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Abstract—This paper addresses the problem of visual-inertial
navigation when processing camera observations of both point
and line features detected within a Manhattan world. First,
we prove that the observations of: (i) a single point, and (ii)
a single line of known direction perpendicular to gravity (e.g.,
a non-vertical structural line of a building), provide sufficient
information for rendering all degrees of freedom of a vision-
aided inertial navigation system (VINS) observable, up to global
translations. Next, we examine the observability properties of the
linearized system employed by an extended Kalman filter (EKF)
for processing line observations of known direction, and show that
the rank of the corresponding observability matrix erroneously
increases. To address this problem, we introduce an elegant
modification which enforces that the linearized EKF system has
the correct number of unobservable directions, thus improving
its consistency. Finally, we validate our findings experimentally
in urban scenes and demonstrate the superior performance of
the proposed VINS over alternative approaches.

I. INTRODUCTION AND RELATED WORK

Current approaches for estimating the position and attitude
of a vehicle navigating in 3D rely on inertial measurement
units (IMUs) that provide rotational velocity and linear ac-
celeration measurements. However, when using commercial-
grade IMUs, the integration of the noise and bias in the inertial
measurements renders the resulting estimates unreliable even
after a short period of time. For this reason, most inertial
navigation systems (INSs) often rely on GPS to provide
periodic corrections in what is known as GPS-aided INS. In
many cases (e.g., indoors or within urban canyons), however,
the GPS signals are either unavailable or unreliable and thus
alternative means for aiding INS are necessary. Vision-aided
INS (VINS) employs cameras to extract motion (and often
structure) information from images of the surroundings of the
IMU-camera pair, necessary for providing periodic corrections
to the inertial estimates. Recent advances in VINS have led to
successful applications to ground [14, 7], aerial [20, 19], and
space exploration [15] vehicles.

Most work to date on VINS has focused on point features
that are tracked through sequences of images, or re-detected
when returning to the same location. Point features can be
found in most natural and man-made environments, and as
shown in [7, 10, 8], they provide sufficient information for
estimating all degrees of freedom (d.o.f.) of a VINS, except
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the global position and yaw. In the absence of alternative
sources of information, however, the yaw errors typically
grow linearly with time and can cause even faster increase
of the position errors. One way to bound the uncertainty
in the estimated heading is to use (straight) line features of
known direction. Lines,1 which are abundant in structured
environments, are typically aligned with gravity (e.g., vertical
edges of a building), or are perpendicular to it (e.g., edges
along the length of a corridor). An environment where most
lines are parallel to one of the three cardinal directions is often
referred to as a “Manhattan world”, and there exist numerous
algorithms for estimating the attitude of a camera based on
their observations [21, 3]. In particular, it is well known that
measurements of two sets of parallel lines (or equivalently of
two vanishing points) suffice for determining all three d.o.f.
of the camera’s attitude [3].

Employing line features for improving the accuracy of VINS
has received limited attention to date. In one of the earlier
works [16], it was shown that all 6 d.o.f. of a bias-free VINS
become observable when detecting lines of known direction
and position, and a Luenberger observer was proposed for
fusing them. The assumption of an a priori known map of
lines was removed in [9] where a single vanishing point,
corresponding to lines of known direction, was used along with
measurements of the gravity to determine the 3 d.o.f. attitude
of a static, bias-free, IMU-camera pair. More recently, line
observations have been employed for reducing attitude errors
by either requiring two or more vanishing points to completely
recover the camera’s global attitude (e.g., the loosely-coupled
filter of [17]), or by directly processing line measurements
along at least two directions [6]. In both cases, however, the
impact of additional information that may become available
through the observation of point features is not considered
when examining the conditions under which the IMU-camera’s
attitude becomes observable.

To the best of our knowledge, the only work that considers
both point and line observations for improving the accuracy
of VINS is that of Williams et al. [20]. It focuses, however,
only on vertical lines whose observations allow improving the

1Note that contrary to point features, edges and in particular straight lines,
can be extracted in a stable manner over different viewing angles. Moreover,
lines commonly appear at the occluding boundaries of a scene, and can be
tracked reliably as the scene changes, a case usually fatal for point-feature
tracking methods.



accuracy of the roll and pitch estimates (already observable
when detecting points) but provide no information about the
global heading. In contrast, we are interested in examining
the information available to a VINS when detecting points, as
well as lines aligned with any of the cardinal directions. In
particular, the main contributions of this paper are:
• We study the observability of a VINS that uses measure-

ments of both points and lines and prove that the observa-
tion of a single point and a single line of known direction
different than gravity, provide sufficient information for
rendering all d.o.f. of a VINS observable, up to global
translations.

• We improve the consistency of an extended Kalman filter
(EKF) that processes visual measurements of lines of
known direction, by ensuring that no information is ac-
quired along the unobservable directions of its linearized
system model.

• We provide a simple framework for incorporating mea-
surements of lines aligned with the cardinal directions
into existing VINS and experimentally demonstrate the
superior accuracy of the proposed system.

The remainder of this paper is structured as follows: In
Sect. II, we present the VINS system model as well as the
measurement model corresponding to lines of known direc-
tion. Sect. III studies the observability of a VINS employing
measurements of point features and lines of known direction.
Sect. IV introduces a method for improving the consistency
of the EKF when processing measurements to lines of known
direction, while Sect. V discusses the major components of the
proposed framework for exploiting urban regularities in VINS.
Sect. VI, presents the results of the experimental comparison
of the proposed approach against alternative vision-inertial
methods. Finally, Sect. VII summarizes the key findings of this
work and provides an outline of future research directions.

II. VINS STATE AND MEASUREMENT MODELS

In this section, we present the system model used for
state and covariance propagation based on inertial measure-
ments (Sect. II-A), and then describe the measurement model
for processing straight-line observations of known direction
(Sect. II-B).

A. IMU State and Covariance Propagation Model

The 19× 1 IMU state vector is:

xR =
[
I q̄TG bTg

GvTI bTa
GpTI

GfT
]T

(1)

where I q̄G(t) is the quaternion which represents the orientation
of the global frame {G} in the IMU frame {I}. The position
and velocity of the IMU frame in the global frame are denoted
by GpI(t), and GvI(t), and bg(t), ba(t) are the gyroscope and
accelerometer biases, while Gf is a mapped feature.

The system model is (see [18]):
I ˙̄qG(t) = 1

2
Ω(Iω(t))I q̄G(t),GṗI(t) = GvI(t), (2)

Gv̇I(t) = Ga(t), ḃg(t) = nwg(t), ḃa(t) = nwa(t),G ḟ(t) = 0 (3)

where Iω and Ga are the rotational velocity and linear
acceleration, respectively, while nwg and nwa(t) are the white-
noise processes driving the IMU biases, and

Ω(ω) ,

[
−bω×c ω
−ωT 0

]
, bω×c ,

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

.

The gyroscope and accelerometer measurements are:

ωm(t) = Iω(t) + bg(t) + ng(t) (4)

am(t) = C(I q̄G(t)) (Ga(t)− Gg) + ba(t) + na(t). (5)

where C(q̄) is the rotation matrix corresponding to the quater-
nion q̄, Gg is the gravitational acceleration expressed in {G},
and ng(t) and na(t) are white-noise processes contaminating
the corresponding measurements.

Following existing literature on inertial navigation [15],
we obtain the continuous-time linearized system model. By
defining the 18× 1 error-state vector as:2

x̃ =
[
IδθTG b̃Tg

GṽTI b̃Ta
Gp̃TI

Gf̃T
]T
, (6)

the continuous-time IMU error-state equation becomes:

˙̃x(t) =

[
Fc(t) 0

0 0

]
x̃(t) + G(t)n(t) (7)

= F(t) x̃(t) + G(t)n(t) (8)

where G(t) is the input noise matrix [5], and Fc is the error-
state transition matrix:

Fc =


−bω̂(t)×c −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG(t))bâ(t)×c 03 03 −CT (I ˆ̄qG(t)) 03

03 03 03 03 03

03 03 I3 03 03


with â(t)=am(t)−b̂a(t), and ω̂(t)=ωm(t)−b̂g(t).
The discrete-time state transition matrix from time t1 to tk,

Φk,1, is the solution to the matrix differential equation Φ̇k,1 =
F (tk) Φk,1, Φ1,1 = I18 and has the following structure [4]:

Φk,1 =



Φ
(1,1)
k,1 Φ

(1,2)
k,1 03 03 03 03

03 I3 03 03 03 03

Φ
(3,1)
k,1 Φ

(3,2)
k,1 I3 Φ

(3,4)
k,1 03 03

03 03 03 I3 03 03

Φ
(5,1)
k,1 Φ

(5,2)
k,1 δtkI3 Φ

(5,4)
k,1 I3 03

03 03 03 03 03 I3


(9)

where δtk = (tk − t1). The specific elements of Φk,1, which
we will employ later on, for the observability analysis are
given by [4]:

Φ
(1,1)
k,1 = C (Ik q̄I1) (10)

Φ
(1,2)
k,1 = −

∫ tk

t1

C (Ik q̄Iτ ) dτ. (11)

2For the IMU position, velocity, and biases, we use a standard additive
error model (i.e., x̃ = x − x̂ is the error in the estimate x̂ of a random
variable x). To ensure minimal representation for the covariance, we employ
a multiplicative attitude error model where the error between the quaternion
q̄ and its estimate ˆ̄q is the 3× 1 angle-error vector, δθ, implicitly defined by
the error quaternion δq̄ = q̄ ⊗ ˆ̄q−1 '

[
1
2
δθT 1

]T , where δq̄ describes
the small rotation that causes the true and estimated attitude to coincide.



Fig. 1: The geometric constraint employed for deriving an inferred
measurement model in (17).

B. Measurement Model

Due to space limitations, we omit the description of the
measurement model and the corresponding observability ma-
trix for point features, since this has been investigated thor-
oughly in existing literature (see [15, 8] and references there-
in). Instead we hereafter focus on the measurement model,
corresponding to observations of lines of known direction.

For simplicity, we assume that the IMU frame of reference
{I} coincides with the camera frame of reference3. The optical
center of the camera {I}, together with the 3D line l, define
a plane π in space. Let O denote the principal point of the
image plane π′. The image sensor captures the intersection
line l′ of the plane π and π′, and parameterizes it by an angle
φ and distance ρ (see Fig. 1).

A point p with homogeneous image coordinates pT =[
u v 1

]
, lies on the line l′ if it satisfies the equality:[

cosφ sinφ −ρ
]
p = 0. (12)

Let Iu =
[
sinφ − cosφ 0

]T
be a (free) unit vector along

the line l′ on the image plane and let P denote the point
on l′ that is closest to O. From Fig. 1, the vectors Iu and
IP = IO+OP =

[
ρ cosφ ρ sinφ 1

]T
define the plane π.

The unit vector In, perpendicular to the plane π, is:

In =
IP × Iu

||IP × Iu||2
=

1√
1 + ρ2

[
cosφ sinφ −ρ

]T
. (13)

So as to couple the VINS state with the known line direction
Gl, we formulate the following geometric constraint:

h(x, In) = InTC(I q̄G)Gl = 0 (14)

which captures the fact that the line direction Gl, expressed
in the IMU frame {I}, lies in the plane π, and hence
is perpendicular to the normal In. In practice, the camera
measures4

z =
[
φ ρ

]T
+ ξ (15)

where ξ follows a zero-mean Gaussian distribution
N (02×1,Rφρ) and represents the noise induced by the

3In practice, we perform IMU-camera extrinsic calibration following the
approach of [12].

4We estimate φ and ρ, and their associated covariances by fitting a straight
line to points that belong to an image edge.

camera sensor and the line extraction algorithm. The effect
of ξ on h(x, In), denoted by w can be approximated through
linearization as:

w ≈ A1×3B3×2ξ (16)

where A = ∇Inh and B =
[
∇φIn ∇ρIn

]
. Hence, w

can be approximated by a zero-mean Gaussian distribution
N (0, σ2), σ2 = ABRφρB

TAT .
Using the above noise parameterization, we arrive at the

following inferred measurement model that couples the mea-
surement of line l at time-step tk, with the VINS state vector,
xk:

zl,tk = h(xk,
Ikn) + wk = IknTC(Ik q̄G)Gl + wk. (17)

The measurement Jacobian of line l, at time-step tk, takes the
form:

Hl
k =

[
IknT bC(Ik q̄G)Gl×c 01×15

]
. (18)

III. OBSERVABILITY ANALYSIS

In this section, we study the observability properties of a
VINS observing a single point feature and a line of known
direction, over k time steps. The observability matrix M, of
the linearized VINS, can be partitioned in two sub-matrices
(see (19)), corresponding to measurements of a point feature
and a single line of known direction, respectively:

M =

Mf

—
Ml

 =



Hf
1

Hf
2Φ2,1

...
Hf
kΦk,1

—
Hl

1

Hl
2Φ2,1

...
Hl
kΦk,1


. (19)

As it has been recently shown [5], the right nullspace of Mf ,
is spanned by:

Nf =


03 C (I1 q̄G) Gg
03 03×1
03 −bGvI1 ×cGg
03 03×1
I3 −bGpI1 ×cGg
I3 −bGf ×cGg

 =
[
Nt,1 | Nr,1

]
. (20)

Notice that the three directions Nt,1 correspond to global
translations of the platform and the observed feature, while
Nr,1, describes rotations around the gravitational acceleration
vector, Gg. As we show in Appendix A, the right nullspace of
Ml, is given by:

Nl =

C (I1 q̄G) Gl 03×12
03×1 03×12
012×1 I12×12

 =
[
Nl,(:,1) Nl,(:,2:13)

]
.

(21)



Hence, the right nullspace M is:

null(M) = range(Nf ) ∩ range(Nl). (22)

The subspace range(Nf )∩range(Nl) can be parameterized as:

NfNα = NlNβ (23)

for full column rank matrices Nα, Nβ . From (23), we get:[
Nf | −Nl

] [Nα

Nβ

]
︸ ︷︷ ︸

∆

= 0. (24)

Hence ∆ is the right nullspace of
[
Nf | −Nl

]
, which is:

∆ =





I3
01×3
01×3
03

03

I3
I3


, if Gl 6‖ Gg



I3 03×1
01×3 1
01×3 γ
03 −bGvI1 ×cGg
03 03×1
I3 −bGpI1 ×cGg
I3 −bGf×cGg


, otherwise.

where γ is a scalar such that Gg = γGl. After recovering Nα,
we get the span of range(Nf ) ∩ range(Nl) as:

null(M) = NfNα =

{ [
Nt,1

]
if Gl 6‖ Gg[

Nt,1 | Nr,1

]
otherwise.

In summary, we have shown that observations of a single point
feature and a single 3D line of known direction, different from
gravity, provide enough information, for rendering all degrees
of freedom of a VINS observable, up to the global translations
of the observed feature and the IMU-camera platform.

IV. CONSISTENT EKF UPDATES FOR
LINES OF KNOWN DIRECTION

As defined in [1], a state estimator is consistent if the
estimation errors are zero-mean and have covariance smaller
than or equal to the one calculated by the filter. Unfortunately,
processing observations of lines of known direction using an
EKF can lead to injection of spurious information and hence
inconsistencies.

As we show in Appendix A, for the true linearized sys-
tem, the direction corresponding to rotations around l is
unobservable and the observability matrix Ml is of rank 5.
However, when the system and measurement Jacobians are
evaluated at the current state estimates, the corresponding
observability matrix M̂l becomes of rank 6. This causes the
EKF to erroneously perceive the direction corresponding to
rotations around the known line l as observable and decrease
its uncertainty, causing estimator inconsistency. We hereafter

examine this problem in more detail and propose a simple, yet
powerful, method for addressing it.

Consider a system observing a single line of known direc-
tion l over k time-steps, t1, . . . , tk. For the linearized system,
employed by the EKF the first row of the observability matrix
M̂l, takes the form:5

M̂l
1 =

[
I1nT bC (I1|0 q̄G) Gl×c 01×3 01×12

]
(25)

while its k − th row has the form:

M̂l
k =

[
IknT bC (Ik|k−1 q̄G) Gl×cΓ̂k Ek 01×12

]
. (26)

where:

Γ̂k = Φ
(1,1)
k|k−1,k−1|k−1 . . .Φ

(1,1)
2|1,1|1 (27)

= C
(
Ik|k−1 q̄Ik−1|k−1

)
. . .C

(
I2|1 q̄I1|1

)
and Ek is a time-varying full-rank matrix that does not affect
the present analysis.

From the structure of the observability matrix M̂l, the
directions Nl,(:,2:13) (see (21)) are independent of the current
state estimate and satisfy M̂l

kN
l,(:,2:13) = 0, for any k.

However, the same is not true for the direction Nl,(:,1) which
corresponds to rotations around the line l.

Specifically, at time-step t1, the direction Nl,(:,1) is given
by:

N̂
l,(:,1)
1|0 =

C (I1|0 q̄G) Gl
03×1
012×1

 . (28)

For M̂l
kN̂

l,(:,1)
1|0 = 0 to hold, we would need:

IknT bC (Ik|k−1 q̄G) Gl×cΓ̂kC (I1|0 q̄G) Gl = 0, ∀ k (29)

which in general does not hold, for the Γ̂k in (27) and leads
to injection of spurious information. To address this problem,
we seek a modified Γ?k such that:

Γ?kC (I1|0 q̄G) Gl = C (Ik|k−1 q̄G) Gl. (30)

One possible solution, for (30), is to evaluate Φ(1,1), using
the propagated orientation estimates, i.e.,

Φ
?(1,1)
k|k−1,k−1|k−1 = C

(
Ik|k−1 q̄Ik−1|k−2

)
. (31)

In that case, the k− th row of the observability matrix would
include a matrix Γ?k such that:

Γ?k = C
(
Ik|k−1 q̄Ik−1|k−2

)
. . .C

(
I2|1 q̄I1|0

)
(32)

which satisfies (30).

V. VINS IN AN URBAN SCENE ALIGNED WITH GRAVITY

We make the assumption that we navigate in an environ-
ment whose lines are predominantly mutually orthogonal and
aligned with the gravitational field (i.e., parallel or perpendic-
ular to the gravity vector). After initializing the roll and pitch
angles w.r.t. a global frame {G}, whose z-axis is parallel to
gravity, finding the initial yaw is achieved through the process
described hereafter.

5Ik|k−1 denotes the estimate for frame {I} at time-step k, utilizing all
available inertial measurements and line observations only up to time-step
k − 1.



A. Yaw Initialization

Firstly, we employ a RANSAC-based vanishing point esti-
mator that uses triplets of lines for generating hypotheses of
all three orthogonal vanishing points at once [13]. We prune
these hypotheses, by keeping the one that corresponds to a
rotational matrix with roll and pitch angles closest to those
estimated by the filter. Following this method, we define a
frame {B} (corresponding to the building) whose cardinal
axes are aligned with the structural lines of the scene. Next,
we estimate the yaw angle, θ, between frames {G} and {B}.
As an example, consider N observations, ni, i = 1 . . . N ,
of lines parallel to the direction e1 =

[
1 0 0

]T
of the

building. From these measurements, we arrive at the following
least squares problem:

min
θ

J(θ) (33)

J(θ) =

N∑
i=1

nTi C(I q̄G)

 cos(θ) sin(θ) 0
− sin(θ) cos(θ) 0

0 0 1

 e1

2

After defining,

ū =

[
cos(θ)
sin(θ)

]
, and Π =

1 0
0 −1
0 0

 (34)

we can re-arrange J(θ) as,

J(ū) =

N∑
i=1

(
nTi C(I q̄G)Πū

)2
= ūT ΠTC(I q̄G)T

N∑
i=1

(
nin

T
i

)
C(I q̄G)Π︸ ︷︷ ︸

S

ū (35)

When ūT ū = 1, (35) corresponds to the Rayleigh quotient of
the matrix S and is minimized for a ū∗ equal to the eigenvector
corresponding to the minimum eigenvalue of S. Hence, we
recover θ, as: [

cos(θ)
sin(θ)

]
= ±ū∗ (36)

Note, that this procedure takes place once, at the initializa-
tion of the filter, so as to disambiguate the cardinal directions
of the building. Hereafter, we assume that the cardinal axes
of the frame {G} are parallel with the cardinal axes of the
building.

B. Line Classification

After we perform gradient edge detection using the Canny
Edge detector [2] and extract straight lines using OpenCV’s
probabilistic Hough transform [11], we need to classify
whether a line is parallel to one of the three cardinal directions,
ej , j = 1 . . . 3:

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 . (37)

Fig. 2: Lines corresponding to the building’s x cardinal axis,
classified using a RANSAC-based vanishing point estimator, for
performing heading (yaw) initialization.

Fig. 5: The hardware setup comprises of a miniature monochrome
Point Grey Chameleon camera recording images at 7.5 Hz, and a
rigidly attached InterSense NavChip IMU operating at 100 Hz. A
coin (US dime, radius 1.8 cm) is included as a size reference.

For the proposed VINS, this classification problem can be
solved reliably, since absolute roll, pitch, and yaw angles are
observable (see Sect. III). We achieve this, by taking advantage
of the current filter’s state estimate xk|k−1 and covariance
Pk|k−1, as described in Algorithm 1.

Algorithm 1: Line Classification using state and covari-
ance estimates at time-step tk, over N measurements.

for Line measurement i = 1 . . . N do
for Cardinal Direction j = 1 . . . 3 do

Compute residual rji = −I,knTi C(Ik q̄G)Gej ;
Compute measurement Jacobian H

ej
k using (18);

Perform 1 d.o.f. χ2 Mahalanobis distance test:;

εi,j =
(rji )

2(
H

ej
k Pk|k−1H

ej
k

T
+σ2

i

) ;

end
Keep measurement i if it succeeded only a single
hypothesis test;

end

VI. EXPERIMENTAL RESULTS

Our experimental setup comprises a PointGrey Chameleon
camera6 and a Navchip IMU7, which are rigidly attached
on a light-weight (100g) platform (see Fig. 5). IMU signals

6http://www.ptgrey.com
7http://www.intersense.com



Fig. 3: Overhead x-y view of the 3-D trajectory, projected on the building’s floor plans. The Std-VINS (–4–) violates the correct observability
properties and hence results in an infeasible trajectory, (i.e., passing through walls), the OC-VINS (–×–) remains consistent with the ground
truth floor drawings, however it cannot recover from its accumulated yaw errors. In contrast, the OC-VINS and Std-VINS augmented with
observations of lines of known directions (–◦– and —– ), are able to both correct their yaw (heading) error and remain consistent with the
floor plans.

Visual Inertial Odometry Final Error (m) Pct. (%)
Std-VINS 0.57 0.40
OC-VINS 0.80 0.56

Std-VINS w/ Lines 0.47 0.33
OC-VINS w/ Lines 0.31 0.22

Fig. 4 & TABLE I: Zoom-in to narrow paths of the trajectory (Left and Middle). The width of the narrow corridor (at the left) is
approximately 1.5 m, emphasizing the fact that the filters which do not employ line measurements result in infeasible trajectories. (Right)
Final position error reduction, when visual observations of lines are employed. Note that the proposed method (OC-VINS w/ Lines) achieves
approximately 50% final position error reduction compared to Std-VINS.

were sampled at a frequency of 100 Hz while camera images
were acquired at 7.5 Hz. The experiment was conducted in
a corridor scene dominated by orthogonal lines, aligned with
or perpendicular to gravity, and for which the floor plans are
available but used only for assessing accuracy.

In our experiments we compared the performance of the
following VINS algorithms:

• The Multi-state constraint Kalman filter (MSC-KF)
of [14] using only observations of points (referred to as
Std-VINS w/o lines in Fig. 3). The main advantage of
the MSC-KF is that it processes all geometric constraints
induced by camera measurements of points features, over
a finite window of image frames, with computational
complexity only linear in the number of observed fea-
tures. This is accomplished by not including a map of
the environment in the state vector, but rather using all
available information for motion estimation.

• The MSC-KF modified to also process visual observa-
tions of lines of known direction (referred to as Std-VINS
w/ lines in Fig. 3).

• The Observability-Constraint OC-MSC-KF of [8] using
only observations of points (referred to as OC-VINS w/o

lines in Fig. 3). As explained in [8], due to estimation
errors, the linearized error-state model of the MSC-KF
erroneously perceives rotations about the gravity as ob-
servable, thus leading to inconsistency. The OC-MSC-KF
addresses this problem by appropriately modifying the
corresponding Jacobians and ensuring that no information
from the measurements is injected along the direction of
rotations about gravity.

• The proposed OC-MSC-KF where observations of points
as well as of lines of known directions are used (referred
to as OC-VINS w/ lines in Fig. 3). The main difference
with the OC-MSC-KF of [8] is that the system Jacobians
are appropriately modified (as explained earlier) to ensure
that no information about rotations around the detected
line of known direction is acquired by the filter.

The results described hereafter are from an experiment
where a person holding the IMU-camera pair traversed a path
of 144 m and returned back to his initial position for providing
an estimate of the final position error.

As shown in Fig. 3, the Std-VINS w/o lines erroneously
perceives the global attitude as observable and results in
infeasible trajectories that violate the building’s floor plan (see



Fig. 3). In contrast, the OC-VINS w/ lines (see Sect. V) is
able to recover from heading errors and also remain consistent
with the ground-truth floor plans. As depicted in Table I,
the proposed method achieves approximately 45% position
accuracy improvement when compared to the Std-VINS w/o
lines. Furthermore, the superior performance of OC-VINS w/
lines when compared to the Std-VINS w/ lines (approximately
34%), underlines the negative impact of a mismatch between
the observability properties of the true system and the one
employed for estimation purposes, as discussed in Sect. IV.

VII. CONCLUSION

In this work, we presented an extended Kalman filter-based
algorithm for processing observations of structural lines, so
as to improve the accuracy of vision-aided inertial navigation
systems (VINS), when operating in man-made environments.
Our observability analysis showed that measurements, across
time, of a single point feature and a single 3D line of known
direction different than gravity, provide sufficient information,
for rendering all degrees of freedom of a VINS observable,
up to global translations of the sensor platform. Leveraging
the results of our observability analysis, we introduced a
method for improving the consistency of an EKF estimator
that processes measurements of such lines, by ensuring that no
spurious information (i.e., rotations around the observed line)
is acquired by the estimator. Finally, we developed a simple
framework for incorporating camera observations of structural
lines into existing VINS algorithms and demonstrated, through
experimental validation, the superior accuracy of the resulting
VINS. In our future work, we aim at the improvement of
VINS’ accuracy, by further taking advantage of structural con-
straints present in urban environments, such as the existence
of mutually orthogonal or parallel planes.

APPENDIX A

In this section, we study the observability properties of
a VINS, observing a single line Gl of known direction.
The observability matrix Ml, corresponding to the linearized,
around the true state estimates, system is given by:

Ml =


Hl

1

Hl
2Φ2,1

...
Hl
kΦk,1

 =
[
Ml,(1:6) 0k×12

]
. (38)

In what follows, we will prove that Ml has (for generic
rotations of the sensor platform) rank 5. Substituting the
analytic expressions for Φk,1 (See (9) and (10) in Sect. II)
and Hl

k (See (18) in Sect. II-B), we arrive at:

Ml,(1:6) =
[
Ml,(1:3) Ml,(4:6)

]
(39)

Ml,(1:3) =


I1nT bI1 l×c

I2nT bI2 l×cC (I2 q̄I1)
...

IknT bIk l×cC (Ik q̄I1)

 (40)

Ml,(4:6) =


01×3

−I2nT bI2 l×c
∫ t2
t1

C (I2 q̄Iτ ) dτ
...

−IknT bIk l×c
∫ tk
t1

C (Ik q̄Iτ ) dτ

 . (41)

Since the last 12 columns of Ml are always zero, we can drop
them and study the right nullspace corresponding to its first 6
columns. Let us denote:

n̆k = C (Gq̄Ik) Ikn (42)

Bk =

∫ tk

t1

C (Gq̄Iτ ) dτ. (43)

We can write:

Ml,(1:6) =


n̆1

T bGl×cC (Gq̄I1) 01×3
n̆2

T bGl×cC (Gq̄I1) −n̆T2 bGl×cB2

...
...

n̆k
T bGl×cC (Gq̄I1) −n̆Tk bGl×cBk

 . (44)

For finding the nullspace of Ml,(1:6), we seek to determine
vectors α, β ∈ R3, such that:

Ml,(1:6)

[
α
β

]
= 0 (45)

which is a system of k equations in α, β, for any time steps
t1 . . . tk. For the first equation to hold, we can enumerate the
possible solutions for α, by α1...4.

n̆1
T bGl×cC (Gq̄I1)α = 0 =⇒ (46)

α1 = C (I1 q̄G) Gl, or (47)
α2 = C (I1 q̄G) n̆1, or (48)
α3 = 0, or (49)
α4 = ε1α1 + α2 (50)

where ε1 can be any scalar different than 0. For cases 1 and
3, the rest of the k − 1 equations take the form:n̆T2 bGl×cB2

...
n̆Tk bGl×cBk

β = 0. (51)

Since Bk is always full-rank for any k, this would require:

∃β ∈ R3, s.t. Bkβ = Gl, ∀ k (52)

which for generic rotations of the platform, has a solution only
for β = 0. While for cases 2 and 4:n̆T2 bGl×cB2

...
n̆Tk bGl×cBk

β =

n̆2
T bGl×cn̆1

...
n̆k

T bGl×cn̆1

 . (53)

Similarly to the previous case, since Bk is always full-rank
for any k, this would require:

∃β ∈ R3, s.t. Bkβ = n̆1,∀k (54)



which for generic rotations of the platform, has no solution.
This concludes our proof that the right nullspace of Ml, is:

Nl =

C (I1 q̄G) Gl 03×12
03×1 03×12
012×1 I12×12

 . (55)
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