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Abstract— This paper compares the performances of several al-
gorithms that address the problem of Simultaneous Localization
and Mapping (SLAM) for the case of very small, resource-limited
robots. These robots have poor odometry and can typically
only carry a single monocular camera. These algorithms do not
make the typical SLAM assumption that metric distance/bearing
information to landmarks is available. Instead, the robot registers
a distinctive sensor “signature”, based on its current location,
which is used to match robot positions. The performances
of a physics-inspired maximum likelihood (ML) estimator, the
Iterated form of the Extended Kalman Filter (IEKF), and a
batch-processed linearized ML estimator are compared under
various odometric noise models.

I. I NTRODUCTION

Spatial reasoning algorithms used for solving the Simulta-
neous Localization and Mapping (SLAM) problem for mobile
robots typically require the use of fairly good odometric
estimates and/or accurate range sensors. Very small robots
such as the Minnesota Scout [1], shown in Figure 1, have very
restricted sensing and very poor odometry. The Scout only has
a single monocular camera whose video must be broadcast to
a nearby workstation for processing. Robot control is achieved
with a wireless proxy-processing scheme whereby the decision
processes are run on the workstation.

Fig. 1. A Scout robot with an upward-facing Omnitech 190◦ fisheye lens.
The lens provides 360◦ horizontal field of view around the robot, effectively
functioning as an omnicamera. The robot is11 cm long and4 cm in diameter.

In previous work, we proposed a modification to the
standard SLAM algorithm in which we relax the assump-
tion that the robots can obtain metric distance and/or bear-
ing information to landmarks. In this approach, we obtain
purely qualitative measurements of landmarks where a location
“signature” is used to match robot pose locations. In this
method, landmarks correspond to sensor readings taken at
various (x, y) positions along the path of the robot. This is
a divergence from most SLAM approaches where landmarks
represent specific objects of a known type in the environment
such as edges, corners, and doors. We hereafter compare
and contrast previously proposed solutions to this problem
that involved a heuristic physics-inspired maximum likelihood
(ML) method [2], as well as an Iterated Extended Kalman
Filter (IEKF) method [3].

In this paper, we propose a batch-processed linearized
ML algorithm which addresses some of the shortcomings of
the previously proposed physics-based and Extended Kalman
filter models. Unlike the physics-based heuristic method, the
proposed method explicitly reasons about the uncertainty in
the sensor readings and determines the most likely path of the
robot using all of the available sensor data at the end of a
lengthy and circuitous path. Additionally, this method iterates
over all of the robot’s data at once rather than in an on-line
fashion like the IEKF. This tends to produce robust estimates
as it is capable of handling the nonlinearities in the system in
an iterative and more robust fashion. Experimental results are
described which show that this method produces more accurate
position estimates than either of the two proposed methods for
this problem.

II. RELATED WORK

Physics-based ML estimators that involve spring dynamics
have been used quite effectively to find minimum energy
states in metric/topological map structures [4] as well as
relative robot poses [5]. The Extended Kalman Filter has been
used for localizing [6] and performing SLAM [7] on mobile
robots for at least a decade. Our approach differs from these
estimators in that we do not have the ability of resolving
specific geometric information about the landmarks the robot
observes in its environment. Instead, landmark positions are
explicitly coupled to the position of the robot.

Bayesian methods have also been used for mobile robot
localization and mapping [8] where the modes of arbitrary



robot pose distributions are computed. Statistical methods such
as Monte Carlo localization [9] use sampling techniques to
estimate arbitrary distributions of robot poses. These methods
typically use very accurate sensors and/or robots with accurate
odometry to resolve maps over large distances.

In previous implementations of SLAM algorithms, it is
frequently assumed that the robot is able to measure its
relative position with respect to features/landmarks [10], [11]
or obstacles [8] in the area that it navigates. This implies that
the robot carries a distance measuring sensor such as a sonar
or a laser scanner. The algorithms described in this work are
designed for robots that have no such sensor modality.

Structure from motion (SFM) [12] algorithms compute
the correspondences between features extracted from multiple
images to estimate the geometric shape of landmarks as well
as to estimate the robot’s pose. Sim and Dudek [13] describe
a visual localization and mapping algorithm which uses visual
features to estimate the sensor readings from novel positions
in the environment. In practice, our vision system could be
replaced by any other kind of boolean sensor modality which
can report whether the robot has re-visited a location. An
alternative approach is to use a small camera and process rela-
tive angular measurements to detected vertical line features, as
described in [14]. However the applicability of this algorithm
is conditioned on the existence of a sufficient number of
identifiable vertical line segments along the trajectory of the
robot. Also it is geared toward position tracking while no
attempt is made to construct a map populated by these features.

In contrast to explicit metric-based methods, more qualita-
tive methods such as topological maps of nodes, such as Ben
Kuipers’ Semantic Spatial Hierarchy (SSH) [15], have been
suggested. Locations are explicitly designated by distinctive
(but not necessarily unique) sensor signatures. In [16], image
“signatures” captured from an omnidirectional camera are used
to construct a topological map of an environment by generating
histograms of the RGB and HSV (Hue, Saturation, and Value)
components.

III. A PPEARANCE-BASED MAPPING FORSMALL ROBOTS

Mobile robots such as the Scouts are able to track their pose
for a limited amount of time by integrating kinetic information
from their wheel encoders. Without any sort of absolute
position measurement from another sensor, the noise in the
velocity measurements will eventually cause the computed
pose estimates to diverge wildly from their real values. In
order to provide periodic corrections, additional information
is necessary. In environments where GPS measurements are
not available, a robot will have to use information about its
surroundings for this purpose.

In what follows, we describe and implement a novel
methodology that neither relies on any specific type of visual
features, nor requires distance measurements. This concept is
illustrated in Figure 2. The basic idea behind our approach is
to determine a unique visual signature for distinct locations
along the robot’s path, store this and the estimated pose of
the robot at that time instant, and retrieve this information

once the robot revisits the same area. Determining whether
the robot is at a certain location for a second time is the
key element for providing positioning updates. By correlating
any two scenes, we infer a relative (landmark to robot, not
landmark to landmark) position measurement and use it to
update both the current and previous (at locations visited in the
past) pose estimates for the robot. This in effect will produce
an accurate map of distinct locations within the area that the
robot has explored.

Fig. 2. Appearance-based mapping. Virtual sensor “signatures” are used to
identify specific(x, y) locations in space. The sensors are assumed not to
return any spatial information about the environment.

IV. T HE BATCH MAXIMUM L IKELIHOOD ESTIMATOR

In our previous work, a physics-inspired ML estimator
was derived which used numerical simulation to find the
most likely map given a highly non-linear system. However,
this estimator made several significant assumptions about the
problem. First, it was assumed that when the robot crossed
its own path, the nodes would occupy the same physical
location in space. Secondly, it was assumed that the linear and
torsional motion estimates could be treated separately. While
these assumptions might not reduce the quality of the estimates
such that they are unusable, they will produce an estimate
that is not as accurate as it could be. In order to incorporate
this information, the estimator’s cost function needs to be
formulated in a different way.

A. Motion and Sensor Models

In this new formulation, the robot’s proprioceptive estimate
of how far it traveled between one location and another is
the same as in the previous estimator. This is computed by
integrating a series of readings from the robot’s odometric
sensors (wheel encoders) to determine the relative displace-
ment(x, y, θ). The cost function for this estimate is called the
motion cost function and is described as:

(yi − hyi
(X))T P−1

i (yi − hyi
(X)) (1)

whereyi is a vector that describes the measured displace-
ment between the previous position measured at timei−1 and
the current position measured at timei. The functionhyi(X)
computes the predicted displacement of the robot given the
current state vector from timei− 1 to time i. The covariance



of this measurement isPi, which represents the uncertainty in
the robot’s pose.

The state vector of a ML estimator consists of the necessary
parameters to solve for. For the case of a mobile robot moving
on a 2D surface, the variables represent individual locations to
which the robot has traveled. If the robot returns to a location
that it has already visited, it is often assumed that those two
locations are identical. However, this assumption is not quite
true since while the robot may have traveled near the same
location several times, those exact positions of the robot are
not completely identical. This means that simply merging the
nodes will not provide the most accurate estimate. To correct
this, a sensor cost function must be defined and integrated into
the equation:

(zi − hzi
(X))T R−1

i (zi − hzi
(X)) (2)

In this sensor cost function,zi is a vector that describes
the measured displacement between a position measured pre-
viously at timej (not limited to timei − 1) and the current
position at timei. Using the notion of the appearance-based
sensor, the value ofzi will always be 0 since the landmarks
correspond directly to the positions of the robot. The function
hzi

(X) computes the predicted displacement of the robot
given the current state vector from the previously-seen location
at time j to the current timei. The covariance of this
measurement isRi, which represents the accuracy of the place
recognition sensor, or a region around a specific location where
the location appears to be the same.

As the robot discovers new landmarks (a sensor reading that
the robot has seen before), it augments the state vector with
their positions and marks those variables as the locations of
the original sightings. The sensor cost function in Equation 2
always compares the current measured position of a landmark
against the first discovered position of that landmark.

Combining the motion and sensor cost functions (Equa-
tions 1 and 2), the complete cost function is:

∑
i

(yi − hyi
(X))T P−1

i (yi − hyi
(X)) +∑

j

(zj − hzj (X))T R−1
j (zj − hzj (X)) (3)

The number of motion cost function terms is the number
of sensor readings minus one|S| − 1. The number of sensor
cost function terms corresponds to the number of non-unique
landmarks the robot has identified.

B. Iterative State Update

The non-linear nature of this problem, introduced by the
need to handle the rotational component of the robot, means
that finding the best solution can be analytically and com-
putationally challenging. In our previous work, with a the
spring and mass-based estimator, a numerical solution was
determined for computing the minimum for finding the mini-
mum value of the cost function. A more analytical method for

finding the minimum solution is to linearize the system with
a first-order linear approximation such as a Taylor series ex-
pansion. Thus, the sensor and motion measurement functions
take the form:

h(X) ≈ h(X̂) +∇Xh(X)
∣∣∣
X=X̂

(X − X̂)

≈ h(X̂) + H(X − X̂) (4)

whereX is the true (unknown) state vector and̂X is the
robot’s estimate of the state vector.

Expanding this equation for each of the cost functions and
taking the first derivative to solve for its minimum, a recursive
formulation of the estimator can be obtained. Applying the
first-order Taylor expansion to the cost functions obtains an
expression of the form:
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This function is quadratic in X. To minimize the function
with respect to X, the first derivative is taken and the equations
are set to 0. This results in an equation with the following
form:

X = X̂ +
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where theX on the right-hand side of the equation is the
initial estimate of the system. The first value of this estimate
can be obtained from the robot’s raw odometry, if no other
estimate is available. This is a recursive form where the result
from the left-hand side of the equation is plugged back into
the equation on the right-hand side. This first-order linear
approximation of the measurement function is only valid for
small errors in the estimate ofX. As the equations are iterated,
the state estimate should converge to a final solution.

The above defines the recursive form for the ML estimator.
Now, the expressions for the individual sensor measurements
(odometry propagation and virtual place sensor) must be
defined.

C. Odometry Propagation Measurement

The measurement function for the distance estimates be-
tween subsequent nodes based on their odometry is defined
as:



hyi
(X) = R

G CT (φR)
(
XLi

−XLi−1

)
(7)

whereXLi
= [xi yi φi]

T andXLi−1 = [xi−1 yi−1 φi−1]
T

are the positions of the robot, and the corresponding recorded
landmark locations, at timei and i− 1, respectively, and

R
G C(φR) =

[
cos φR − sinφR

sinφR cos φR

]
(8)

is the rotation matrix that relates the orientation of the frame
of referenceR on the robot with the global coordinate frame
G.

The first-order Taylor approximations of the odometry mea-
surement function is defined as:

ỹi =
[
HLi−1 HLi

] [
X̃Li−1

X̃Li

]
= Hyi

[
X̃Li−1

X̃Li

]
(9)

where

HLi−1 =
[
−CT (φ̂Li−1) −CT (φ̂Li−1)J

(
X̂Li

− X̂Li−1

)]
(10)

HLi
=CT (φ̂Li−1) (11)

J =
[
0 −1
1 0

]
(12)

and X̃ is the error in the estimated state vector (X − X̂).
These expressions for the error terms are only important for
calculating the Jacobian and are not used for any other part
of the estimator.

D. Virtual Place Sensor Measurement

The second kind of sensor reading is the estimated distance
between two nodes based on the virtual place sensor’s reading
that are on the same location. Orientations of these landmarks
are not tracked as some sensor modalities may not have
an orientation associated with its readings. This function is
defined as:

hzi
(X) =

(
Xpi

−Xpj

)
(13)

whereXpi
= [xi yi]

T and Xpj
= [xj yj ]

T are the global
2D poses of the robot’s position (orientation is not considered).

Likewise, the first-order Taylor approximations of the place
sensor is defined as:

z̃i =

−1 0
... 1 0

0 −1
... 0 1

 [
X̃pj

X̃pi

]

=
[
Hpj

... Hpi

] [
X̃pj

X̃pi

]
(14)

= Hzi

[
X̃pj

X̃pi

]
(15)

V. V ISION-BASED FEATURES

In order to compute a signature for each location visited,
a set of features must be identified and extracted from the
image. However, in the most general case, the robot will be
required to explore a completely unknown environment and
as such, a specific feature detection algorithm chosen ahead
of time could fail to find a distinctive set of features.

For this work, the Kanade-Lucas-Tomasi (KLT) feature
tracking algorithm is used to compare images to determine the
degree of match. The KLT algorithm consists of a registration
algorithm that makes it possible to find the best match between
two images [17] as well as a feature selection rule which
is optimum for the associated tracker under pure translation
between subsequent images [18]. An implementation of the
KLT algorithm1 is used to identify and track features between
successive images as a method for determining the match
between two images. KLT features are selected from each of
the images and are tracked from one image to the next taking
into account a small amount of translation for each of the
features.

Fig. 3. The 100 best features selected by the KLT algorithm in the top
image are shown as black squares in the top image. The bottom image shows
how many features were tracked from the top image to the bottom image
(corresponding to a robot translation of approximately0.6m.

The degree of match is the number of features successfully
tracked from one image to the next. A total of 100 features
are selected from each image and used for comparison. To
take into account the possibility that two panoramic images
might correspond to the same location but differ only in the
orientation of the robot, the test image is rotated until the
best match is found. Figure 3 shows the 100 best features
identified in an image and shows how many of those features
are successfully tracked to the lower image. This technique
does not attempt to compute structure from motion on this
data primarily because the additional complexity of tracking
features for SFM would not be transferable to classes of
sensors that do not return the necessary kind of information.

While mapping, the mobile robot travels around an unknown
area and stores images from its camera. The KLT algorithm
and omnicamera setup is used as a “virtual sensor” that is
used to compare images recorded at different locations along
the trajectory of the robot. The output of this virtual sensor
is a boolean value that determines whether or not the robot
has returned to this location before. For the IEKF and batch
ML algorithms compared in this paper, the accuracy of this

1Originally developed by Stan Birchfield at Stanford University [19].



measurementR = E{NzN
T
z } is inferred by the locus of

points (forming an ellipsoid) around a location, with the
characteristic that the images recorded at each of them are
considered identical by the KLT.

When the received image does not match a previously
recorded one, it is assumed that this location is novel and
is added to the state vector of landmarks. This constitutes an
exploration phase where the robot creates its world model.
When the robot encounters an image which matches one that
was previously seen, it considers these features to be the same
and corrects its estimate of the landmark position.

VI. OFFICE ENVIRONMENT EXPERIMENT

The robot was moved around an environment in a path that
intersected itself five times and an image was taken from the
camera roughly every0.3 m. The robot’s path is shown in
Figure 4.

Fig. 4. The path of the robot through the office environment.

The KLT algorithm was used to track features between each
pair of images in order to find locations where the robot’s path
crossed itself. Figure 5(a) shows the true path of the robot
and the locations where the path crossed itself and landmarks
were thus observed. Figure 5(b) shows the estimated path of
the robot as computed by the robot’s noisy odometry readings.
The estimated landmark positions observed during the run are
shown as well. This figure does not assume that any sensor
updates, i.e., location matchings, were made.

A. Comparison of Estimators with Varying Noise Models

A series of synthetic paths were generated from the above
data set and used to test the performance of each of the
estimators using different odometric noise models. The sim-
ulated odometric noise ranged from a standard deviation of
10 deg / sec to 120 deg / sec in encoder error (in10 deg
increments). A set of 100 robot paths were created for each
noise variance setting. For each path, both of the robot’s wheel
encoders were corrupted by noise drawn from a distribution
with the same variance.

Figure 6 shows the results of the different estimators on
paths affected by increasing levels of odometric error. The
batch ML estimator had the least amount of error in the
placement of the landmarks, followed by the spring-based ML
estimator. The performance of IEKF estimator was equivalent
to the other estimators up to an error of around50 deg / sec

(a) True path of the robot.

(b) Estimated path of the robot.

Fig. 5. Real world experiments in an indoor environment (scale is in meters).
Landmarks in the true path occur wherever there is an intersection in the path.
Positions in the path are labeled chronologically.

but rapidly diminished in accuracy as the odometric errors
increased.

VII. C ONCLUSIONS& FUTURE WORK

The features and advantages of the various estimators are
summarized in Table I. The complexity of the different esti-
mators is computed as follows. The complexity of the IEKF
is derived from the requirement of updating the covariance
matrix, a matrix of M2 entries, whereM is the number
of landmarks. The complexity of the batch ML algorithm is
derived from the need to invert the covariance matrix. Finally,
the spring-based ML algorithm ignores the cross-correlation



Fig. 6. Comparison of the means and standard deviations of the three
estimators on datasets with varying degrees of encoder error. Standard
deviation of errors ranged from10 deg / sec to 120 deg / sec.

terms and thus requires the inversion of only a diagonal matrix.
This is much less time consuming than converting a full2D
covariance matrix.

Spring-Based Linearized IEKF
ML Batch ML

Processing Batch Batch Recursive
Complexity O(M) O(M3) O(M2)
Advantages Simple Most accurate Real-time

TABLE I

COMPARISON OF THE THREE ALGORITHMS.

As seen in the experimental section, the batch ML methods
handles large amounts of system nonlinearity better than
the recursive Kalman filter estimator. However, for relatively
low levels of odometric error, the Kalman filter performed
comparably to the batch estimators. The spring-based ML
estimator did not perform as well because it did not reason
explicitly about the errors in the distances between sensor
readings of the same landmark (location). In terms of time
complexity, the spring-based estimator was the simplest since
it only had to iterate over the set of all readings. The primary
advantage of the IEKF is that it is capable of handling all of
the sensor readings as they are received.

Although the method described in this paper uses images
from an omnidirectional camera, main contributions of this
approach (usage of the identity information by the filter) can
be extended to any type of exteroceptive sensor that can be
used for identifying an area (e.g. other sensors which measure
the electro-magnetic, chemical, or audio signature of a location
could also be used).
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