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Abstract. This paper presents an algorithm to find the
line-based map that best fits sets of two-dimensional range
scan data that are acquired from multiple poses. To construct
these maps, we first provide an accurate means to fit a line
segment to a set of uncertain points via a maximum likeli-
hood formalism. This scheme weights each point’s influence
on the fit according to its uncertainty, which is derived from
sensor noise models. We also provide closed-form formulas
for the covariance of the line fit. The basic line fitting proce-
dure is then used to “knit” together lines from multiple robot
poses, taking into account the uncertainty in the robot’s po-
sition. Experiments using a Sick LMS-200 laser scanner and
a Nomad 200 mobile robot illustrate the method.

1 Introduction

Mobile robot localization and mapping in unknown en-
vironments is a fundamental requirement for effective au-
tonomous robotic navigation. A key issue in the practi-
cal implementation of localization and mapping schemes
concerns how map information is represented, processed,
stored, updated, and retrieved. A number of different solu-
tions to this problem are used in practice. In one approach,
the map consists of all the raw sensor data samples that
have been gathered, for example [1]. In another approach,
a map is a collection of features which must be robustly ex-
tracted from the sensor data, for example [2]. These meth-
ods represent some of the possible trade-offs between the
simplicity and efficiency of the map representation, the com-
putational complexity of the localization procedure, and the
map’s overall accuracy and self-consistency.

This paper introduces some useful algorithms for creat-
ing line-based maps from sets of dense range data that are
collected by a mobile robot from multiple poses. First, we
consider how to accurately fit a line segment to a set of un-
certain points. For example, Fig. 1 shows actual laser scan
data points, and the uncertainty of these data points, as cal-
culated using the methods of Section 2. Our fitting proce-
dure weights each point’s influence on the overall fit accord-
ing to its uncertainty. The point’s uncertainty is in turn de-
rived from sensor noise models. These models, which were
first presented in [3], are briefly reviewed. We also provide

closed-form formulas for the covariance of the line fit (see
Fig. 1). This measure of uncertainty allows one to judge the
quality of the fit. It can also be used in subsequent local-
ization and navigation tasks that are based on the line-maps.
Next we show how to “knit” together line segments across
multiple range scan data sets, while taking the uncertainty of
the robot’s configuration into account. This leads to further
efficiencies in the map’s representation.
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Figure 1: Example of line segment fit: data points (left) and
fitted line with a representation of its uncertainty (right).

A line segment is a simple feature. Hence, line-based
maps represent a middle ground between highly reduced fea-
ture maps and massively redundant raw sensor-data maps.
Clearly, line-based maps are most suited for indoor appli-
cations, or structured outdoor applications, where straight
edged objects comprise many of the environmental features.
The line segments produced by our algorithm can be used in
a number of ways. They can replace the raw range scan data
to efficiently and accurately represent a global map. This is a
form of map compression. The sets of segments can be input
to another algorithm that extracts high level features such as
doors or corners. The line segments can be used as part of
or all of the local map representation at the core of a SLAM
algorithm. They can be used for subsequent localization op-
erations (e.g., solving the “kidnapped robot” problem). Or,
they can be used for motion planning operations.

The idea of fitting lines to range data is not a new one.
The solution to the problem of fitting a line to a set of uni-
formly weighted points can be found in textbooks (e.g., [4]).



Others have presented algorithms for extracting line seg-
ments from range data (e.g. [5, 6, 7]). Since the algorithms
do not incorporate noise models of the range data, the fit-
ted lines do not have a sound statistical interpretation. A
Kalman-Filter based approach for extracting line segments
can be found in [8]. It allows only for uniform weighting of
the point fitting contributions. Several authors have used the
Hough Transform to fit lines to laser scan or sonar data (e.g.
[9, 10, 11]). The Hough Transform does not take noise and
uncertainty into account when estimating the line parame-
ters.

To our knowledge, the line fitting procedure presented
here for the case of range data with varied uncertainty ap-
pears to be new. A key feature and contribution of our ap-
proach are the concrete formulas for the covariance of the
line segment fits. No prior work has presented a closed form
formula for this covariance estimate. These covariances al-
lows other algorithms that use the line-maps to appropri-
ately interpret and incorporate the line-segment data. Fur-
thermore, we show how to merge lines across scans in a sta-
tistically sound fashion.

Our approach is based on the following assumptions. The
robot operates in a planar environment, and is equipped
with a 2-dimensional sensor that provides dense range mea-
surements (such as a laser scanner). The robot moves
through multiple poses, g1, g2, . . . , gn, where gk represents
the robot’s kth pose, gk = (xk , yk, θk), relative to a fixed
reference frame. At each pose the robot gathers a range scan.
The scan point coordinates are described in the robot’s body
frame, and the kth scan point in pose i takes the form:

ui
k = di

k

[
cosφi

k

sinφi
k

]
(1)

where di
k is the measured distance to the environment’s

boundary in the direction denoted by φi
k . We further assume

that a covariance estimate, Qi
k, is available for the uncer-

tainty in this scan point’s position (See Section 2 for details).
Additionally, for the purpose of “knitting” line segments

together across different scan sets gathered from different
poses, the robot must possess an estimate of its displace-
ment, ĝij between poses i and j (where gij = g−1

i gj). This
can be done via odometry, matching of the range scans, or
other means. We also assume that one can estimate the co-
variance, P ij , of the displacement estimate ĝij , and it has
the form:

P ij =

[
Ppp Ppφ

Pφp Pφφ

]
(2)

where the 2 × 2 matrix Ppp describes the uncertainty in the
translational estimate, the scalar Pφφ describes the uncer-
tainty in the orientation, and P T

φp = Ppφ describes cross
coupling effects. In the simplest case, the displacement es-
timate is uncorrelated with the range scan (e.g., it is derived
from odometry). However, the displacement estimate may

be partially or fully derived from the range data. For ex-
ample, in [3] we presented an algorithm for estimating the
robot’s displacement by matching range scans, and gave ex-
plicit formulas for the terms in Eq. (2). In these cases, the
covariance estimate may be correlated with range scan data
uncertainty, and these dependencies must be taken into ac-
count (see Section 5).

This paper is structured as follows. Section 2 reviews the
range measurement error models of [3]. Section 3 describes
the general weighted line fitting problem and our solution.
Section 4 describes techniques to estimate an initial guess
of the line’s parameters using Hough Transform techniques.
Section 5 describes the merging of lines across data gath-
ered in different robot poses. The experiments in Section 6
demonstrate the effectiveness of our algorithm.

2 Sensor Noise Models

Range sensors can be subject to both random noise effects
and bias. For a discussion of bias, see [3]. Here we briefly
review a general model for measurement noise. Recall the
polar representation of scan data, Eq. (1). Let the range
measurement, di

k, be comprised of the “true” range, Di
k, and

an additive noise term, εd:

di
k = Di

k + εd. (3)

The noise εd is assumed to be a zero-mean Gaussian random
variable with variance σ2

d (see e.g., [12] for justification).
Also assume that error exists in the measurement of φi

k, i.e.
the actual scan angle differs (slightly) from the reported or
assumed angle. Thus,

φi
k = Φi

k + εφ, (4)

where Φi
k is the “true” angle of the kth scan direction, and

εφ is again a zero-mean Gaussian random variable with vari-
ance σ2

φ. Hence:

ui
k = (Di

k + εd)

[
cos(Φi

k + εφ)
sin(Φi

k + εφ)

]
. (5)

Generally, we can think of the scan point ui
k as made up of

the true component, Uk
k, and the uncertain component, δui

k:

ui
k = U i

k + δui
k. (6)

If we assume that εφ � 1 (which is a good approximation
for most laser scanners), expanding Eq. (5) and using the
relationship δui

k = ui
k − U i

k yields

δui
k = (Di

k + εd)εφ

[
− sinΦi

k

cosΦi
k

]
+ εd

[
cosΦi

k

sin Φi
k

]
. (7)



Assuming that εθ and εd are independent, the covariance of
the range measurement process is:

Qi
k

4
= E[δui

k(δui
k)T ] =

(Di
k)2σ2

φ

2

[
2 sin2 Φi

k − sin 2Φi
k

− sin 2Φi
k 2 cos2 Φi

k

]

+
σ2

d

2

[
2 cos2 Φi

k sin 2Φi
k

sin 2Φi
k 2 sin2 Φi

k

]
.

(8)

For practical computation, we can use φi
k and di

k as a good
estimates for the quantities Φi

k and Di
k.

The following analysis assumes that the covariance Qi
k of

the kth range measurement in the ith pose can be found. It
can arise from Eq. (8), or from other considerations.

3 The Weighted Line Fitting Problem

This section describes the weighted line fitting problem
and its general solution. We first consider a set of range data
taken from a single pose. Section 5 considers how to “knit”
together line segments across multiple poses.

The range data from scan i is first sorted into subsets of
roughly collinear points using the well known Hough Trans-
form (see Section 4). These range measurements are uncer-
tain, as described in Section 2. We then define a candidate
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Figure 2: Geometry of candidate line and data errors

line L in polar coordinates as the set of points normal to the
vector (R, α)—see Fig. 2. The distance between the kth

range measurement and line L is the scalar distance as mea-
sured normal to the line (see Fig. 2).

δk = di
k cos(α − φk) − R (9)

Substituting Eqs. (3) and (4) into Eq. (9) and approximating
for small values of εφ and εd gives

δk = (Di
k + εd) cos(α − Φi

k − εφ) − R

' εd cos(α − Φi
k) + Di

kεφ sin(α − Φi
k) (10)

The goal of the line fitting algorithm is to find the line
L(R, α) that minimizes the errors δk in a suitable way over
the set of measurements. In our approach the contribution of

each of the virtual errors is weighted according to its mod-
elled uncertainty. We therefore derive the scalar covariance
of the scalar virtual error as follows:

Pk = E{δkδT
k } = E{εdεd} cos2(α − Φi

k)

+ E{εφεφ}(Di
k)2 sin2(α − Φi

k)

= σ2
d cos2(α − Φi

k) + σ2
φ(Di

k)2 sin2(α − Φi
k)

(11)

More generally, given a 2 × 2 symmetric covariance ma-
trix Qi

k to describe the uncertainty of the kth scan point, the
scalar covariance Pk takes the form:

Pk = Q11 cos2 α + 2Q12 sin α cosα + Q22 sin2 α. (12)

where Qij are the matrix elements of Qi
k.

Maximum Likelihood Formulation. We use a maxi-
mum likelihood approach to formulate a general strategy
for estimating the best fit line from a set of nonuniformly
weighted range measurements. Let L({δk}|L) denote the
likelihood function that captures the likelihood of obtaining
the errors {δi} given a line L and a set of points. If the
k = 1, . . . , n range measurements are assumed to be inde-
pendent (which is usually a sound assumption in practice),
the likelihood can be written as a product:

L({δk}|L) = L(δ1|L)L(δ2|L) · · · L(δn|L).

Recall that the measurement noise is assumed to arise from
zero-mean Gaussian processes, and that δk is a function of
zero-mean Gaussian random variables. Thus, L({δk}|L)
takes the form:

L({δk}|L) =

n∏

k=1

e−
1

2
(δk)T (Pk)−1δk

2π
√

det Pk

=
e−M

D
(13)

where M =
1

2

n∑

k=1

(δk)T (Pk)−1δk (14)

D =

n∏

k=1

2π
√

det Pk (15)

The optimal estimate of the displacement maximizes
L({δk}|L) with respect to line representation R and α. One
can use any numerical optimization scheme to obtain this
displacement estimate. Note however that maximizing Eq.
(13) is equivalent to maximizing the log-likelihood function:

ln[L({δk}|L)] = −M − ln(D) (16)

and from the numerical point of view, it is often preferable
to work with the log-likelihood function. Using the log-
likelihood formula, we can prove that the optimal estimate
of the robot’s translation can be found as follows [14].

Proposition 1 The weighted line fitting estimate for the
line’s radial position, R, is:

R = PRR

(
n∑

k=1

di
k cos(α̂ − φk)

Pk

)
(17)



where α̂ is the estimated orientation of the line, and:

PRR =

(
n∑

k=1

P−1
k

)−1

(18)

with Pk as in Eq. (11).

There is not an exact closed form formula to estimate α.
However, there are two efficient approaches to this problem.
First, the estimate of α can be found by numerically maxi-
mizing Eq. (13) (or Eq. (16)) with respect to α for a constant
R calculated according to Prop. 1. This procedure reduces
to numerical maximization over a single scalar variable α,
for which there are many efficient algorithms. Alternatively,
one can develop the following second order iterative solution
to this non-linear optimization problem:

Proposition 2 The weighted line fitting estimate for the
line’s orientation α is updated as α = α̂ + δα, where:

δα = −

∑n

k=1

(
bka

′

k
−akb

′

k

(bk)2

)

∑n
k=1

(
(a

′′

k
bk−akb

′′

k )bk−2(a
′

k
bk−akb

′

k)b
′

k

(bk)3

) (19)

with

ck = cos(α̂ − φk) sk = sin(α̂ − φk)

ak = (dkck − R̂)2 a
′

k = −2di
ksk(di

kck − R̂)

a
′′

k = 2(di
k)2s2

k − 2di
kck(di

kck − R̂)

bk = σ2
dc2

k + σ2
φ(di

k)2s2
k b

′

k = 2((di
k)2σ2

φ − σ2
d)cksk

b
′′

k = 2((di
k)2σ2

φ − σ2
d)(c2

k − s2
k) (20)

Using experimental data, this approximation agrees with the
exact numerical solution.

Prop.s 1 and 2 suggest an iterative algorithm for estimat-
ing displacement. First an initial guess α̂ for α is determined
(see Section 4 for details). The estimate R̂ is then computed
using Prop. 1. The estimate R̂ is next employed by Prop. 2
to calculate the current rotational estimate α̂. The improved
estimate α̂ is the basis for the next iteration. The iterations
stop when a convergence criterion is reached.

Letting δR = R − R̂, δα = α − α̂ (i.e, line parameter
error estimates), a direct calculation yields the following.

Proposition 3 The covariance of the line position is:

PL =

[
E{δR(δR)T } E{δR(δα)T }
E{δα(δR)T } E{δα(δα)T }

]

=

[
PRR PRα

PαR Pαα

]
(21)

with PRR as above in Eq. (18) and

PRα =
PRR

G
′′

T

n∑

k=1

(
2di

k sin(α − φi
k)

bk

)
(22)

Pαα =
1

(G
′′

T )2

n∑

k=1

(
4(di

k)2 sin2(α − φi
k)

bk

)
(23)

with

G
′′

T =

n∑

k=1




(
a

′′

kbk − akb
′′

k

)
bk − 2

(
a

′

kbk − akb
′

k

)
b
′

k

(bk)3




and the definitions from Eqs. (18) and (20).

See [14] for a detailed derivation.
Line Segments. The above method estimates the param-

eters R and α which define an infinite line. Once the opti-
mal infinite line has been found, the relevant line segment is
found by projecting the original range points into the optimal
line and trimming the line at the extreme endpoints.

4 Initial Estimates and Grouping

Our line fitting method assumes a set of range scan points
to be sampled from the same straight line and benefits from
an initial guess of the orientation of that line. Given a
raw range scan, we first need to detect collinear points and
roughly estimate the line through these points. Both these
requirements are met using the Hough Transform [13]. In
this general line finding technique, each scan point {di

k, φi
k}

is transformed into a discretized curve in the Hough space.
The transformation is based on the parametrization of a line
in polar coordinates with a normal distance to the origin, R,
and a normal angle, β.

R = dk cos(β − φk) (24)

Values of R and β are discretized with β ∈ {0, π} and
R ∈ {−Rmax,Rmax} where Rmax is the maximum sen-
sor distance reading. The Hough space is the array of dis-
crete cells, where each cell corresponds to a {R, β} value
and thus a line in the scan point space. For each scan point,
parameters R and β for all lines passing through that point
(up to the level of discretization) are computed. Then the
cells in Hough space which correspond to these lines are in-
cremented. Peaks in the Hough space correspond to lines
in the scan data set. When a cell in the Hough space is
incremented, the coordinate of the associated scan point is
stored. Hence, when a peak is determined, the set of points
that contributed to that line can easily be found. In this way,
we can sort range scans into collinear subsets of points and
determine an estimate for the line segment orientation. It is
important to choose a reasonable level of discretization to
effectively and efficiently divide a range scan into collinear



subsets. In our implementation we discretize β to a reso-
lution of one degree and R to five centimeters. It is gener-
ally better to establish too fine a discretization level rather
than too coarse, because though this may cause multiple line
segments to describe the same linear surface, these line seg-
ments will be subsequently merged. We can therefore end up
with relatively few line segments in our final representation,
while still maintaining fine line resolution where needed.

5 Merging Lines

This section describes how to merge line segments found
in the same scan, or across scans taken at distinct poses. This
merging allow compression and simplification of large maps
without sacrificing the precision or the knowledge of map
uncertainty which we gained from our line fitting algorithm.
We consider in detail the process of merging lines across two
pose data sets. Merging across multiple data sets is a natural
extension. The basic approach is simple. We first transform
the candidate line pairs into a common reference frame. We
are then able to compare the lines and determine whether
they are similar enough to merge using a chi-squared test.
Finally we use a maximum likelihood approach to determine
the best estimate of the line pairs to be merged.

We first outline methods for transforming both line coor-
dinates and the associated covariance matrix across poses.
Clearly if two lines are from the same pose, these transfor-
mations are not necessary and one can proceed directly to
the merge test. Consider Li

1 and L
j
2 found in scans taken at

poses i and j respectively.

Li
1 =

[
R

j
1

α
j
1

]
L

j
2 =

[
R

j
2

α
j
2

]

(25)

We assume that we have an estimate of the robot’s pose j

with respect to pose i defined as ĝij = [x, y, γ] and we also
have the uncertainty of this measurement Pij . If the mea-
surement ĝij is not independent of the range scan measure-
ments (eg. if scan matching is used to calculate ĝij) then
correlation terms need to be calculated that are specific to
the measuring technique used. See Appendix A for more
detail. For now we will assume that the measurement ĝij is
independent of the range scan measurements. To transform
the parameters of L2 from pose i to pose j we calculate:

Li
2 =

[
Ri

2

αi
2

]

=

[
R

j
2 + x cos(αj

2 + γ) + y sin(αj
2 + γ)

α
j
2 + γ

]
(26)

To transform the covariance of L
j
2 into the coordinate frame

of pose i we derive the following equation

P i
L2

= BP
j
L2

BT + KP ijKT (27)

with

B =

[
1 −x sin(αi

2) + y cos(αi
2)

0 1

]
(28)

K =

[
cos(αi

2) sin(αi
2) 0

0 0 1

]
(29)

and with P ij being the covariance of the pose transforma-
tion defined in Eq. (2), and P

j
L2 being the line uncertainty

defined in Eq. (21). See [14] for derivation details.
To determine whether a given pair of lines are sufficiently

similar to warrant merging, we apply a merge criterion based
on the chi-squared test. The coordinates and covariance ma-
trices of the two lines as found by our line fitting algorithm
are first represented with respect to a common pose i using
the above equations. We then apply the chi-squared test to
determine if the difference between two lines is within the
3 sigma deviance threshold defined by the combined uncer-
tainties of the lines. The merge criterion is

χ2 = (δL)T (P i
L1

+ P i
L2

)−1δL < 3 (30)

with

δL =

[
Ri

1 − Ri
2

αi
1 − αi

2

]

If this condition holds, then the lines are sufficiently similar
to be merged. We can derive the final merged line estimate
using a maximum likelihood formulation and can calculate
the final merged line coordinates Li

m and uncertainty P i
Lm

with respect to pose i as follows:

Li
m = P i

Lm

(
(P i

L1
)−1Li

1 + (P i
L2

)−1Li
2

)
(31)

P i
Lm

=
(
(P i

L1
)−1 + (P i

L2
)−1
)−1

(32)

6 Experiments

We implemented our method on a Nomadics 200 mo-
bile robot equipped with a Sick LMS-200 laser range scan-
ner. In our experiments, we used the values σd = 5 mm,
σφ = 10−4 radians obtained from the Sick LMS-200 laser
specifications.

Fig.s 3, 4, 5 show a sequence of increasingly complex
data sets that were gathered in the hallway outside of our
laboratory. Fig. 3 graphically depicts the results of fitting
lines to a single scan taken in the hallway. The left figure
shows the raw range data along with the 3σ confidence re-
gion calculated from our sensor noise model. The center fig-
ure shows the fit lines along with the 3σ confidence region
in R while the right figure shows the 3σ confidence region
in α. All uncertainty values have been multiplied by 50 for
clarity. From the 720 raw range data points our algorithm fit
8 lines. If we assume that a line segment can be represented
by the equivalent of two data points, we have effectively
compressed the data by 97.8%. This compression not only
reduces map storage space, but it can also serve to reduce
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covariances B: Fit lines and line uncertainties in R direction
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the complexity of any relevant algorithm (eg. scan match-
ing) which scales to the order of number of features. Unlike
other feature finders such as corner detectors, the lines ab-
breviate a large portion of the data set, so overall far less
information is lost in compression. (In the subsequent plots,
representations of uncertainties in α are omitted for clarity.)

Merging lines across scans further improves compression
of data. Fig. 4 graphically depicts the results of fitting lines
to scans taken at two poses in a hallway. The left figure
shows the raw range data, the center figure shows the lines
fit to the two scans, and the right figure shows the result-
ing merged lines. From the 1440 raw range data points our
algorithm fit 20 lines without merging, and 11 lines after
merging. The merging step compresses the data a further
45% for a total compression of 98.4% from the original data.
Note that two measurements of the same wall are merged
across the two scans. The final merged line is less uncer-
tain than each of the two individual measurements of the
line. Compression achieved by line fitting and merging is
equally pronounced in large data sets. Fig. 5 depicts the re-
sults of fitting lines scans taken at ten poses in the hallway.
As above, the left figure shows the raw range data, the center
figure shows the lines fit to the ten scans, and the right figure
shows the resulting merged lines. From the 7200 raw range
data points our algorithm fit 114 lines without merging and
46 lines after merging. The merging step here compresses
the data a further 60% for a total compression of 98.7% from

0 1 2
−8

−7

−6

−5

−4

−3

−2

−1

0

1
A

(m)
0 1 2

(m)

B

0 1 2
(m)

C

Figure 4: Range Data From Two Poses – A: Raw points and
selected point covariances B: Fit lines and line covariances
C: Merged lines and line covariances

the original data. Note that many of the jogs in the lower
portion of the hallway arise from recessed doorways, water
fountains, and other features. Clearly the level of compres-
sion depends upon the environment. Hallways will likely
have very high compression due to long walls that can be
merged over many scans. In more cluttered environments,
the compression may not be as high, but it can still be very
effective. Fig.s 6, 7 and 8 show the results of fitting lines to
range scans taken at ten poses in our laboratory. Fig. 6 shows
the raw scan points, Fig. 7 shows the fitted lines, and Fig. 8
shows the resulting merged lines. From the 7200 raw range
data points, the algorithm fit 141 lines without merging, and
74 lines with merging. The merging step compresses the
data a further 48% for a total compression of 97.9% from
the original data.

7 Conclusion

This paper outlined a statistically sound method to best fit
lines to sets of dense range data. Our experiments showed
significant compression in map representation through the
fitting and merging of these lines, while still maintaining
a probabilistic representation of the entire data set. Future
work includes implementation of SLAM and global local-
ization algorithms based on the extracted lines.
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A Line Merging Correlations
We look to analyze the covariance of range points in a dif-

ferent pose in order to expose the subtle couplings that can
occur when range scan point measurements are used both in
the pose displacement estimation and linefitting. The result-
ing formula can be used to build up more complex depen-
dencies. To start, let {uj

k}, k = 1, . . . , denote the range data
acquired in pose j. Let ĝij = (p̂ij , R̂ij) denote the estimate
of pose j relative to pose i. The true and estimated positions
of the kth range point in pose j, as seen by an observer in
pose i, are:

vi
k = pij + RijU j

k; v̂i
k = p̂ij + R̂iju

j
k

where it should be recalled that u
j
k = U j

k + δu
j
k, with δu

j
k

the uncertainty in the measurement of the kth scan point in
pose j. The error in the knowledge of the scan point is:

ṽi
k

4
= vi

k − v̂i
k = pij + RijUj

k − (p̂ij + R̂iju
j
k).
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Figure 6: Raw points and selected point covariances
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Figure 7: Fit lines and line covariances

Using the fact that ui
k = U i

k + δui
k and the relationship

R̂ij =

[
cos(θ̂ij) − sin(θ̂ij)

sin(θ̂ij) cos(θ̂ij)

]
' Rij − θ̃ijJRij (33)

we obtain:

ṽi
k = p̃ij + θ̃ijJRiju

j
k − Rijδu

j
k.

The covariance of this error is:

E[ṽi
k(ṽi

k)T ] = E[p̃ij p̃
T
ij ] + RijE[δuj

k(δuj
k)T ]

+ E[θ̃2
ij ]ZijkZT

ijk + E[p̃ij θ̃ij ]Z
T
ijk

+ ZijkE[θ̃ij p̃
T
ij ] − E[p̃ij(δu

j
k)T ]Rij − RijE[δuj

kp̃T
ij ]

− ZijkE[θ̃ij(δu
j
k)T ]RT

ij − RijE[δuj
k θ̃ij ]Z

T
ijk

(34)
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Figure 8: Merged lines and line covariances

where Zijk = JRijUj
k. Following the definitions of [3]

(Ppp = E[p̃ij p̃
T
ij ], Pθθ = E[θ̃ij θ̃ij ], and Ppθ = E[p̃ij θ̃

T
ij ])

we have

E[ṽi
k(ṽi

k)T ] = Ppp + RijQ
i
kRT

ij + PθθZijkZT
ijk + PpθZ

T
ijk

+ ZT
ijkPθp − E[p̃ij(δu

j
k)T ]Rij − RijE[δuj

kp̃T
ij ]

− ZijkE[θ̃ij(δu
j
k)T ]RT

ij − RijE[δuj
kθ̃ij ]Z

T
ijk

(35)

If there are no correlations between the range data in
pose j and the displacement estimate ĝij , then the terms
E[p̃ij(δu

j
k)T ], E[δuj

kp̃T
ij ], E[θ̃ij(δu

j
k)T ], and E[δuj

k θ̃ij ] are
zero. Else, these terms will be nonzero, and must be com-
puted if the fitted line is to be statistically sound.
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