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Abstract— Tracked mobile robots in the 20 kg size class are un-
der development for applications in urban reconnaissance. For ef-
ficient deployment, it is desirable for teams of robots to be able to
automatically execute path following behaviors, with one or more
followers tracking the path taken by a leader. The key challenges
to enabling such a capability are (1) to develop sensor packages
for such small robots that can accurately determine the path of the
leader and (2) to develop path following algorithms for the subse-
quent robots. To date, we have integrated gyros, accelerometers, com-
pass/inclinometers, odometry, and differential GPS into an effective
sensing package. This paper describes the sensor package, sensor
processing algorithm, and path tracking algorithm we have devel-
oped for the leader/follower problem in small robots and shows the
results of performance characterization of the system. We also docu-
ment pragmatic lessons learned about design, construction, and elec-
tromagnetic interference issues particular to the performance of state
sensors on small robots.
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I. INTRODUCTION

M
OBILE robots that are small and light enough to be
carried in a backpack (i.e. “packbots”) by an indi-

vidual have great potential to enhance the safety and ef-
fectiveness of urban reconnaissance and rescue operations.
The size and weight of a recent prototype of such a robot is
60� 50� 17 cm and 20 kg. [1] Teams of these robots can
be far more effective than individual robots for two reasons.
First, a single robot cannot carry all of the sensor and effec-
tor payloads required for many missions. Second, multiple
robots will often be necessary to cover multiple points of
observation.

The need for multiple robots raises the problem of how to
navigate them from the departure point to the objective with
minimal burden on the human operator. Operator involve-
ment is necessary to designate waypoints and intermediate
objectives for the first robot; however, it is desirable for the
rest of the robot team to automatically follow the path of
the leader, without necessarily maintaining visual contact
with each other.

Prior work on robot leader/follower behavior has used a
variety of approaches, including visual motion tracking of
the lead vehicle [2] and using INS/GPS systems to record
the path of the leader, which is then traversed by the fol-
lower using the same sensors [3]. Methods depending
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on visual contact do not meet the needs of our applica-
tion. Prior path following work based on INS/GPS has
all been done on much larger vehicles. Hence, one of the
main challenges for packbots has been to identify a sen-
sor suite that would enable path following within the size,
weight, power, and cost envelope of our vehicles. Other
challenges include coping with GPS dropouts in urban ar-
eas and under tree canopies, coping with obstacles that fall
within the positional uncertainty of the path following sys-
tem, and enabling path following through constrictions that
require greater positional accuracy than is available from
the INS/GPS sensors. An example of the latter is following
a path that leads through a culvert.

We are developing a leader/follower system that ad-
dresses all of the above challenges [4]. We have completed
a path following system based on a Kalman filter which in-
tegrates an IMU, differential GPS, compass/inclinometers,
and wheel encoder data. Obstacle avoidance is achieved
with an arbiter-based architecture that combines steering
votes from the path following behavior with steering votes
from a stereo vision-based obstacle avoidance behavior.

Section II describes the navigation sensors that we se-
lected and integrated into the robot. Section III describes
the structure of our pose estimation Kalman filter. Section
IV outlines the architecture of our leader/follower system
and describes our path following control algorithm. Exper-
imental results are shown in section V. We discuss the sig-
nificance of the results, highlight open issues, and outline
the extensions we have in progress in section VI.

Fig. 1. The packbot vehicle.



II. NAVIGATION SENSORS

The primary constraints for the navigation payload are
accuracy, size, and power: the sensors must fit within the
space and power budgets afforded by the chassis while de-
livering the resolution to reliably determine the position of
the robot. Since the packbot is an autonomous platform, all
perception, computation, and power resources are carried
on board. The packbot is built upon the Urban II platform
(shown in Figure 1) developed by iRobot Corporation. The
chassis is approximately 60cm long, 50cm wide and 17cm
tall with roughly 13,000cm3 of contiguous payload space.
A 20-cell NiCd battery pack provides a total energy storage
of 120Wh. Power consumption with the robot motionless
is approximately 75W, and the power required for driving
varies with the terrain. The robot and all subsystems must
be able to survive the shock of being thrown or dropped
modest distances.

Autonomous path following and generation requires that
both the leader and the follower have tight control over their
respective positional accuracy. The accuracy of the navi-
gation sensors directly limits the robot’s ability to follow a
path precisely. The accuracy limit and resolution is dictated
by the terrain and by the follower’s level of autonomy. If it
is desired to have a follower blindly weave through a series
of tightly spaced obstacles, i.e. trees, then the accuracy of
the estimated position needs to be high - roughly half the
width of the robot. On the other hand, if it is desired to
have a reactive follower weave through the same obstacles,
the accuracy requirements can be relaxed.

In order to meet the requirements of operating in such
varied and unstructured environments, a combination of
GPS and inertial sensors is used.

A. GPS Receivers

Several commercially available GPS receivers were con-
sidered. For this application, both the differential and the
real-time kinematic features are needed.

The NovAtel Millennium RT-2 was selected for the ini-
tial system and has performed well. We found that heat
generation and large turn-on transients (�5A) were a prob-
lem with this receiver. To solve these problems, we plan to
migrate to a card that uses less power.

B. Inertial Navigation Sensors

Different IMU packages have also been studied through-
out this program. At the start of the work, no integrated sys-
tem was available which would fit into the payload. There-
fore a system was built from separate components.

A TCM2-50 compass/inclinometers from Precision Nav-
igation provides compass heading and absolute tilt and roll
estimates. Three orthogonally mounted QRS11-200 rate
gyros from Systron Donner and an EGCS3 three-axis ac-
celerometer from Entran are used to measure angular rates
and inertial forces. Careful consideration has to be given

to the entire signal path from the sensor to the analog-
to-digital converter. Initially, excessive noise in the sig-
nal caused the perceived drift rate to increase dramatically.
Several steps were taken to reduce the noise including sep-
arating and isolating power supplies solely for the gyros
and accelerometers, isolating the power and signal traces
on the sensor and control board, shielding the signal traces,
and taking special care of the routing of the signal traces to
avoid cross-talk between the axes.

Since the beginning of the program, fully integrated
MEMS inertial measurement units have become available.
Their digital output eliminates the need for an analog-to-
digital converter and increases noise immunity. These sen-
sors are much smaller, requiring a half to a quarter of the
volume of conventional integrated systems. Additionally,
these units are being packaged with magnetometers so that
a complete Attitude Heading Reference System (AHRS)
solution is possible.

III. POSITION ESTIMATION

Precise localization is one of the main requirements for
the task of autonomous path following. The packbot mo-
bile robot is equipped with differential GPS (DGPS) that
provides position estimates with 2-20cm uncertainty un-
der favorable conditions. These uncertainties can become
much higher when operating near buildings or trees, which
occlude satellite signals making GPS navigation unreliable.
During GPS dropouts, the signals from the inertial sensors,
compass/inclinometers, and motor encoders have to be ap-
propriately combined so as to determine the location of the
robot until the next GPS update. By integrating accurate
estimates of its linear and rotational velocity the packbot
could potentially track its pose for a long period of time.
However the robot’s skid steering has inherent slippage
which makes the estimates based on the motor encoder sig-
nals untrustworthy, particularly rotational velocities.

Appropriate integration of the gyroscope signals (angu-
lar rates) provides estimates of the roll, pitch and yaw an-
gles that determine the attitude of the vehicle. A common
difficulty found in all approaches that rely on gyros for atti-
tude estimation is the low frequency noise component (also
referred to as bias or drift) that violates the white noise as-
sumption required for standard Kalman filtering. Inclusion
of the gyro noise model in a Kalman filter by suitably aug-
menting the state vector has the potential to provide esti-
mates of the sensor bias when the observability require-
ment is satisfied. The system becomes observable when ab-
solute orientation measurements are available. In the case
of the packbot, this information is provided by the com-
pass/inclinometers module. The inclinometers measure the
attitude of the robot with respect to the horizontal plane
while the compass provides a measurement of the direction
of the vehicle compared to the magnetic north.



A. Noise Model for the Systron Donner Quartz Gyro

In the information provided in [5] it is obvious that the
Systron Donner gyro does not have a stable bias. From
page 1-4: “Low Rate Application - These gyros showed
reasonable performance for rate scale factor stability but
would not be useful for applications where bias stability
was of high importance to meet mission requirements. The
bias changed significantly as the input rate was changing
making predictable bias compensation very difficult”.

Long term bias stability data were gathered to create a
stochastic model useful for attitude estimator performance
prediction. This model assumes that the gyro noise is
composed of 3 elements, namely: rate noise nr(t) (addi-
tive white noise), rate flicker noise nf (t) (generated when
white noise passes through a filter with transfer function
1=
p
s) and rate random walk nw(t) (generated when white

noise passes through a filter with transfer function 1=s).
The Power Spectral Density (PSD) of the gyro noise was
measured experimentally and the logarithmic plots of the
PSD with respect to frequency were used to fit the de-
scribed model. The intensities calculated (ignoring the
flicker noise) were: �r =

p
Nr = 0.009 (Æ=sec)=

p
Hz and

�w =
p
Nw = 0.0005012 (Æ=sec)

p
Hz.

Based on this model [6] the angular velocity ! is related
to the gyro output !m according to the equation:

! = !m � b� nr

E[nr(t)] = 0 (1)

E[nr(t)n
0

r
(t0)] = NrÆ(t � t0)

where b is the drift-rate bias and nr is the drift-rate noise as-
sumed to be a Gaussian white-noise process. The drift-rate
bias is not a static quantity but is driven by a second Gaus-
sian white-noise process, the gyro drift-rate ramp noise:

_b = nw

E[nw(t)] = 0 (2)

E[nw(t)n
0

w
(t0)] = NwÆ(t � t0)

These two noise processes are assumed to be uncorrelated
(E[nw(t)n

0

r
(t0)] = 0).

B. TCM2-50 Compass/Inclinometers Characterization

The TCM2 compass is comprised of 3 orthogonal mag-
netometers that measure the local intensity of the magnetic
field of the earth. This information combined with the incli-
nometers’ tilt angles - determined by the effect of the local
vector of gravity on the contained viscous fluid - provides
an absolute measurement of the attitude of the vehicle at
a rate of 16Hz. The expected accuracy is �1.5Æ for head-
ing and �0.4Æ for tilt. These measurements are processed
by the Kalman filter in order to estimate the gyroscopes’ bi-
ases and reduce their influence on the orientation estimates.

Since the compass is affected by local magnetic fields
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Fig. 2. Effect of track movement on compass heading.

present on the robot, it has to be calibrated in order to com-
pensate for static fields. However, such procedure cannot
deal with the dynamic fields produced by the metallic belts
inside the tracks of the robot. Experimental testing of the
compass while manually rotating the tracks has shown vari-
ances of over 130Æ (Figure 2). Now, nylon belted tracks are
used whenever possible in order to avoid this problem.

C. Kalman filter based attitude estimation

C.1 Dynamic Model Replacement

In our implementation of a Kalman filter observer which,
estimates the orientation of the robot, we employed sensor
modeling instead of dynamic modeling. The main reasons
for this are: (i) dynamic modeling would have to be redone
every time there is a modification to the robot, (ii) dynamic
model based observers require a large number of states that
increases the computational needs without producing supe-
rior results [7].1

C.2 Attitude kinematics and error state equations

The three-parameter Euler angle representation has been
used in most applications of the Kalman filter in robot lo-
calization [8], [9]. However the kinematic equations for
Euler angles involve non-linear and computationally ex-
pensive trigonometric functions. The computational cost
using quaternions is less than using Euler angles. It is also
more compact because only four parameters, rather than
nine, are needed. Furthermore in the Euler angle represen-
tation the angles become undefined for some rotations (the
gimbal lock situation) which causes problems in Kalman
filtering applications. Amongst all the representations for
finite rotations, only those of four parameters behave well

1The interested reader is referred to [14] or [13] for a detailed discussion
on the subject of sensor vs. dynamic modeling.



for arbitrary rotations [10].
The physical counterparts of quaternions are the rota-

tional axis n̂ and the rotational angle � that are used in the
Euler theorem regarding finite rotations. Taking the vector
part of a quaternion and normalizing it, we can find the ro-
tational axis right away, and from the last parameter we can
obtain the angle of rotation [11]. Following the notation in
[12] a unit quaternion is defined as:

q =

�
~q
q4

�
=

�
n̂sin(�)
cos(�)

�
(3)

with the constraint qT q = 1, n̂ = [nxnynz]
T is the unit

vector of the axis of rotation and � is the angle of rotation.
The rate of change of the quaternion with respect to time

is given by:

d

dt
q(t) =

1

2

(~!(t))q(t) (4)


(~!) =

�
[[~!]] ~!
~!T 0

�
; [[~!]] =

2
4 0 !3 �!2
�!3 0 !1
!2 �!1 0

3
5

where ~! =
~_� is the rotational velocity vector. At this point

we present an approximate body-referenced representation
of the error state vector. The error state includes the bias
error and the quaternion error. The bias error is defined as
the difference between the true and estimated bias.

�~b = ~btrue �~bi (5)

The quaternion error here is not the arithmetic difference
between the true and estimated (as it is for the bias error)
but it is expressed as the quaternion which must be com-
posed with the estimated quaternion in order to obtain the
true quaternion. That is:

Æq = qtrue 
 q�1
i
, qtrue = Æq 
 qi (6)

The advantage of this representation is that since the in-
cremental quaternion corresponds very closely to a small
rotation, the fourth component will be close to unity and
thus the attitude information of interest is contained in the
three vector component Æ~q where

Æq '
�
Æ~q
1

�
(7)

Starting from equations:

d

dt
qtrue =

1

2

(
~_�true)qtrue (8)

and
d

dt
qi =

1

2

(
~_�i)qi (9)

where ~_�true is the true rate of change of the attitude and
~_�i is the estimated rate from the measurements provided by
the gyros, it can be shown [13] that

d

dt
Æ~q = [[~!m]] Æ~q �

1

2
(�~b+ ~nr) ;

d

dt
Æq4 = 0 (10)

Using the infinitesimal angle assumption in Equation (3),
Æ~q can be written as

Æ~q =
1

2
Æ~� (11)

and thus Equation (10) can be rewritten as

d

dt
Æ~� = [[~!m]] Æ~� � (�~b+ ~nr) (12)

Differentiating Equation (5) and making the same assump-
tions for the true and estimated bias as in the previous sec-
tion (Equations (2) and (3)), the bias error dynamic equa-
tion can be expressed as

d

dt
�~b = ~nw (13)

Combining Equations (12) and (13) we can describe the
error state equation as

d

dt

"
Æ~�

�~b

#
=

�
[[~!m]] �I3�3
03�3 03�3

� "
Æ~�

�~b

#
(14)

+

�
�I3�3 03�3
03�3 I3�3

� �
~nr
~nw

�
or in a more compact form

d

dt
�x = F�x+ Gn (15)

This last equation describes the system model em-
ployed in the current Kalman filter implementation [13].
This estimator combines the gyroscopes angular rates
with the absolute orientation measurements from the com-
pass/inclinometers in order to estimate both the attitude
of the vehicle and the gyro biases. As shown in [14].
this estimator acts as a high pass filter on the gyro sig-
nals by filtering out the low frequency noise component
(bias) while weighing more their contribution during high
frequency motion when the compass/inclinometers are sus-
ceptible to disturbances. If absolute orientation measure-
ments are available continuously, the filter is capable of
continuously tracking the gyro biases. In our case the robot
uses the compass only when stopped, therefore the filter
updates its estimate of the bias (Figure 3) only intermit-
tently based on its effect on the attitude estimates during
the previous interval of motion. The resulting attitude es-
timates (Figure 4) are then combined with the translational
velocity measurements from the motor encoders to provide
position estimates in between GPS updates.2

2We are in the process of enhancing the current Kalman filter imple-
mentation so as to fuse data from the accelerometers and the GPS and
provide improved position estimates.
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Fig. 3. Bias Estimation (simulation results): The flat parts of the esti-
mate depict the constant bias assumption in the integrator. The sharp step
changes occur when absolute orientation measurements become available
(every 100sec).

IV. SYSTEM ARCHITECTURE AND LEADER FOLLOWER

CONTROL

A. System Architecture

The system architecture used to control the packbot is
designed to allow multiple behaviors to command the robot
simultaneously. The driving commands from these behav-
iors are arbitrated upon, and from them a final command
is composed. This allows several behaviors using multiple
sensors and imagers to work together effectively to carry
out the commanded mission goals (see Figure 5). The
navigation sensors are managed by device drivers which
pass data through a software message queue to a single
software task which carries out the necessary calculations.
This task runs the Kalman filter and position estimation al-
gorithms after each piece of sensor data comes in. It then
updates the current state of the robot in a shared memory
space where other tasks can access it. Currently the GPS
is used to determine the robot’s position both for recording
and following paths. However when the robot is indoors,
or when it drives into GPS-dropout areas, the position es-
timation is calculated with a simple interpolation using the
Kalman-filtered heading and a raw odometry estimate from
the wheel encoders.

The path recording and path following code, as well as
other software tasks, can access the latest robot position
and orientation estimates at variable rates and make de-
cisions accordingly. A software task monitors the robot’s
current position and records a 3-D point after a certain con-
stant offset has been passed thereby forming the robot’s
trail from successive points. The robot’s trail is accessed,
downloaded, and then edited using the Operator Control
Unit, a GUI running on a laptop that is used to control and
test the packbot. The modified or whole trail is sent to an-
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Fig. 4. Attitude Estimation (simulation results): The solid line represents
the actual orientation (yaw) of the robot, the dotted line shows the dead-
reckoned yaw estimates obtained by simply integrating the gyro signals,
and the dashed line corresponds to the Kalman filter estimates when com-
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Fig. 5. System Architecture.

other robot or back to the same packbot, which accepts the
trail and passes it to the path following module.

B. Path following control algorithm

Path following steering control is based on a carrot-
following approach. A set of subgoals is transmitted to the
follower vehicle. The follower vehicle uses the last two
subgoals to extend the path sequence backwards, as shown
in Figure 6. The follower vehicle then uses this extended
path segment to locate a carrot position that lies a looka-
head distance L away from the vehicle center. The carrot
position is updated every cycle by the path following algo-
rithm. At any given instant, the follower assigns the largest
weight to the arc that passes closest to the carrot.

The carrot is located by finding the intersection of a cir-
cle (centered at the vehicle center with radius L) and the



Fig. 6. Carrot Following Approach.

extended path segment. If there are two intersections, the
one beyond the lateral position is chosen. If there is no in-
tersection, the lateral position is chosen as the carrot. The
steering curvature that will move the vehicle center directly
over the carrot position is chosen as the commanded curva-
ture.

C. Pure Pursuit Controller

The authors have experimented with two controllers
that produce command curvatures: pure pursuit and
proportional-integral-derivative (PID) control. Pure pur-
suit has been widely used as a steering controller for au-
tonomous vehicles [15], [16]. Amidi and Thorpe [17] com-
pared pure pursuit with a quintic polynomial fit method and
a classic control theory approach. Ollero and Heredia [18]
analyzed the stability of the pure pursuit algorithm for path
followingat constant speed (3, 6, and 9 m/s) for straight and
constant curvature path sections, estimating the time lag
for computing, communications, and actuator delay. Kelly
[16] has described an adaptive pure pursuit controller, al-
lowing the look-ahead gain to increase as a function of the
lateral path error. Rankin [19] has evaluated a pure pursuit
controller, a PI controller, and a weighted pure pursuit/PI
controller.

The controlling equation for pure pursuit is shown in
Equation (16). kpure pursuit is the command curvature and
ycarrot is the y coordinate of the carrot position as mea-
sured in the vehicle coordinate system. Pure pursuit is a
proportional controller, where, ycarrot represents the cur-
rent error and (2=L2) represents the proportional gain. The
lookahead distance L should be appropriate for the mission
speed.

kpure pursuit =

�
2

L2

�
ycarrot (16)

D. PID Controller

The second method of steering control that was im-
plemented is a proportional-integral-derivative (PID) con-

troller, as applied to the error in the vehicle’s heading. The
idealized equation of a PID controller is shown in Equation
(17). PID control contains a term that is proportional to the
error, one that is proportional to the integral of the error,
and one that is proportional to the derivative of the error
[20].

kPID(t) = G

�
e(t) +

1

TI

Z
t

0

e(� )d� + TD
de(t)

dt

�
(17)

The integral term acts as a spring (in a spring-mass-damper
system) in that it eliminates steady state error. The deriva-
tive term acts as a damper. The parameters that are charac-
teristic to the system are the proportional gain G, the inte-
gral time TI , the derivative time TD, and the sampling time
T . For small sample times T , the idealized equation can be
written as a nonrecursive difference equation, as shown in
Equation (18).

kPID;n = G

"
en +

T

TI

n�1X
i=0

ei +
TD
T

(en � en�1)

#
(18)

The heading error en is calculated by finding the orienta-
tion of the vector from the vehicle’s control point to the tar-
get position with respect to the axis in the direction of the
vehicle’s current heading. A positive error results in a left
turn and a negative error results in a right turn. Equation
(18) can be rewritten as the difference equation

kPID;n = kPID;n�1 + q0en + q1en�1 + q2en�2 (19)

where,

q0 = G

�
1 +

TD
T

�
= gP +

gD
T

q1 = �G
�
1 + 2

TD
T
� T

TI

�
= �gP � 2

gD
T

+ gIT

q2 = G

�
TD

T

�
=

gD
T

The PID controller works to force the heading error to zero
so that the vehicle is always pointed towards the current
carrot position. The parameters gP , gI, and gD are respec-
tively proportional, integral and derivative gains. When
gD = 0, the PID controller is reduced to a proportional-
integral (PI) controller.

E. Combined Pure Pursuit/PID Control

Both the pure pursuit and PID methods of steering con-
trol have advantages and disadvantages. The pure pursuit
controller is easy to tune and performs well when the fol-
lower vehicle is started on or near the extended path seg-
ment. If the lateral path error is large, however, this method



can become unstable. Stability can be improved by using
an adaptive pure pursuit controller. With the adaptive ver-
sion, the look-ahead distance is a function of the lateral
path error. The adaptive controller, however, can cause a
significant portion of the path segment (traversed by the
leader vehicle) to be ignored by the follower vehicle.

The PID method is stable (when adequately tuned) over
the range of heading errors. This includes the scenario
where there is a large lateral path error. This controller
does, however, cause an inherent lateral path error when
traveling around curves. In an attempt to combine the de-
sirable features of both the standard pure pursuit and PID
controllers into a single controller, the output of each con-
troller is averaged, as shown in Equation (20). The arc
that is closest to this curvature is then assigned the largest
weight.

kcommand =
kpure pursuit + kPID

2
(20)

V. EXPERIMENTAL RESULTS

A. Indoor Testing

The path following algorithm is currently being run at
a rate of 10 Hz which is the same rate at which the po-
sition estimate is updated using either odometry or GPS
data. Due to the reporting speed of the inertial navigation
sensors, the Kalman filter updates the heading at over 256
Hz. During all tests the robot traversed the paths at a speed
of 50cm/sec. To provide enough detail to describe the path
without accumulating an unnecessary number of points, an
interval of approximately 20 cm between points was used
to record the robot’s trail.

Initially, several indoor runs were used to test the fol-
lower algorithm and tune its parameters. Figure 7 shows
a path recorded by the packbot and the three separate path
following runs carried out by the same robot using the dif-
ferent control methods (pure pursuit, PID, and the combi-
nation of the two). In the indoor tests no GPS data could
be received so all position estimates used the Kalman filter
heading and odometry from the wheel encoders. This also
means that only relative robot coordinates were known so
even though the start and finish of the runs are at the same
points in the graph, in actuality the robot was possibly start-
ing in very different locations.

The pure pursuit method tended to oscillate over the
path being followed more than the PID but it also managed
to stay closer to the path in general. The PID control kept
the robot’s heading going in a parallel direction with the
path but maintained a slight offset for longer period of time
than the pure pursuit control. Currently work is being done
to tune the PID controller to better suit the packbot system.
The average of the controller error was used as a numerical
measure of the performance of each algorithm across var-
ious runs. The simple combination of the two controllers
consistently reported the lowest controller-error averages.
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Fig. 7. Indoor Testings.

B. Outdoor Results

In outdoor runs the packbot again was used to trace a
path and then was given its own trail to follow. During
these tests the Kalman filter provided the robot’s heading
and the GPS gave position data. While in motion the com-
pass/inclinometers noise is higher and thus the Kalman fil-
ter relies more on the gyro package for heading approxima-
tion.

In Figure 9 a GPS dropout is indicated. When driving
under the obstacle, a small SUV, all GPS data was cut off
and the robot position estimator had to rely on the Kalman
filter heading and wheel odometry exclusively. Using this
method the recorded trail was interpolated through the GPS
dropout smoothly and the packbot was able to follow the
path up to, under, and past the obstacle without any no-
ticeable problems. The GPS data converged approximately
10-14 secs after leaving the dropout area at which point the
position estimator switched back to using it to report the
packbot’s location.

VI. SUMMARY AND EXTENSIONS

In summary, we have integrated three-axis gyros and
accelerometers, a compass/inclinometer package, track
odometry, differential GPS, and an indirect, error-state
Kalman filter into a sensor system for small robot position
estimation. We summarized problems that arose with these
sensors and the solutions we found. Our sensor survey in-
cluded integrated IMUs that will soon be on the market.
These are smaller than the combination of sensors used
here and have advertised performance specifications that
are at least as good as the sensors we use now; these IMUs
are attractive for future systems.

In the leader/follower behavior, we implemented three
versions of the path following controller: pure pursuit, PI,
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Fig. 9. Outdoor following with GPS dropout.

and an average of the two. Indoor and outdoor experiments
over up to roughly 40 meters showed good performance for
all three controllers, with maximum path deviations on the
order of 50 cm. This included segments where the path
went under vehicles that caused GPSs dropouts. The aver-
aging controller showed better error performance than ei-
ther pure pursuit or PI alone.

In future robot systems and experiments, position esti-
mation performance may be worse than reported here due
to larger areas of GPS dropout or the use of smaller, lower
cost GPS units with poorer precision. We are currently ex-
tending our system to include path smoothing to address
GPS dropouts and to include special-purpose landmark
recognition for path following through constricted areas of
known types, eg culverts and doorways. We are also pur-
suing more general outdoor mapping and landmark recog-
nition algorithms to further reduce the reliance on GPS.
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