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SC-KF Mobile Robot Localization: A Stochastic
Cloning-Kalman Filter for Processing Relative-State

Measurements
Anastasios I. Mourikis†, Stergios I. Roumeliotis†, and Joel W. Burdick‡

Abstract— This paper presents a new method to optimally com-
bine motion measurements provided by proprioceptive sensors,
with relative-state estimates inferred from feature-based match-
ing. Two key challenges arise in such pose tracking problems: (i)
the displacement estimates relate the state of the robot at two
different time instants, and (ii) the same exteroceptive measure-
ments are often used for computing consecutive displacement
estimates, a process which renders the errors in these correlated.
We present a novel Stochastic Cloning-Kalman Filtering (SC-KF)
estimation algorithm that successfully addresses these challenges,
while still allowing for efficient calculation of the filter gains
and covariances. The proposed algorithm is not intended to
compete with Simultaneous Localization and Mapping (SLAM)
approaches. Instead it can be merged with any EKF-based SLAM
algorithm to increase its precision. In this respect, the SC-KF
provides a robust framework for leveraging additional motion
information extracted from dense point features that most SLAM
algorithms do not treat as landmarks. Extensive experimental
and simulation results are presented to verify the validity of the
proposed method and to demonstrate that its performance is
superior to that of alternative position tracking approaches.

Index Terms— Stochastic Cloning, robot localization, relative-
pose measurements, displacement estimates, state augmentation.

I. I NTRODUCTION

Accurate localization is a prerequisite for a robot to mean-
ingfully interact with its environment. The most commonly
available sensors for acquiring localization information are
proprioceptivesensors, such as wheel encoders, gyroscopes,
and accelerometers that provide information about the robot’s
motion. In Dead Reckoning (DR) [1], a robot’s pose can be
tracked from a starting point by integrating proprioceptive
measurements over time. The limitation of DR is, however,
that since no external reference signals are employed for
correction, estimation errors accumulate over time, and the
pose estimates drift from their real values. In order to improve
localization accuracy, most algorithms fuse the proprioceptive
measurements with data fromexteroceptivesensors, such as
cameras [2], [3], laser range finders [4], sonars [5], etc.

When an exteroceptive sensor provides information about
the position of features with respect to the robot at two
different time instants, it is possible (under necessary ob-
servability conditions) to create aninferred measurement of
the robot’s displacement. Examples of algorithms that process
exteroceptive data to infer motion include laser scan match-
ing [4], [6], [7], vision-based motion estimation techniques
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Fig. 1. Example of a planar laser scan and types of features observed. An
algorithm has been employed to detect corners (intersections of line segments)
in a laser scan. The extracted corner features can be used for performing
SLAM, while all the remaining, “low-level”, feature points, can be utilized
in the SC-KF framework to improve the pose tracking accuracy.

using stereoscopic [2], [3], and monocular [8] image se-
quences, and matching of sonar returns [5]. The inferred
relative-statemeasurements that are derived from these can
be integrated over time to provide pose estimates [3], or
combined with proprioceptive sensory input in order to benefit
from both available sources of positioning information [9],
[10]. This paper focuses on how to optimally implement the
latter approach using an extended Kalman filter (EKF) [11].
This paper does not consider the case in which the feature
measurements are used for SLAM. However, as discussed in
Section VI, our approach is complementary to SLAM, and can
be employed to increase its accuracy (cf. Fig. 1).

Two challenges arise when fusing proprioceptive and
relative-pose1 measurements in an EKF. Firstly, each displace-
ment measurement relates the robot’s state at two different
time instants (i.e., the current time and previous time when
exteroceptive measurements were recorded). However, the ba-
sic theory underlying the EKF requires that the measurements
used for the state update be independent of any previous filter

1Throughout this paper, the terms “displacement measurement” and
“relative-pose measurement” are used interchangeably to describe a measure-
ment of the robot’s motion that is inferred from exteroceptive measurements.
Depending on the type and number of available features, either all, or a subset,
of the degrees of freedom of motion may be determined (cf. Section VII-A.2).
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states. Thus, the “standard” formulation of the EKF, in which
the filter’s state comprises only the current state of the robot, is
clearly not adequate for treating relative-state measurements.

A second challenge arises from the fact that when exte-
roceptive measurements are used to infer displacement, con-
secutive relative-state measurements will often becorrelated.
To understand the source of such correlations, consider, for
example, the scenario in which a camera is employed to
measure the pixel coordinates of the projections of the same
landmarks at timestk−1, tk and tk+1. The errors in the
measurements at timetk affect the displacement estimates for
both time intervals[tk−1, tk] and [tk, tk+1], thereby rendering
them correlated. Assuming that the measurements are uncor-
related (as is customarily done [2], [7], [10]), violates a basic
assumption of EKF theory, leading to sub-optimal or incorrect
estimates for the robot’s state and covariance. This fact has
been generally overlooked in the literature, and to the best of
our knowledge, no prior work exists that directly addresses
this issue.

In this paper we propose a direct approach to the problem
of combining relative-pose measurements with proprioceptive
measurements in order to improve the accuracy of DR. Our
methodology augments the state vector of the Kalman filter
to address the two aforementioned challenges. In particular,
to properly account for the dependencies on the robot’s state
estimates at different time instants, we augment the Kalman
filter state to include two instances (or “clones”) of the state
estimate—hence the nameStochastic Cloning Kalman Filter
(SC-KF) [9]. Moreover, in order to appropriately treat the
correlations between consecutive displacement estimates, we
further augment the state to include the most recent extero-
ceptive measurements [11]. With these state augmentations the
displacement measurements can be expressed as functions of
the current filter state, and thus an EKF framework can be
employed.

The following section reviews existing approaches for
processing relative-state measurements, while Section III
presents the structure of the correlations between consecutive
measurements, and investigates their effect on displacement-
only propagation of the robot state. Section IV describes in
detail the SC-KF algorithm. Section V presents extensions
of the SC-KF methodology, while Section VI discusses its
relation to SLAM. In Section VII, it is shown that the attained
position tracking accuracy is superior to that of existing
approaches. Finally, the conclusions of this work are presented
in Section VIII.

II. RELATED APPROACHES

Displacement measurements can be treated as average ve-
locity measurements during the corresponding time interval.
These average velocities can then be combined with velocity
measurements obtained from the robot’s proprioceptive sen-
sors to improve their accuracy. However, this approach is
only applicable if the relative-state measurements are made
at a rate equal or higher to that of the proprioceptive sensors,
which is rarely the case in practice. Alternatively, the robot’s
velocity estimate could be included in the state vector, and the

average velocity estimates could then be used as instantaneous
velocity pseudo-measurements in the EKF update step [12].
The shortcoming of this method is that treating anaverage
velocity measurement as aninstantaneousone can introduce
significant errors when the rate of the displacement mea-
surements is low. A different solution, proposed in [10], is
to use the previous robot position estimates for converting
the relative pose measurements to absolute position pseudo-
measurements. However, since these pseudo-absolute mea-
surements are correlated with the state, their covariance matrix
has to be artificially inflated to guarantee consistency, thus
resulting in suboptimal estimation (cf. Section VII-A).

Contrary to the precedingad-hoc methods for process-
ing displacement measurements, several existing approaches
employ these measurements to impose constraints between
consecutive robot poses. Algorithms that only use displace-
ment measurements for propagating the robot’s state estimate
are often described as sensor-based odometry methods [2],
[4]. In these algorithms, only the last two robot poses (the
current and previous one) are ever considered. While our
stochastic cloning approach (which was first introduced in [9])
also relies only upon the last two robot poses, tracking is
achieved by fusing the displacement measurements with
proprioceptive information. Therefore, our method can be seen
as an “enhanced” form of odometry. On the other hand, several
existing approaches maintain a state vector comprised of a
history of robot poses, and use the displacement measurements
to impose constraints between pairs of these poses. In [13],
the robot’s orientation errors are assumed to be temporally
uncorrelated, which transforms the problem of optimizing the
network of robot poses into a linear one, where only the robot
positions are estimated. In [14]–[16] the full 3D robot pose of
an autonomous underwater vehicle is estimated, while in [7],
[17] displacement constraints are employed for estimating the
pose history of a robot in 2D.

All of the approaches discussed so far donot properly
account for the correlations that exist between consecutive
displacement estimates, as they are assumed to be independent.
However, as shown in Section III, this assumption does not
generally hold. One could avoid such correlations by using
each feature measurement in the computation of only one
displacement estimate [14]. For example, half the measure-
ments at each time step can be used to estimate the previous
displacement, and the other half to estimate the next one. The
drawback of this methodology is that incorporating only part
of the available exteroceptive measurements when computing
each relative-pose estimate results in less accurate displace-
ment estimates. In our work, all available measurements are
used to compute the relative-pose measurements at every
time step, and the correlations introduced by this process are
explicitly identified and accounted for.

Solutions to the well-known Simultaneous Localization and
Mapping (SLAM) problem (cf. Section VI) “circumvent”
the problem of treating the displacement measurements by
including the features’ positions in the state vector, and jointly
estimating the robot’s and features’ state. While SLAM offers
high localization accuracy, the computational complexity as-
sociated with the estimation of the positions of a large number
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of features may be prohibitive for some real-time applications
(e.g., autonomous aircraft landing). Thus there exists a need
for methods that enabledirect processing of the displacement
measurements, at a lower computational cost.

In this paper, we propose an algorithm for optimally fusing
the potentially correlated relative displacement estimates with
proprioceptive measurements. The SC-KF considers extero-
ceptive measurements in pairs of consecutive measurements
that are first processed to create an inferred relative-pose
measurement, and then fused with the proprioceptive mea-
surements. The sole objective of the SC-KF is to estimate
the robot’s state, and therefore the states of features used for
deriving the displacement measurements are not estimated.
Hence the proposed algorithm can optimally fuse relative-
pose measurements with the minimum computational overhead
(Section IV-D). The proposed method can be used either as a
stand-alone localization algorithm, or combined with SLAM
in order to increase its localization accuracy (cf. Section VI).

III. R ELATIVE -POSEMEASUREMENTCORRELATIONS

Before presenting the SC-KF algorithm, we first study the
structure of the correlations between consecutive displacement
estimates. Letzk andzk+m denote the vectors of exteroceptive
measurements at timestk andtk+m, respectively, whose noise
covariance matrices areRk and Rk+m. These are measure-
ments, for example, of range and bearing from a laser range
finder, or of bearing from a camera. By processing these
measurements (e.g., via laser scan matching), an estimate,
zk,k+m, for the change in the robot pose between timestk
and tk+m is computed as a function (either closed-form or
implicit) of zk andzk+m:

zk,k+m = ξ(zk, zk+m) (1)

Linearization of (1) relates the error in the displacement esti-
mate,z̃k,k+m, to errors in the exteroceptive measurements:2

z̃k,k+m ' Jk
k,k+mz̃k + Jk+m

k,k+mz̃k+m + nk,k+m (2)

where the noise termnk,k+m arises from inaccuracies in the
displacement estimation algorithm (e.g., errors due to feature
matching [6]). We assume that the exteroceptive measurement
errors, z̃k and z̃k+m, and the noise term,nk,k+m, are zero-
mean and independent, an assumption which holds in most
practical cases if proper sensor characterization is performed.
In (2), Jk

k,k+m andJk+m
k,k+m are the Jacobians of the function

ξ with respect tozk andzk+m, respectively, i.e.,

Jk
k,k+m = ∇zk

ξ and Jk+m
k,k+m = ∇zk+m

ξ

Generally, not all feature measurements in the vectorzk

are used to estimate displacement. For example, in laser scan
matching there usually exists only partial overlap between con-
secutive scans and therefore not all laser returns are matched.
As a result, ifMk denotes the number of feature measurements

2The “hat” symbol,b , is used to denote the estimated value of a quantity,
while the “tilde” symbol,e , is used to signify the error between the actual
value of a quantity and its estimate. The relationship between a variable,x,
its estimate,bx, and the errorex, is ex = x− bx.

in zT
k =

[
(zk)T

1 . . . (zk)T
Mk

]
, the i-th component of the

Jacobian matricesJk
k,k+m andJk+m

k,k+m takes the form

(
J t

k,k+m

)
i
=




∇(zt)i

ξ,
ith feature used
to compute zk,k+m

0, else
(3)

for i = 1 . . .Mk andt = k, k+m. Thus for some applications,
the Jacobians may be significantly sparse.

Our goal is to compute the correlation between the displace-
ment estimates for the time intervals[tk−`, tk] and [tk, tk+m],
which is defined asE{z̃k−`,kz̃T

k,k+m}. For this purpose we
employ (2), and the independence of exteroceptive measure-
ment errors at different time-steps, to obtain:

E{z̃k−`,kz̃T
k,k+m} = Jk

k−`,kE{z̃kz̃T
k }Jk T

k,k+m

= Jk
k−`,kRkJk T

k,k+m (4)

Note that exteroceptive measurements typically consist of
observations of a number of features detected in the robot’s
vicinity (e.g., distance and bearing to points on a wall, or
the image coordinates of visual features). In such cases,
the measurements of the individual features are mutually
independent, and therefore the covariance matrixRk is block
diagonal. In light of (3), whenRk is block diagonal, expres-
sion (4) is equal to zero only ifdifferent features are used
to estimate displacement in consecutive time intervals (i.e.,
if non-overlapping subsets ofzk are matched withzk−` and
zk+m, respectively). Clearly, this is not the case in general,
and thus consecutive displacement estimates are in most cases
not independent.

A. State Propagation Based Exclusively on Displacement
Measurements

We now show how the preceding analysis can be employed
in the simple setting where the robot state estimates are
propagated using displacement measurements only. This is an
important special case, which has been extensively studied
in the literature (examples include visual odometry [2], [3],
laser-based odometry [4], etc). Once the displacement estimate
betweentk andtk+1 has been computed (cf. (1)), an estimate
for the robot’s pose attk+1 is obtained by combining the
previous pose estimate and the displacement measurement:

X̂k+1 = g(X̂k, zk,k+1) . (5)

By linearizing this equation, the pose errors attk+1 can
be related to the errors in the previous state estimate and
displacement measurement:

X̃k+1 ' ΦkX̃k + Γkz̃k,k+1 (6)

whereΦk and Γk represent the Jacobians of the state prop-
agation function,g(X̂k, zk,k+1), with respect to the previous
pose and the relative pose measurement, respectively:

Φk = ∇ bXk
g, Γk = ∇zk,k+1g . (7)

The covariance matrix of the pose estimates is propagated by:

Pk+1 = E{X̃k+1X̃
T
k+1}
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= ΦkPkΦT
k + ΓkRk,k+1ΓT

k

+ ΦkE{X̃kz̃T
k,k+1}ΓT

k + ΓkE{z̃k,k+1X̃
T
k }ΦT

k (8)

where Rk,k+1 denotes the noise covariance of the displace-
ment estimates. A common simplifying assumption in the
literature (e.g., [2], [7]) is that the measurement noise,z̃k,k+1,
and state error,̃Xk, are uncorrelated, and thus the last two
terms in (8) are set to zero. However, this assumption does
not generally hold when correlations exist between consecutive
displacement estimates. In particular, by linearizing the state
propagation equation attk, we obtain (cf. (6)):

E{z̃k,k+1X̃
T
k } = E

{
z̃k,k+1

(
Φk−1X̃k−1 + Γk−1z̃k−1,k

)T
}

= E{z̃k,k+1X̃
T
k−1}ΦT

k−1 + E{z̃k,k+1z̃
T
k−1,k}ΓT

k−1

= E{z̃k,k+1z̃
T
k−1,k}ΓT

k−1 . (9)

Note that the error term̃Xk−1 depends on the measurement
errors of all exteroceptive measurements up to and including
time tk−1, while the error term̃zk,k+1 depends on the mea-
surement errors at timestk and tk+1 (cf. (2)). As a result,
the errorsX̃k−1 and z̃k,k+1 are independent. Therefore, by
applying the zero-mean assumption for the errorz̃k,k+1 we
obtainE{z̃k,k+1X̃

T
k−1} = 0. Employing the result of (4) and

substituting (9) in (8), we obtain the following expression for
the propagation of the pose covariance in the case of inferred
displacement measurements:

Pk+1 = ΦkPkΦT
k + ΓkRk,k+1ΓT

k

+ ΦkΓk−1J
k
k−1,kRkJk T

k,k+1Γ
T
k

+ ΓkJk
k,k+1RkJk T

k−1,kΓT
k−1Φ

T
k (10)

In Algorithm 1, the steps necessary for propagating the robot’s
state estimate and its covariance using displacement measure-
ments are outlined.

Algorithm 1 Pose Estimation Based on Relative-Pose Mea-
surements
Initialization :

• Initialize the robot covariance matrix when the first
exteroceptive measurement is received

Propagation: For each exteroceptive measurement:

• compute the displacement measurement using (1) and
its Jacobians with respect to the current and previous
exteroceptive measurement using (3).

• propagate the robot state estimate using (5)
• compute the Jacobians of the pose propagation function

using (7)
• propagate the robot pose covariance matrix via (10)

(during the first iteration, use only the first two terms)
• compute and store the matrix productΓkJk+1

k,k+1 that will
be used in the next iteration

B. Investigation of the effects of correlations

Based on numerous experiments and simulation tests, we
have observed that when the correlations between displace-
ment measurements are accounted for, the covariance estimate

is typically smaller than when the correlations are ignored.
We attribute this result to the fact that the correlation between
consecutive relative-pose estimates tends to benegative. An in-
tuitive explanation for this observation can be given by means
of a simple example, for 1-dimensional motion. Consider a
robot moving on a straight line, and recording measurements,
zk, of the distance to a single feature on the same line. If
at time tk the error in the distance measurement is equal to
εk > 0, this error will contribute towardsunderestimatingthe
robot’s displacement during the interval[tk−1, tk], but will
contribute towardsoverestimatingthe displacement during the
interval [tk, tk+1]. Therefore, the errorεk has opposite effects
on the two displacement estimates, rendering them negatively
correlated.

In this 1D example, it is interesting to examine the time
evolution of the covariance when the correlations are properly
treated. Note that the robot’s displacement can be computed
as the difference of two consecutive distance measurements,
i.e., zk,k+1 = zk − zk+1. If the covariance of the individual
distance measurements is equal toRk = Rk+1 = σ2, then the
covariance ofzk,k+1 is equal toRk,k+1 = 2σ2. Moreover, for
this example it is easy to see that all the Jacobians in (10) are
constant, and given byJk

k,k+1 = 1, Jk
k−1,k = −1, Φk = Γk =

Γk−1 = 1. Substituting these values in (10), we obtain the
following equation for covariance propagation in this case:

Pk+1 = Pk + Rk,k+1 −Rk −Rk = Pk . (11)

We thus see that the covariance of the robot’s position estimate
remainsconstantduring propagation when the correlations are
properly treated. This occurs because the error in the measure-
ment zk effectively “cancels out”. On the other hand, if the
correlations between consecutive displacement measurements
are ignored, we obtain

Pk+1 = Pk + Rk,k+1 = Pk + 2σ2 . (12)

In this case the position covariance increases linearly, a result
that does not reflect the evolution of the true state uncertainty.

In the context of this 1D example, we next study the time
evolution of the covariance when features come in and out
of the robot’s field of view (FOV). Assume that a uniform
distribution of features, with densityρ, exists on the line, and
that the robot’s FOV is limited tòmax/2 in each direction.
If the robot moves by∆` between the time instants the
measurements are recorded, then the overlap in the FOV at
consecutive time instants is̀max −∆`. Within this region lie
Mk = ρ(`max −∆`) features, whose measurements are used
for displacement estimation. The least-squares displacement
estimate is given by:

zk,k+1 =
1

Mk

Mk∑

i=1

((zk)i − (zk+1)i) (13)

where (zk)i and (zk+1)i are the measurements to thei-th
feature at timestk and tk+1, respectively. The covariance of
zk,k+1 is given by:

Rk,k+1 =
2σ2

Mk
=

2σ2

ρ(`max −∆`)
. (14)
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Thus, if one ignores the correlations between consecutive
displacement estimates, the covariance propagation equation
is:

PNC
k+1 = PNC

k +
2σ2

ρ(`max −∆`)
. (15)

where the superscript NC denotes the fact that no correlations
are treated. At the end of a path of length`total (i.e., after
`total/∆` propagation steps), the estimated covariance of the
robot position, starting from a zero initial value, will be given
by:

PNC
final =

`total
∆`

2σ2

ρ(`max −∆`)
. (16)

We now derive the corresponding covariance equations for the
case that the correlations are properly incorporated. Since the
robot moves by a distance∆` between the time instants when
the measurements are recorded, the number of features that
are observed at three consecutive time instants (i.e.,tk−1, tk,
and tk+1), is ρ(`max − 2∆`). Employing this observation to
evaluate the Jacobians in (10) yields the following expression
for the propagation of the covariance:

Pk+1 = Pk +
2σ2∆`

ρ(`max −∆`)2
, for `max > 2∆` . (17)

Note that if`max < 2∆`, no overlap exists between the FOV
at timestk−1 and tk+1, and thus no feature measurement is
used twice for computing displacement estimates. In that case,
expression (15) is exact. At the end of a path of length`total,
the covariance of the robot position is:

Pfinal =
2σ2`total

ρ(`max −∆`)2
, for `max > 2∆` . (18)

From (16) and (18) we see that for`max > 2∆`, the following
relation holds:

PNC
final

Pfinal
=

`max −∆`

∆`
> 1 (19)

This shows that when the correlations are ignored, the resulting
covariance estimates are larger, similarly to what is observed
in the experimental results.

Fig. 2 plots the variance in the robot’s position at the
end of a trajectory of length̀total = 100 m, as a function
of the size of the robot’s displacement between consecutive
measurements. The solid line corresponds to the case when
the correlations between displacement measurements are ac-
counted for (cf. (18)), while the dashed line corresponds to
the case when these are ignored (cf. (16)). The parameters
used to generate this plot are: the feature density isρ = 5
features/m, the robot’s FOV is̀max = 10 m, and the standard
deviation of each distance measurement isσ = 0.2 m. It is
important to note that when the correlations between consec-
utive measurements are accounted for, the final uncertainty
is a monotonically increasingfunction of the displacement
between measurements,∆`. This agrees with intuition, which
dictates that when measurements occur less frequently, the
accuracy of the final state estimates deteriorates. However,
when the correlations between displacement measurements are
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Fig. 2. The covariance estimates at the end of a 100 m trajectory using the
expression of (10) (solid line), vs. when the correlations between consecutive
displacement measurements are not accounted for (dashed line). Note that
when the measurements occur more than 5 m apart, no correlations exist, and
the two estimates are identical.
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Fig. 3. The covariance estimates at the end of a 100 m trajectory, for a robot
performing visual odometry with a stereo pair. The top plot shows the position
uncertainty, while the bottom one the attitude uncertainty. When correlations
are properly treated (solid lines), the covariance is a monotonic function of
the measurement spacing. This is not the case when correlations are ignored
(dashed lines).

ignored, the covariance estimates do not have this property.
Fig. 2 shows that for∆` < `max

2 = 5 m, as measurements
are recorded more frequently, the covariance estimates become
larger. This behavior is clearly incorrect, and arises due to the
fact that the dependency between consecutive displacement
estimates is ignored.

The preceding analysis substantiates, at least in the simple
case of a robot moving in 1D, that the use of expression (10)
for covariance propagation results in considerably more ac-
curate covariance estimates. Unfortunately, for robots moving
in 2D [4] and 3D [2], the covariance propagation equations
are time-varying (the Jacobians appearing in (10) depend on
the robot state and the positions of the features relative to
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the robot). As a result, an analogous closed-form analysis for
general trajectories and arbitrary feature placement appears
to be intractable. However, simulation experiments indicate
that the conclusions drawn from the analytical expressions
for the 1D case also apply to the more practical scenarios
of robots moving in 2D and 3D. For example, Fig. 3 shows
the position and attitude covariance at the end of a 100 m
trajectory for a robot performing visual odometry with a stereo
pair of cameras [2]. The plotted lines represent the traces
of the submatrices of the covariance matrix corresponding
respectively to position (top subplot) and attitude (bottom
subplot). These plots once again show that the covariance is
a monotonically increasing function of measurement spacing
when the exact expression of (10) is employed, while an
artificial “valley” appears when the correlation terms in (10)
are ignored.

IV. F ILTERING WITH CORRELATED RELATIVE-STATE

MEASUREMENTS

We now describe the formulation of an EKF estimator that
can fuse proprioceptive and relative-pose measurements, while
properly accounting for the correlations in the latter.

To reiterate the challenge posed in Section I, displacement
measurements relatetwo robot states, and therefore thejoint
pdf of these states must be available in the filter. For this
reason, we augment the EKF (error) state vector3 to include
two copies of the robot’s error state (cloning) [9]. The first
copy of the error vector,̃Xk, represents the pose error at the in-
stant when the latest exteroceptive measurement was recorded,
while the second copy,̃Xk+i, represents the error in the robot’s
current state. In the propagation phase of the filter, only the
current (evolving) state is propagated, while the previous state
remains unchanged. Consequently, the robot states related by
each displacement estimate are both represented explicitly in
the filter state.

To correctly account for the correlations between consecu-
tive relative-state measurements, the state vector is additionally
augmented to include the errors of the latest exteroceptive
measurement [11]. Thus, if the most recent exteroceptive
measurement was recorded attk, the filter’s error-state vector
at tk+i is:

X̆k+i|k =
[
X̃T

k|k X̃T
k+i|k z̃k T

k+i|k
]T

(20)

where the subscript̀|j denotes the value of a quantity at time
t`, after exteroceptive measurements up to timetj , and propri-
oceptive measurements up to timet`−1, have been processed.
It is important to note that when odometry and displacement
measurements are combined for pose estimation, it is possible
to apply corrections to the exteroceptive measurements (cf.
Section IV-C). Therefore, in the SC-KF we also maintain an
estimate,ẑk

k+i|k, of the most recent measurement4. In this

3Since the extended form of the Kalman filter is employed for estimation,
the state vector comprises theerrors in the estimated quantities, rather than
the estimates. Therefore, cloning has to be applied to both the error states,
and the state estimates.

4To be more precise, this is an estimate of thephysical quantitiesmeasured
by the sensor, such as the distance and bearing to a set of features.

notation, the superscript denotes the time instant at which
the measurement was received, while the double subscript has
the meaning explained above. The errorsz̃k

k+i|k are defined
accordingly.

By including the measurement error in the system’s state
vector, the dependency of the relative-state measurement
zk,k+i on the exteroceptive measurementzk is transformed
into a dependency on thecurrent state of the filter, and the
problem can now be treated in the standard EKF framework.
It should be noted that since the measurement error is the
source of the correlation between the current and previous
displacement estimates, this is the “minimum-length” vector
that must be appended to the state vector in order to incorpo-
rate the existing dependencies. Thus, this approach yields the
minimal computational overhead needed to account for these
correlations.

A. Filter Initialization

Consider the case where the first exteroceptive measure-
ment,z0, is taken at timet0 = 0 and let the robot’s state esti-
mate and covariance be denoted byX̂0|0 andP0|0, respectively.
The initial error-state vector for the SC-KF contains the robot
state and its clone, as well as the errors of the exteroceptive
measurements at timet0 (cf. (20)):

X̆0|0 =
[
X̃s T

0|0 X̃T
0|0 z̃0 T

0|0
]T

(21)

The superscripts in (21) refers to the static copy of the state,
which will remain unchanged during propagation.

Cloning of the robot state creates two identical random
variables that convey the same information, and are thus fully
correlated. Moreover, sincez0 is not used to estimate the initial
robot state, the latter is independent of the measurement errors
at time t0. Thus, the initial covariance matrix of the SC-KF
state vector has the form:

P̆0|0 =




P0|0 P0|0 0
P0|0 P0|0 0
0 0 R0


 (22)

where0 denotes a zero matrix of appropriate dimensions.
B. State Propagation

During regular operation, the filter’s state covariance matrix,
immediately after the relative-state measurementzk−`,k =
ξ(zk−`, zk) has been processed, takes the form:

P̆k|k =




Pk|k Pk|k PXkzk

Pk|k Pk|k PXkzk

PT
Xkzk

PT
Xkzk

Pzkzk


 (23)

wherePk|k is the covariance of the robot state attk, Pzkzk

is the covariance matrix of the error̃zk
k|k, and PXkzk

=
E{X̃kz̃k T

k|k } is the cross-correlation between the robot’s state
and the measurement error attk (closed-form expressions
for Pzkzk

and PXkzk
are derived in Section IV-C). Between

two consecutive updates, proprioceptive measurements are
employed to propagate the filter’s state and its covariance. The
robot’s state estimate is propagated in time by the, generally
non-linear, equation:

X̂k+1|k = f(X̂k|k, vk) (24)
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wherevk denotes the proprioceptive (e.g., linear and rotational
velocity) measurement attk. Linearization of (24) yields the
error-propagation equation for the (evolving) second copy of
the robot state:

X̃k+1|k ' FkX̃k|k + Gkṽk (25)

whereFk andGk are the Jacobians off(X̂k|k, vk) with respect
to X̂k|k andvk, respectively. Since the cloned state,Xs

k|k, as
well as the estimate for the measurementzk, do not change
with the integration of a new proprioceptive measurement, the
error propagation equation for the augmented state vector is:

X̆k+1|k = F̆kX̆k|k + Ğkṽk (26)

with F̆k =




I 0 0
0 Fk 0
0 0 I


 and Ğk =




0
Gk

0


 (27)

whereI denotes an identity matrix of appropriate dimensions.
Thus the covariance matrix of the propagated filter state is:

P̆k+1|k = F̆kP̆k|kF̆T
k + ĞkQkĞT

k

=




Pk|k Pk|kFT
k PXkzk

FkPk|k FkPk|kFT
k + GkQkGT

k FkPXkzk

PT
Xkzk

PT
Xkzk

FT
k Pzkzk


 (28)

whereQk = E{ṽkṽT
k } is the covariance of the proprioceptive

measurementvk.
By straightforward calculation, ifm propagation steps occur

between two consecutive relative-state updates, the covariance
matrix P̆k+m|k is determined as

P̆k+m|k =




Pk|k Pk|kFT
k+m,k PXkzk

Fk+m,kPk|k Pk+m|k Fk+m,kPXkzk

PT
Xkzk

PT
Xkzk

FT
k+m,k Pzkzk




(29)

whereFk+m,k =
∏m−1

i=0 Fk+i, andPk+m|k is the propagated
covariance of the robot state attk+m. The form of (29) shows
that the covariance matrix of the filter can be propagated with
minimal computation. In an implementation where efficiency
is of utmost importance, the productFk+m,k can be accu-
mulated, and the matrix multiplications necessary to compute
P̆k+m|k can be delayed and carried out only when a new
exteroceptive measurement is processed.

C. State Update

We next consider the state-update step of the SC-KF. As-
sume that a new exteroceptive measurement,zk+m, is recorded
at tk+m, and along witĥzk

k+m|k it is used to produce a relative-
state measurement,zk,k+m = ξ(ẑk

k+m|k, zk+m), relating robot
posesXk andXk+m. Note thatzk,k+m may not fully deter-
mine all the degrees of freedom of the pose change betweentk
andtk+m. For example, the scale is unobservable when using
a single camera to estimate displacement via point-feature
correspondences [8]. Thus, the relative-state measurement is
equal to a nonlinear function of the robot poses attk and
tk+m, with the addition of error:

zk,k+m = h(Xk, Xk+m) + z̃k,k+m . (30)

The expected value ofzk,k+m is computed from the state
estimates attk and tk+m, as

ẑk,k+m = h(X̂k|k, X̂k+m|k) (31)

and therefore, based on (2), the innovation is given by:

rk+m = zk,k+m − ẑk,k+m (32)

' HkX̃k|k + Hk+mX̃k+m|k
+ Jk

k,k+mz̃k
k+m|k + Jk+m

k,k+mz̃k+m
k+m|k + nk,k+m

whereHk andHk+m are the Jacobians ofh(Xk, Xk+m) with
respect toXk and Xk+m, correspondingly. We note that the
quantity z̃k+m

k+m|k appearing in the last equation is equal to the

sensor noise in the measurementzk+m, i.e., z̃k+m
k+m|k = z̃k+m.

In order to simplify the presentation of the state update
equations, it is helpful to think of the displacement measure-
ment zk,k+m as a constraint relating the robot posesXk,
Xk+m and the measurementszk and zk+m. If we consider
the “temporary” variable:

X∗ = [X̆T
k+m|k z̃k+m T

k+m|k ]T

then we can write (32) as

rk+m '
[
Hk Hk+m Jk

k,k+m Jk+m
k,k+m

]
X∗ + nk,k+m

= HX∗ + nk,k+m (33)

This linearized residual expression can be used for carrying
out an update onX∗ (and thus on its constituent variables),
using the standard EKF methodology. The covariance of the
residual is

S̆k+m = HPHT + Rnk,k+m
(34)

where Rnk,k+m
is the covariance of the noise termnk,k+m

and

P =
[
P̆k+m|k 0

0 Rk+m

]
(35)

The Kalman gain for updatingX∗ is given by:

K = PHT S̆−1
k+m =

[
KT

k KT
k+m KT

zk
KT

zk+m

]T

whereKk, Kk+m, Kzk
, andKzk+m

are the block elements of
K corresponding toXk, Xk+m, zk, and zk+m, respectively.
We note that although the measurementzk+m can be used to
update the robot’s pose attk and the previous measurement,
zk, these variables will no longer be needed, so we can omit
computation ofKk andKzk

. Only the block elementsKk+m

and Kzk+m
need to be evaluated. Taking into consideration

the special structure ofH andP , we obtain:

Kk+m =
(Fk+m,kPk|kHT

k + Pk+m|kHT
k+m

+ Fk+m,kPXkzk
Jk T

k,k+m

)
S̆−1

k+m , (36)

Kzk+m
= Rk+mJk+m T

k,k+m S̆−1
k+m . (37)

Using these results, the equations for updating thecurrent
robot state and the measurementszk+m are

X̂k+m|k+m = X̂k+m|k + Kk+mrk+m (38)

ẑk+m
k+m|k+m = zk+m + Kzk+m

rk+m (39)
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Algorithm 2 Stochastic Cloning Kalman filter
Initialization : When the first exteroceptive measurement is
received:

• clone the state estimatêX0|0
• initialize the filter state covariance matrix using (22)

Propagation: For each proprioceptive measurement:

• propagate the evolving copy of the robot state via (24)
• propagate the filter covariance using (28), or equivalently

(29)

Update: For each exteroceptive measurement:

• compute the relative-state measurement using (1), and
its Jacobians with respect to the current and previous
exteroceptive measurement, using (3).

• update the current robot state using equations (31),
(32), (34), (36), and (38)

• update the current measurement using (37) and (39)
• remove the previous robot state and exteroceptive mea-

surement
• create a cloned copy of the current robot state
• compute the covariance of the new augmented state

vector (cf. (40)) using (41)-(44)

After zk,k+m is processed, the clone of the previous state
error, X̃k|k, and the previous measurement error,z̃k

k+m|k, are
discarded. The robot’s current state,Xk+m|k+m, is cloned, and
the updated exteroceptive measurement errors,z̃k+m

k+m|k+m, are
appended to the new filter state.

Thus, the filter error-state vector becomes

X̆k+m|k+m =
[
X̃T

k+m|k+m X̃T
k+m|k+m z̃k+m T

k+m|k+m

]T

(40)

The state update process is completed by computing the
covariance matrix of̆Xk+m|k+m. To this end, we note that the
covariance matrix ofX∗ is updated asP ← P −KS̆k+mKT .
Using the structure of the matrices involved in this equation,
we obtain

P̆k+m|k+m =




Pk+m|k+m Pk+m|k+m PXk+mzk+m

Pk+m|k+m Pk+m|k+m PXk+mzk+m

PT
Xk+mzk+m

PT
Xk+mzk+m

Pzk+mzk+m


 (41)

where

Pk+m|k+m = Pk+m|k −Kk+mS̆k+mKT
k+m , (42)

Pzk+mzk+m
= Rk+m −Rk+mJk+m T

k,k+m S̆−1
k+mJk+m

k,k+mRk+m

(43)

PXk+mzk+m
= −Kk+mJk+m

k,k+mRk+m . (44)

For clarity, the steps of the SC-KF algorithm are outlined in
Algorithm 1.

D. Computational Complexity

While our proposed state-augmentation approach does ac-
count for the correlations that have been neglected in previous
work, its use imposes a small additional cost in terms of

computation and memory requirements. We now show that
these algorithmic requirements arelinear in the number of
features observed at a single time-step.

If N and Mk respectively denote the dimensions of the
robot’s state and the size of the measurement vector attk,
then the covariance matrix̆Pk+m|k has size(2N + Mk) ×
(2N + Mk). If Mk À N , the overhead of state augmentation
is mostly due to the inclusion of the measurements in the
filter state vector, which leads to the correct treatment of
the temporal correlations in the relative-pose measurements.
If these correlations are ignored, the size of the filter state
vector is twice the size of the robot’s state vector. In this
case, the computational complexity and memory requirements
are O(N2). In the algorithm proposed in this paper, the
most computationally expensive operation, forMk À N ,
is the evaluation of the covariance of the residual,S̆k+m

(cf. (34)). The covariance matrix̆Pk+m|k is of dimensions
(2N+Mk)×(2N+Mk), and thus the computational complex-
ity of obtainingS̆k+m is generallyO((2N+Mk)2) ≈ O(M2

k ).
However, from (43) we see that that the submatrixPzkzk

of P̆k+m|k, which corresponds to the updated measurement
covariance matrix, has the following structure:

Pzkzk
= Rk︸︷︷︸

Mk×Mk

−RkJk T
k−m,k︸ ︷︷ ︸

Mk×N

S̆−1
k︸︷︷︸

N×N

Jk
k−m,kRk︸ ︷︷ ︸
N×Mk

As explained in Section III, the measurement noise covariance
matrix Rk is commonly block diagonal. Therefore,Pzkzk

has
the special structure of a block-diagonal matrix minus a rank-
N update. By exploiting this structure when evaluating (34),
the operations needed reduce toO(N2Mk). Moreover, the
submatrixPzkzk

does not need to be explicitly formed, which
decreases the storage requirements of the algorithm toO(N2+
NMk) ≈ O(NMk). For more details on this point, the
interested reader is referred to [18].

Furthermore, for a number of applications, it is not nec-
essary to maintain a clone of the entire robot state and its
covariance. Close inspection of the filter update equations
reveals that only the states that directly affect the relative-
state measurement (i.e., those that are needed to compute
the expected relative-state measurement and its Jacobians)
are required for the update step. The remaining states and
their covariance need not be cloned, thus further reducing the
memory and computational requirements. For example, when
measurements from an inertial measurement unit (IMU) are
employed for localization, estimates for the bias of the IMU
measurements are often included in the state vector [19]. These
bias estimates clearly do not appear in (31), and therefore it
is not necessary to maintain their clones in the filter.

V. EXTENSIONS

A. Treatment of Additional Measurements

To simplify the presentation, in the previous section it was
assumed that only proprioceptive and relative-pose measure-
ments are available. However, this assumption is not necessary,
as additional measurements can be processed in the standard
EKF methodology [20]. For example, let

zk+` = ζ(Xk+`) + nk+`
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be an exteroceptive measurement received attk+`. By lineariz-
ing, we obtain the measurement error equation:

z̃k+` = H ′
k+`X̃k+`|k + nk+`

=
[
0 H ′

k+` 0
]



X̃k|k
X̃k+`|k
z̃k
k+`|k


 + nk+` (45)

Since this expression adheres to the standard EKF model, the
augmented filter state can be updated without any modifica-
tions to the algorithm. However, if additional measurements
are processed, the compact special expressions of (29) and (36)
are no longer valid, as update steps occur between consecutive
displacement estimates. In this case, the general form of the
SC-KF equations must be used.

Another practically important case occurs when more than
one sensor provides relative-pose measurements, but at dif-
ferent rates. Such a situation would arise, for example, when
a mobile robot is equipped with a camera and a laser range
finder. In such a scenario, the state-augmentation approach
of the SC-KF still applies. In particular, every time either
of the sensors records a measurement, cloning is applied.
Therefore, at any given time the filter state vector is comprised
of i) three instances of the robot state, corresponding to the
current state, and the state at the last time instants where
each sensor received a measurement, and ii) the errors in the
latest exteroceptive measurement of each sensor. Although the
propagation and update equations must be modified to account
for the change in dimension of the state vector, the basic
principles of the approach still apply.

B. Extension to Multiple States

In the algorithm presented in Section IV, feature mea-
surements are processed to construct displacement estimates,
which subsequently define constraints between consecutive
robot poses. By including two robot poses in the filter state
vector, the SC-KF can optimally process successive extero-
ceptive measurements, while incurring a computational cost
linear in the number of observed features. However, when
a static feature is observed more than two times, the basic
SC-KF must be modified. Intuitively, the observation of a
static feature from multiple robot poses should impose a
geometric constraint involving these measurements andall of
the corresponding poses. We now briefly describe an extension
to the SC-KF approach that correctly incorporates multiple
observations of a single point feature while still maintaining
computational complexitylinear in the number of locally
observed features [21].

Let Yfj be the position of a static feature, which is observed
from L ≥ 2 consecutive robot poses,Xk, Xk+1, . . . , Xk+L−1.
The measurement function,hfj , corresponding to these mea-
surements is

z
fj

k+i = hfj (Xk+i, Yfi) + n
fj

k+i, for i = 0 . . . L− 1 (46)

where n
fj

k+i is the measurement noise. Stacking theseL
equations results in a block measurement equation of the form:

zfj = hfj (Xk, Xk+1, . . . , Xk+L−1, Yfj ) + nfj . (47)

Eliminating the feature position,Yfj , from (47) yields a
constraint vector that involves all of the robot poses:

cfj
(Xk, Xk+1, . . . , Xk+L−1, zfj

,nfj
) = 0q (48)

whereq is the dimension of the constraint vectorcfj
. If the

EKF state vector has been augmented to include theL copies
of the robot pose, the above equation can be used to perform
an EKF update, thus utilizing all the geometric information
provided by the observations of this feature. Furthermore,
if Mk features are observed fromL robot poses, then a
constraint vector,cfj , j = 1 . . . Mk, can be written for
each of these features. Since the feature measurements are
mutually uncorrelated, the resulting constraints will also be
uncorrelated, and therefore, an EKF update that utilizes all
Mk constraints can be performed inO(Mk) time.

VI. RELATION TO SLAM

An alternative approach to processing the feature mea-
surements obtained with an exteroceptive sensor is to jointly
estimate the robot’s pose and the feature positions. This is
the well-known SLAM problem, which has been extensively
studied (e.g., [22]–[25]). This section examines the relation of
the SC-KF algorithm to SLAM.

1) Computational complexity:If an exact solution to
SLAM was possible, the resulting pose estimates would be
optimal, since all the positioning information would be used
and all the inter-dependencies between the robot and the
feature states would be accounted for. However, good local-
ization performance comes at a considerable computational
cost. It is well known that the computational complexity
and memory requirements of the EKF solution to SLAM
increase quadratically with the total number of features in the
environment [22]. While several approximate solutions exist
that possess lower computational complexity (e.g., [23], [25],
[26]), many of them cannot guarantee the consistency of the
estimates, nor is there a concrete measure of suboptimality.

Since the high computational burden of SLAM is due to
the need to maintain a map of the environment, the amount of
computational resources allocated for localization constantly
increases as the robot navigates in an unknown environment.
For continual operation over an extended period, this overhead
can become unacceptably large. Even in an approximate
SLAM algorithm, the largest portion of the computational
resources is devoted to maintaining the constantly expanding
feature map. However, there exist a number of applications
where building a map is not necessary, while real-time perfor-
mance is of utmost importance (e.g., in autonomous aircraft
landing [27], or emergency response [28]). Such applications
require high localization accuracy, but with minimal compu-
tational overhead.

The SC-KF uses pairs of consecutive exteroceptive mea-
surements to produce displacement estimates, which are then
fused with proprioceptive sensing information. As shown in
Section IV-D, our algorithm’s complexity is linear in the
number of features observedonly at each time-step. In most
cases this number is orders of magnitude smaller than the total
number of features in the environment. A reduced-complexity
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SLAM approach that is similar in spirit to the SC-KF would
consist of maintaining only the most recently acquired local
features, i.e., those that are currently visible by the robot, in
the state vector. However, the algorithmic complexity of such
an EKF-SLAM would bequadratic in the number of local
features. In contrast, the SC-KF islinear in the number of
local features.

2) Feature position observability:SLAM algorithms re-
quire the states of the local features to be completely observ-
able, in order to be included in the state vector. When a single
measurement does not provide sufficient information to ini-
tialize a feature’s position estimate with bounded uncertainty,
feature initialization schemes must be implemented [29], [30].
In fact, state augmentation is an integral part of many methods
for delayed feature initialization [31], [32]. In contrast, in the
SC-KF framework, feature initialization is not required since
the featuremeasurementsare included in the augmented state
vector, instead of the featurepositions.

3) Data association: Since only pairs of exteroceptive
measurements are used by the SC-KF algorithm, the data
association problem is simplified. In contrast, SLAM requires
a correspondence search over all map features in the ro-
bot’s vicinity and its computational overhead is considerably
higher [33]. To facilitate robust data association, it is common
practice to employ a feature detection algorithm that extracts
“high-level” features (e.g., landmarks such as corners, junc-
tions, straight-line segments) from raw sensor data. Then, only
these features are employed for SLAM.

4) Information loss: While the extraction of high-level
features results in more robust and computationally tractable
algorithms (e.g., laser scans consist of hundreds of range
points, but may contain only a few corner features), this
approach effectivelydiscards informationcontained in the
sensor data (cf. Fig. 1). Consequently, the resulting estimates
of the robot’s pose are suboptimal compared to those that
use all the available information. Maintaining and processing
the entire history of raw sensor input (e.g., [34]) can lead
to excellent localization performance, but such an approach
may be infeasible for real-time implementation on typical
mobile robots. A benefit of the SC-KF approach is that it takes
advantage of all the available information in two consecutive
exteroceptive measurements (i.e., most laser points in two
scans can be used to estimate displacement by scan matching).

5) SC-KF and SLAM:For longer robot traverses, the posi-
tioning accuracy obtained when only pairs of exteroceptive
measurements are considered is inferior to that of SLAM,
as no loop closing occurs. Essentially, the SC-KF approach
offers an enhanced form of Dead Reckoning, in the sense
that the uncertainty of the robot’s state monotonically in-
creases over time. The rate of uncertainty increase, though,
is significantly lower than that attained when only proprio-
ceptive measurements are used (cf. Section VII). However,
as mentioned in Section IV-D, in the SC-KF approach the
state vectorXk is not required to contain only the robot
pose. If high-level, stable features (landmarks) are available,
their positions can be included in the “robot” state vector
Xk. Therefore, the SC-KF method for processing relative-
state measurements can be expanded and integrated with the
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Fig. 4. The estimated trajectory of the robot using the SC-KF algorithm
(solid line), the SC-KF-NC algorithm (dashed line), the method of [10] that
uses absolute position pseudo-measurements (dash-dotted line), and odometry
only (solid line with circles).

SLAM framework. This integration would further improve
the attainable localization accuracy within areas with lengthy
loops. Since this modification is beyond the scope of this
work, in the following section we present experimental results
applying the SC-KF algorithm to the case where only relative-
state and proprioceptive measurements are considered.

VII. E XPERIMENTAL RESULTS

This section presents experimental results that demonstrate
the performance of the algorithms described in Sections IV
and III-A. The experiments use a Pioneer II mobile robot
equipped with a SICK LMS-200 laser rangefinder. The robot’s
pose consists of its planar position and orientation in a global
frame:

Xk =
[
Gxk

Gyk
Gφk

]T =
[
GpT

k
Gφk

]T
.(49)

We first present results from the application of the SC-KF, and
then study the case where the robot’s state is propagated based
on displacement estimates exclusively (i.e., no proprioceptive
measurements are processed).

A. Stochastic Cloning Kalman Filter

In this experiment, odometry measurements are fused with
displacement measurements that are obtained by laser scan
matching with the method presented in [6]. The SC-KF
equations for the particular odometry and measurement model
are presented in [18].

1) Experiment description:During the first experiment, the
robot traversed a trajectory of approximately 165 m, while
recording 378 laser scans. The robot processed a new laser
scan approximately every 1.5 m, or every time its orientation
changed by 10o. We here compare the performance of the SC-
KF algorithm to that obtained by the approach of Hoffmanet
al. [10]. In [10], the displacement estimates and the previous
pose estimates are combined to yield pseudo-measurements of
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Fig. 5. The time evolution of the diagonal elements of the covariance matrix of the robot’s pose. Note the difference in the vertical axes’ scale. In these
plots, the covariance values after filter updates are plotted.

the robot’s absolute position. In order to guarantee consistent
estimates for the latter case, we have employed the Covari-
ance Intersection (CI) method [35] for fusing the pseudo-
measurements of absolute position with the most current pose
estimates. From here on we refer to this approach as “pseudo-
absolute updates”.

As discussed in Section IV-D, the SC-KF has computational
complexity linear in the number of feature measurements taken
at each pose. If even this computational complexity is deemed
too high for a particular application, one can ignore the
correlations between consecutive displacement measurements,
at the expense of optimality. In that case, the augmented state
only contains the two copies of the robot state [9]. Results
for this approximate, though computationally simpler, variant
of the SC-KF, referred to as SC-KF-NC (i.e., no correlations
between the measurement errors are considered), are presented
below and are compared with the performance of the SC-KF.

The robot trajectories estimated by the different algorithms
are shown in Fig. 4. Fig. 5 presents the covariance estimates
for the robot pose as a function of time. We observe that
correctly accounting for the correlations between consecutive
displacement estimates in the SC-KF, results in smaller covari-
ance values. Even though ground truth for the entire trajectory
is not known, the final robot pose is known to coincide with
the initial one. The errors in the final robot pose are equal
to X̃ = [0.5m 0.44m − 0.11o]T (0.4% of the trajectory
length) for the SC-KF,X̃ = [0.61m 0.65m − 0.13o]T

(0.54% of the trajectory length) for the SC-KF-NC,̃X =
[15.03m 7.07m −32.3o]T (10.6% of the trajectory length) for
the approach of [10], and̃X = [32.4m 5.95m − 69.9o]T

(19.9% of the trajectory length) for Dead Reckoning based
on odometry. From these error values, as well as from visual
inspection of the trajectory estimates in Fig. 4, we conclude
that both the SC-KF and the SC-KF-NC yield very similar
results. However, the approach based on creating pseudo-
measurements of the absolute pose [10] performs significantly
worse. It should be noted that the errors in the final robot
pose are consistent with the estimated covariance in all cases
considered.

2) Impact of correlations:Clearly, the lack of ground truth
data along the entire trajectory for the real-world experiment
does not allow for a detailed comparison of the performance
of the SC-KF and SC-KF-NC algorithms, as both appear to
attain comparable estimation accuracy. Simulations are used
to perform a more thorough assessment of the impact of the
measurement correlations on the position accuracy and the
uncertainty estimates. The primary objective of these simu-
lations is to contrast the magnitude of the estimation errors
with the computed covariance values in the cases when the
correlations between consecutive measurements are accounted
for (SC-KF), vs. when they are ignored (SC-KF-NC).

For the simulation results shown here, a robot moves in
a circular trajectory of radius4 m, while observing a wall
that lies 6 m from the center of its trajectory. The relative-
pose measurements in this case are created by performing
line-matching, instead of point matching between consecutive
scans [36]. Since only one line is available, the motion of the
robot along the line direction is unobservable. As a result, the
singular value decomposition of the covariance matrix of the
robot’s displacement estimate can be written as

Rk,k+m =
[
Vu Vo

]



s1 0 0
0 s2 0
0 0 s3




[
V T

u

V T
o

]
, s1 →∞

where Vu is the basis vector of the unobservable direction
(i.e., a unit vector along the direction of the wall, expressed
with respect to the robot frame at timetk) and Vo is a
3 × 2 matrix, whose column vectors form the basis of the
observable subspace. To avoid numerical instability in the
filter, the displacement measurements,zk,k+m computed by
line-matching are projected onto the observable subspace, thus
creating a relative-state measurement of dimension 2, given by
z′k,k+m = V T

o zk,k+m.

Fig. 6 shows the robot pose errors (solid lines), along
with the corresponding99.8th percentile of their distribution
(dashed lines). The left column shows the results for the SC-
KF algorithm presented in Section IV, while the right one
for the SC-KF-NC algorithm. As evident from Fig. 6, the
covariance estimates of the SC-KF-NC are not commensurate
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Fig. 6. The robot pose errors (solid lines) vs. the corresponding99.8th
percentile of their distribution, (dashed lines). The left column shows the
results for the SC-KF algorithm proposed in this paper, while the right one
demonstrates the results for the SC-KF-NC algorithm. In these plots, the
covariance values after filter updates are plotted. (a - b) Errors and±3σ
bounds along thex-axis (c - d) Errors and±3σ bounds along they-axis (e
- f) Orientation errors and±3σ bounds.

with the corresponding errors. When the temporal correlations
of the measurements are properly treated, as is the case for
the SC-KF, substantially more accurate covariance estimates,
which reflect the true uncertainty of the robot’s state, are
computed. Moreover, evaluation of the rms value of the
pose errors shows that the errors associated with the SC-KF
algorithm (which accounts for correlations) are 25% smaller
than those of the SC-KF-NC.

B. State Propagation based on Displacement Estimates

We now present results for the case in which the robot’s pose
is estimated using only displacement estimates computed from
laser scan matching. Given a displacement estimatezk,k+m =
[kp̂T

k+m
kφ̂k+m]T , the global robot pose is propagated using

the equations

X̂k+m = g(X̂k, ẑk,k+m) ⇒
[

Gp̂k+m
Gφ̂k+m

]
=

[
Gp̂k
Gφ̂k

]
+

[
C(Gφ̂k)kp̂k+m

kφ̂k+m

]
(50)
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Fig. 7. The estimated trajectory of the robot based only on laser scan match-
ing. The map is presented for visualization purposes only, by transforming
all the laser points using the estimated robot pose. Some “spurious” points in
the map are due to the presence of people.

whereC(·) denotes the2× 2 rotation matrix. In this case, the
Jacobian matricesΦk andΓk are given by

Φk =
[
I −ΨC(Gφ̂k) kp̂k+m

0 1

]
, Ψ =

[
0 −1
1 0

]

Γk =
[
C(Gφ̂k) 0

0 1

]
.

Fig. 7 presents the estimated robot trajectory, along with the
map of the area that has been constructed by overlaying all
the scan points, transformed using the estimates of the robot
pose (we stress that the map is only plotted for visualization
purposes, and is not estimated by the algorithm). This experi-
ment used the same dataset from Section VII-A. Fig. 8 presents
covariance estimates for the robot’s pose, computed using (10)
(SC-KF, solid lines) in contrast with those computed when the
correlations between the consecutive displacement estimates
are ignored (SC-KF-NC, dashed lines). As expected, the pose
covariance is larger when only displacement measurements
are used, compared to the case where odometry measurements
are fused with displacement measurements (cf. Fig. 5). From
Fig. 8 we also observe that accounting for the correlations
results in significantly smaller values for the estimated covari-
ance of the robot pose, thus corroborating the discussion of
Section III-B.

VIII. C ONCLUSIONS

In this paper, we have proposed an efficient EKF-based
estimation algorithm, termed aStochastic Cloning-Kalman
Filtering (SC-KF), for the problem of fusing proprioceptive
measurements with relative-state measurements that are in-
ferred from exteroceptive sensory input. An analysis of the
structure of the measurement equations demonstrated that
when the same exteroceptive measurements are processed
to estimate displacement in consecutive time intervals, the
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Fig. 8. The estimated covariance of the robot’s pose when the correlation between consecutive measurements is properly accounted for (solid lines) vs.
the covariance estimated when the correlations are ignored (dashed lines). (a) Covariance along thex-axis (b) Covariance along they-axis (c) Orientation
Covariance. At approximately 130 sec, a displacement estimate based on very few laser points was computed, resulting in a sudden increase in the covariance.

displacement errors are temporally correlated. The main con-
tribution of this work is the introduction of a novel feature-
marginalization process that allows for the processing of
relative-pose measurements while also considering the corre-
lations between these. This method is based on augmenting
the state vector of the EKF to temporarily include the robot
poses and the feature observations related through a local
geometric constraint (i.e., a relative-state measurement). By
employing state augmentation, the dependence of the relative-
state measurement on previous states and measurements is
transformed to a dependence on thecurrent state of the filter,
and this enables application of the standard EKF framework.

The experimental and simulation results demonstrate that
the SC-KF method attains better localization performance
compared to previous approaches [10], while the overhead
imposed by the additional complexity is minimal. The method
yields more accurate estimates, and most significantly, it
provides a more precise description of the uncertainty in the
robot’s state estimates. Additionally, the method is versatile,
since it is independent of the actual sensing modalities used
to obtain the proprioceptive and exteroceptive measurements.
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