pt in-
liers. Our algorithm uses this observation to determine if there is sufficient baseline
between the current, It , and reference, Ir

k , images. In particular, we employ the 2pt

RANSAC on the features f ∈ S5pt to compute the rotation
Ir
k

It R̆ between two images

and determine S2pt = { f ∈ S5pt | 1− Ir
k bT

f
Ir
k

It R̆ It b f < ε2}, which is the subset of 5pt
inliers that are also 2pt inliers. Lastly, and in order to compensate for the noise in the
measurements and the randomness of RANSAC, instead of requiring |S2pt |= |S5pt |,
we employ the condition e2 : |S2pt |

|S5pt | > 0.94 to declare small baseline (i.e., state `1).
Depending on the state of our system (`0, `1, or `2), in what follows, we describe

the process for controlling the quadrotor.

3.2.2 Wide baseline (`0)

Improving the motion estimate

In practice, when the quadrotor navigates through long corridors or open spaces,
S f may contain features at various depths, some of which, typically the faraway
ones, may negatively affect the motion estimate. Note that such features, satisfy the
2pt RANSAC. To remove them, we define as S′5pt = S5pt \ S2pt , run again the 5pt
RANSAC on the features f ∈ S′5pt , and use the winning hypothesis to initialize an
iterative batch-least squares algorithm [23] to improve the accuracy of the estimated
desired motion between It and Ir

k .
At this point, we note that although the desired motion between It and Ir

k may
comprise 5 dof (3 for the relative roll, pitch, yaw and 2 for the unit vector, t, of
translation), given the kinematic and actuation constraints of the quadrotor (e.g., it
cannot achieve non-zero roll or pitch angle while staying still), our controller seeks
to match the desired motion only along 3 dof: The tx, ty projection of the desired unit
vector, t, of translation on the horizontal plane,4 and the desired (relative) yaw angle
Ir
k ψ̂It . Moreover, and in order to maintain an almost constant-velocity flight, we scale

tx and ty by v0 (the maximum velocity that the optical-flow sensor can measure) and
provide our controller with the following desired motion vector:

4 Note that since all images were recorded at about the same height, the z component of the de-
sired motion estimate is rather small after the first reference image and we subsequently ignore it.
Instead, we use the distance-to-the-ground measurements to maintain a constant-altitude flight.
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r =

vd
x

vd
y

ψ̂

=

tx v0
ty v0
Ir
k ψ̂It

 (2)

Note that this desired motion vector will need to be appropriately modified in the
presence of obstacles (see Section 3.2.5).

Controller

In order to determine the control input, uk(t) (roll, pitch, yaw-rate, and thrust), that
we must provide to the quadrotor’s attitude controller so as to achieve the desired
velocity, we employ the vehicle’s kinematic equations, linearized about the equilib-
rium (near hover condition - see [15]):[

v̇x(t)
v̇y(t)

]
= g

[
θ(t)
−φ(t)

]
(3)

z̈(t) =
1
m

τ(t)−g (4)

where g is the gravity, m is the quadrotor’s mass, and φ(t), θ(t), and τ(t) are the
roll, pitch, and thrust of the quadrotor in ego-centric coordinates, respectively.

To compute the velocity error, we use the estimates, v̂x, v̂y, from the optical-flow
sensor, to form: [

evx(t)
evy(t)

]
=

[
vd

x (t)− v̂x(t)
vd

y (t)− v̂y(t)

]
(5)

Furthermore, the height error, ez, is defined as the difference between the desired
altitude and the estimated height ẑ from the downward-pointing ultrasonic sensor:

ez(t) = zd(t)− ẑ(t) (6)

Lastly, based on (4), (5), (6) and ψ̂ in (2), we form a PID controller that computes
the desired control input to the system as:

uk(t) =


θ d(t)
φ d(t)
τd(t)
ψ̇d(t)

=


kp,vx evx(t)+ ki,vx

∫
evx(t)dt

−kp,vy evy(t)− ki,vy

∫
evy(t)dt

kp,zez(t)+ ki,z
∫

ez(t)dt + kd,zėz(t)
−kp,ψ ψ̂

 (7)

The gains kp, ki, and kd that ensure high response, zero tracking error, and robust-
ness were found as described in [17].

Fig. 4, describes the 3-control-loop implementation of our algorithm on the DJI
F450 quadrotor. The outer loop runs at 7.5 Hz and determines the desired 2D veloc-
ity, vx,vy, and the yaw ψ̂ (see Section 3.2.2). The desired velocity and height control
loop (middle loop) runs at 50 Hz and provides the roll, pitch, and thrust setpoints to
the attitude controller (see [15] for more details).
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Fig. 4: System block diagram. The double-line blocks denote components of our
algorithm described in Sections 3.2.1 (H ) and 3.2.2 (Controller).

3.2.3 Short baseline (`1)

In case of short baseline, we detect if there is any rotational motion needed to min-
imize the relative yaw, Ir

k ψIt , between It , and Ir
k. To do so, we first improve the

rotation matrix estimate,
Ir
k

It R̆, by employing the least-squares method of [22] on the
features f ∈ S2pt using as initial estimate, the one from the minimal solver of the 2pt
RANSAC. After extracting the yaw component, if |Ir

k ψ̆It |> τ3,5 we send the desired
rotation-in-place motion rT = [0 0 Ir

k ψ̆It ]
T to the controller to minimize the relative

yaw between It , and Ir
k; else we switch to the next reference image in the path P .

Note that when we have direct access to the attitude estimator, as in the case of
the Bebop, we can leverage the yaw angle (computed off-line - see Section 3.1.2)
between the first and last rotation-only reference images to speed up the execution
of this path segment. Specifically, the precomputed relative yaw angle is provided
to the controller to perform a “blind” rotation in place. Once this is complete, the
quadrotor queries the VT to confirm that the last rotation-only reference image has
been reached or determine the remaining rotation between the current image and the
last rotation-only reference image.

3.2.4 Lost mode (`2)

When the quadrotor loses track of the current reference image, we refer to the last
reference image where it computed good matches as Ir

lost . There are four possible
scenarios that can cause the quadrotor to get lost:

• The robot enters a featureless region.

5 This threshold depends on the onboard camera’s fov and is selected so as to ensure a significant
overlap (more than 80%) between the current camera image and the next reference image.
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• The robot enters a region where the result from the FREAK feature matching
between It and Ir

k is unreliable.
• The quadrotor significantly deviates from its current path, in order to avoid an

obstacle.
• Dynamic obstacles (e.g., people) obstruct the quadrotor’s view or path.

Our recovery method is as follows: While hovering, the quadrotor queries the
VT with It and successively evaluates among the returned images to find the one
that has at least 35 features in common with It that pass the 5pt RANSAC. If the
above search fails for the top 10 images, the quadrotor switches to a “blind” motion
strategy following the same type of motion as before it was lost (i.e., translation
or rotation based on Ir

lost ) for 0.5 sec and then attempts again to retrieve a good
reference image Ir

best. This iterative process is repeated for 10 times before declaring
that the quadrotor is lost, in which case, it autonomously lands.

3.2.5 Obstacle detection and avoidance

To avoid collisions while following the reference path, we combine the desired mo-
tion from the PBVS algorithm with a “repulsive” velocity defined using the ultra-
sonic sensors. Specifically. we denote as ρ = 1 m the radius of the safety region cen-
tered around the quadrotor, ok(t) the measurement of the kth ultrasonic sensor, and
ξξξ k the 2D unit vector of direction of this ultrasonic sensor relative to the quadro-
tor. Let γ be a constant relative-distance-to-velocity gain, we then construct a 2D
repulsive velocity vector as:

vk
repulsive(t) =

{
0 if ok(t)≥ ρ

−γ ∗ (ρ−ok(t))∗ξξξ k if ok(t)< ρ

and set as: vavoidance(t) = vdesired(t)+∑
8
k=1 vk

repulsive(t)
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4 Experimental Results
We performed experiments with two quadrotors (the Parrot Bebop and the DJI F450)
in two different scenarios: Firstly, inside a motion-capture room to evaluate the accu-
racy of our approach using ground truth from a VICON motion-capture system [3].
Then, in a large indoor area to evaluate the algorithm’s performance under challeng-
ing conditions.

4.1 System setup

The DJI F450 quadrotor is equipped with a NAZA attitude controller, a PX4Flow [21]
for height and velocity measurements, 8 MaxBotix ultrasonic range finders, and
Google’s Tango smartphone. The phone has a built-in 180 deg fisheye camera and a
quad-core ARM processor. Note that we do not use the built-in estimator of this de-
vice. The quadrotor also carries: (i) An Arduino microcontroller to generate the sig-
nals required to operate the quadrotor and switch between manual and autonomous
mode, (ii) An ODroid-U3 ARM-based computer used for allowing the cell phone
and the Arduino to communicate, and (iii) A wireless router for debugging during
test flights. It should be pointed out that the ODroid-U3 and the router are only used
for debugging purposes; all computations are performed on the smartphone.

The Bebop, on the other hand, carries a MEMS IMU, a downward-pointing
Aptina MT9V117 camera used for optical flow, an ultrasonic sensor for measuring
the distance to the ground, and a forward-pointing Aptina MT9V002 camera which
we use for visual navigation. All processing is carried onboard Bebop’s ARM Cor-
tex A9 800 MHz dual-core processor.

4.2 Short experiment with ground truth
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Fig. 6: Short experiment with ground truth: (left) Sample of camera frames used
as reference images; (right) Comparison between the reference trajectory and the
actual quadrotor trajectory.

In this experiment, we recorded an image sequence describing a rectangular path
(approximately 2 × 2.5 m) within the motion-capture room while recording the
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ground truth for the phone’s camera motion. The path was created such that the
poses of the initial and the last frame coincide. Then, we ran our PBVS algorithm
three times on the image sequence while recording the quadrotor’s pose with the
VICON. Fig. 6 (left) shows a subset of the reference camera images along the path,
while Fig. 6 (right) depicts the reference trajectory, the location of the reference
images of Fig. 6 (left), and the path followed by the quadrotor. As evident, the error
between the actual and the reference trajectories is typically within±0.5 m. Similar
performance was achieved when using the Bebop quadrotor.

4.3 Long experiments

These experiments took place in the Walter Library’s basement which is a chal-
lenging environment with numerous specular reflections on the floor, where the
quadrotors had to follow a 75 m long path comprising translational motion seg-
ments through open spaces as well as rotations in place in order to navigate through
narrow passages. Some of these maneuvers were in front of areas where most of the
visible scene was behind a coffee-shop glass front whose reflections posed a signifi-
cant challenge to the motion-estimation algorithm. Fig. 7 shows the blueprint of the
experimental area depicting the reference visual path (red bold line), and snapshots
of two quadrotors in flight.

During the experiment, the Bebop was able to complete the reference trajectory
in 240 sec, at an average speed of 40 cm/sec, despite getting lost and recovering its
path twice. On the other hand, it took the F450 quadrotor 450 sec (average speed
of 20 cm/sec) to complete approximately the same path after getting lost 3 times.
The difference in the performance of the two quadrotors is mainly due to the lower
maximum-velocity sensing capabilities of the PX4Flow sensor onboard the F450
but also because of the agility and safety (no sonars were required) that the smaller
size Bebop quadrotor provided. The videos for the Bebop and F450 experiments are
available at [1].

5 Conclusion and Future Work
In this paper, we presented a visual-servoing algorithm that allows quadrotors to
autonomously navigate within a previously-mapped area. In our work, the map is
constructed offline from images collected by a user walking though the area of in-
terest and carrying a cell phone or a quadrotor. Specifically, and in order to increase
efficiency, the visual map is represented as a graph of images linked with edges
whose weights (cost to traverse) are inversely proportional to the number of fea-
tures common to them. Once the visual graph is constructed, and given as input the
start and goal location of the quadrotor, it automatically determines the desired path
as a sequence of reference images. This information is provided to the quadrotor,
which estimates in real time the motion that minimizes the difference between its
current and reference images, and controls its roll, pitch, yaw-rate, and thrust for
achieving that.

Besides the ease of path-specification, a key advantage of our approach is that by
employing a mixture of 2pt and 5pt RANSAC for determining the type of motion
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Fig. 7: Long experiment: Blueprint of the experimental area, reference path for the
DJI F450 (1-4-5-6-7-8-1) and the Parrot Bebop (1-4-5b-6b-7-8-1), and snapshots of
both quadrotors along their paths (1-8).

required (rotational, translational with close-by or faraway scene), and for selecting,
on the fly, the next reference image, it is able to navigate through areas comprising
featureless corridors, as well as narrow passages. Moreover, it is able to cope with
static and moving obstacles and, in many cases, recover its path after losing track
of its reference image. The accuracy of the proposed algorithm was assessed using
motion-capture data within a small area, while its robustness to lighting conditions
and in-place rotations was demonstrated by autonomously navigating along a 75 m
path through a large building. Lastly, and as part of our ongoing work, we are cur-
rently extending our algorithm to combine visual and inertial measurements [19]
that will improve the accuracy of the velocity estimates, and, thus, allow us to fur-
ther increase the quadrotors’ operational speed.

6 Appendix

6.1 Singular condition of the 5pt RANSAC minimal solver

Consider a feature f appearing both in It and Ir
k which satisfies the following geo-

metric constraint:

Ir
k d f

Ir
k b f =

It d f
Ir
k

It R It b f +
Ir
k dIt

Ir
k tIt (8)

Note that when sufficient baseline exists between the current and reference im-
ages, (8) can be projected on the normal to the epipolar plane to yield the epipolar
constraint

Ir
k bT

f bI
r
k tIt ×c

Ir
k

It RIt b f = 0 (9)

By employing five pairs of features that satisfy (9), we can estimate the desired 5 dof
motion using the 5pt RANSAC algorithm [27].
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On the other hand, consider the case when the relative position between It and Ir
k

is significantly smaller compared to either distance to the feature f . Without loss of

generality, we assume that Ir
k dIt � It d f ⇒

Ir
k dIt
It d f
' 0 and employ the law of cosines

in the triangle defined by the focal points of the two cameras and f :

Ir
k d2

f +
It d2

f −2Ir
k d f

It d f cos(γ) = Ir
k d2

It ⇒

(
Ir
k d f

It d f
)2 +1−2

Ir
k d f

It d f
cos(γ) = (

Ir
k dIt
It d f

)2 ' 0⇒ (
Ir
k d f

It d f
−1)2 +2

Ir
k d f

It d f
(1− cos(γ))' 0

which implies that Ir
k d f ' It d f = d. Dividing both sides of (8) with d and considering

that Ir
k dIt � d, yields

Ir
k b f ' Ir

k
It RIt b f (10)

Therefore, given two pairs of inliers, the rotation matrix
Ir
k

It R in (10) can be found in
closed form (see Section 6.2).

6.2 2pt RANSAC minimal solver

Consider bearing measurements I1b f1 ,
I1b f2 ,

I2b f1 ,
I2b f2 to two features from two

images, and assume that the motion between them is purely rotational, thus

I2b fi = R(I2
I1

q̄)I1b fi , i = 1,2

where I2
I1

q̄ is the unit quaternion of rotation. Then, the closed-form solution is:

I2
I1

q̄ = γ

[
(I2b f1 −I1 b f1)× (I2b f2 − I1b f2)
(I2b f2 −I1 b f2)

T (I2b f1 +
I1b f1)

]
where γ is the normalization factor that ensures unit length.

References

1. Autonomous flights through image-defined paths (videos). http://mars.cs.umn.edu/projects
/isrr2015/quadrotor.html.

2. Bebop Drone. http://www.parrot.com/products/bebop-drone/.
3. Vicon Motion Systems Ltd. http://www.vicon.com/.
4. A. Alahi, R. Ortiz, and P. Vandergheynst. “FREAK: Fast retina keypoint”. In Proc. of the

IEEE International Conference on Computer Vision and Pattern Recognition, pages 510–517,
Providence, RI, Jun. 16–21 2012.

5. S. Azrad, F. Kendoul, and K. Nonami. “Visual servoing of quadrotor micro-air vehicle using
color-based tracking algorithm”. Journal of System Design and Dynamics, 4(2):255–268, Mar.
2010.

6. C. Bills, J. Chen, and A. Saxena. “Autonomous mav flight in indoor environments using
single image perspective cues”. In Proc. of the IEEE International Conference on Robotics
and Automation, pages 5776 – 5783, Shanghai, China, May 9–13 2011.



16 Tien Do, Luis C. Carrillo-Arce, and Stergios I. Roumeliotis

7. O. Bourquardez, R. Mahony, and F. C. N. Guenard. “Image-based visual servo control of
the translation kinematics of a quadrotor aerial vehicle”. IEEE Transactions on Robotics,
25(3):743–749, Jun. 2009.

8. F. Chaumette and S. Hutchinson. “Visual servo control, part i: basic approaches”. IEEE
Robotics and Automation Magazine, 13(4):82–90, Dec 2006.

9. F. Chaumette and S. Hutchinson. “Visual servo control, part ii: advanced approaches”. IEEE
Robotics and Automation Magazine, 14(1):109–118, Apr. 2007.

10. Z. Chen and R. T. Birchfield. “Qualitative vision-based path following”. IEEE Transactions
on Robotics, 25(3):749–754, Jun. 2009.

11. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT
press, Cambridge, MA, 2001.

12. J. Courbon, Y. Mezouar, N. Guenard, and P. Martinet. “Vision-based navigation of unmanned
aerial vehicle”. Control Engineering Practice, 18(7):789–799, Jul. 2010.

13. J. Courbon, Y. Mezouar, and P. Martinet. “Indoor navigation of a non-holonomic mobile robot
using a visual memory”. Autonomous Robots, 25(3):253–266, Jul. 2008.
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