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Abstract—In this paper, we provide a study of motion-induced
3D extrinsic calibration based on robot-to-robot sensor measure-
ments. In particular, we introduce algebraic methods to compute
the relative translation and rotation between two robots using
known robot motion and robot-to-robot (i) distance and bear-
ing, (ii) bearing-only, and (iii) distance-only measurements. We
further conduct a nonlinear observability analysis and provide
sufficient conditions for the 3D relative position and orientation
(pose) to become locally weakly observable. Finally, we present a
nonlinear weighted least squares estimator to refine the algebraic
pose estimate in the presence of noise. We use simulations to
evaluate the performance of our methods in terms of accuracy
and robustness.

Index Terms—3D extrinsic calibration, cooperative localiza-
tion.

I. INTRODUCTION

In robotic applications such as localization [1]–[5], map-
ping [6]–[10], and tracking [11]–[15], the benefits of deploying
cooperating teams instead of single robots have been widely
recognized. A group of robots can combine measurements
from many geographically dispersed locations and different
vantage points, resulting in increased estimation accuracy.
However, such sensor-fusion algorithms usually require that
the measurements are expressed with respect to a common
frame of reference. This in turn requires knowledge of the 6
degrees of freedom (d.o.f.) transformation between the robots,
i.e., the robot-to-robot relative position and orientation (pose).

Most cooperative estimation algorithms operate under the
assumption that the sensor-to-sensor transformation is exter-
nally provided. However, very few works describe how this
transformation can be found. In general, the relative pose of
two robots can be measured manually, inferred indirectly from
individual localization with respect to a common frame of
reference (e.g., using GPS), or determined by spatially cor-
relating overlapping sensor measurements (e.g., visual feature
matching). These methods are time-consuming, may not be
sufficiently accurate, or may even be infeasible in adverse
environments (e.g., in GPS-denied or textureless areas).

Alternatively, the relative pose can be computed using robot-
to-robot relative observations, resulting from range sensors,
bearing sensors, or both. In 2D, the relative pose can be
determined in closed form from a single set of robot-to-
robot distance and bearing measurements [1], [16]. In 3D,
however, the robots will necessarily have to move and take
multiple measurements from different vantage points in or-
der to uniquely determine the interrobot transformation (see
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Fig. 1. This paper addresses the problem of determining the spatial
configuration of mobile robots in 3D, i.e., their relative position p0 and
orientation q̄0, based on robot-to-robot distance and/or bearing measurements.
Note that measurements from several vantage points are required to uniquely
determine the robots’ relative transformation.

Section IV). This task of motion-induced 6 d.o.f. robot-to-
robot extrinsic calibration is precisely the problem under
investigation in this paper (see Fig. 1).

Estimating the relative pose of multiple robots can generally
be cast as a nonlinear optimization problem [e.g., nonlinear
Weighted Least Squares (WLS)], and solved by iterative meth-
ods, such as Gauss-Newton. The quality of the result, however,
invariably depends on the accuracy of the initial estimate used
to start the solver. If no initial estimate is available, the WLS
algorithm can be initialized with a random guess, but may
take an excessive number of iterations to converge, or may
even diverge.

The main contributions of this paper are twofold: (i) We
introduce algorithms that provide accurate, fast, closed-form
estimates of the relative pose of two robots, which can be used
stand-alone or to initialize an iterative refinement process. All
methods are shown to be exact in the absence of measurement
noise. In particular, we investigate analytical algorithms for the
cases where the robots are equipped with 6 d.o.f. motion sen-
sors, as well as robot-to-robot range sensors, bearing sensors,
or both. (ii) We present a nonlinear observability study based
on Lie derivatives and provide sufficient conditions for the
robot-to-robot relative pose to become locally weakly observ-
able. We have tested our algorithms extensively in simulation
and evaluated their performance both stand-alone and as initial
guess for WLS refinement. The presented results underline
their clear superiority over a random WLS initialization in
terms of speed of convergence and robustness. In our previous
publications related to this work, we provided closed-form
algorithms to determine the relative pose in 2D [17] and
3D [18], [19] from range-only robot-to-robot measurements.
The present paper substantially extends this work by including
algorithms for the cases of 3D bearing-only and range and
bearing sensors, as well as the nonlinear observability study
for all three cases. The algorithm for the 3D range measure-
ment case presented in Section VI is the linear algorithm
to determine the unique solution using at least 10 distance
measurements discussed in [18]. Alternatively, especially in
the presence of outliers, one can use the method presented



2

in [19] to solve several minimal subproblems (40 solutions
using 6 distance measurements), and obtain the unique solution
using clustering. This approach is considerably more involved,
and does not fit our premise of providing fast, closed-form
estimates.

The remainder of this paper is organized as follows: Af-
ter situating our work with respect to existing literature in
Section II, we describe our algorithms for range and bearing,
bearing-only, and range-only measurements in Sections IV,
V, and VI, respectively. Section VII provides the observability
analysis of these three cases. The WLS refinement is discussed
in Section VIII, followed by the simulation results in Sec-
tion IX, and concluding remarks in Section X.

II. LITERATURE REVIEW

Recent research on leveraging sensor-to-sensor measure-
ments to solve the relative localization problem has focussed
primarily on static sensor networks. These approaches only
determine the position of sensor nodes, not their relative
orientation. Static sensor networks cannot overcome this fun-
damental limitation, since at least one sensor (if not both) must
move for the 3D pose to become observable (see Section VII).
Localization algorithms for static sensor networks infer the
node positions using measurements to so-called anchor nodes
with known global position. The position of the remaining
sensors in the network can be uniquely determined if certain
graph-rigidity constraints are satisfied [20]. A number of
algorithms for 2D node localization have been proposed based
on convex optimization [21], multidimensional scaling [22],
or graph connectivity [23]. In 3D, flying anchor nodes have
been proposed to localize sensors, for example, an unmanned
aerial vehicle aiding static sensor network localization [24], or
a single satellite localizing a stationary planetary rover using
distance measurements [25].

For many practical applications, such as tracking or sen-
sor fusion, knowledge of both relative sensor position and
orientation is required. Relative pose estimation in static 2D
sensor networks, using a combination of distance and bearing
measurements, was recently shown to be NP-hard [26]. For
mobile robots, the problem of relative pose determination
has only been thoroughly investigated in 2D. It is known
that mutual distance and bearing measurements from a single
vantage point are sufficient to determine the full relative pose
in closed-form [1], [16]. However, when only distance or
bearing measurements are available, the robots must move
between observations. The relative pose can then be found by
combining the estimated robot motion (e.g., from odometry)
and the mutual bearing [27] or distance [17] measurements.
The nonlinear observability study by Martinelli and Sieg-
wart [27] provides sufficient conditions for the pose to become
observable for all three cases of relative observations.

In 3D, however, there exists very little literature on deter-
mining the relative pose using sensor-to-sensor measurements.
Our paper is intended to fill this gap. Notice that by careful
instrumentation of the robots, it is possible to estimate relative
pose from a single set of measurements without requiring
motion of the robots. In these cases, the sensors can effectively

acquire multiple distance and/or bearing measurements simul-
taneously, for example using distance measurements between
arrays of rigidly connected sensors [28], or by using calibrated
cameras measuring a specially designed calibration target on
the other robot [29], [30]. Such simultaneous measurements
greatly simplify the solution, but are only applicable in suf-
ficiently close range, where the spatial extent of the target is
well within the sensor resolution. Instead, this paper focuses
on single, point-to-point distance and bearing measurements,
which is also valid for long distance measurements.

To our knowledge, no algorithms exist for the specific
task of relative pose estimation using robot-to-robot distance
and bearing or bearing-only measurements. In this paper, we
introduce two algorithms to solve these problems. Moreover,
only few works address the more challenging case of com-
puting relative pose from distance-only measurements. In the
most general, minimal problem case, the task of relative pose
estimation using only distance measurements is actually equiv-
alent to the forward kinematics problem of the general Stewart-
Gough mechanism [31]. This parallel manipulator consists
of a base platform and a moving platform connected by six
articulated legs of variable lengths. The forward kinematics
problem is to determine the relative pose of the base and the
end effector given the six leg lengths and the coordinates
of the leg attachment points in the base and end effector
frames, respectively. This problem has 40 (generally complex)
solutions [32], which can be found based on nonlinear tech-
niques from algebraic geometry [19], [33], [34]. In contrast,
we introduce a linear method using 10 distance measurements
to uniquely determine the relative pose of robots navigating
in 3D [18]. In particular, our method uses lifting, i.e., the
linearization of an overdetermined system of polynomials by
introducing new variables.

In this paper, we seek to provide an overarching treatment
of 3D pose determination based on sensor-to-sensor measure-
ments. To this end, we present closed-form algorithms, as
well as a nonlinear observability analysis for all three cases
of robot-to-robot distance-only, bearing-only, or distance and
bearing measurements. We start our discussion in the next
section with the problem formulation and a brief review of
basic quaternion algebra.

III. PROBLEM FORMULATION

A. Notation

In order to improve the clarity of presentation, we hereafter
introduce most of the notation used throughout the paper.

ipj Position of frame {j} expressed in frame {i}.
i
jC Rotational matrix that projects vectors expressed in

frame {j} to frame {i}.
dk The distance between two robots at time-step k.
b1,k Bearing from robot R1 to R2 at time-step k, ex-

pressed in R1’s local frame.
b2,k Bearing from robot R2 to R1 at time-step k, ex-

pressed in R2’s local frame.
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(a) (b)

Fig. 2. Geometry of the robot trajectories. (a) Both robots meet for the
first time (k = 0). Without loss of generality, we assume that at this point,
local and global frames coincide. (b) At time k, both robots i = {1, 2} have
moved. We assume that both robots can estimate their pose q̄i,k , pi,k in their
own global frames, and measure distance dk and/or bearing bi,k to the other
robot. The problem is to determine the transformation between the global
frames, i.e., p0, and q̄0.

Consider two robots1, R1 and R2, moving randomly in
3D space (see Fig. 2). At the point when the robots meet
for the first time, let the frames of reference attached to the
robots, {R1,0} and {R2,0}, coincide with their global frames
{G1} and {G2}. Our objective is to determine the 6 d.o.f.
transformation between these two global frames.

Further along their trajectories, the robots reach positions
p1,k := G1pR1,k

and p2,k := G2pR2,k
, k = 1, . . . , n − 1,

which they can each estimate with respect to their own
global frame (e.g., from integrating velocity measurements
over time). We further denote the robots’ current orientation
using the rotation matrices C1,k :=

R1,k

G1
C and C2,k :=

R2,k

G2
C,

or the corresponding unit quaternions q̄1,k and q̄2,k.
Let us also consider the vector pk := R1,kpR2,k

from robot
R1 to robot R2 at time k, and the relative orientation between
the two robots’ local frames, described by the rotation matrix
Ck :=

R1,k

R2,k
C or the corresponding quaternion q̄k. The 6 d.o.f.

transformation between the global frames is parameterized by
the translation G1pG2

and rotation G1

G2
C. Since we assumed

that the robots started at their respective global frames, these
unknown variables are equal to p0 and C0 (or q̄0).

At every time step k = 0, . . . , n − 1, each robot can
record a measurement of the range and/or bearing towards
the other robot, for a total of n pairs of robot-to-robot
measurements. The distance between the robots is given by
dk = ||pk||2 =

√
pTk pk, and the bearing is described by either

a unit vector in the current local frame, or the observation of
a calibrated pinhole camera. Denoting the components of pk
as pk =

[
x y z

]T
, robot R1 then observes the bearing

b1,k :=
[
x
z

y
z

]T
to robot R2, or the corresponding unit

vector b̄1,k := pk

||pk|| . Similarly, robot R2 can measure b2,k or
the corresponding unit vector b̄2,k in its current local frame.
Later, we will also need these unit vectors rotated in the
corresponding global frames for which we define the symbols
G1 b̄1,k := CT

1,kb̄1,k and G2 b̄2,k := CT
2,kb̄2,k.

1In this paper, we will present methods to find the relative pose between
two robots. The extension to N robots is straightforward.

In what follows, we investigate three cases of finding the
relative global transformation: (i) using both distance and bear-
ing measurements, (ii) using only bearing measurements, and
(iii) using only distance measurements. We introduce algebraic
methods that yield a closed-form, non-iterative solution for the
relative transformation. In the presence of noise, this solution
is a sub-optimal estimate of the relative pose, but can serve
as a precise initial guess for an iterative optimal estimation
algorithm, such as the nonlinear WLS method described in
Section VIII.

Before delving into the details of the algorithms for analyti-
cally computing the 3D robot-to-robot transformation, we first
provide a brief overview of quaternion algebra, whose results
and notation will be needed in the remainder of the paper.

B. Quaternion Algebra

We parameterize rotation using a 4× 1 unit quaternion

q̄ =
[
q1 q2 q3 q4

]T
=
[
qT q4

]T
, q̄T q̄ = 1 (1)

Employing the (non-Hamiltonian) conventions for quater-
nions specified in [35], the rotation of frame {1} with respect
to frame {2} can be expressed by the rotation matrix 2

1C(2
1q̄)

whose entries are quadratic in the elements of 2
1q̄

C(q̄) = (q2
4 − qTq)I3 − 2q4bq×c+ 2qqT (2)

where I3 is the 3 × 3 identity matrix, and the symbol bq×c
denotes the skew-symmetric 3×3 matrix corresponding to the
cross-product, so that

q× p = bq×cp =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

p (3)

Using these conventions, the product of two rotation matrices
equals the rotation matrix corresponding to the product of their
associated quaternions, i.e.,

C(p̄)C(q̄) = C(p̄⊗ q̄) (4)

The symbol “⊗” in the above equation denotes quaternion
multiplication, which can be written equivalently as a matrix
multiplication:

p̄⊗ q̄ = L(p̄)q̄ = R(q̄)p̄ (5)

where

L(p̄) =
[
Ψ(p̄) p̄

]
, Ψ(p̄) =

[
p4I3 − bp×c
−pT

]
(6)

R(q̄) =
[
Ξ(q̄) q̄

]
, Ξ(q̄) =

[
q4I3 + bq×c
−qT

]
(7)

The identity and the inverse element with respect to multipli-
cation are given by

q̄I =
[
01×3 1

]T
, q̄−1 =

[
−qT q4

]T
(8)

Using the unit quaternion parameterization, the rotation of a
vector from frame {1} to frame {2} can be expressed as

2v = 2
1C(2

1q̄)
1v ⇔

[
2v
0

]
= 2

1q̄ ⊗
[

1v
0

]
⊗ 2

1q̄
−1 (9)

More details about quaternion algebra can be found in [36].
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IV. 3D RELATIVE POSE FROM RANGE AND BEARING
MEASUREMENTS

The first case for which we present an analytic solution
to the 6 d.o.f. relative pose estimation problem is the one
where the robots are equipped with both range and bearing
sensors. We first compute the relative attitude using only the
bearing (unit vector) measurements. In the next step, we use
this attitude estimate and the relative distance measurements to
compute the relative translation of the robots’ global frames.

A. Relative Attitude

Each pair of unit vector measurements recorded by the two
robots can be used in a constraint of the form

G1 b̄1,k = −C0 · G2 b̄2,k (10)

If we have two such bearing measurement pairs (i.e., k =
0, 1), we can apply the cross product to yield a third constraint

G1 b̄1,0 × G1 b̄1,1 = C0(G2 b̄2,0 × G2 b̄2,1) (11)

Combined, we obtain the matrix equation[
G1 b̄1,0

G1 b̄1,1 (G1 b̄1,0 × G1 b̄1,1)
]

= C0·
[
−G2 b̄2,0 −G2 b̄2,1 (G2 b̄2,0 × G2 b̄2,1)

]
(12)

and solve for the rotation matrix

C0 =
[
G1 b̄1,0

G1 b̄1,1 (G1 b̄1,0 × G1 b̄1,1)
][

−G2 b̄2,0 −G2 b̄2,1 (G2 b̄2,0 × G2 b̄2,1)
]−1

(13)

Notice that G2 b̄2,0 ∦ G2 b̄2,1 is a necessary and sufficient
condition for the matrix inverse to exist, which provides
guidance for where to move the robots between measurements.

In the presence of noise, the resulting matrix from (13)
might not be a proper rotation matrix, since it is not guaranteed
to be orthonormal. A subsequent projection, e.g., using the
polar or singular value decomposition [37], would be required
to obtain the closest rotation matrix. Further, it is unclear in
this formulation how to combine more than two unit vector
observations. The above method therefore mostly serves to
provide intuition.

The quaternion representation, on the other hand, allows an
easy means of combining more than two noisy measurements,
and shows that the attitude is unobservable without motion
of at least one of the robots. Specifically, using quaternion
notation, (10) is written as[

G1 b̄1,0

0

]
+ q̄0 ⊗

[
G2 b̄2,0

0

]
⊗ q̄−1

0 = 0 (14)

We observe that if q̄0 is a particular solution, so is any q̄ =
ᾱ⊗ q̄0, if ᾱ is a quaternion satisfying

ᾱ⊗
[
G1 b̄1,0

0

]
⊗ ᾱ−1 =

[
G1 b̄1,0

0

]
(15)

as can be verified by substitution. Notice that (15) holds for
any ᾱ of the form

ᾱ =

[
G1 b̄1,0 sin θ/2

cos θ/2

]
, θ ∈ R

which corresponds to a rotation by an arbitrary angle θ about
the vector G1 b̄1,0. In other words, rotations about the line of
sight between the two robots are unobservable.

The quaternion representation also provides an elegant
means to obtain a least-squares estimate for the attitude using
more than two pairs of bearing measurements. In particular,
we want to find the rotation matrix that minimizes the sum of
squared errors [see (10)]:

C0 = arg min
∑
k

||G1 b̄1,k + C0
G2 b̄2,k||2

= arg min
∑
k

(
||b̄1,k||2 + 2G1 b̄T1,k C0

G2 b̄2,k + ||b̄2,k||2
)

= arg min
∑
k

G1 b̄T1,k C0
G2 b̄2,k (16)

In quaternion representation [see (5) and (9)], this optimiza-
tion problem is equivalent to

q̄0 = arg min
∑
k

[
G1 b̄1,k

0

]T
(q̄0 ⊗

[
G2 b̄2,k

0

]
⊗ q̄−1

0 )

= arg min
∑
k

[
G1 b̄1,k

0

]T
RT (q̄0)L(q̄0)

[
G2 b̄2,k

0

]
(17)

= arg min q̄T0

(∑
k

LT
([

G1 b̄1,k

0

])
R
([

G2 b̄2,k

0

]))
q̄0

The optimal solution is the eigenvector corre-
sponding to the minimum eigenvalue of the matrix∑
k LT

([
G1 b̄T1,k 0

]T)R([G2 b̄T2,k 0
]T)

. This solution
is analogous to the one derived in [38] for optimal attitude
estimation using 3D point correspondences.

Notice that if the robots do not move after the
first pair of mutual measurements, the matrix in (17)
evaluates to LT

([
G1 b̄T1,0 0

]T)R([G2 b̄T2,0 0
]T)

.
Its characteristic polynomial equals (λ − 1)2(λ + 1)2,
and hence the minimizer of the quadratic form
q̄T0 LT

([
G1 b̄T1,0 0

]T)R([G2 b̄T2,0 0
]T)

q̄0 is not unique.
In fact, any minimizer is an element of the 2-dimensional
subspace spanned by the two eigenvectors belonging to the
double minimum eigenvalue λ = −1. This confirms our
previous statement, that the relative attitude is unobservable
unless at least one of the robots moves.

B. Relative Position

In the noise-free case, finding the robots’ relative position,
p0, is trivial when both distance and bearing measurements
are available. From the first measurement, we have

p0 = d0 · G1 b̄1,0 (18)

Alternatively, we can use the attitude estimate found in
the previous section to solve for the relative position by
minimizing a least squares problem. We start by considering
the following geometric relations [see Fig. 2(b)]

p0 = d0
G1 b̄1,0 = p1,k + dk

G1 b̄1,k −C0p2,k (19)

p0 = −d0C0
G2 b̄2,0 = p1,k − dkC0

G2 b̄2,k −C0p2,k (20)
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The translation estimate is found by minimizing the sum of
squared errors

p0 = arg min

n−1∑
k=0

(
||p1,k + dk

G1 b̄1,k −C0 p2,k − p0||2

+||p1,k − dkC0
G2 b̄2,k −C0p2,k − p0||2

)
(21)

Straightforward differentiation yields the solution

p0 =
1

2n

n−1∑
k=0

(
p1,k + dk

G1 b̄1,k −C0p2,k

+p1,k − dkC0
G2 b̄2,k −C0p2,k

)
(22)

Notice that the above solutions for the relative pose [see (17)
and (22)] are suboptimal, since they decouple attitude and
position estimation, and do not properly account for measure-
ment noise. A subsequent iterative WLS refinement step (see
Sec. VIII) will significantly improve estimation accuracy.

V. 3D RELATIVE POSE FROM BEARING MEASUREMENTS

We now consider the case where the two robots measure
only relative bearing.

A. Relative Attitude
The computation of the relative attitude in the bearing-only

measurement case is identical to that of the range and bearing
measurement case (see Section IV-A). Note that no distance
information is required in this process.

B. Relative Position
The relative position, however, is more challenging. Our

strategy is to first recover the distance between the two global
frames, d0, using the known egomotion and the robot-to-robot
bearing measurements. Once d0 is known, we compute the
relative position, p0, using (18).

Consider again the constraints (19), (20) arising from the
geometry shown in Fig. 2(b). Since the relative distances dk
are unknown, we eliminate these by forming the cross product
with the unit vectors G1 b̄1,k and G2 b̄2,k, respectively.

d0bG1 b̄1,k ×cG1 b̄1,0 = bG1 b̄1,k ×c(p1,k −C0p2,k) (23)

−d0bG2 b̄2,k ×cG2 b̄2,0 = bG2 b̄2,k ×c(CT
0 p1,k − p2,k) (24)

The distance estimate is found by minimizing the sum of
squared errors

d0 = arg min

n−1∑
k=1

(
||d0bG1 b̄1,k ×cG1 b̄1,0 − bG1 b̄1,k ×c(p1,k −C0p2,k)||2

+||d0bG2 b̄2,k ×cG2 b̄2,0 + bG2 b̄2,k ×c(CT
0 p1,k − p2,k)||2

)
(25)

Differentiating this last expression with respect to d0 and
setting it equal to zero yields

d0 =

∑n−1
k=1

(p1,k − C0p2,k)T (bG1 b̄1,k ×c
2G1 b̄1,0 − C0b

G2 b̄2,k ×c
2G2 b̄2,0)∑n−1

k=1

(
G1 b̄T

1,0b
G1 b̄1,k ×c2

G1 b̄1,0 + G2 b̄T
2,0b

G2 b̄2,k ×c2
G2 b̄2,0

)
(26)

As noted before, this solution is not optimal from an
estimation-theoretic point of view, but will provide a good
initial estimate for a subsequent iterative WLS refinement.

VI. 3D RELATIVE POSE FROM DISTANCE
MEASUREMENTS

When only inter-robot distance measurements are available,
the problem of determining the transformation between the
global frames is most challenging.

From the first distance measurement d0, we know that the
position of robot R2 lies on a sphere that satisfies the following
equation

d2
0 = pT0 p0 (27)

Generally, the inter-robot distance is given by the 2-norm
of vector pk connecting the positions of robots R1 and R2 at
time k (see Fig. 2), i.e.,

dk = ||pk||2 , k = 1, . . . , n− 1 (28)

where

pk = C1,k (p0 + C0 p2,k − p1,k) (29)

Squaring both sides of (28) and substituting (29) and (27)
yields the following constraints

d2
k = (p0 + C0 p2,k − p1,k)T (p0 + C0 p2,k − p1,k)

⇔ εk = (p1,k − p0)TC0 p2,k + pT1,kp0 (30)

where, for brevity, εk := 1
2 (d2

0 + pT1,kp1,k + pT2,kp2,k − d2
k) is

a function of quantities that are either measured or estimated
and therefore known.

We combine all constraints (1), (27), and (30) as

q̄T q̄ = 1 (31)

pT0 p0 = d2
0 (32)

(p1,k − p0)TC0 p2,k + pT1,kp0 = εk, k = 1, . . . , n− 1
(33)

Notice that the constraints (33) are cubic in the unknown
elements of p0 and q̄0, since the rotation matrix C is quadratic
in the quaternion elements [see (2)].

From research in parallel manipulators [39] it is known that,
given six distance measurements, this polynomial system has
40 solutions. There exist algorithms to find all 40 solutions
based on successively eliminating variables from the system
of polynomial equations and solving the univariate 40th-
order polynomial [33], [34], [40]. All of these elimination
approaches are very sensitive to numerical errors, and hence
require non-standard floating-point data types with a high
number of significant digits (e.g., 30 digits of accuracy is
required for the method reported in [34]).

Alternatively, purely numerical algorithms based on homo-
topy continuation, such as PHCpack [41], yield very accurate
solutions, and have been successfully applied to solve the
forward kinematics of the Stewart-Gough mechanism. Unfor-
tunately, in our experiments, PHCpack required 25 seconds
to solve one instance of this problem, a prohibitive delay
for many robotic applications. Further difficulties arise in
the presence of noise, or when more than six measurements
become available, since even slight perturbations in the data
can cause this system to have no solution.
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Less complicated, closed-form algorithms can be obtained
by imposing strong additional constraints on the geometry of
the system (or, in our case, the trajectories of the robots), and
by adding additional sensor measurements. One example is the
work by Bonev and Ryu [42] that requires a planar platform
(i.e., planar trajectory of robot R2), and a total of 9 distance
measurements.

In what follows, we will present an efficient algorithm that
uses 10 distance measurements and determines the unique
solution in closed form, without any constraints on the system
geometry. Before presenting the algorithm, we first provide
an argument that 10 measurements will actually suffice to
determine a unique solution.

A. Uniqueness Argument
We know that given six distance measurements, the square

polynomial system (31)-(33) has 40 solutions. Distinguishing
the unique solution that corresponds to the true relative pose
of the robots requires additional measurements. This process
adds extra constraints in the form of (33) to the polynomial
system, which eliminate the spurious solutions obtained from
the square system. The question that needs to be answered is
how many additional measurements are required to eliminate
all but the true solution. We will argue, that for generic robot
trajectories, with probability 1 only one additional measure-
ment suffices to identify the unique solution.

To verify this, consider the case where after processing six
distance measurements, 40 solutions are found, denoted as
xi = [pT0 , q̄

T
0 ]T , i = 1, . . . , 40. Without loss of generality,

we first assume that x1 corresponds to the true inter-robot
transformation. Immediately after, the robots move to their
new positions, p1,6 and p2,6 respectively, and record the 7th

distance measurement d6. Then the true inter-robot transfor-
mation x1 should also satisfy (33) for k = 6:

(p1,6 − p0)TC0 p2,6 + pT1,6p0 − ε6 = 0⇔ g(x1,ϑ) = 0
(34)

where ϑ = [pT1,6, pT2,6, d6]T . Given x1, we denote by V1

the set of all values of ϑ that satisfy (34). Note that V1 is a
6-dimensional variety, which implies that the two robots can
move to any position in 3D.

If we now assume that there exists a second solution, for
example x2, then it should also satisfy (34), i.e.,

g(x2,ϑ) = 0 (35)

As before, given x2, we denote by V2 the set of all values of
ϑ that satisfy (35).

In the event that both x1 and x2 are valid solutions, then ϑ –
which is the realization of the robots’ displacement estimates
and distance measurement – must satisfy (34) and (35), and
thus ϑ belongs to the set V = V1 ∩ V2. Note that since V
is constrained by an additional equation [see (35)], V ⊂ V1,
and the dimension of V is smaller than that of V1 [43, Thm.
3, Ch. 9, Sec. 4]. Hence, the probability that the robots’
displacements are such that two solutions exist, is |V|/|V1|,
which is zero2. Following the same process, one can show

2| · | is a measure of the size of a set. When the set is continuous, it is the
total volume of the set.

that the probability of the event that more than two solutions
exist is also zero.

Therefore, we conclude that with probability 1, for generic
robot trajectories, seven distance measurements are sufficient
to obtain a unique solution.

B. Algebraic Method

We hereafter present an algebraic method for determining
the unique relative pose between the two robots from at least
10 distance measurements.

The key idea behind this approach is to introduce the new
variable r0 := CT

0 p0, which allows us to reduce the order of
the polynomial system from cubic to quadratic, at the cost of
an increased number of unknowns. The resulting system can
then be solved using lifting (Veronese mapping)3.

Using the new variable r0, we can rewrite (33) as

pT1,k C0 p2,k + pT1,kp0 − pT2,kr0 − εk = 0, k = 1, . . . , n− 1
(36)

This system of equations, as well as the quaternion unit
norm constraint (31) is quadratic only in the elements of q̄0.
However, we can treat it as a linear system of equations by
introducing new variables for the ten quadratic monomials
qiqj , i, j = 1, . . . , 4, i ≥ j. Specifically, we stack these
monomials in a vector q̄ =

[
q11 q12 . . . q44

]T
10×1

, where
qij := qiqj , and rewrite (31) and (36) as the following
homogeneous linear system

Mq̄ + A

[
p0

r0

]
− ε = 0⇒Mx̄ = 0 (37)

where

A :=


pT1,1 −pT2,1

...
...

pT1,n−1 −pT2,n−1

0 0

 , ε :=


ε1

...
εn−1

1

 (38)

M :=
[
M A −ε

]
x̄ :=

[
q̄T pT0 rT0 ρ

]T
(39)

The first n − 1 rows of M are constructed from the el-
ements of pT1,k C0 p2,k. Specifically, if we denote p2,k =[
x2,k y2,k z2,k

]T
, substitute from (2), and rearrange the

resulting terms, we obtain the following expression for the
k-th row of M

M(k, :) = pT1,k

 x2,k 2y2,k 2z2,k 0 −x2,k

−y2,k 2x2,k 0 2z2,k y2,k

−z2,k 0 2x2,k −2y2,k −z2,k

0 −2z2,k −x2,k 2y2,k x2,k

2z2,k 0 −y2,k −2x2,k y2,k

2y2,k 2x2,k z2,k 0 z2,k

 , k = 1, . . . , n− 1

(40)

3Similar techniques have been used in the computer vision literature
for solving the relative pose problem for two cameras from point or line
correspondences [44], [45].
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The last row of M corresponds to the unit quaternion con-
straint (31), where

M(n, :) =
[
1 0 0 0 1 0 0 1 0 1

]
(41)

The vector of unknowns, x̄17×1, is a concatenation of the
vector q̄, the position vectors p0 and r0, and a scalar, ρ,
which we will later constrain to ρ = 1. Notice that if x̄
is uniquely specified, this in turn uniquely determines the
relative pose p0 and q̄0. The relative position, p0, can be
read directly from x̄, and the elements of q̄0 can be extracted
from q̄ using the convention that q4 ≥ 0 (which holds without
loss of generality, since q̄0 and −q̄0 correspond to the same
rotation [35]). The elements of q̄0 can be extracted from q̄ by
setting qi =

√
qii, i = 1, . . . , 4, with the choice of positive

q4 uniquely determining the sign for the remaining qi by
sgn(qi) = sgn(qi4).

The unknown vector x̄ will lie in the nullspace of Mn×17,
or x̄ ∈ ker(M). Letting µi, i = 1, . . . , N denote the N
orthonormal basis vectors of ker(M)17×N , where N ≥ 17−n,
we can therefore write

x̄ =

N∑
i=1

λiµi (42)

Notice that a given set of λi uniquely defines x̄, and hence
the relative pose. Ideally, we would want a one-dimensional
nullspace, since then x̄ would follow immediately from the
constraint ρ = 1. However, using only (37), this would require
at least n = 16 distance measurements. With fewer distance
measurements, so that the nullspace of M is of dimension
N > 1, we need to impose additional constraints on the λi’s,
as we outline next.

We will restrict ourselves to homogeneous, quadratic con-
straints in the elements xk, k = 1, . . . , 17 of x̄. Substituting
the appropriate row-elements of (42), we can write such
constraints as

xkxl = xk′xl′

⇔(

N∑
i=1

λiµik)(

N∑
j=1

λjµjl) = (

N∑
i=1

λiµik′)(

N∑
j=1

λjµjl′)

⇔
N∑
i=1

λ2
i (µikµil − µik′µil′)+ (43)

N∑
i=1

N∑
j=i+1

λiλj(µikµjl + µilµjk − µik′µjl′ − µil′µjk′) = 0

where µik denotes the k-th element of the vector µi.
For the elements of q̄, 20 such quadratic constraints can be

established (see Appendix), another six constraints are derived
from the rows of p0 = C0 r0 and r0 = CT

0 p0, and finally one
constraint from pT0 p0 = d2

0, giving a total of 27 linearly (but
not necessarily algebraically) independent constraints. Notice
that the final 7 equations can be written as a homogeneous,
quadratic constraint in the elements of x̄ by exploiting the fact
that ρ = ρ2 = 1.

Similarly to the linearization of the quadratic equations in
the elements of q̄0, we can express these 27 constraints as

a homogeneous system of linear equations in the variables
λ̄ :=

[
λ11 λ12 . . . λNN

]T
, with λij := λiλj , as

Lλ̄ = 0 (44)

The elements of matrix L are functions only of the known null
vectors µi, i = 1, . . . , N . Notice that the dimension of λ̄ de-
pends on the dimension N of ker(M), as dim(λ̄) = N(N+1)

2 .
In order for (44) to have a unique solution, L must be rank-
deficient by exactly one. For this reason, the 27 constraints
mentioned above will only be able to uniquely specify λ̄ for
N ≤ 7, in turn requiring n ≥ 10 distance measurements.

Choosing λ̄ as the nullvector of L (or, in the presence
of noise, the singular vector corresponding to the smallest
singular value), we can recover the λi’s up to scale from the
elements of λ̄ by setting λi =

√
λii, with the choice of sign

for λ1 determining the sign for the remaining λi from the
elements of λ̄, i.e., sgn(λi) = sgn(λ1)sgn(λ1i). Additionally,
we enforce the correct scale of λ̄ from the constraint

ρ =

N∑
i=1

λiµi,17 = 1 (45)

using the last row of (42).
Once the coefficients λi have been determined, the vector

x̄ is computed using (42). Finally, the relative pose, (p0, q̄0),
is reconstructed as outlined above.

A necessary condition for this method to work is that the
nullspace of M is of dimension N ≤ 7, and the nullspace
of L is of dimension 1. Singular configurations (in which
one or more degrees of freedom are unobservable from the
given measurements) will manifest themselves in the form
of matrices M and L losing rank. Our algorithm is able to
detect such pathological cases, and will require more distance
measurements to be taken before a solution is computed.

In the next section, we analyze the observability properties
of the system using a continuous-time kinematic model, and
show that the robot-to-robot relative pose is locally weakly
observable for all three cases of distance and bearing, bearing-
only, and distance-only measurements.

VII. OBSERVABILITY ANALYSIS

It is essential to investigate the observability of a system
when designing estimators. A system is called observable if its
state at a certain time instant can be uniquely determined given
a finite sequence of its outputs [46]. Intuitively this means that
the measurements of an observable system provide sufficient
information for estimating its state. In contrast, the state vector
of unobservable systems cannot be recovered regardless of the
duration of the estimation process.

The system describing the 6 d.o.f. robot-to-robot transfor-
mation is nonlinear. Therefore, tests designed for linear time-
invariant systems (e.g., the rank of the Gramian matrix [47]
or the Popov-Belevitch-Hautus (PBH) test [48]) cannot be
used for examining its observability properties. Instead, we
hereafter employ the observability rank condition based on
Lie derivatives [49].

In particular, we study the observability of the time-varying
relative pose pt := R1,tpR2,t

, Ct :=
R1,t

R2,t
C in a continuous-

time formulation, with linear and rotational velocities, v
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and ω, as control inputs. Following a brief review of Lie
derivatives and the observability rank condition, as well as
the continuous-time system formulation of the relative pose
problem, we provide sufficient conditions for observability
when using distance and bearing (Section VII-C1), bearing-
only (Section VII-C2), and distance-only measurements (Sec-
tion VII-C3).

A. Nonlinear Observability

Consider the state-space representation of the following
general, nonlinear system:{

ẋ = f(x,u)
y = h(x)

(46)

where x ∈ Rn is the state vector, u = [u1 . . . ul]
T ∈ Rl is

the vector of control inputs, and y = [y1 . . . ym]T ∈ Rm is
the measurement vector, with yk = hk(x), k = 1, . . . ,m.

We consider the special case of (46), where the process
function, f , can be separated into a summation of functions,
each one excited by a different component of the control input
vector, i.e., (46) can be written as:{

ẋ = f0(x) + f1(x)u1 + · · ·+ fl(x)ul
y = h(x)

(47)

where f0 is the zero-input segment of the process model, and
fi(x) = [fi1(x) . . . fin(x)]T .

Lie derivatives quantify the impact of changes in the control
input on the output functions. The zeroth-order Lie derivative
of any (scalar) function is defined as the function itself, i.e.,
L0hk(x) = hk(x). The first-order Lie derivative of function
hk(x) with respect to fi is defined as:

L1
fihk(x) =

∂hk(x)

∂x1
fi1(x) + · · ·+ ∂hk(x)

∂xn
fin(x)

= ∇hk(x) · fi(x) (48)

Considering that L1
fi
hk(x) is a scalar function itself, the

second-order Lie derivative of hk(x) with respect to fi is
defined recursively:

L2
fihk(x) = L1

fi

(
L1

fihk(x)
)

= ∇L1
fihk(x) · fi(x) (49)

Higher-order Lie derivatives are computed similarly. Addition-
ally, it is possible to define mixed Lie derivatives with respect
to different functions of the process model. For example, the
second-order Lie derivative of hk with respect to fj and fi is:

L2
fjfihk(x) = L1

fj

(
L1

fihk(x)
)

= ∇L1
fihk(x) · fj(x) (50)

Based on the preceding expressions for the Lie derivatives,
the observability matrix is defined as the matrix with rows:

O , {∇L`fi···fjhk(x) | i, j = 0, . . . , l; k = 1, . . . ,m; ` ∈ N}
(51)

The important role of this matrix in the observability
analysis of a nonlinear system is captured by Theorem 3.1
in [49], repeated below:

Definition 1 (Observability Rank Condition): The observ-
ability rank condition is satisfied when the observability ma-
trix (51) is full rank.

Theorem 1 (Observability Sufficient Condition): If a sys-
tem satisfies the observability rank condition then it is locally
weakly observable.

Theorem 1 will be used in the following sections to deter-
mine the sufficient conditions for observability.

B. Continuous-time Kinematic Model

In this section, we derive the continuous-time kinematic
model employed in the 3D robot-to-robot relative pose. Con-
sider again the geometry shown in Fig. 2. Notice that the
transformation between the two global frames, {G1} and
{G2}, is constant, causing the time-derivative of their relative
position and orientation to vanish, i.e., ṗ0 = 0, ˙̄q0 = 0.
In order to be able to use the framework of Section VII-A,
we will instead analyze the observability of the time-varying
local 6 d.o.f. transformation between the robots, namely the
translation pt := R1,tpR2,t and rotation Ct :=

R1,t

R2,t
C, or the

corresponding quaternion q̄t.
We start with the continuous-time version of (29) (changing

the subscript k to t to denote continuous time).

pt = C1,t(p0 + C0 p2,t − p1,t) (52)

Taking derivatives with respect to time, and exploiting the
constant global transformation, we have

ṗt = Ċ1,t(p0 + C0 p2,t − p1,t) + C1,t(C0ṗ2,t − ṗ1,t)
(53)

Using the relationship Ċ1,t = −bω1×cC1,t, the expression
for pt from (52), and introducing the robots’ linear and
rotational velocities, vi and ωi, i = 1, 2 expressed with
respect to their local frames so that ṗ1,t = CT

1,tv1, and
ṗ2,t = CT

2,tv2, we obtain

ṗt = −bω1×cpt + C1,t(C0C
T
2,tv2 −CT

1,tv1)

= bpt×cω1 + Ctv2 − v1 (54)

We derive the kinematic model for the relative orientation
in a similar fashion using the quaternion representation of
rotations.

q̄t = q̄1,t ⊗ q̄0 ⊗ q̄−1
2,t

Again taking derivatives with respect to time, we obtain:

˙̄qt = ˙̄q1,t ⊗ q̄0 ⊗ q̄−1
2,t + q̄1,t ⊗ q̄0 ⊗ ˙̄q−1

2,t

=
1

2

[
ω1

0

]
⊗ q̄t − q̄t ⊗

1

2

[
ω2

0

]
=

1

2
Ξ(q̄t)ω1 −

1

2
Ψ(q̄t)ω2 (55)

where we have used the relationships ˙̄q1,t = 1
2

[
ω1

0

]
⊗ q̄1,t,

and ˙̄q−1
2,t = − 1

2 q̄
−1
2,t ⊗

[
ω2

0

]
(see [36]). From here on, we will

omit the subscript t to simplify the notation.
In order to compute the Lie derivatives, we rewrite the

nonlinear kinematic model [see (54) and (55)] as:
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[
ṗ
˙̄q

]
︸︷︷︸
ẋ

=

[
−I3
04×3

]
︸ ︷︷ ︸

f1

v1 +

[
C

04×3

]
︸ ︷︷ ︸

f2

v2 +

[
bp×c
1
2
Ξ(q̄)

]
︸ ︷︷ ︸

f3

ω1 +

[
03×3

− 1
2
Ψ(q̄)

]
︸ ︷︷ ︸

f4

ω2

(56)

C. Observability of the 3D Robot-to-Robot Relative Pose

1) Distance and bearing measurements: When both dis-
tance and bearing measurements are available, we can equiv-
alently use a measurement model that directly measures the
relative position.

h(x) = p (57)

We hereafter compute the necessary Lie derivatives of h
and their gradients.
• Zeroth-order Lie derivative (L0h) The zeroth-order Lie

derivative of a function is the function itself, i.e.,

L0h = h = p

Hence, the gradient of the zeroth-order Lie derivative is

∇L0h =
[
I3 03×4

]
(58)

• First-order Lie derivative (L1
f2

h)

L1
f2h = ∇L0h · f2 = C (59)

We stack the columns of C to form a 9 × 1 vector and
take its gradient with respect to q̄ (we omit its gradient
with respect to the position part p, since it is zero):

∇q̄L1
f2h = 2



q1 −q2 −q3 q4

q2 q1 −q4 −q3

q3 q4 q1 q2

q2 q1 q4 q3

−q1 q2 −q3 q4

−q4 q3 q2 −q1

q3 −q4 q1 −q2

q4 q3 q2 q1

−q1 −q2 q3 q4


(60)

Note that ∇q̄L1
f2

h has full column rank, since the determinant
of (∇q̄L1

f2
h)T (∇q̄L1

f2
h) is nonzero, i.e.,

det[(∇q̄L1
f2h)T (∇q̄L1

f2h)] = 6144(q2
1 + q2

2 + q2
3 + q2

4)4

At this point, we are ready to present the main result of the
observability analysis of the system (56) with distance and
bearing measurements (57):

Lemma 1: Given distance and bearing measurements, a
sufficient condition for the system described by (56) and (57)
to be locally weakly observable is v2 6= 0.

Proof: Using (58) and (60), we construct the following
observability matrix

O1 =

[
∇L0h
∇L1

f2
h

]
=

[
I3 03×4

09×3 ∇q̄L1
f2

h

]
(61)

which is full rank. Therefore the observability rank condition
is satisfied and, from Theorem 1, the system is locally weakly
observable.

2) Bearing-only measurements: To proceed with the ob-
servability analysis for bearing-only measurements, we first
consider the case where only one robot (we choose robot
R1) is equipped with a bearing sensor. We will show that
this system is locally weakly observable. To simplify the
derivation, we employ the standard pinhole camera model, i.e.,

h(x) =

[
x/z
y/z

]
(62)

We hereafter compute the necessary Lie derivatives of h
and their gradients.
• Zeroth-order Lie derivative (L0h)

L0h = h =

[
x/z
y/z

]
and its gradient is

∇L0h =

[
1/z 0 −x/z2 01×4

0 1/z −y/z2 01×4

]
(63)

• First-order Lie derivatives (L1
f1

h and L1
f2

h)

L1
f1h = ∇L0h · f1 =

[
−1/z 0 x/z2

0 −1/z y/z2

]
Since L1

f1
h(1, 1) = −1/z, we have:

∇L1
f1h(1, 1) =

[
∇pL

1
f1

h(1, 1) 01×4

]
(64)

with

∇pL
1
f1h(1, 1) =

[
0 0 1/z2

]
(65)

Additionally,

L1
f2h = ∇L0h · f2 =

[
1/z 0 −x/z2

0 1/z −y/z2

]
C

Note that the dimension of L1
f2

h is 2 × 3. We stack the
columns of L1

f2
h to form a 6× 1 vector and its gradient

(a 6× 7 matrix) is:

∇L1
f2h =

[
∇pL

1
f2

h ∇q̄L1
f2

h
]

(66)

where

∇q̄L1
f2h =

2

z2


zq1−xq3 −zq2−xq4 −zq3−xq1 zq4−xq2
zq2−yq3 zq1−yq4 −zq4−yq1 −zq3−yq2
zq2+xq4 zq1−xq3 zq4−xq2 zq3+xq1
−zq1+yq4 zq2−yq3 −zq3−yq2 zq4+yq1
zq3+xq1 −zq4+xq2 zq1−xq3 −zq2−xq4
zq4+yq1 zq3+yq2 zq2−yq3 zq1−yq4


Notice that we do not need the explicit form for ∇pL

1
f2

h,
since it will not affect the observability analysis.

Based on the above Lie derivatives and their gradients, we
are ready to present the observability analysis of the system
with robot R1 equipped with a bearing-only sensor:

Lemma 2: Given bearing measurements, a sufficient condi-
tion for the system described by (56) and (62) to be locally
weakly observable is (i) v1 6= 0 and (ii) v2 6= 0.

Proof: We stack the gradients of the Lie derivatives
[see (63), (64), and (66)] to form the following observability
matrix (of dimensions 9× 7):

O2 =


∇pL

0h 02×4

∇pL
1
f1

h(1, 1) 01×4

∇pL
1
f2

h ∇q̄L1
f2

h

 (67)
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In order to show that O2 is full (column) rank, it suffices

to show that both
[
∇pL

0h
∇pL

1
f1

h(1, 1)

]
and ∇q̄L1

f2
h are full rank.

The first matrix is upper triangular with determinant 1/z4 6= 0
due to the physical constraint that the depth z is always strictly
positive, i.e., the observed robot is in front of the camera.

To show that ∇q̄L1
f2

h is full (column) rank, we proceed as
follows:

det((∇q̄L
1
f2

h)T (∇q̄L
1
f2

h))=
44(q2

1+q2
2+q2

3+q2
4)4(x2+y2+z2)(x2+y2+2z2)2

z14 6=0

due to the fact that: (i) q2
1 +q2

2 +q2
3 +q2

4 = 1, (ii) x2+y2+z2 >
0, and (iii) z > 0. Thus ∇q̄L1

f2
h is full rank.

Hence, we conclude that O2 is also full (column) rank, i.e.,
rank(O2) = 7, therefore the system with one bearing-only
sensor is locally weakly observable.

At this point we note that we have also examined the observ-
ability of the system with mutual bearing measurements (i.e.,
when both robots are equipped with bearing-only sensors).
We have shown that the sufficient condition for the system
using two bearing-only sensors to be locally weakly observable
only requires robot R1’s movement (v1 6= 0); this is a less
restrictive condition compared to the single bearing sensor
case, which requires motion of both robots (see Lemma 2).
Due to space limitations, we will not include the detailed proof
here but refer instead to [50].

3) Distance-only measurements: For clarity of presentation,
the measurement function is chosen to be the square distance
between the two robots divided by two, d2/2, instead of the
distance, d, i.e.,

h(x) =
d2

2
=

1

2
pTp (68)

Note that d and d2/2 are both strictly positive, there is a one-
to-one correspondence between them, and they provide the
same information for the spatial relation of the two robots.

We hereafter compute the necessary Lie derivatives of h and
their gradients.
• Zeroth-order Lie derivative (L0h)

L0h = h =
1

2
pTp

and its gradient is

∇L0h =
[
pT 01×4

]
(69)

• First-order Lie derivative (L1
f1
h)

L1
f1h = ∇L0h · f1 = −pT

and its gradient is

∇L1
f1h =

[
−I3 03×4

]
(70)

• Second-order Lie derivative (L2
f2f1

h)

L2
f2f1h = (∇L1

f1h) · f2 =
[
−I3 03×4

] [ C
04×3

]
= −C

Similar Lie derivatives also appear in the case of distance
and bearing measurements [see (59)] with only a sign differ-
ence. We have already shown that ∇q̄(C) has full column rank

[see (60)]. Therefore,∇q̄(−C) and equivalently∇q̄L2
f2f1

h also
has full column rank.

At this point, we are ready to present the main result
of the observability of the system (56) with distance-only
measurements (68):

Lemma 3: Given distance measurements, a sufficient con-
dition for the system described by (56) and (68) to be locally
weakly observable is (i) v1 6= 0 and (ii) v2 6= 0.

Proof: When conditions (i)-(ii) are satisfied, the observ-
ability matrix

O3 =

[
∇L1

f1
h

∇L2
f2f1

h

]
(71)

=

[
−I3 03×4

09×3 ∇q̄L2
f2f1

h

]
(72)

is full rank (note that we have already shown that ∇q̄L2
f2f1

h
is full rank). From Theorem 1, the system is therefore locally
weakly observable.

VIII. WEIGHTED LEAST SQUARES REFINEMENT

In the presence of noise, the analytical solutions developed
in the previous sections are suboptimal, because they do not
properly account for the uncertainty associated with each
measurement. In most cases in practice, we are interested
in the maximum likelihood estimate (MLE) of the relative
pose. The MLE is determined by a nonlinear, iterative WLS
algorithm, which needs an accurate initial estimate in order
to quickly converge to the optimal solution. In our work, the
WLS is initialized with the relative pose estimate provided by
the analytic algorithms (see Sections IV, V, and VI).

In our formulation, we use the standard additive error model
for position,4

p = p̂ + p̃ (73)

but a multiplicative error model for the quaternion. In particu-
lar, true attitude, q̄, estimated attitude, ˆ̄q, and error quaternion,
δq̄ are related via

q̄ = δq̄ ⊗ ˆ̄q (74)

Intuitively, δq̄ describes the small rotation that makes the
estimated and the true orientation coincide. Using the small-
angle approximation, the error quaternion can be written as

δq̄ '
[

1
2δθ

T 1
]T ⇔ C ' (I3 − bδθ×c)Ĉ (75)

The three-element parameterization δθ is a minimal error rep-
resentation and thus avoids the loss of rank of the covariance
matrix, which would arise in the standard, additive, four-
element parameterization due to the unit quaternion constraint.
Following this error parameterization, the errors for the robot-
to-robot relative translation, p0, and orientation, q̄0, will be
denoted as p̃0 and δθ0.

The error in the robot poses r1,k =
[
q̄T1,k pT1,k

]T
and

r2,k =
[
q̄T2,k pT2,k

]T
, arising from dead reckoning, e.g., by

integration of linear and rotational velocity, will hence be

4We will denote estimated quantities by “̂”, and errors by “˜”.
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given by r̃1,k =
[
δθT1,k p̃T1,k

]T
and r̃2,k =

[
δθT2,k p̃T2,k

]T
,

and assumed to be zero mean Gaussian. In general, the dead
reckoning errors for the same robot will be correlated, but
those between two different robots will be independent. Notice
that up to this point, the robots cannot perform cooperative
localization [4] using the robot-to-robot measurements (which
would create correlations between their estimates), because the
relative pose between them is still unknown.

Assuming that the distance measurements are corrupted by
white, zero-mean Gaussian noise, we write the measurement
equation as

zdk = dk + ndk (76)

with the inter-robot distance, dk, defined as the 2-norm of
vector pk [see (28)]. We only consider one distance measure-
ment per time step. If two independent distance measurements
from both robots are available, then these can be combined
into a single distance measurement with appropriately reduced
variance.

The bearing measurements are modeled as perspective pro-
jections for normalized, calibrated cameras

zb1,k = b1,k + nb1,k (77)
zb2,k = b2,k + nb2,k (78)

All measurements can be stacked to form the augmented
measurement vector zk =

[
zdk zTb1,k zTb2,k

]T
. To recall,

the measured quantities are given in terms of the robot local
relative poses as [see (29), (62), and (10)]

pk = C1,k(p0 + C0 p2,k − p1,k)

dk =
√

pTk pk

b1,k = Π
pk[

0 0 1
]
pk

b2,k = Π
C2,k CT

0 CT
1,k pk[

0 0 1
]
C2,k CT

0 CT
1,k pk

where Π =
[
I2 02×1

]
denotes the projection matrix.

We linearize the measurement equations around the current
estimate of the robot-to-robot pose, as well as the individual
robot poses, which we treat as nuisance parameters. Using the
chain rule, we compute the Jacobians as

Hθ0,k =
∂zk
∂θ0

=

 pTkC1,kbC0p2,k ×c/dk
Hb1,kC1,kbC0p2,k ×c

Hb2,kC2,kC
T
0 bp1,k − p0×c


Hp0,k

=
∂zk
∂p0

=

 pTkC1,k/dk
Hb1,kC1,k

Hb2,kC2,kC
T
0


HR1,k

=
∂zk
∂r1,k

=

 [
01×3 −pTkC1,k/dk

]
Hb1,k

[
bpk ×c −C1,k

]
Hb2,k

[
03×3 −C2,kC

T
0

]


HR2,k
=

∂zk
∂r2,k

=

 [
01×3 pTkC1,kC0/dk

]
Hb1,k

[
03×3 C1,kC0

]
Hb2,k

[bC2,k CT
0 CT

1,k pk ×c C2,k

]


where

Hb1,k =
1[

0 0 1
]
pk

[
I2 −b1,k

]
Hb2,k =

1[
0 0 1

]
(C2,k CT

0 CT
1,k pk)

[
I2 −b2,k

]
and evaluate them at the current linearization point.

The measurement residual at time-step k can now be
approximated as

z̃k = zk − ẑk

'
[
Hθ0,k Hp0,k

] [δθ0

p̃0

]
+ HR1,k

r̃1,k + HR2,k
r̃2,k + nk

where nk =
[
ndk nTb1,k nTb2,k

]T
[see (76), (77), and (78)]

is white, zero-mean Gaussian noise with covariance Rk.
Stacking all available measurements yields the linearized

measurement error equation

z̃ ' H

[
δθ0

p̃0

]
+ HR1

r̃1 + HR2
r̃2 + n

where H =
[
Hθ0 Hp0

]
, Hθ0 and Hp0 contain the stacked

Jacobians Hθ0,k and Hp0,k
, r̃1 and r̃2 contain the stacked robot

pose error vectors, and HR1
, HR2

are block diagonal matri-
ces with the Jacobians HR1,k

and HR2,k
at the appropriate

row/column positions.
Assuming Gaussian measurement noise n with covariance

R, and Gaussian noise in the robot pose estimates r̂1 and
r̂2 with covariances PR1 and PR2 , we can write the residual
covariance (the weighting matrix) as

W = HR1
PR1

HT
R1

+ HR2
PR2

HT
R2

+ R

We find the correction by solving the weighted normal
equations [51]:

HTW−1H

[
δθ0

p̃0

]
= HTW−1(z− ẑ)

Note that a prerequisite for computing the correction, as well
as the covariance matrix, is for the measurement matrix H to
be of full column rank5.

At each iteration of the WLS algorithm, we update the
robot-to-robot position and quaternion as

p̂j+1
0 = p̂j0 + p̃0

ˆ̄qj+1
0 = δq̄0 ⊗ ˆ̄qj0, δq̄0 =

[
1
2δθ

T
0 1

]T
||
[

1
2δθ

T
0 1

]
||

(79)

This process is repeated to convergence, using the latest esti-
mates, p̂j+1

0 and ˆ̄qj+1
0 , as linearization points when computing

H and W.
The final covariance of the estimate is given by

E

[[
δθ0

p̃0

] [
δθ0

p̃0

]T]
=
(
HTW−1H

)−1
(80)

5Full rank of H is ensured generically (i.e., for randomly selected control
inputs) if the system is locally weakly observable, a sufficient number of
measurements have been collected, and the linearization point is sufficiently
close to a local optimum.
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Once a pose estimate and its covariance are computed,
additional distance or bearing measurements can be processed
in a recursive estimator, such as an extended Kalman filter [4].

IX. SIMULATION RESULTS

We have evaluated the performance of our algorithms in
simulations, for different values of noise covariance in egomo-
tion and robot-to-robot measurements. In particular, random
trajectories were generated with the two robots being on
average 1 m - 2 m apart, and moving an average of 3 m -
6 m between each of a total of 10 distance and/or bearing
measurements per simulation.

Egomotion was determined by integrating noisy measure-
ments of turn rate, ω, and velocity, v, in the body frame. This
corresponds to a simplified model of inertial navigation. The
continuous-time ground-truth motion model for the i-th robot
is given by

ṗi = CT
i vi (81)

˙̄qi =
1

2

[
−bωi×c ωi
−ωT

i 0

]
q̄i (82)

For dead-reckoning, the linear and rotational velocities
in (81) and (82) have to be replaced by noisy measurements.
These measurements are assumed to be corrupted by zero-
mean, Gaussian noise with covariance Qi = blkdiag(σ2

ω ·
I3, σ

2
v · I3), i.e.,

ωm,i = ωi + nωi (83)
vm,i = vi + nvi (84)

The corresponding continuous-time error model is given
by [36]:[

˙δθi
˙̃pi

]
= Fi

[
δθi
p̃i

]
+ Gi

[
nωi

nvi

]
(85)

Fi =

[ −bωm,i×c 03×3

−ĈT
i bvm,i×c 03×3

]
, Gi =

[−I3 03×3

03×3 −ĈT
i

]
At any time, the current pose and corresponding covariance

matrix can be computed by numerical integration of the system
model, (81)-(82), and the continuous-time Lyapunov equation

Ṗi = FiPi + PiF
T
i + GiQiG

T
i (86)

At each point where a robot-to-robot measurement is regis-
tered, the state vector is augmented by a static copy of the
current pose and covariance matrix to correctly account for the
correlations. Since each robot navigates using dead-reckoning
and does not perform cooperative localization, we note that
the pose estimates of the two robots are independent.

The noise in the robot-to-robot distance and bearing mea-
surements [see (76)-(78)] is assumed zero-mean white Gaus-
sian with covariance Rk = blkdiag(σ2

d, σ
2
b · I4).

We have conducted Monte Carlo simulations for different
settings of the noise covariances, and report the averaged
results of 1000 simulations per setting. To keep the number of
independent parameters reasonable, we have set σv = 10 m·σω
and σd = 10 m · σb.

Figs. 3-5 show the results for range and bearing, bearing-
only, and distance-only measurements. In particular, Figs. 3(a)-
5(a) show the error in relative position produced by the
closed-form algorithms, as a function of the measurement
and odometry noise standard deviations. In all cases, we can
see that the closed-form solution yields convincing results, in
particular for low noise variance [see Figs. 3(b)-5(b)], at high
speed and negligible computational cost. Note, however, that
in all but the cases of negligible noise, a WLS refinement step
is advisable to produce accurate estimates, since the algebraic
method is exact only in the noise-free case.

Figs. 3(b)-5(b), 3(c)-5(c), and 3(d)-5(d) compare the posi-
tion error, the attitude error, and the measurement residual of
the algebraic method against those obtained through WLS,
once using the algebraic method’s result for initialization,
and once with a random initial guess. Note that any iterative
method, such as WLS, requires an initial estimate whose
accuracy greatly impacts the speed of convergence and quality
of the solution. Poor initial estimates can result in local minima
and even divergence.

This finding is corroborated by the number of iterations
required for convergence (using a threshold on the norm of
the correction as stopping criterion). Figs. 3(e)-5(e) show that
using the algebraic result for initialization requires roughly
one third the number of iterations than that of the random
initial guess. Furthermore, a random initial guess leads more
often to divergence [see Figs. 3(f)-5(f)]. A particular instance
of WLS refinement is considered as diverged, if it required
more than 100 iterations, or if the Hessian became excessively
ill-conditioned (κ > 1010, where κ is the condition number
of the Hessian). We attribute the large percentage of diverged
cases for randomly initialized range and bearing or bearing
only cases to a cost function with very narrow attractor basins
for the minima. It is likely that a more efficient step-size
control mechanism or regularization of the Hessian (e.g.,
using Levenberg-Marquardt) would improve the convergence
behavior compared to the Gauss-Newton optimization scheme
applied here, at the cost of increased computations. However,
Gauss-Newton worked reasonably well when initialized using
the closed-form expressions developed in Sections IV-VI.

X. CONCLUSION AND FUTURE WORK

We have presented three algorithms for computing in closed
form the 3D robot-to-robot relative pose, given known ego-
motion of two robots in their respective frames of reference,
and robot-to-robot (i) range and bearing, (ii) bearing-only, and
(iii) range-only measurements, respectively. In particular, the
derived expressions are exact in the absence of noise and
yield high-accuracy initial estimates for subsequent iterative
WLS-refinement in the presence of noise. Additionally, we
have provided a nonlinear observability study based on Lie
derivatives, proving weak local observability for all three cases
of different robot-to-robot measurements mentioned above.

This work opens several paths for future research. One
example is the study of the 3D robot-to-robot pose problem
when a mixture of sensors are available, or a heterogeneous
team of robots is deployed (e.g., one robot is equipped with
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Fig. 3. Simulation results for the algebraic method and WLS refinement (using as initial estimate the result from the algebraic method or a random
initialization) for the case of range and bearing measurements. Shown is the dependence on system and measurement noise standard deviations. The results
for each setting were averaged over 1000 trials. The inter-robot distances were between 1 m-2 m, and the robots moved 3 m-6 m between measurements.
Plots 3(b)-3(f) show results (median and 25-75% quartiles) for a fixed bearing measurement noise of 3σb = 0.0039 rad and range noise of 3σd = 3.9 cm,
as function of the egomotion noise standard deviation σω . The linear velocity noise standard deviation was set to σv = 10 m · σω . Notice that the randomly
initialized WLS requires significantly more iterations to converge, and diverges easily if poorly initialized, especially for larger noise values. The residuals
are computed only for the converged cases, which explains the similar accuracy achieved by both WLS methods.
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Fig. 4. Simulation results for the algebraic method and WLS refinement (using as initial estimate the result from the algebraic method or a random
initialization) for the case of bearing-only measurements. Shown is the dependence on system and measurement noise standard deviations. The results for each
setting were averaged over 1000 trials. The inter-robot distances were between 1 m-2 m, and the robots moved 3 m-6 m between measurements. Plots 4(b)-4(f)
show results (median and 25-75% quartiles) for a fixed bearing measurement noise of 3σb = 0.0039 rad, as function of the egomotion noise standard deviation
σω . The linear velocity noise standard deviation was set to σv = 10 m ·σω . Notice that the randomly initialized WLS requires significantly more iterations to
converge, and diverges easily if poorly initialized, especially for larger noise values. The residuals are computed only for the converged cases, which explains
the similar accuracy achieved by both WLS methods.
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Fig. 5. Simulation results for the algebraic method and WLS refinement (using as initial estimate the result from the algebraic method or a random
initialization) for the case of range-only measurements. Shown is the dependence on system and measurement noise standard deviations. The results for each
setting were averaged over 1000 trials. Plots 5(b)-5(f) show results (median and 25-75% quartiles) for a fixed measurement noise of 3σd = 3.9 cm, as
function of the egomotion noise standard deviation σω . The linear velocity noise standard deviation was set to σv = 10 m · σω .

a laser scanner that can measure range and bearing, but the
other only has a camera that provides bearing). Further, we
plan to investigate the inclusion of other sources of infor-
mation. For instance, it is very common that a robot team
shares certain information about the environment, such as
measurements of the gravity vector, or of common targets (e.g.,
using star trackers). Moreover, we will consider including
relative velocity measurements, which could be obtained from
doppler radar [52]. A framework that allows inclusion of such
additional information, and its impact on accuracy and ease

of relative pose computation is the subject of ongoing work.
Finally, based on our observability study, we are currently
investigating optimal motion strategies for both robots in order
to minimize the uncertainty of the relative pose.

APPENDIX

Quadratic Constraints in qij
Define the Veronese mapping qij = qiqj , i, j =

1, . . . , 4, j ≥ i. The 10 new variables qij are not independent,
but are constrained to the Veronese variety defined by the
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following 20 quadratic constraints:

q11q44 = q2
14 q14q24 = q12q44 q23q34 = q33q24

q22q44 = q2
24 q24q34 = q23q44 q13q34 = q33q14

q33q44 = q2
34 q34q14 = q13q44 q23q24 = q22q34

q11q22 = q2
12 q12q13 = q11q23 q12q24 = q22q14

q22q33 = q2
23 q12q23 = q22q13 q13q14 = q11q34

q33q11 = q2
13 q13q23 = q33q12 q12q14 = q11q24

q12q34 = q13q24 q12q34 = q14q23

These 20 constraints are exactly the consequence of
the Veronese mapping. Specifically, by defining the ideal
I generated by the 10 polynomials qij − qiqj ∈
C[q1, . . . , q4, q11, . . . , q44], i, j = 1, . . . , 4, j ≥ i, we find
that the 20 constraints generate the elimination ideal I ∩
C[q11, . . . , q44] (e.g., by computing a Gröbner basis with
respect to lex ordering). Moreover, by [43, Thm. 12, Ch. 8,
Sec. 5], the variety defined by this elimination ideal is exactly
equal to the image of the Veronese mapping.
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