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A Bank of Maximum A Posteriori (MAP)
Estimators for Target Tracking

Guoquan Huang, Ke Zhou, Nikolas Trawny, and Stergios I. Roumeliotis

Abstract—Nonlinear estimation problems, such as range-only
and bearing-only target tracking, are often addressed using
linearized estimators, e.g., the extended Kalman filter (EKF).
These estimators generally suffer from linearization errors as well
as the inability to track multimodal probability density functions
(pdfs). In this paper, we propose a bank of batch maximum
a posteriori (MAP) estimators as a general estimation frame-
work that provides relinearization of the entire state trajectory,
multi-hypothesis tracking, and an efficient hypothesis generation
scheme. Each estimator in the bank is initialized using a locally
optimal state estimate for the current time step. Every time a
new measurement becomes available, we relax the original batch-
MAP problem and solve it incrementally. More specifically, we
convert the relaxed one-step-ahead cost function into polynomial
or rational form and compute all the local minima analytically.
These local minima generate highly probable hypotheses for the
target’s trajectory and hence greatly improve the quality of the
overall MAP estimate. Additionally, pruning of least probable
hypotheses and marginalization of old states are employed to
control the computational cost. Monte-Carlo simulation and real-
world experimental results show that the proposed approach
significantly outperforms the standard EKF, the batch-MAP
estimator, and the particle filter (PF).

Index Terms—Nonlinear estimation, maximum a posteriori
(MAP) estimator, system of polynomial equations, algebraic
geometry, analytical solution, target tracking

I. INTRODUCTION

In this paper, we introduce a general framework to improve
estimation performance for problems with (nonlinear) mea-
surement functions that can be transformed into polynomial or
rational form. We apply our method to the particular problem
of target tracking, i.e., estimating the kinematic state of a
moving target using only range or bearing measurements from
a mobile sensor (robot) whose position and orientation are
known. Target tracking has attracted significant interest over
the past decades, since it arises in a variety of practical appli-
cations, such as environmental monitoring [1], [2], submarine
tracking with towed-array sonar [3], and aircraft surveillance
using radar [4]. Examples of recent research include design
of new estimation algorithms and adaptive optimal control of
sensor motions [5]–[8].

Nonlinear estimation problems such as the aforementioned
target tracking, are often addressed using linearized estima-
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tors, e.g., the extended Kalman filter (EKF) [3], [4]. These
estimators suffer from linearization errors and the inability to
track multimodal probability density functions (pdfs), which
often arise in nonlinear estimation problems. Several methods
have been proposed to reduce the effect of the linearization
errors. The iterated EKF (IEKF) [4], for example, iterates
the filter update till convergence, by relinearizing the mea-
surement function at each iteration. Alternatively, the un-
scented Kalman filter (UKF) [9] deterministically samples the
nonlinear function around the state estimate, thus improving
the linear approximation. However, any (explicit or implicit)
linearization-based filtering approach marginalizes all but the
current state, and is hence unable to refine past linearization
points. In contrast, a batch maximum a posteriori (MAP)
estimator [10] computes the estimates for the states at all time
steps using all available measurements. This allows continuous
relinearization of the entire state trajectory, which greatly
reduces the linearization errors. However, just as the IEKF
and its variants, the batch-MAP estimator can only track one
of the potentially many modes of the posterior pdf. Only a few
estimators, such as the multi-hypothesis EKF (MHEKF) [6],
and the particle filter (PF) [11], are specifically designed
to treat multimodal distributions by simultaneously tracking
a set of different state estimates. However, in most cases
these hypotheses are generated randomly, wasting in effect
a considerable portion of the computational resources.

The proposed estimation framework provides both contin-
uous relinearization and multi-hypothesis tracking,1 together
with a highly efficient hypothesis generation scheme. The ideal
approach to the batch-MAP estimation problem would be to
compute all modes of the posterior pdf, thus ensuring a glob-
ally optimal estimate. However, as our analysis shows later,
this approach is computationally intractable due to the growing
size of the state vector. We therefore relax the problem, and
optimize only for the current target’s state at each time step,
treating the state history of each hypothesis as a constant prior.
To solve this subproblem, we first convert its nonlinear cost
function into polynomial or rational form, and subsequently
employ algebraic geometry techniques [12] to analytically
compute all local minima and thus all modes of the pdf.
Each mode is used to initialize a new MAP estimator in the
bank, thus allowing to track the most probable hypotheses
of the state trajectory, and in turn greatly improving the
accuracy of the MAP estimate. At the same time, we achieve
low, resource-adaptive computational cost through pruning and
marginalization. The former controls the exponential growth

1Note that in the context of this work, multiple hypotheses are used not
for tracking multiple targets but for tracking the modes of a multimodal pdf
describing the trajectory of a single target.
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of hypotheses, while the latter limits the size of the state
vector. Note that in our previous conference publications [13],
[14], we have successfully applied this idea to range-only
and bearing-only target tracking, respectively. In this paper,
we present the theoretical analysis in more detail and test
the proposed algorithm more thoroughly in both Monte-Carlo
simulations and real-world experiments. At this point, we also
stress that apart from the particular application of target track-
ing treated in this paper, the proposed analytical methodology
is applicable to a broad class of nonlinear estimation problems
in robotics and computer vision that can be expressed in (or
converted into) polynomial form (e.g., see [15]–[18]).

The remainder of the paper is structured as follows: After
an overview of related work in the next section, we describe
the problem formulation of target tracking using either range
or bearing measurements in Section III. In Section IV, we
explain in detail the incremental solution to the batch-MAP
problem, particularly focusing on the analytical solver for
determining all the local minima of the one-step minimization
problem. The proposed bank-of-MAP estimator for target
tracking is presented in Section V, whose performance is com-
pared against that of the EKF, the batch-MAP estimator, and
the PF through both Monte-Carlo simulations and real-world
experiments in Sections VI and VII. Finally, Section VIII
outlines the main conclusions of this work, as well as possible
directions of future work.

II. RELATED WORK

The problem of target tracking has been studied for decades
and many different estimators of both batch and recursive
types have been proposed in the literature [4], [19]. Among the
available algorithms, the EKF is one of the most widely used
methods [4]. However, the EKF is unable to refine the past
linearization points when new measurements are available and
thus becomes vulnerable to large linearization errors, which
degrade its performance. This has given rise to refinements
of the EKF or the UKF; for instance, the modified polar
coordinates EKF [20] and the shifted Rayleigh filter (SRF) [5],
which were developed specifically for bearing-only target
tracking, and the iterated UKF (IUKF) proposed for passive
target tracking [21]. However, all these EKF/UKF variants can
only track a single mode, or the mean, of the posterior pdf of
the target state and thus suffer from the same problem as the
EKF, i.e., they can potentially track an inaccurate mode of the
pdf and hence become inconsistent or even diverge.

To mitigate the aforementioned issue, an MHEKF was
proposed specifically for bearing-only tracking in [6] to track
multiple hypotheses of the target state. The MHEKF makes
an assumption about the minimum and maximum distance
between the sensor and target and partitions this range interval
into a number of subintervals, each representing a hypothesis
regarding the true range of the target. A bank of independently
operating range-parameterized EKFs are thus created, each
corresponding to one of the hypotheses and receiving the same
bearing measurements. In [6], the MHEKF determines a fixed
number of EKFs at the first available measurement, while
in [22] this idea was extended so that the filter bank can
dynamically change its size at each time step based on the
current measurement likelihood. Since no filter in the MHEKF

can guarantee computing the globally optimal estimate (due
to the multimodal nature of the distribution as well as its in-
ability to relinearize the nonlinear measurement function), this
approach can also become inconsistent and diverge. Moreover,
this method assumes prior knowledge about the range interval,
which may not always be available in, e.g., bearing-only target
tracking. Most importantly, this approach does not provide a
measurable criterion about how many partitions are needed
in the assumed range interval, or where to choose them. In
contrast, the proposed bank-of-MAP estimator selects the most
probable hypotheses of the target trajectory based on local
optimality at each time step.

Considerable attention has recently been paid to the PF for
both bearing-only and range-only target tracking [11], [23]–
[27], because of its ability of solving nonlinear estimation
problems involving multimodal pdfs. In the standard (boot-
strap) PF, each particle represents a hypothesis of the target
state, weighted and normalized based on its measurement like-
lihood [25]. If the particles sample the state space adequately,
the PF will converge to the true distribution. However, the
particles are usually initialized randomly, and if far from a
mode of the pdf, their weights can decay quickly and lead to
particle depletion (i.e., only few particles having significant
weights) and thus inconsistency, even if a resampling scheme
(e.g., stratified resampling [28]) is employed. This is due to the
fact that the very few surviving particles may not be sufficient
to represent the underlying multimodal pdf. Therefore, in order
to converge to meaningful estimates, the PF requires using a
large number of particles, thus exacerbating its computational
demands. In contrast, the proposed bank-of-MAP estimator
analytically computes all modes of the posterior pdf at the
current time step and efficiently focuses the computational
resources on the most probable hypotheses of the target state.

III. PROBLEM FORMULATION

Consider a single sensor moving in a plane and estimating
the state (position, velocity, etc.) of a moving target, by
processing the available range or bearing measurements. In
this work, we study the case of global tracking, i.e., the
position of the target is expressed with respect to a fixed
(global) frame of reference, instead of a relative sensor-
centered one. We hereafter assume that the pose (position and
orientation) of the tracking sensor is known with high accuracy
in the global frame of reference (e.g., from GPS and compass
measurements). Moreover, we consider a generic tracking
scenario where the target’s trajectory is observable [22], [29],
[30]. The state vector of the target at time-step k, is defined
as a vector of dimension 2N , where N − 1 is the highest-
order time derivative of the target’s position described by a
known stochastic motion model, and comprises states such as
position, velocity, acceleration, etc.:

xk =
[
xTk yTk ẋTk ẏTk ẍTk ÿTk · · ·

]T
(1)

=
[
pTTk dTTk

]T
(2)

where pTk ,
[
xTk yTk

]T
is the target’s position, and

dTk ,
[
ẋTk ẏTk ẍTk ÿTk · · ·

]T
denotes all the higher-

order time derivatives of the target’s position.
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In the following, we present the target stochastic motion
model and the sensor measurement models that will be used
throughout the paper.

A. Motion Model

We consider the case where the target moves randomly but
assume that a stochastic kinematic model describing its motion
(e.g., constant acceleration or constant velocity [4]) is known.
In particular, the discrete-time state propagation equation is
generically given by the following linear form:

xk = Φk−1xk−1 + Gk−1wk−1 (3)

where wk−1 is zero-mean white Gaussian noise with covari-
ance Qk−1. The state transition matrix, Φk−1, and the process
noise Jacobian, Gk−1, that appear in the preceding expression
depend on the particular motion model used [4]. We will make
no further assumptions on these matrices other than that their
values are known.

B. Measurement Models

In this work, we are interested in the case in which a
single sensor measures the relative distance or bearing angle
to the target.2 The corresponding measurement equations are
described below.

1) Range-only measurement: The range-only measurement
at time-step k is given by:

zk =
√

(xTk − xSk)2 + (yTk − ySk)2 + nρk (4)

, hρ(xk) + nρk (5)

where xSk , [pTSk φSk ]T , [xSk ySk φSk ]T is the known
sensor pose expressed in the global frame of reference, and
nρk is zero-mean white Gaussian measurement noise, with
variance σ2

ρk
, i.e., nρk ∼ N (0, σ2

ρk
).

2) Bearing-only measurement: Similarly, the bearing mea-
surement at time-step k is given by:

zk = atan2 ((yTk − ySk), (xTk − xSk))− φSk + nθk (6)

, hθ(xk) + nθk (7)

where nθk is zero-mean white Gaussian measurement noise,
with variance σ2

θk
, i.e., nθk ∼ N (0, σ2

θk
).

C. Batch-MAP Estimator

The batch-MAP estimator utilizes all available information
to estimate the entire target’s trajectory that is represented by
stacking all states in the time interval [0, k] [see (1)]:

x0:k =
[
xT0 xT1 · · · xTk

]T
(8)

Specifically, the batch-MAP estimator seeks to determine the
entire state-space trajectory estimate x̂0:k|k that maximizes the

2It should be noted that although we hereafter focus only on the single-
sensor case, the methodology presented in this paper can be extended to
address more complex, multi-sensor cases. Specifically, at each time step
multiple measurements may be processed sequentially using the proposed
analytical approach (see Section IV) in order to find high-quality hypotheses.

following posterior pdf:3

p(x0:k|z1:k) ∝ p(x0)

k∏
κ=1

p(xκ|xκ−1)p(zκ|xκ) (9)

where p(x0) = N (x̂0|0,P0|0) is the prior distribution, and z1:k

denotes all the sensor measurements in the time interval [1, k].
In the above expression, we have employed the Bayes rule, by
assuming that the state and measurement noise are independent
and employed the Markovian property of the target motion
[see (3), and (5) or (7), respectively]. Moreover, using the
assumption of Gaussian noise, the above posterior pdf (9) can
be written as:

p(x0:k|z1:k) ∝ (10)
1√

(2π)2N |P0|0|
exp

(
−1

2
||x0 − x̂0|0||2P0|0

)
×

k∏
κ=1

1√
(2π)2N |Q′κ−1|

exp

(
−1

2
||xκ −Φκ−1xκ−1||2Q′κ−1

)
×

k∏
κ=1

1√
2πσ2

κ

exp

(
−1

2
||zκ − h(xκ)||2σ2

κ

)
where h(·) = hρ(·) and σk = σρk if range-only measurements
are used, while h(·) = hθ(·) and σk = σθk for bearing-
only measurements. In the above expression, we have also
employed the notations: ||a||2M , aTM−1a, Q′k , GkQkG

T
k

[see (3)], and |X| , det(X). Due to the monotonicity of the
negative logarithm, the maximization of (10) is equivalent to
the minimization of the following cost function:

c(x0:k) =
1

2
||x0 − x̂0|0||2P0|0

+

k∑
κ=1

1

2
||xκ −Φκ−1xκ−1||2Q′κ−1

+

k∑
κ=1

1

2
||zκ − h(xκ)||2σ2

κ
(11)

Clearly, due to the nonlinear measurement model, c(x0:k) is
a function with potentially multiple local minima. A standard
approach for its optimization is to employ Newton-Raphson
iterative minimization [31], which, however, is only able to
converge to one local minimum within the basin of attraction
of the initial estimate. The solution therefore heavily depends
on the quality of the initial estimate. At the `-th iteration of the
Newton-Raphson method, a correction, δx(`)

0:k, to the current
estimate, x̂

(`)
0:k|k, is computed by minimizing the second-order

Taylor-series approximation of the cost function given by:

c(x̂
(`)
0:k|k + δx

(`)
0:k) ' c(x̂(`)

0:k|k) + b(`)T δx
(`)
0:k +

1

2
δx

(`)T

0:k A(`)δx
(`)
0:k

(12)

where

b(`) , ∇x0:k
c(·)
∣∣∣
x0:k=x̂

(`)

0:k|k

, A(`) , ∇2
x0:k

c(·)
∣∣∣
x0:k=x̂

(`)

0:k|k

(13)

3Throughout this paper the subscript `|j refers to the estimate of a quantity
at time-step `, after all measurements up to time-step j have been processed.
x̂ is used to denote the estimate of a random variable x, while x̃ = x− x̂ is
the error in this estimate. Finally, 0m×n and 1m×n denote m× n matrices
of zeros and ones, respectively, and In is the n× n identity matrix.
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are the Jacobian and Hessian of c(·) with respect to x0:k,
evaluated at the latest state estimates, x̂

(`)
0:k|k, respectively.

We now examine the structure of the Jacobian and Hessian
matrices that will be useful for the ensuing analysis. Specifi-
cally, at the `-th iteration, b(`) can be obtained as:

b(`) = ΠTP−1
0|0

(
x̂

(`)
0|k − x̂0|0

)
+ (14)

k∑
κ=1

F (`)T

κ−1 Q′
−1

κ−1

(
x̂

(`)
κ|k −Φκ−1x̂

(`)
κ−1|k

)
+

k∑
κ=1

σ−2
κ H(`)T

κ

(
zκ − h(x̂

(`)
κ|k)

)
where Π ,

[
I2N 0 · · · 0

]
is used to adjust the dimension

of the 2N -dimensional prior estimate to the dimension of the
entire state x0:k. In the above expression, F (`)

κ−1 and H(`)
κ , are

the Jacobians of the motion and measurement models [see (3),
and (5) or (7), respectively], with respect to the entire state
x0:k, evaluated at x̂

(`)
0:k|k. It is important to note that both the

target motion model and the measurement function involve
only a few states, i.e., the target motion only depends on two
consecutive states, while the measurement only depends on
the target’s position where it is observed. Thus, Fκ−1 and Hκ
have the following sparse structure (for simplicity, the iteration
index is dropped off here):

Fκ−1 =
[
02N×2N · · · −Φκ−1 I2N · · · 02N×2N

]
(15)

Hκ =
[
01×2N · · · −Hκ · · · 01×2N

]
(16)

where Hκ is the measurement Jacobian matrix at time-step κ,
given by [see (5) and (7)]:

Hκ =


[

(p̂Tκ|k−pSκ )T

||p̂Tκ|k−pSκ ||
01×(2N−2)

]
, if range−only[

(p̂Tκ|k−pSκ )TJT

||p̂Tκ|k−pSκ ||
2 01×(2N−2)

]
, if bearing−only

(17)

and J ,

[
0 −1
1 0

]
. On the other hand, the Hessian matrix,

A(`), is approximated in the Gauss-Newton method by:

A(`) ' ΠTP−1
0|0Π +

k∑
κ=1

F (`)T

κ−1 Q′
−1

κ−1F
(`)
κ−1 +

k∑
κ=1

σ−2
κ H(`)T

κ H(`)
κ

(18)

which is a reasonably good approximation for small-residual
problems [31].

The value δx(`)
0:k that minimizes (12) is found by solving the

following linear system:

A(`)δx
(`)
0:k = −b(`) (19)

The Hessian A(`) has dimension 2N(k + 1) × 2N(k + 1)
[see (1) and (8)]. However, due to the sparse structure of
the matrices H(`)

κ and F (`)
κ−1, the matrix A(`) is also sparse.

Most importantly, it has a banded structure with upper and
lower bandwidth of 4N due to (i) the Markov motion model
and (ii) the fact that the range (or bearing) measurement
model only involves the target’s position at one time step.
We can exploit this sparse banded structure to reduce the
computational complexity of solving (19) to O(N3k), instead

of O
(
N3k3

)
[32]. Once δx(`)

0:k is found, the new state estimate
is computed as:

x̂
(`+1)
0:k|k = x̂

(`)
0:k|k + δx

(`)
0:k (20)

Given an initial estimate x̂
(0)
0:k|k, this iterative algorithm only

computes one local minimum for the entire target’s trajectory
given all measurements up to time-step k.

IV. INCREMENTALLY SOLVING THE BATCH-MAP
OPTIMIZATION PROBLEM

We know from the previous section that iterative algorithms,
such as Gauss-Newton, are only able to converge to a single
local minimum, while the nonlinear batch-MAP problem of
minimizing (11) potentially has multiple local minima. In
order to guarantee global optimality, ideally we would like
to analytically compute all the stationary points of the batch-
MAP problem. Unfortunately, in general, it is computationally
intractable to solve this problem analytically. Alternatively, in
this section, we present an incremental (approximate) solution
to the batch-MAP problem where high-quality estimates for
the modes of the pdf are used as initial guesses by an iterative
algorithm. Specifically, we relax the problem by fixing the past
state estimates and analytically solving a one-step minimiza-
tion problem for the current state estimate every time a new
measurement becomes available. This analytical optimization
is carried out by converting the nonlinear cost function into
polynomial or rational form, and solving it using algebraic
geometry techniques. We then use each of the analytically-
computed local minima corresponding to the current state
along with the past state estimates as highly accurate initial
guesses, which are refined through Gauss-Newton iterations to
solve the batch-MAP problem.

A. Relaxation of the Batch-MAP Problem
As it will become evident next, by transforming the nonlin-

ear measurement function into polynomial or rational form,
we can convert the Karush-Kuhn-Tucker (KKT) optimality
conditions [33] of the batch-MAP problem into a polynomial
system (see Section IV-B). Note, however, that the number
of estimated variables in batch-MAP increases linearly with
respect to the time horizon k, while the complexity of solving
a system of multivariate polynomial equations is exponential
in the number of variables [34]. Thus, it is, in general,
computationally intractable to solve the batch-MAP problem
analytically.

For this reason, we relax the batch-MAP problem and solve
it incrementally. In particular, at time-step k, by assuming the
past state estimates x̂0:k−1|k−1 are optimal and thus fixing
them, we approximate the cost function (11) as follows:

c(x0:k) ' c(x̂0:k−1|k−1) +
1

2
||xk − x̂k|k−1||2Pk|k−1

+

1

2
||zk − h(xk)||2σ2

k
(21)

where N (x̂k|k−1,Pk|k−1) is the prior pdf for the current new
state xk, and is computed based on the linear motion model (3)
as follows:

x̂k|k−1 = Φk−1x̂k−1|k−1 (22)

Pk|k−1 = Φk−1Pk−1|k−1Φ
T
k−1 + Q′k−1 (23)
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It is important to point out that, in deriving (21), even if the
estimates for the past states, x̂0:k−1|k−1, were truly optimal
at time-step k − 1, they may not be the best at the current
time step. This is due to the fact that the cost function of the
batch-MAP problem at time-step k [i.e., c(x0:k)] is different
from that at time-step k − 1 [i.e., c(x0:k−1)], and thus we in
effect solve different optimization problems at different times.

In particular, now the relaxed batch-MAP problem of mini-
mizing (21) becomes equivalent to solving the following one-
step minimization problem incrementally for the new state
estimate at time-step k:

min
xk

[
1

2
||xk − x̂k|k−1||2Pk|k−1

+
1

2
||zk − h(xk)||2σ2

k

]
(24)

Once we find all the local minima of (24), we use them
along with the past state estimates as accurate initial guesses
in the proposed bank-of-MAP estimator (see Section V). In
what follows, we describe in detail the analytical approach
for determining all the local minima.

B. Analytical Determination of Local Minima

Observing that both the relative range and bearing measure-
ments depend only on the target’s position [see (5) and (7)],
we can decouple the target’s position pTk and the remaining
states dTk in solving (24), so as to simplify the ensuing
derivations. Specifically, using the following partitioning of

the information matrix, P−1
k|k−1 ,

[
Σppk|k−1

Σpdk|k−1

Σdpk|k−1
Σddk|k−1

]
,

the cost function of (24) can be expanded as:

c(xk) =
1

2
(pTk − p̂Tk|k−1

)TΣppk|k−1
(pTk − p̂Tk|k−1

) +

1

2
(dTk−d̂Tk|k−1)TΣddk|k−1(dTk−d̂Tk|k−1) +

(pTk − p̂Tk|k−1
)TΣpdk|k−1

(dTk − d̂Tk|k−1
) +

1

2σ2
k

(zk − h(pTk))
2 (25)

We note that

min
pTk ,dTk

c(pTk ,dTk) = min
pTk

(
min
dTk

c(pTk ,dTk)

)
Thus, we first solve for dTk based on its optimality condition,
i.e., by setting the gradient of (25) with respect to dTk to zero,
and obtain:

dTk = d̂Tk|k−1−Σ−1
ddk|k−1

Σdpk|k−1(pTk−p̂Tk|k−1) (26)

Substitution of (26) into (25) yields:

c(pTk) =
1

2
(pTk − p̂Tk|k−1

)TP−1
ppk|k−1

(pTk − p̂Tk|k−1
) +

1

2σ2
k

(zk − h(pTk))
2 (27)

where Pppk|k−1
is the covariance matrix corresponding to

the target’s position, obtained by partitioning the covariance

matrix as Pk|k−1 ,

[
Pppk|k−1

Ppdk|k−1

Pdpk|k−1
Pddk|k−1

]
. Note that for

getting (27), we have employed the following identity:

P−1
ppk|k−1

= Σppk|k−1
−Σpdk|k−1

Σ−1
ddk|k−1

Σdpk|k−1
(28)

which follows from the block-matrix inversion lemma [32].
We thus see that solving (24) becomes equivalent to

minimizing (27). It is important to note that the size of
the nonlinear problem has dramatically decreased from 2N
for (24) to a constant size of 2 for minimizing (27). Moreover,
determining the target’s position based on the prior estimate
and the measurement is independent of its higher-order time
derivatives, regardless of the stochastic target motion model
employed. In the following two sections, we present our
algebraic geometry approaches for analytically solving the
problem of minimizing (27) in the cases of range-only tracking
and bearing-only tracking, respectively.

1) Range-only tracking: In the case of range-only target
tracking, i.e., h(·) = hρ(·) [see (5)], by introducing a new
variable ρ = hρ(pTk), the problem of minimizing (27) is
equivalent to the following constrained minimization problem:

min
pTk , ρ

[
1

2
(pTk−p̂Tk|k−1

)TP−1
ppk|k−1

(pTk−p̂Tk|k−1
) +

1

2σ2
ρk

(zk − ρ)2

]
(29)

subject to ρ2 = (xSk−xTk)2 + (ySk−yTk)2 , ρ ≥ 0 (30)

which can be solved by employing the method of Lagrange
multipliers [33]. Specifically, without loss of generality,4 by
assuming P−1

ppk|k−1
= Diag(s1, s2), the Lagrangian function

can be constructed as follows:

L(xTk , yTk , ρ, λ) =
s1

2
(xTk−x̂Tk|k−1)2+

s2

2
(yTk−ŷTk|k−1)2+

(zk − ρ)2

2σ2
ρk

+ λ
(
ρ2−(xSk−xTk)2−(ySk−yTk)2

)
(31)

where λ is the Lagrangian multiplier. Setting the derivatives
of L(·) with respect to the four optimization variables to zero,
and performing simple algebraic manipulations, we have:5

∂L
∂xTk

= 0⇒ xTk =
s1x̂Tk|k−1

− 2λxSk
s1 − 2λ

(32)

∂L
∂yTk

= 0⇒ yTk =
s2ŷTk|k−1

− 2λySk
s2 − 2λ

(33)

∂L
∂ρ

= 0⇒ ρ =
zk

1 + 2σ2
ρk
λ

(34)

∂L
∂λ

= 0⇒ 0 = ρ2−(xSk−xTk)2−(ySk−yTk)2 (35)

Therefore, by substituting (32)-(34) into (35) and multiplying
both sides of (35) with (1+ 2σ2

ρk
λ)2(s1−2λ)2(s2−2λ)2, we

obtain a fourth-order univariate polynomial in λ:

0 = f(λ) =

4∑
i=0

aiλ
i (36)

4We can always diagonalize P−1
pp by applying a 2D rotational transfor-

mation, which does not affect distance measurements. Moreover, we here
temporarily omit the positivity constraint on ρ, which will be used later for
determining feasible solutions.

5It is important to note that if any of the denominators of (32)-(34) becomes
zero while the corresponding numerator is nonzero, the target is at infinity,
and moreover the cost of (30) also becomes infinite and hence attains the
global maximum, which is not interesting to us. On the other hand, there
exists the degenerate case where both the numerator and denominator of (32)
or (33) become zeros, which can be avoided through an appropriate coordinate
transformation.
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Fig. 1. Illustration of the limitations of Gauss-Newton based minimization. In (a) and (b), the local minima selected by the Gauss-Newton iterations are far
from the true states, while the proposed analytical solver is capable of determining all the local minima in both cases. The crosses indicate the locations of
the analytically-computed local minima. It is clear that the MAP estimate initialized with the prior estimate converges to the local minimum with larger error
with respect to ground truth. Note that in bearing-only tracking, the MAP estimate is computed based on the original (not inferred) measurements, and the
approximation (39) used in the inferred measurements introduces a slight offset in the analytical local minima.

where ai, i = 0, . . . , 4, are coefficients expressed in terms
of the known quantities s1, s2, zk, σρk , x̂Tk|k−1

, ŷTk|k−1
, xSk ,

and ySk . Since f(λ) is quartic, its roots can be found in closed
form [35].

Although there exist 4 solutions for λ, and thus 4 solutions
for xTk , yTk and ρ, as they depend injectively on λ [see (32)-
(34)], we only need to consider the pairs (xTk , yTk) that
correspond to real solutions for λ and to a nonnegative ρ
[see (30)]. Moreover, since some of these solutions could be
local maxima and/or saddle points, the second-order derivative
test [33] is employed to extract the minima. Finally, once
we determine all the local minima for the target’s position,
we compute the corresponding estimates for the higher-order
position derivatives via (26).

Since the maximum number of local minima for the prob-
lem (24) will significantly impact the computational complex-
ity of our proposed algorithm (see Section V), we seek a
tighter upper bound for it. In particular, based on the finite
dimensional Mountain Pass Theorem (MPT) (see Theorem 5.2
in [36]), we prove the following lemma:

Lemma 4.1: There exist at most 2 local minima for the
problem of minimizing (29).

Proof: See Appendix A.
As a result, the total number of local minima for the one-

step MAP problem (24) for range-only tracking in the worst
case can grow exponentially over time, as 2k, instead of 4k.
Fig. 1(a) shows a typical example where two local minima for
the current state occur while the MAP estimate computed from
Gauss-Newton erroneously converges to a local minimum with
larger error.

2) Bearing-only tracking: We now consider the problem
of minimizing (27) in the case of bearing-only tracking, i.e.,
h(·) = hθ(·) [see (7)]. In order to use an algebraic geometry
approach, we create an inferred measurement that has rational
form. Specifically, after moving the sensor orientation term to

the left hand side of (6), and applying the tangent function on
both sides, we obtain the following transformed measurement:

žk , tan(zk + φSk) (37)
= tan (atan2 ((yTk − ySk), (xTk − xSk)) + nθk)

By denoting ξk , atan2 ((yTk − ySk), (xTk − xSk)), consid-
ering zk+φSk ∈ (−π, π], and following the standard formulas
to compute the pdf of functions of random variables [37],
the likelihood distribution of the transformed measurement is
given by:

p(žk|xk) = (38)
N (tan−1(žk);ξk,σ

2
θk

)+N (tan−1(žk)−π;ξk,σ
2
θk

)

1+ž2k
, if žk ≥ 0

N (tan−1(žk);ξk,σ
2
θk

)+N (tan−1(žk)+π;ξk,σ
2
θk

)

1+ž2k
, if žk < 0

Clearly, p(žk|xk) is not Gaussian (which results from the
tangent of a Gaussian random variable), but it can be well-
approximated by a Gaussian pdf by matching the first- and
second-order moments. This is done by linearizing (37) around
the expected value of the noise, i.e.,6

žk '
yTk − ySk
xTk − xSk

+ n̄k , z̄k (39)

where n̄k , sec2(zk + φSk)nθk , is zero-mean white Gaussian
noise with variance σ̄2

k , sec4(zk + φSk)σ2
θk

, i.e., n̄k ∼
N (0, σ̄2

k). We term this approximation (39) an inferred mea-
surement which is in the desired rational form. As illustrated in
Fig. 2, this approximation is reasonably accurate, particularly
for scenarios of high signal-to-noise ratio. Moreover, the local
minimum of (27) attained based on the inferred measurement
is very close to that using the corresponding original bearing

6The inferred measurement model (39) does not consider the special case
of xTk = xSk , which however has low probability of occurrence in practice.



7

−1 −0.5 0 0.5 1 1.5 2
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

ž

p
(ž
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Fig. 2. An example of approximating the pdf of transformed bearing
measurements by a Gaussian pdf [see (38) and (39)]. In this case, ξ = 0.5
and σθ = 10 deg. In addition, the Kullback-Leibler divergence (KLD) [38]
between these two pdfs is only 0.0447, which indicates the difference between
the two distributions is small.

measurement. This can be seen from Fig. 1(b), where one
of the local minima computed analytically using the inferred
measurement almost coincides with the MAP estimate for the
current state which instead uses the original bearing measure-
ment. This further confirms that the inferred measurement
is a reasonably good approximation to the original bearing
measurement in solving (27). Moreover, the inferred measure-
ment is used only for finding hypotheses of the trajectory, not
for estimating the state, whose estimates will be updated by
the batch-MAP estimators using all available original bearing
measurements.

In what follows we use the inferred bearing measure-
ment (39) [instead of (7)] to analytically compute the minima

of (27). In particular, with P−1
ppk|k−1

,

[
s1 s3

s3 s2

]
, (27) can be

written as:

c(xTk , yTk) = (40)
1

2

(
s1(xTk−x̂Tk|k−1)2 + s2(yTk−ŷTk|k−1)2 +

2s3(xTk−x̂Tk|k−1)(yTk−ŷTk|k−1
)
)

+
1

2σ̄2
k

(
z̄k−

yTk−ySk
xTk−xSk

)2

Based on the optimality conditions, i.e., setting the derivatives
of c(xTk , yTk) with respect to the two optimization variables
to zero, and performing simple algebraic manipulations, we
have:

∂c

∂xTk
= s1(xTk − x̂Tk|k−1

) + s3(yTk − ŷTk|k−1
) +

1

σ̄2
k

[
z̄k(yTk − ySk)

(xTk − xSk)2
− (yTk − ySk)2

(xTk − xSk)3

]
= 0

⇒ s1(xTk − x̂Tk|k−1
)(xTk − xSk)3 +

s3(xTk − xSk)3(yTk − ŷTk|k−1
) + (41)

1

σ̄2
k

[
z̄k(xTk−xSk)(yTk−ySk)− (yTk−ySk)2

]
= 0

∂c

∂yTk
= s2(yTk − ŷTk|k−1

) + s3(xTk − x̂Tk|k−1
) −

1

σ̄2
k

[
z̄k

xTk − xSk
− (yTk − ySk)

(xTk − xSk)2

]
= 0

⇒ s2(xTk − xSk)2(yTk − ŷTk|k−1
) +

s3(xTk − xSk)2(xTk − x̂Tk|k−1
) − (42)

1

σ̄2
k

[z̄k(xTk − xSk)− (yTk − ySk)] = 0

From (42), we can compute yTk in terms of xTk as follows:

yTk =
−σ̄2

ks3(xTk−xSk)2(xTk−x̂Tk|k−1
)+z̄k(xTk−xSk)

1 + σ̄2
ks2(xTk − xSk)2

+

σ̄2
ks2(xTk−xSk)2ŷTk|k−1

+ySk
1 + σ̄2

ks2(xTk − xSk)2
(43)

Substitution of (43) into (41) yields a rational equation,
whose denominator is always non-zero. Thus, we only need
to consider the numerator which is an eighth-order univariate
polynomial in xTk :

0 = f(xTk) =

8∑
i=0

aix
i
Tk

(44)

where ai, i = 0, . . . , 8, are coefficients expressed in terms of
the known quantities, z̄k, σ̄k, s1, s2, s3, x̂Tk|k−1

, ŷTk|k−1
, xSk ,

and ySk [35]. The roots of f(xTk) are the eigenvalues of the
corresponding 8× 8 companion matrix [39].

Although there exist 8 solutions for xTk , and thus 8 solu-
tions for yTk as it depends injectively on xTk [see (43)], we
only need to consider the pairs (xTk , yTk) that correspond to
the real eigenvalues of the companion matrix. Following the
same reasoning as in the case of range-only tracking, since
some of these solutions could be local maxima and/or saddle
points, the second-order derivative test [33] is employed to
extract the minima. Finally, once we determine all the local
minima for the target’s position, we compute the correspond-
ing estimates for the higher-order position derivatives via (26).

Moreover, the following lemma provides a slightly tighter
upper bound for the maximum number of local minima for
the case of bearing-only tracking.

Lemma 4.2: There are at most 7 local minima for (40).
Proof: According to the MPT (see Appendix A and Theo-

rem 5.2 in [36]), for a coercive C1 function, there exists a third
critical point which is not a local minimum between any two
strict local minima. It can be verified that the cost function (40)
∈ C1(R2\{xTk =xSk}) is coercive, and therefore at least one
of the 8 critical points cannot be a local minimum, leaving a
maximum number of 7 local minima.

Note that due to its rational form, the inferred bearing
measurement (39) is symmetric with respect to the sensor,
while the original bearing measurement (6) is different in
different quadrants. This can result in more local minima
of (40) than those of (27). To discard the spurious local minima
resulting from the symmetry of the inferred measurement, we
employ the Mahalanobis distance test [4]. As a result, we have
never observed more than 4 local minima in practice.

V. BANK-OF-MAP ESTIMATOR

As discussed in the preceding section, due to the nonlinear-
ity of range and bearing measurements, the incremental one-
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(a) Propagate from k = 0 to k = 1 (b) Analytically solve for local minima of x1 (c) Iteratively update each hypothesis of x0:1

(d) Propagate from k = 1 to k = 2 (e) Analytically solve for local minima of x2 (f) Iteratively update each hypothesis of x0:2

Fig. 3. Visualization of the proposed bank-of-MAP estimator for target tracking. In this example, we consider only the first two time steps to illustrate the
key ideas of the proposed algorithm, and assume there are two analytical local minima (α = 2) at every time step. In these plots, (a)-(c) show the three main
steps (i.e., propagation of current state estimate, analytical determination of local minima, and iterative Gauss-Newton batch update of all hypotheses) for
time-step k = 1, and (d)-(f) show the same steps for time-step k = 2. It is clear that due to the existence of multiple local minima, at each time step we have
multiple hypotheses (i.e., 2 for k = 1, and 4 for k = 2) for the target’s trajectory. Note also that since at each time step we solve a different optimization
problem [see (21)], the winning hypothesis at one time step is not necessarily the best one during the next time step when more measurements are considered
(i.e., if hypothesis 1 is the best at k = 1, it may not be the best at k = 2).

step MAP problem (24), and thus the original batch multi-
step MAP problem (11), may have multiple local minima that
correspond to the modes of the posterior pdf. Any iterative
algorithm such as Gauss-Newton used in the batch-MAP
estimator is only able to converge to the global optimum (i.e.,
the true MAP estimate), when the initial estimate x̂

(0)
0:k|k is

within its region of attraction. However, in general, there exists
no systematic method for determining an initial estimate that
can always ensure convergence to the global optimum. As a
result, the standard batch-MAP estimator when used for target
tracking can become inconsistent and even diverge if no good
initial estimate is provided. This is confirmed by the simulation
and experimental results presented in Sections VI and VII.

A. The Proposed Algorithm
To mitigate the aforementioned issue, in the following, we

propose a general estimation framework for tracking multiple
local minima (modes). Within this framework, we develop
a bank-of-MAP estimator for the particular problem of tar-
get tracking. The key idea of our approach is to use the
analytically-computed local minima at each time step (see
Section IV-B) as guidance to find and track the most prob-
able hypotheses of the target-state trajectory, thus improving
estimation performance.

Specifically, at time-step k− 1, based on (22) and (23), we
first propagate the current state estimate corresponding to the i-
th solution and its covariance matrix, x̂

[i]
k−1|k−1 and P

[i]
k−1|k−1,

i = 1, . . . ,m, where m is the number of estimators in the bank
at time-step k − 1. Then, once a new measurement becomes
available, the propagated state estimate and covariance, x̂

[i]
k|k−1

and P
[i]
k|k−1, are used as the prior in (24). Next, we use

the algebraic-geometry methods presented in Section IV-B to
analytically determine all the local minima of (24), denoted

by x̂
?[j]
k , 1 ≤ j ≤ αm (see Lemmas 4.1 and 4.2, α = 2 and 7,

respectively). Finally, for each of these solutions, we employ
Gauss-Newton iterations to refine the entire state estimates
up to current time-step k, x̂

[j]
0:k|k [see (11)]. In particular,

the iterative Gauss-Newton approach uses the latest estimate
of the trajectory from time-step zero to k − 1 augmented
by the analytically-computed local minimum at time-step k,[

x̂
[j]
0:k−1|k−1

x̂
?[j]
k

]
, as the initial value, and processes all the

available original bearing or distance measurements. Fig. 3
visualizes this process by considering the first two time steps,
where we assume α = 2 for every time step. We should
stress that at each time step, it is the analytically-computed
local minima that guide the selection of initial values for the
Gauss-Newton-based batch-MAP estimators. Note also that at
the beginning the proposed estimator can be initialized either
based on a priori knowledge about the target’s state, or based
on the first set of measurements, e.g., via the geometrically-
constrained optimization approaches of [40]–[42].

This procedure recursively evolves over time, and at every
time step, generates at most αm trajectory estimates. In the
end, we will have multiple candidates of the batch-MAP esti-
mate, among which the one with the least cost [corresponding
to the most probable hypothesis (see (10) and (11))] is selected
as the best estimate for the global optimum and thus for the
true state. Algorithm 1 summarizes the main steps of the
proposed bank-of-MAP estimator for target tracking.

B. Computational Cost Reduction
In the worst case, the total number of analytical solutions,

and thus MAP estimators in the bank, grows exponentially
with time. In addition, as the target continuously moves, the
size of the state vector x

[i]
0:k of each MAP estimator increases
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Fig. 4. Illustration of an example of how multiple hypotheses may evolve between two consecutive time steps. In this case (range-only tracking), four
hypotheses are considered at time-step k = 22, and the corresponding trajectories and costs are shown in (a). Note that hypothesis 1 has the lowest cost.
Then, after processing one more range measurement at time-step k = 23, two new hypotheses span out of hypothesis 1: hypotheses 1 and 5, neither of which
is the winning hypothesis any more. Instead, hypothesis 3 is now the one that corresponds to the lowest cost. Finally, we should note that three of the five
hypotheses at k = 23 correspond to almost identical trajectories, which motivates merging them into a single hypothesis (see Section V-B1).

Algorithm 1 A bank-of-MAP estimator for target tracking

Require: Initial state estimate and covariance
At each time-step k:
• Propagate the current target state estimate and covariance

via (22) and (23).
• Analytically determine all the local minima of (24).
• For each of the local minima, refine the corresponding

state-trajectory estimates and covariance, by employing
the Gauss-Newton iterations that use the latest state
estimates corresponding to this minimum as the initial
guess, and compute the batch-MAP cost (11).

In the end, select the estimate in the bank with the least cost
as the resulting MAP estimate.

linearly with time. In order to make the algorithm suitable for
real-time applications, in what follows, we present an effective
pruning scheme, as well as the process of marginalization of
old, “matured” states,7 to reduce the computational cost of the
proposed algorithm.

1) Pruning least probable hypotheses: In practice, the num-
ber of physically different trajectory hypotheses is significantly
lower than the exponential number of hypotheses generated by
the estimator. This is due to the fact that many different initial
guesses reside within the same basin of attraction; in such
case, after iteratively applying Gauss-Newton minimization,
all cost functions corresponding to these hypotheses will reach
the same minimum, i.e., will compute the same trajectory
estimate. Additionally, we observe that in general, if two
MAP estimators in the bank have similar costs, the trajectory
estimates are also close (e.g., see Fig. 4). Therefore, we first
aggregate the trajectory estimates of which the corresponding
costs are equal within a tolerance, and retain one representative
trajectory of each such group while discarding the others.
In addition, we also employ the k-means algorithm [43] to

7Here “matured” refers to past states which will not be significantly affected
by a new measurement available at the current target’s position.

cluster the remaining estimated trajectories into two groups
based on their costs and remove the (outlier) group which has
larger costs. These two steps, aggregation and clustering, are
repeated, until the number of MAP estimators in the bank is
within a threshold denoted by mmax, even though simulation
results have shown that the aggregation is so effective that
most of the time there is no need to perform the clustering.
Note that we have opted for pruning hypotheses based on
the batch-MAP costs, instead of the multi-dimensional state
estimates, in part because the one-dimensional (scalar) costs
are better suited for fast aggregation and clustering.

2) Marginalizing old states: To further reduce the com-
putational complexity, we employ a marginalization process
that removes the old, matured states from the state vector
of each batch-MAP estimator in the bank (see [31]). In
particular, suppose that we currently have the active states
xk1:k3 = xk1:k2 ∪ xk2+1:k3 , and want to marginalize out
xk1:k2 . To do so, we employ the Schur complement to remove
xk1:k2 from the state vector and discard all the measurements
involving them [31]. However, since some of the discarded
measurements also involve the remaining states, xk2+1:k3 , we
should retain and utilize such information in the future batch-
MAP estimation after marginalization.

Toward this end, we note first that the batch-MAP cost
function can be decomposed as follows [see (11)]:

c(xk1:k3) = c(xk1:k2 ,xk2+1:k3)

= cm(xk1:k2 ,xk2+1) + cc(xk2+1:k3) (45)

where cm consists of all the terms involving the marginalized
states xk1:k2 (i.e., corresponding to the discarded measure-
ments), while all the remaining terms comprise cc. It is impor-
tant to note that due to the target’s Markov motion model (3),
there is a term in cm, ||xk2+1 −Φk2xk2 ||2Q′k2

, also involving
xk2+1, and this is why it is explicitly highlighted in (45). To
perform marginalization, we express the minimization problem
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as two nested ones as:

min
xk1:k3

c(xk1:k3) =

min
xk2+1:k3

(
cc(xk2+1:k3) + min

xk1:k2

cm(xk1:k2 ,xk2+1)

)
(46)

Then, we first solve arg min
xk1:k2

cm(xk1:k2 ,xk2+1) based on

Gauss-Newton iterations, i.e., by minimizing its second-order
Taylor-series expansion [see (12)], and the optimal solution is
computed as [35]:

xk1:k2 = x̂k1:k2|k2 −A−1
11

(
b1 + A12(xk2+1 − x̂k2+1|k2)

)
(47)

where we have used the following decompositions of the
Hessian and Jacobian matrices corresponding to xk1:k2 and
xk2+1 [see (18) and (14)]:

A , ∇2
{xk1:k2

,xk2+1}cm(·) =

[
A11 A12

A21 A22

]
b , ∇{xk1:k2

,xk2+1}cm(·) =

[
b1

b2

]
It is clear that this optimal solution (47) depends only on
xk2+1, and substituting it in (46) results in an approximately
equivalent cost function that is independent of xk1:k2 , denoted
by c′c(xk2+1:k3), in analogy to, but different from cc(xk2+1:k3).
The difference is that c′c(xk2+1:k3) now also incorporates the
information about xk2+1 retained from the discarded measure-
ments involving the marginalized states xk1:k2 . On the other
hand, cm(xk1:k2 ,xk2+1) in (46) is permanently approximated
by its second-order Taylor-series expansion at x̂k1:k2|k2 and
becomes a function of xk2+1.

From this point on, i.e., after marginalization is complete,
we solve arg min

xk2+1:k3

c′c(xk2+1:k3) for the MAP estimates, using

the Gauss-Newton method (see Section III-C and [35]).
The advantage the marginalization brings in is that each

batch-MAP estimator in the bank has constant computational
requirements, which depend linearly on the fixed size of the
sliding window. This, along with pruning (see Section V-B1),
results in constant computational complexity for the proposed
bank-of-MAP estimator, compared to linear for the standard
batch-MAP estimator (see Section III-C). Note also that in
order to further speed up the batch-MAP solver, incremental,
instead of batch, Gauss-Newton iterations can be used [44],
which, however, provide only an approximate solution (besides
the approximation due to linearization errors).

VI. SIMULATION RESULTS

To validate the capability of the proposed bank-of-MAP
estimator to improve tracking performance, we performed 500
Monte Carlo simulations, and compared four different estima-
tors. During each Monte Carlo run, all the estimators process
the same data, to ensure a fair comparison. The compared
estimators are: (i) the standard EKF, (ii) the standard batch-
MAP estimator that incrementally uses the EKF estimates (i.e.,
the current EKF estimate along with the MAP estimates of
the past states) as the initial value, and employs the same
marginalization process as the proposed bank-of-MAP estima-
tor, (iii) the sampling importance resampling (SIR)-PFs [11],
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Fig. 5. The trajectories of the target and the mobile sensor obtained from
one typical realization of the 500 Monte Carlo simulations.

and (iv) the proposed bank-of-MAP estimator with pruning
(mmax = 10) and marginalization (sliding window of 25
time steps). Note that in both MAP estimators, the maximum
number of Gauss-Newton iterations allowed was set to 20.
Note also that depending on different resampling schemes and
different proposal distributions used by the PF, many variants
exist (e.g., auxiliary PF, regularized PF, likelihood PF, etc.).
Interested readers are referred to [11], [27], [45], [46] for an
overview of the PFs. In this simulation, we implemented the
standard (bootstrap) SIR-PF [25] using 3000 particles, which
employs the prior distribution as the proposal distribution to
draw particles and uses systematic resampling at every time
step. Moreover, in order to alleviate the particle depletion
issue, we have dithered the sensor noise (i.e., increased the
measurement noise covariance). In addition, we have examined
different resampling schemes such as Ripley’s and stratified
resampling [27], [28], while finding negligible performance
difference.

For the results presented in this section, we adopted a zero-
acceleration motion model for the target [4]:

ẋ(t) = Fx(t) + Gw(t) (48)

where

F =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G =

0 0
0 0
1 0
0 1

 , x(t) =

xT (t)
yT (t)
ẋT (t)
ẏT (t)


and w(t) =

[
wx(t) wy(t)

]T
is zero-mean white Gaussian

noise with covariance E
[
w(t)w(τ)T

]
= qI2δ(t − τ), where

q = 2
(

m
sec2

)2 1
Hz , and δ(t− τ) is the Dirac delta function. In

the implementation, we discretize this continuous-time system
model (48) with time step δt = 0.1 sec. The initial true target
state is x0 =

[
0 0 −5 5

]T
, while the initial estimate of

the target state is randomly generated from a prior Gaussian
pdf, N (x0,P0|0), where P0|0 = 103I4 is the initial covariance
of the state estimate. Similar to [19], we chose a circular sensor
trajectory with perfectly known poses for this test. Fig. 5 shows
the trajectories of the target and the mobile sensor in one
typical realization of Monte Carlo simulations.

In what follows, we present the comparison results for both
range-only and bearing-only target tracking. In the former
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(a) Range-only tracking

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

P
o

s
it

io
n

 R
M

S
E

 (
m

)

 

 

EKF

PF

MAP

MAP bank

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

Time Steps

V
e

lo
c

it
y

 R
M

S
E

 (
m

/s
e

c
)

(b) Bearing-only tracking
Fig. 6. Monte-Carlo simulation results of average RMSE. In these plots, the dotted lines with circles correspond to the standard EKF, the solid lines with
crosses to the bootstrap PF, the dashed lines to the standard batch-MAP estimator, and the solid lines to the proposed bank-of-MAP estimator. It is clear that
the proposed algorithm performs more accurately than its competitors in both range-only and bearing-only target tracking.

case, the standard deviation of the distance-measurement noise
was equal to 10% of the sensor-to-target distance, while in the
latter case, the standard deviation of the bearing-measurement
noise was set to 10 deg. It should be pointed out that these
adverse sensor-noise levels selected for these simulations are
larger than what is typically encountered in practice. This was
done purposefully, since higher noise levels lead to larger esti-
mation errors, which can make the comparison more apparent.
Nevertheless, in the case of lower noise, the performance for
the compared estimators follows the same trends as presented
here and can be found in [35].

In particular, Fig. 6 shows the average root mean squared
errors (RMSE) of the four estimators, which are computed by
averaging the corresponding RMSE over all the Monte-Carlo
runs. As evident from this figure, the standard EKF estimates
are inaccurate, and diverge from the ground truth. The standard
batch-MAP estimator, incrementally using the EKF estimate as
the initial guess, has significantly improved performance com-
pared to the EKF, mostly due to the continuous relinearization
of the past trajectory. As expected, the PF has also attained
better estimation accuracy than the EKF. This is due to the fact
that each particle in the PF essentially represents a hypothesis
of the target state, and thus the PF is more likely to converge
to the optimal solution. However, it does not always work as
well as the standard batch-MAP estimator (see Fig. 6), in part
because it does not allow smoothing the old state estimates
using newly available measurements. Although particle-based
smoothers exist, due to the curse of dimensionality, their
computational requirements are significantly higher [27]. On
the other hand, the performance of the proposed bank-of-
MAP estimator is substantially more accurate than that of the
competing approaches (i.e., the standard EKF, the PF, and the
standard batch-MAP), which is attributed to the accurate initial
estimates obtained analytically through the algebraic methods
presented in Section IV-B.

Lastly, using the same simulation setup as described above,
we have also compared the computational requirements of the
proposed bank-of-MAP estimator against the three competing
algorithms. We counted the CPU running time for a complete
update of the EKF, the PF, the batch-MAP estimator, and

TABLE I
MONTE-CARLO SIMULATION RESULTS OF COMPUTATIONAL COST VERSUS

ESTIMATION ACCURACY

Runtime (sec) Pos. Est. Err. (m) Vel. Est. Err. (m/sec)

Range-only tracking

EKF 0.0014 153.8764 19.7173

MAP 0.0569 82.0346 10.6915

PF 0.4756 88.1905 10.1034

MAP bank 0.2447 66.6276 9.1824

Bearing-only tracking

EKF 0.0015 233.7407 32.0778

MAP 0.0695 116.0235 16.9055

PF 0.6289 143.0785 18.7006

MAP bank 0.5133 56.0722 10.7231

the proposed bank-of-MAP estimator (including the analytical
determination of all local minima, batch-MAP refinement,
pruning, and marginalization). Our Matlab implementation
running on a Core i7 CPU of 2.90 GHz required an average
execution time for each estimator shown in Table I. These
results were obtained by averaging the CPU running time over
all Monte Carlo runs and over all time steps. As expected,
the EKF and the standard MAP estimator, which only track a
single hypothesis of the target’s trajectory, are computationally
more efficient than both the PF and the proposed bank-of-
MAP estimator which instead track multiple hypotheses of
the target’s trajectory. However, their tracking performance is
substantially worse than the proposed algorithm. Moreover,
as compared to the PF, the proposed bank-of-MAP estimator
not only is less computationally demanding, but also achieves
significantly better performance (see Fig. 6 and Table I).
Specifically, in the case of range-only tracking, as compared to
the PF, the bank-of-MAP estimator reduces the position error
by 25% on average and the velocity error by 10%, at 50%
less computational cost. Similarly, in the case of bearing-only
tracking, it reduces the position and velocity errors on average
by 60% and 40%, respectively, at 20% less computational cost.
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Fig. 7. Comparison results of the proposed bank-of-MAP estimator and PFs with different numbers of particles in the case of range-only tracking. These
results suggest that the proposed estimator performs favorably against the PF in terms of the trade-off between estimation accuracy and computational cost.

To further compare the two corresponding multi-hypotheses
tracking approaches, the PF and the proposed bank-of-MAP
estimator, we have performed various Monte-Carlo simulations
of range-only tracking, using the same setup as before but
for different numbers of particles: 1000, 4000, 8000, and
12000. Fig. 7 shows the comparison results. As expected,
as more particles are used, the PF performs better; however,
such performance gain is offset by the increased computational
cost, in particular, when using a large number of particles. For
example, in this test, the improvement of estimation accuracy
is negligible from 8000 to 12000 particles [see Fig. 7(a)],
while the computational overhead increases by 50% [see
Fig. 7(b)]. Even more interestingly, the PF that uses 8000
or more particles performs slightly better than the bank-of-
MAP estimator (10% error reduction) but requires 5 times
more processing resources. It, thus, becomes evident that
the proposed bank-of-MAP significantly outperforms the PF
when our objective is to maximize the estimation accuracy for
given processing resources, or equivalently, when seeking to
minimize the processing cost for achieving a desired level of
tracking accuracy.

VII. EXPERIMENTAL RESULTS

In this section, we present a real-world experiment per-
formed in a controlled indoor environment to further validate
the proposed bank-of-MAP estimator. During the test, two
Pioneer-III robots, one acting as the target and the other
serving as the tracking sensor, moved in a rectangular area
of 4 m × 2 m, within which the positions of the robots
were being tracked by an overhead camera. For this purpose,
rectangular tracking patterns were mounted on top of the
robots and the vision system was calibrated in order to provide
ground-truth measurements of the robots’ poses in a global
coordinate frame. The standard deviation of the noise in these
measurements was approximately 0.5 deg for orientation and
0.01 m, along each axis, for position. The target robot was
commanded to move along a straight line at a constant velocity
of v = 0.1 m/sec, and thus a zero-acceleration motion model
with q = 0.01

(
m

sec2

)2 1
Hz was used to describe this motion

[see (48)], while the tracking robot was operated to move on

a circle. Fig. 8(a) shows the experimental setup, and Fig. 8(b)
depicts the trajectories of the target and the sensor.

In this experiment, the initial estimate of the target state was
set to be x̂0|0 =

[
1.2 0.95 0.7 −0.8

]T
with covariance

P0|0 = I4. Relative distance and bearing measurements were
produced synthetically using the differences in the positions
of the target and the sensor, as these were recorded by
the overhead camera, with the addition of noise. For the
experimental results shown in the following, the distance and
bearing measurements were corrupted by zero-mean white
Gaussian noise, with standard deviation σρ = 0.1 m and
σθ = 5 deg, respectively.

The same four estimators as in the preceding simulation
(i.e., the standard EKF, the bootstrap PF with 3000 particles,
the standard batch-MAP estimator, and the proposed bank-
of-MAP estimator) were implemented, and the comparative
results are presented in Fig. 9. It becomes clear from these
results that the proposed bank-of-MAP estimator outperforms
the EKF, the PF, and the batch-MAP estimator, and attains
the best tracking accuracy, which agrees with the simulation
results presented in the preceding section. It is important to
note that both the experimental and simulation results confirm
the significance of correctly finding and tracking multiple
modes of the posterior pdf as well as reducing linearization
errors in nonlinear estimation problems.

VIII. CONCLUSIONS AND FUTURE WORK

In order to improve its performance, a nonlinear estimator
should be able to track multimodal pdfs which often occur in
nonlinear problems. However, this is not the case for many
existing estimators (e.g., the EKF, and the MAP estimator).
In this paper, we have introduced a general estimation frame-
work, a bank-of-MAP estimator, which simultaneously allows
tracking multiple modes of the posterior pdf, and reduces
linearization errors through relinearization of past measure-
ments. We have applied it to the particular problems of both
range-only and bearing-only target tracking. Due to the com-
putational intractability of analytically solving the batch-MAP
problem, we have employed a relaxation scheme that keeps
past state estimates temporarily constant and incrementally
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Fig. 8. Experimental setup: (a) Calibrated image of two Pioneer III robots (one acts as the target while the other is the sensor) with tracking patterns mounted
on top of them. (b) Trajectories of the two robots (target and sensor) that move inside a 4 m × 2 m arena during the indoor experiment.
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(a) Range-only tracking
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(b) Bearing-only tracking
Fig. 9. Experimental results of estimation errors. In these plots, the dotted lines with circles correspond to the standard EKF, the solid lines with crosses
to the bootstrap PF, the dashed lines to the standard batch-MAP estimator, and the solid lines to the proposed bank-of-MAP estimator. It is clear that the
proposed algorithm performs more accurately than its competitors in both range-only and bearing-only target tracking.

solves a one-step minimization problem for the current state
at every time step. This minimization is solved analytically
(and hence efficiently) using algebraic geometry methods.
The analytically-computed local minima are then used to find
accurate initial values for the bank-of-MAP estimator, thus
focusing the available resources on tracking the most probable
hypotheses of the target’s trajectory. Additionally, to reduce
the computational cost of the proposed algorithm, we have
employed hypothesis pruning along with marginalization of
old states. Simulation and experimental results have shown that
the proposed algorithm significantly outperforms the standard
EKF, the batch-MAP estimator, as well as the SIR-PF.

As for our future work, we plan to incorporate active sensing
(optimal motion planning) [7] into the current estimation
framework so as to further improve tracking performance, as
well as involve multiple tracking sensors navigating in 3D.

APPENDIX A
PROOF OF LEMMA 4.1

We first note that the following finite-dimensional Mountain
Pass Theorem (MPT) will be useful for the ensuing proof.

Theorem A.1: [Theorem 5.2, [36]] Suppose that a contin-
uous function f ∈ C1(RN ;R) is coercive and possesses two
distinct strict relative minima x1 and x2.8 Then f possesses a
third critical point x3, which is distinct from x1 and x2, and
is characterized by:

f(x3) = inf
Σ∈Γ

max
x∈Σ

f(x) (49)

where Γ = {Σ ⊂ RN ; Σ is compact and connected, and
x1,x2 ∈ Σ}. Moreover, x3 is not a relative minimizer; that
is, in every neighborhood of x3, there exists a point x such
that f(x) < f(x3).9

To preserve the clarity of presentation, without loss of
generality, we hereafter translate the global frame of reference
to the sensor’s local frame (i.e., pS = 0), and also drop the
time indices as well as the subscript “ T ” denoting the target.

8 A function f : RN → R is coercive iff it is bounded from below and is
proper in the sense that f(x)→∞ for ||x|| → ∞.

9 Γ is the class of paths (or curves) connecting x1 and x2 (see Theorem 1.1,
Ch. II, [47]). Note that, based on the proof of this theorem (see [36]), such a
critical point x3 (49) also exists for f ∈ C0(RN ;R), though, in this case, x3

is not necessary to be a non-minimum point. It is also important to notice that,
an isolated inf-max critical point (i.e., mountain pass point), x3, is necessarily
a saddle point (see Ch. 12, [36]).
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Thus, the minimization of (27) can be written as:

min
p

c(p) =
1

2
(p− p̂)TP−1

pp(p− p̂) +
1

2σ2
ρ

(
z−
√
x2 + y2

)2

, c1(p) + c2(p) (50)

Recall that p =

[
x
y

]
denotes the target’s position. In (50),

given a function value c(x, y) , α, c1(x, y) , β is an

ellipse centered at p̂ =

[
x̂
ŷ

]
, while depending on the available

measurement value, c2(x, y) = α − β , γ represents one or
two circles centered at the origin, i.e., x2+y2 = (z±σρ

√
2γ)2.

For simplicity of analysis, in the following, we assume only
one circle is associated with c2(x, y), while the analysis readily
holds for two circles. Notice that the cost function c(p) (50) is
coercive but not C1 since it is not differentiable at the origin.
Hence, Theorem A.1 is not applicable directly.

Nevertheless, in what follows, we first show that the inf-
max point cannot be the origin. Based on that, we will use
the MPT to show that there are at most 3 local minima, since
c(p) is coercive and C1 in R2\{0}. Subsequently, we show
that there are at most 2 local minima to complete the proof.

A. Proof that there are at most 3 local minima
Recall that there are up to 4 distinct critical (stationary)

points in R2\{0} (see Section IV-B1). Suppose that they are
all strict local minima, denoted by pi, i = 1, . . . , 4. By the
MPT (Theorem A.1) in R2\{0}, we have an inf-max point p
for any pair of pi. If this p is different from any pi, we will
have (at least) 5 critical points, which contradicts the fact that
there are at most 4 critical points in R2\{0}. Therefore, any
pair of pi must share a common inf-max point at the origin
which is a non-differential critical point. However, we now
show by contradiction that this is not the case.

Specifically, suppose that the origin, p = 0, is the desired
common inf-max point. From (49), we know that c(pi) <
c(0) , α, i = 1, . . . , 4. By continuity of c(·), we define the
following level set:

S = c−1(α) = {p ∈ R2 : c(p) = c(0)} (51)

We now show some important properties of this level set S
that will be useful for our proof. First of all, from the implicit
function theorem (see Lemma 4 of Ch. 2 in [48]), S\(0, 0)
is a smooth 1-dimensional manifold. A smooth connected 1-
dimensional manifold is diffeomorphic either to a circle or to
some interval of real numbers (see Appendix of [48]).10 Thus,
from differential topology [48], a 1-dimensional manifold and
thus S\(0, 0) is a union of disjoint smooth curves (lines and
circles). This also implies that S\(0, 0) has no isolated points.

Secondly, S\(0, 0) has no closed curves.11 To see this, by
contradiction, suppose that one curve component of S\(0, 0) is
closed, denoted by S1. By continuity of c(·) and compactness
of S1, and based on the Weierstrass theorem [50], there will

10A map f : x → y is called a diffeomorphism if f carries x
homeomorphically onto y and if both f and f−1 are smooth.

11In topology, a curve γ is a continuous mapping γ : I → x where
I = [a, b] is an interval of real numbers, and x is a topological space. A
curve γ is closed if γ(a) = γ(b) [49]. Simply speaking, a closed curve in
the plane is a curve without endpoints that completely encloses an area.
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Fig. 10. Illustration of the topological configuration of four local minima, pi
(i = 1, . . . , 4), and the level set S. In this plot, the dashed curves represent
the level set S, and the solid lines are the paths which connects the local
minima pi and pj and attains its maximum at the origin. Note that each of
the paths is contained exactly in one interior of the connected components of
S. It is clear that the circle c2(p) intersects S at 8 different points.

exist (at least) one local minimum inside S1, which has to be
one of the points pi since no other critical point exists. Note
that such a local minimum cannot be on the boundary of S1

since c(pi) < α. Without loss of generality, we assume p1 is
the only local minimum inside S1. Note that there cannot be
more than one local minima inside S1 (see the next paragraph
below). Based on the continuity of c(·) and compactness of S1,
we can find a sufficiently small ε > 0 so that S1 is contained in
one closed component of c−1(α + ε), which is disjoint from
S\S1 as they have different function values (α + ε and α,
respectively). Clearly, in this case, the inf-max value between
p1 and pi (i 6= 1) will be larger than α and is attained
at a point other than (0, 0), which gives the contradiction.
Therefore, all curves of S\(0, 0) are open-ended. Moreover,
by continuity, c(·) attains α at any limit point (i.e., the open-
end point) of the curves of S\(0, 0). However, (0, 0) is the
only point where c(·) attains α except the curves of S\(0, 0),
and thus (0, 0) is the only common limit of all open-ended
curves of S\(0, 0).

Lastly, let us consider the properties of the interior of S.
We first define the following set Θ whose boundary is S,
i.e., Θ = {p ∈ R2 : c(p) < α} = ∪jΘj , where Θj is
j-th component of Θ. It is clear that pi (i = 1, . . . , 4) is
contained in Θj for some j, since c(pi) < α. Note that, Θj

cannot contain (more than) two pi, since, otherwise, the inf-
max point of these two pi will be different from (0, 0) and will
have a function value less than α. On the other hand, if Θj

does not contain any pi, similarly, based on the Weierstrass
theorem [50], there will exist a new local minimum in the
corresponding closure, Θ̄j = Θj ∪ ∂Θj . This contradicts the
fact that we have only 4 critical points different from (0, 0).
Therefore, there are exactly 4 connected components Θi, each
of which contains one pi. Furthermore, by continuity of c(·),
the i-th boundary, ∂Θi ⊂ S, contains at least one curve of
the connected components of S\(0, 0). Since (0, 0) is a limit
point of all curves, (0, 0) ∈ ∂Θi for every i, and thus,

∂Θi = ∪nij=1Sj ∪ {(0, 0)} (52)

where Sj is one curve of S\(0, 0) and ni is the number of
Sj contained in ∂Θi. Note that any two ∂Θi do not share
a common curve, since if they do, by definition, the shared
curve will consist of (infinitely many) critical points. As a
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Fig. 11. Illustration of the circle c2(p) = α intersecting the level set S,
and thus the ellipse c1 [see (53)], generated by a small perturbation on c2.
In this plot, the dashed curves represent the level set, the solid lines are the
path which connects the local minima p1 and p2 and attains its maximum
at the origin, and the solid circle represents c2 after perturbation.

result, there are at least 4 distinct open curves in S\(0, 0)
having (0, 0) as a common limit point (see Fig. 10).

As seen from Fig. 10, for a given measurement z, the circle
c2(p) intersects the level set S at (at least) 8 intersection points
denoted by qi, i = 1, . . . , 8. We can show that all these 8
points belong to the same ellipse c1(p), by noting that

c(qi) =c1(qi) + c2(qi)

⇒ c1(qi) =c(qi)− c2(qi) , α− γ , β (53)

This indicates that the 8 intersection points, qi, belong to the
same ellipse c1(p) = β. This results in 8 intersection points
between the ellipse c1 and the circle c2. However, it is known
from geometry that there are at most 4 intersection points
between any ellipse and circle. Therefore, we conclude that
(0, 0) cannot be an inf-max point.

By the MPT, there must exist an inf-max point between any
two local minima among the 4 stationary points. Therefore,
there are at most 3 local minima (by sharing one stationary
point as the common inf-max point).

B. Proof that there are at most 2 local minima

We now prove that there are at most 2 local minima by
showing that the assumption of 3 local minima (i.e., pi, i =
1, 2, 3) leads to a contradiction. Denote the inf-max point, mi,
corresponding to the two local minima, pi and pj (i, j =
1, 2, 3 and i 6= j),

c(mi) = inf
Σij∈Γ

max
p∈Σij

c(p) (54)

Recall that we have at most 5 critical points in total (i.e., 1
non-differentiable point at the origin and 4 stationary points).
So, it is clear that there are only four possible cases that we
need to examine in terms of mi (i = 1, 2, 3):
• Case I: m1 = m2 6= m3 = 0
• Case II: m1 6= m2 = m3 = 0
• Case III: m1 = m2 = m3 = 0
• Case IV: m1 = m2 = m3 6= 0

Our goal is to prove that all these four cases are impossible
to occur and thus there are at most 2 local minima. In what
follows, we first show that the first three cases with a zero
inf-max point (i.e., Cases I, II and III) cannot occur, and then
disprove Case IV.

We start by considering a special case where the prior
estimate coincides with the sensor position (i.e., p̂ = 0). By

denoting P−1pp =

[
s1 s3

s3 s2

]
, we expand the cost function (50)

in a neighborhood of the origin as follows:

c(x, y) =
1

2

[
x
y

]T [
s1 s3

s3 s2

] [
x
y

]
+

1

2σ2
ρ

(
z −

√
x2 + y2

)2

=

(
s1σ

2
ρ+1

2σ2
ρ

)
x2+

(
s2σ

2
ρ+1

2σ2
ρ

)
y2+s3xy−

z

σ2
ρ

√
x2+y2+

z2

2σ2
ρ

, Ax2 +By2 + Cxy − E
√
x2 + y2 +D (55)

=
√
x2 + y2

(
Ax2 +By2 + Cxy√

x2 + y2
− E

)
+D

≤
√
x2 + y2 (A|x|+B|y|+ |C||x| − E) +D (56)

where E , z
σ2
ρ
> 0, due to the positive distance measure-

ment z. In the above expressions, we have employed the
inequalities |x| ≤

√
x2 + y2 and |y| ≤

√
x2 + y2. Clearly,

there exists a neighborhood of (0, 0) such that A|x|+B|y|+
|C||x| − E < 0 and hence c(x, y) < D = c(0, 0), if
(x, y) 6= (0, 0). By definition, (0, 0) is a local maximum and
thus cannot be an inf-max point.12 This is the contradiction,
and therefore Cases I, II, and III cannot happen when p̂ = 0.

Now consider the general case where p̂ 6= 0. First, in Case I
(m1 = m2 6= m3 = 0), as in the previous proof of at most 3
local minima (see Section A-A), we can show that there are at
least 4 intersection points between the circle c2(p) for a given
z and the level set S (see Fig. 11). If the circle c2 collapses
to a single point (i.e., with zero radius), clearly there is only
1 intersection point between the circle c2 and the level set
S, and hence 1 intersection point between the circle c2 and
the ellipse c1 [see (53)].13 Importantly, by continuity of c2
and compactness of S, if perturbing c2 by an arbitrarily small
value in the neighborhood of the origin, there are always at
least 4 intersection points between the circle c2 and the level
set S, and thus at least 4 intersection points between the circle
c2 and the ellipse c1 [see (53)]. This perturbation results in
the dynamics of the number of intersection points between
the circle and the ellipse, changing from 1 to 4. However, this
is impossible in practice, since we know from geometry that
based on the continuity of the circle and ellipse, if applying a
small perturbation on the circle, 1 intersection point between
the circle and ellipse can only dynamically change to 0, 1 or
2 (instead of 4) intersection points. Moreover, as compared
to Case I, in Case II there would be at least 6 (instead of 4)
intersection points between the circle c2(p) for a given z and
the level set S, and thus we can show in a similar way that
this case is not possible either.

In Case III (m1 = m2 = m3 = 0), interestingly, no matter
whether p̂ = 0 or p̂ 6= 0, proceeding similarly as in Cases I
and II and as in Section A-A, we can derive the contradiction

12 Note that if z = 0, then (55) becomes quadratic and has a unique global
minimum at the origin (by noting that A > 0), which clearly contradicts the
assumption of three local minima.

13Although depending on the measurement z, another circle possibly exists
and thus may result in more intersection points between the circle c2 and
the ellipse c1, we here consider the dynamics of the intersection point in a
neighborhood of the origin.
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Fig. 12. Illustration of the circle c2(p) = α′ intersecting the level set S′
by a small perturbation on c2. In this plot, the dashed curves represent the
level set, the solid lines are the paths which connect the local minima pi and
pj and attain the maximum at p = m, the dash-dotted arcs (of the circles)
represent c2 before and after perturbation, and the solid circle denotes the
neighborhood of p = m.

that there will be 6 intersection points between the circle c2
and the level set S (and thus the ellipse c1), and hence show
that this case is also impossible to occur.

At this point, we have ruled out Cases I-III. We will now
disprove Case IV. Specifically, to simplify notation, we denote
the common inf-max point by m , m1 = m2 = m3.
Then, we first consider a special case where the prior estimate
coincides with the inf-max point, i.e., p̂ = m. In this case,
we know that ∇c(p) |p=m= 0, since p = m is a critical
(inf-max) point. Therefore, we have:

0 = ∇c(p) |p=m= ∇c1(p) |p=m +∇c2(p) |p=m

=
1

σ2
ρ

(z − ||m||) m

||m||
⇒ z = ||m|| ⇒ c(m) = 0 (57)

which clearly shows that p = m is a global minimum (by
noting the quadratic and nonnegative cost function (50)). This
contradicts the assumption that p = m is an inf-max point.

We finally consider the general scenario of Case IV where
p̂ 6= m. We define the following level set:

S ′ = {p ∈ R2 : c(p) = c(m) , α′} (58)

Similar to Case III and Section A-A (where instead the level
set S is considered), the corresponding interior, Θ′ = {p ∈
R2 : c(p) < α′}, has three curve components, each of
which contains exactly one pi (see Fig. 12). Consider the
scenario where p = m is an intersection point between the
circle and the ellipse (by noting c(m) = c1(m) + c2(m)).
In a neighborhood of p = m, by perturbing the circle
c2(p) = c2(m) , γ′ by an arbitrarily small (positive or
negative) value, the circle will either shrink or expand. Since
there are 6 branches belonging to the level set S ′, by continuity
and compactness of c2 and S ′, in the neighborhood of p = m,
there will exist at least 3 intersection points between the
circle and the level set, and thus at least 3 intersection points
between the circle and the ellipse [see (53)], either when the
circle shrinks or expands. Thus, there exists an (arbitrarily)
small perturbation on c2 so that the number of intersection
points between the circle and the ellipse, in the neighborhood
of p = m, dynamically changes from 1 to (more than) 3.
However, we know from geometry that this is not the case
since 1 intersection point between a circle and an ellipse, by
perturbation, can change to at most 2 in its neighborhood.

Thus far, we have proven that all the four cases (i.e., Cases
I, II, III, and IV) are impossible to occur if there are 3 local
minima. As a result, there are at most 2 local minima. This
completes the proof.
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