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A Quadratic-Complexity Observability-Constrained
Unscented Kalman Filter for SLAM

Guoquan P. Huang, Anastasios I. Mourikis, and Stergios uniaiotis

Abstract—This paper addresses two key limitations of the
unscented Kalman filter (UKF) when applied to the simultaneais
localization and mapping (SLAM) problem: the cubic computa
tional complexity in the number of states, and the inconsigncy of
the state estimates. To address the first issue, we introdueenew
sampling strategy for the UKF, which has constant computatnal
complexity. As a result, the overall computational compleity of

UKF-based SLAM becomes of the same order as that of the

extended Kalman filter (EKF)-based SLAM, i.e., quadratic in
the size of the state vector. Furthermore, we investigate #in-
consistency issue by analyzing the observability properis of the
linear-regression-based model employed by the UKF. Basedho
this analysis, we propose a new algorithm, termed observality-
constrained (OC)-UKF, which ensures the unobservable supsce
of the UKF’s linear-regression-based system model is of theame
dimension as that of the nonlinear SLAM system. This results
in substantial improvement in the accuracy and consistencyf
the state estimates. The superior performance of the OC-UKF
over other state-of-the-art SLAM algorithms is validated by both
Monte-Carlo simulations and real-world experiments.

Index Terms—SLAM, unscented Kalman filter, computational
complexity, estimator consistency, system observability

|. INTRODUCTION

For autonomous vehicles exploring unknown environments,

the ability to perform simultaneous localization and magpi

(SLAM) is essential. Among the algorithms developed thus fa
to solve the SLAM problem, the extended Kalman filter (EKF)
remains a popular choice and has been used in many applica-

tions [1]-[3], primarily due to its relative low computatial

reduce the estimation errors due to the EKF's linearization
the unscented Kalman filter (UKF) [12] was introduced. The
UKF has been shown to generally perform better than the
EKF in nonlinear estimation problems, and one would expect
similar gains in the case of SLAM.

However, one of the main limitations of the standard (i.e.,
original) UKF algorithm [12] is its computational compléxi
which is cubic in the size of the state vector. In the case of
SLAM, where hundreds of landmarks are typically included in
the state vector, this increased computational burden oan p
clude real-time operation. Moreover, when applied to SLAM,
the performance gains of the UKF over the EKF are generally
not overwhelming (see [13]-[15]). Most importantly, enige
evidence suggests [13]-[16] that the UKF also results in
inconsistent estimates in SLAM, even though its perforreanc
is better than the EKF in this respect.

Our objective in this paper is to address the aforementioned
limitations of UKF-based SLAM. In particular, the main
contributions of this work are the following:

o We introduce a new sampling strategy for UKF-based
SLAM that hasconstantcomputational cost, regardless
of the number of landmarks included in the state vector.
This sampling scheme is provably optimal, in the sense
that it minimizes the expected squared error between the
nonlinear function and its linear approximation employed
by the UKF. Using this strategy, the computational cost
of UKF-based SLAM becomdmmear during propagation
andquadraticduring update, which is of the same order

complexity and ease of implementation. However, EKF-based
SLAM is vulnerable to linearization errors, which can cause
poor performance or even divergence, and its state essmate
are typicallyinconsisten{4]-[10]. As defined in [11], a state
estimator isconsistenif the estimation errors are zero-mean,
and the estimated covariance is equal to the true covariance
Consistency is one of the primary criteria for evaluating th
performance of any estimator; if an estimator is inconasiste
then the accuracy of the computed state estimates is unknown
which in turn makes the estimator unreliable. In order to
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as that of EKF-based SLAM. We stress that this new
UKF sampling strategy is applicable to a large class
of nonlinear estimation problems (not only the SLAM
problem) where the measurements at each time step are
of dimension lower than the state.

o We analytically examine the consistency of UKF-based

SLAM, by studying the observability properties of the
statistically-linearized (i.e., linear-regression-d)ssys-
tem model employed by the UKF. This analysis identifies
a mismatch between the observability properties of this
model and those of the underlying nonlinear system,
which is a fundamental cause of inconsistency. Based on
this theoretical analysis, we propose a novel UKF-based
SLAM algorithm, termed observability-constrained (OC)-
UKF SLAM. By imposing the appropriate observability
constraints on the linear regression carried out by the
UKF, the proposed OC-UKF ensures that its system
model has observability properties similar to those of
the underlying nonlinear SLAM system. As a result,
the OC-UKF outperforms the standard UKF as well as
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other state-of-the-art algorithms, in terms of accuracytrasdat et al. [28], [44] recently argued that BA is, in gen-
and consistency, as validated by both simulation aratal, better than filtering in terms of accuracy and efficjenc
experimental tests. However, their analysis focused exclusively on the retbtec
scenario of “small-scale” visual SLAM where overlapping
views of the same scene are assumed over a short trajectory
(less than 16 camera poses in total) and without any loop

The SLAM problem has received considerable attentiastosure. Clearly, based on this limiting case study, onecan
over the past two decades. Since [17] first introduced make inferences about the relative accuracy and efficiehcy o
stochastic-mapping solution to this problem, rapid andtexs filtering and smoothing algorithms in more realistic SLAM
progress has been made, resulting in many competing sadenarios (i.e., lengthy paths with varying number of Vésib
tions, including both filtering and smoothing approaches. landmarks and loop closure events).
particular, filtering methods such as the EKF and the UKF Although such a general study is beyond the scope of this
recursively estimate a state vector consisting of the atirravork, in this paper we have compared the proposed OC-UKF
robot pose and the observed landmarks [18]-[21]. Due to thad the state-of-the-art iISAM algorithm [42] in various SUA
fact that any (implicit or explicit) linearization-basedtdr scenarios, both in simulations and in real-world datadets.
marginalizes out the previous robot poses, it cannot ratine particular, as shown in Sections VII and VIII, iISAM does
the nonlinear system and measurement models at the pastnecessarily perform better than the proposed OC-UKF (in
states, which may result in large linearization errors dngst terms of estimation accuracy/consistency and computation
degrade the filter’s performance. cost). Specifically, while BA methods are certainly prefdea

To better deal with nonlinearity, batch iterative optintiaa in problems involving thousands of landmarks and few loop
methods can be applied to the SLAM problem [22]-[28Flosures, filtering-based methods are still competitivehia
These methods, following the paradigm of bundle-adjustmerase of sparser environments (e.g., tens to a few hundreds of
(BA) algorithms originally developed in photogrammetrydanlandmarks), long-term operation, and frequent loop clesur
computer vision [29]-[35], iteratively minimize a cost fition  This is due to the fact that, in the latter scenario, the compu
involving the residuals of all the measurements, with respeational cost of smoothing methods will continuously irase
to the entire robot trajectory and all landmarks (i.e., witlvith the length of the robot's path, while the runtime of
no marginalization). These BA-based approaches expleit thitering algorithms will remain bounded. It is worth notitttat
sparsity of the measurement graph so as to speed up conany applications of interest (e.g., a service robot opegat
putation. However, for large-scale SLAM problems, a batdhside a home for an extended time period) fall under the
solution may be too computationally expensive to obtain &econd category.
real time [36].

In order to reduce the computational complexity of BAA. UKF Computational Complexity
different approximate methods have been developed thagreit A number of researchers have applied the standard UKF
use a subset of the data to optimize over only few variables,to the SLAM problem (e.g., [13], [45], [46]). However, this
solve the BA problem only intermittently. Specifically,dihig- requires computing the square root of the state covariance
window filters (e.g., [37], [38]), compute a solution for amatrix at each time step, which has computational complexit
constant-size, sliding window of states (robot poses and-la cubic in the number of landmarks, and thus is not suitable
mark positions) using only the measurements corresporidingor real-time operation in larger environments. To address
that time interval. Similarly, keyframe-based approadieeg., this problem, Holmes et al. [14], [15] proposed the square-
[39]-[41]), perform batch optimization over only a subsét aroot UKF (SRUKF) for monocular visual SLAM, which has
views/keyframes. On the other hand, incremental appreachk@®mputational complexitguadratic both in the propagation
to BA such as the iSAM algorithm [42] reduce computatioand in the update phases. This approach offers a significant
by employing factorization-updating methods which allovimprovement in terms of computational complexity, at the
reusing the information-matrix factorization availablorh cost of a considerably more complicated implementation.
previous time steps. Computationally demanding procegjur@dditionally, as shown in [14], [15], the algorithm is an erd
such as relinearization and batch factorization, are oely p of magnitude slower than the standard EKF, due to the need
formed intermittently. Alternatively, the iISAM2 algorith[36] to carry out expensive numerical computations.
uses the Bayes tree data structure [43], which allows forAndrade-Cetto et al. [47] presented a “hybrid” EKF/UKF
fluid or just-in-time relinearization (i.e., relinearignonly algorithm, where the EKF is employed in the update phase,
when the linearization point significantly deviates frone thwhile the UKF is used during propagation for computing
current estimate), as well as partial variable reorderihg anly the robot pose estimate and its covariance. The cross-
every update (instead of only periodic batch reorderingnas ¢orrelation terms during propagation are handled in a €ashi
iISAM [42]). Nevertheless, incremental methods can alstesufidentical to the EKF. Even though this algorithm achieves<o
from increased computational cost, due to the accumulafionputational complexity linear during propagation and qadidr
fill-in that occurs with frequent landmark re-observations during updates, the positive definiteness of the state zovee

Even though both filtering and smoothing approaches hawetrix cannot be guaranteed during propagation. Moretver,
been widely used, to this date, very little is known aboutalihi use of the EKF for updates makes the approach vulnerable to
conditions favor the use of one over the other. In particuldarge linearization errors.

II. RELATED WORK



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, JUNE 2013 3

In contrast to the aforementioned approaches, the proposed y — (Ax + b) denotes the linearization error. Once
algorithm described in Section IV employs the unscentedis linear approximation is computed, the LRKF proceeds
transformatiorboth in the propagation and update phases, tsy applying the regular Kalman filter equations. In partcyl
simple to implement, and attains computational complexity computing the linear approximation @f(x), it aims to

linear during propagation, anduadraticduring update. minimize the expected value of the linearization error sgua
“+oo
B. UKF Consistency win [y (ax b)) by - (Ax+ b)lp(x)ix (@)

The_con.sistenC)_of UKF-based SLAM has receivgd ”mitedwherep(x) is the probability density function (pdf) of the
attention in the literature. In [13]-[15], the consistensy i iy Due to the nonlinearity of — g(x), it is generally

the UKF was empirically examined, but, to the best of oyg,,ossiple to compute the optimal solution of this minimiza
knowledge, no_theoretlcal analysis exists to date. On ther_ot tion problem in closed form. To solve this problem, the LRKF
hand, the consistency of EKF-based SLAM has been studiedi@iaad first selects+ 1 weighted sample points,¥;, w; }7_,,

a number of publications [4]-{10]. In particular, in our 8t ¢ that their sample mean and covariance are equal to the mean
work [8]-[10], we have presented an analytical study of this,y -ovariance of:1

issue by focusing on the observability properties of the EKF

Iinearizgd system model. . _ % :iwi& = E(x) )
In this paper, we extend this analysis to the case of P

UKF-based SLAM. We analytically show that the implicit r

(statistical) linearization performed by the UKF results i P,y :Zwi (X—%) (Xi—%)" =E[(x-%)(x-%)7] @3)

a system model with “incorrect” observability properties, i=0

which is a fundamental cause of inconsistency. Moreovgjhere F(.) denotes the expectation operator. Then, using
we introduce the OC-UKF, which attains better performance le-based imati o 5 X
than the standard UKF, by ensuring that the observabili@e sample-based approximatigiix) ~ > wid(x — i),

requirements on the filter's system model are satisfied. Itwhered(-) is the Dirac delta function, tﬁéolinear—regression
important to point out that, as compared to our previouslproblem (1) becomes:

developed OC-EKF [10], the OC-UKF proposed in this paper r

introduces a new paradigm for computing filter Jacobians. in sz Vi — (AX; +b)]T Vi — (AX; +Db)]  (4)
Specifically, the OC-EKF employs a derivative-based apgroa AP

to find the filter Jacobians, and subsequently optimizes th?]e
selection of linearization points. In contrast, the OC-UK
uses statistical linearization awlitectly calculates the optimal
(inferred) Jacobians by solving an observability-cornistrd
optimization (linear-regression) problem. Note also that
comparison to our previous conference publication [16],
this paper we study in depth the observability properties of A=P,P,l, b=y-Ax (5)
the linear-regression-based UKF system model, present in

detail the derivations of the OC-UKF SLAM, and thoroughiyvhere

validate its superior performance, as compared to othés-sta B r

of-the-art algorithms, both in Monte-Carlo simulationgldan Yy = Z wiYi (6)
real-world experiments. =0

re); £ g(X;) are the regression points. We denote the
linearization error corresponding to the sample potihtby

e; = Y — (AX; + b). Note that the above cost function is
identical to the one in [48], and hence the optimal solutions
ifIg.)r A andb are given by [48]:

Py =Y wi(Vi—3) (X —%)" (7)
I1l. LRKF AND UKF i=0
In this section, we present the UKF in the context of the S NC . v v v T
linear-regression Kalman filter (LRKF). As shown in [48]eth Pyy = ; w; (Vi =) (Vi =) (8)

UKF is closely related to the LRKF (with its sample points . . .
chosen deterministically, instead of randomly in the LRKF]! &ddition, using (5), (7) and (8), the sample covariance of

and it can be viewed as performing an implisitistical the linearization errors is computed by:

linearizationof the nonlinear propagation and update models. B r S B .
In what follows, we present the details of this linearizatio Pee :Zwieiei =Pyy — APxxA 9)
mechanism, which will be instrumental in the development of =0

the quadratic-complexity UKF in Section IV. 1Throughout this papeg andPxx denote the sample mean and covariance

of sample pointsY;, drawn from the pdf of the random variable Pxy
; . denotes the sample cross-correlation between the set: eaY; and);,
A. Linear Regression drawn from the pElfS of the random variablesandy, resmively& is used
The LRKF seeks to approximate a nonlinear functiof§ denote the estimate of, andx = x — x is the error in this estimate.
. . The subscript|;j refers to the estimate of a quantity at time-ste@fter all
y = g(x) with a linear modely ~ Ax + b, where A 056 rements up to time-stgphave been processed. Finaly,, x» is the
andb are the regression matrix and vector, respectively, artx n matrix of zeros, and,, is then x n identity matrix.
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During recursive estimation, the LRKF employs the abov@. LRKF Update

statistical linearization procedure to ap_pr(_)ximate thelinear During update, the LRKF employs statistical linearization
process and measurement models. It is important to note ﬂiatapproximate the nonlinear measurement function:
in this case, the regression matrix serves as arnferred

Jacobianmatrix, analogous to the Jacobian matrices in the Zp1 = h(Xpp1) + Vg (17)
EKF. The details are explained next. = Hyi1 X1 + b1 + €ppr + Vit (18)

wherez;,, is the measurement ang,,; is the zero-mean
B. LRKF Propagation white Gaussian measurement noise, with covariance matrix
During propagation, the LRKF approximates the nonIineaI%’““' A set ofr + 1 sample points{;(k + 1|k).i:°' are
; LT Selected, whose sample mean and sample covariance are equal
process model by a linear function: N . :
to Xj41, and Py ), respectively, i.e.,
XhA1 = fu(xk’ok)v (10) Rpt1k = Xet1lk > Porooeare = Prtijk (19)
=& b 11 . .
kX + Grog + bi + e (11) We pass these sample points through the nonlinear measure-
— (&, Gyl [xk] + by + ey (12) ment function (17), to obtain the regres_sion poir_{tgi_(k +
— Ok 1[k) = h(Xi(k + 1[k))}i{_o. The regression matrix (i.e., in-
A ferred measurement Jacobidd),, 1is computed by [see (5)]:

Pl (20)

ZXk41k ™ XXj4 1|k

where x, is the state vector at time-step € {k,k + 1},
o, = 0., — Wy Is the control input (e.g., odometryd,,,,
is the corresponding measurement, ang is the process whereP,y, ., , is computed as in (7). Subsequently, the state

noise vector, assumed to be zero-mean white Gaussian, VgHt covariance are updated using the EKF update equations:
covariance matriQ,. The matrices, andG, can be viewed

H =P

as inferred Jacobians, in an analogy to the corresponding Skt1 = Pazyy + R (21)
Jacobians in the EKF. We hereafter use the symbol’‘to Kii1 = Pk+1‘ng+ls;j1 (22)

denote the inferred Jacobians.

In the LRKF propagation stepr + 1 sample points T
{X;(k|k)}:_, are selected based on thegmentedector that Pritjpr1 = Prrape — i1 Spn Ky (24)
comprises the filter state and the control input [see (12)g T\yhere Z1x and P are computed from (6) and (8),
sample mean and sample covariancg &f(k|k)};_, are thus respectively.
chosen as:

Xir1)kt1 = Xepifk + Ker1(Zot1 — Zeae)  (23)

ZZp 41|k

_ X = P 0 i
Xp(p = [Oklk} P = { Slk Q } (13) D. UKF Sampling
k In contrast to the LRKF [48], where the sample points are

Subsequently, the LRKF produces the regression poing&awn randomly, in the UKF; + 1 = 2n + 1 so-called sigma
{Vi(k+1]k) = £(X;(k|k))}:_,, by passing the sample pointsPointsX; aredeterministicallychosen along with their weights

mp

through the nonlinear process function (10). The samplenmeavi, ¢ = 1,...,n, according to the following equations [12]:
Yi+1)k, and sample covarianceyykwk, of the regression - 2%
points J; are used as the meaw,,, and covariance, *0(¢[k) =Xy , wo = Mt r) (25)

P 11)%, Of the propagated state estimates, respectively, i.e.,

— 1
_ Xi0lR) = Kojp + [y (n+ 1) Proxyy | wi = 5
i’”l\k = Yt1lk > Pk+1|k = PY)’k+1Uc (14) Z A If)
o o ingk:f( _[ n+’{pxx :| y Widn = 77—~
Moreover, the inferred Jacobian matricds, and G, which +n (k) ok ( ) el " 2(n + k)

will be needed later on, are given by [see (5) and (12):  where n is the dimension ofx,; [see (13) and (19)],

A — [‘i% ék] :py%kp;;w (15) [ (n + K)Pxx, ]Z is the i-th column of the matrix

= . . I . (n+ K)Pxx,,, L € {k,k+1}, andk is a design parameter
wherePy, is computed as in (7). Substituting (5) in (11) 1k . .
and usingk(‘i3), (14) and (15), we have: in the selection of the sigma points, usually chosen so that

n + x = 3. This set of sigma points captures the moments
of the underlying distribution up to the third order for the

X1 = pxp + Grop + Fiy1jp — ARyp + €k .
Gaussian case [12].

9 v . o Y X
= Pyxp + Grok + Xpq1k — [{)k Gk} [Oklk:| + eg

e IV. QUADRATIC-COMPLEXITY UKF SLAM
In this section, we show how the computational cost of the
This last equation describes the linearized (based on segreKF, when applied to the SLAM problem, can be reduced. In

sion) error-state propagation model used by the LRKF. particular, in this paper we focus on 2D SLAM, in which

= ik-ﬁ-l\k e i’kf{k + ékwk + e (16)
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the state vector consists of the robot pose (position aAd Propagation

orientation) and the positions df landmarks: During propagation, only the robot pose and the control
— [«T ™7 _ 1T T .. o7 1T input (odometry) participate in the process model [see](10
X =[xk, PLI =[xk, PL, PLy] (26) Therefore, we are able to reduce the computational [com]pflex)i
wherexg, £ [pf, qSRk]T denotes the robot pose (positiorby applying the unscented transformation only to the part of
and orientation), angh,, (i = 1... M) is the position of the the state comprising the robot pose and the control input,
i-th landmark. instead of the full state vector. The resulting Jacobiares ar
In the UKF algorithm presented in the preceding section, thieen used for efficiently propagating the covariance matrix
main bottleneck is the computation of the square root of tlverresponding to the entire state.
covariance matrix [see (25)], which has complexity/?). We start by drawing the sigma points (k|k) based on the
Clearly, in a scenario where a large number of landmarksctor with the following mean and covariance [see (13)]:
are included in the state vector, carrying out this openatio Xr B Prr 0
during each propagation and update would incur an unac- Xkjk = { ’”‘} o Pxxyy = [ HE } (29)
. . Om 0 Qk
ceptable computational burden. To address this problem, we o ) ) .
here propose a new sampling scheme for the UKF, which h48€reéP rr, , is the covariance matrix corresponding to the
computational cos®(1), and hence reduces the complexit§°b°t pose, obtained by partitioning the state covarianagim
of the propagation and update steps to linear and quadra"ﬁﬁ,fOHOWS [see (26)]:
respectively. The derivation of this sampling scheme isdas P Prr,, Prr,,
on the observation that, during SLAM, only sanall subset kil = [PELM PLka:|

of the state vector appears in the nonlinear propagation a'qgte that the vectak,; in (29) is of dimensiom = 5 (assum-

:Eeb?)flfsrtzrtgegrg;oiils;/\llﬂiliairrzlctw:rhm dt:ti p;?/g?g?:gggfgminﬁ that the odometry measuremeny, is two-dimensional),
ges, P ' y (9 thus the computational cost of computing the sigma point

involves only the robot pose and one observed landrhar very low
To take advantage of this important property, we employ theSubsequently, we transform the sigma poifif; (k|%)} 12,

following lemma: using the process model (10), to obtain the regression goint
Lemma IV.1. Consider a nonlinear functioy = g(x) = of the propagated robot posg); (k+1|k) = £(X;(k|k))}12,.
g(x1), where only the state entries; of the vectorx This enables us to compute the meam, ,, = Vi,
- d covarianceP =P , of the propagated
artitioned asx = | ! an o BB YYki
partt _ * X2 _ . robot pose, in the same way as 'in the standard LRKF/UKF
the regression matrixA. of the linear-regression problerf4) [see (14)]. Moreover, we can evaluate théerred robot state

(30)

appear ing(x). Moreover, consider

accordingly partitioned asA = [A;  A»], i.e, and odometry Jacobians as [see (28) and (15)]:
y=Ax+b+e=A1x1+Asxo+b+e (27) A, :Pyxmp::ik‘k - [(i,Rk (”;RJ (31)
Then, the optimal solution t¢4) is: while A5 = 0.
A, = f’yx]P;lxl, A—=0, b—y—A% (28) Next, using (16), we compute the propagated cross-

correlation between the robot and the landmarks as follows:
Proof. See A ix A.

| ppendix A | o O Pry,, = E [iRkJrl\kf)zk\kjl
This lemma shows that, in order to minimize the expected 5 5
squared error of the statistical linearization (4), it suf§i to =E [(‘I)RkiRk‘k + Gr, Wi + ek) IN)ZEMJ
draw sample points from the pdf af,. As mentioned before, — &, Ppy (32)
in SLAM the number of states participating in the nonlinear * ki
process and measurement models is constant. Thus, we EBHS, the propagated state covariance matrix is given by:

reduce the cost of UKF sampling ©(1) by applying the P $n Prr
unscented transformation only to the pertinent state esjtri Pk = PTyyHc%kT p,, " (33)
instead of sampling over the whole state. Compared to the RLgp ™ R Ll

EKF-SLAM, the proposed UKF-SLAM only incurs a smallwhich is evaluated at a cost onlipear in the size of the state
computational overhead (for computing the square roots \@ctor, similarly to the EKF.

constant-size matrices), and has computational completit ~ The matrix®y, derived in (31) is the inferred propagation
the same order. In the following, we present in detail thie neJacobian for the robot state. To compute the inferred Jaoobi
sampling strategy used in UKF-SLAM. We stress again thatatrix for the entire SLAM state vector, which will be useful
apart from the particular problem of SLAM treated in thigor our ensuing analysis, we use (9), (29) and (31) to write
paper, this new UKF sampling scheme is applicableamny P — AP AT L P

problem where the measurements only involve a subset of the YY#+tk — 1% xRl T eek y _

state vector. =@k, Prr,, Pk, + Gr, QiGE, + Pee, (34)

2When more than one landmarks are detected concurrently,nfeasure- and therefore, (33) can equ'valently be written as:

ments can be processed sequentially, given that the measatrenoise in X 2T *
different observations is independent. Pk+1|k = ‘I)kPk\k‘I)k + Qj (35)
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where C. Landmark Initialization
Q- Gr,QiGE +Pee, 0 (36) Suppose that thgth landmark L, is first observed at time-
k 0 0 stepk,. The corresponding measurement is giver? by:
&, = |®r O 37) zr, = h(xg,,,PL;) + Vi, = 2}, + Vi, (41)
0 Ly

. _ . By solvingz; = h(xg,,,pr;) for pr,, we can express the
In the above expressiond; is the inferred propagation |andmark position as a (generally nonlinear) function af th
Jacobian matrix for the SLAM state vector comprising thgyhot pose and the noiseless measurement:

robot pose and the landmark positions.
pL; = &(XR,,,2%,) (42)
B. Update In order to carry out the landmark initialization in the
Measurements used for updates involve only the robot pdseKF/UKF framework, we approximate this nonlinear initial
and the position of one observed landmark. Therefore, we daation function by a linear function:
apply the unscented transformation only to this subsetadést

— * /! /!

S0 as to reduce the computational cost. In particular, assum Pr; = AxXny, +Aszp, + by, +ey, (43)

that the j-th Iandmgrk,Lj, i§ observed at time-step + 1. — [Ax A,] {xzko] +b/ +e (44)
Then, the set of sigma pointsY;(k + 1]k)}%, are drawn — | %k, ’ ’

from a distribution with the following mean and covariance: Al

. P P where A, and A, are the regression matrices corresponding
% _ | XBisape P _ RRp )k RL;j t1k h b d th ivel h
ek = |, | P Prr . PLi . to the robot pose and the measurement, respectively. These

(38) matrices are computed by statistical linearization, sirhjilto
the cases of propagation and update.

\t/v_here I;Rfﬁcmk bar;d Péjiﬁk“ik :re Te covarltz?mcle m?]'_l Specifically, it becomes clear from (42) that only the robot
l:r)|ces 0 eﬁ o ]_:(,)T an € 6;?1 mark, respedc_ Vely, w ISose and the measurement of the newly detected landmark are
RLjrie = T LjR IS~ he corresppn ng _‘fross'involved in the initialization process. Therefore, we caplg
correlation matnx_, obtalned_from the following partitiog ihe result of Lemma IV.1 to draw the sigma points based on
of the state covariance matrix: the vector with the following mean and covariance:
PRRk 1k e PRLj,k 1|k o PRLM.I«, 1k ~
.+ | ' . +1] . ! +1] _ _ XRko\ko—l ? _ PRRko\koﬂ 0 (45)
: kolko—1 Z, ) XXkp | ko—1 0 Rk
Piyip = | Pryr Pr,r o Prp

k+1lk RN EST]Y I M k1K

Suppose the measurement vector is of dimensionThen,
: : : : the UKF chooses + 1 = 2 x (3 4+ m) + 1 sigma points,

Pivfipn 0 Pluljp 7 Plulaeip {X;(ko|ko—1)}i_,, and transforms them through the nonlinear
Note that the matrix used for generating the sigma points hagialization model (42) to obtain the regression poinfs o
constant size [see (38)], regardless of the number of laridimathe new landmark positiodY; (ko |k, — 1) = g(X;(kolko —
in the state vector. 1))}7_,. The sample mean of the regression points is used to

Once the set of sigma points are generated, the lingattialize the new landmark position:

regression of the LRKF update (see Section IlI-C) is applied

to obtain theinferred measurement Jacobian for the pertinent PL sk, = Yholko—1 (46)
states [see (20) and (28)]: In order to compute the covariance matrix of the augmented
A, =P, ‘ p-1L _ [ﬁR H; } (39) state vector comprising the robot pose, the previouslyainit
k+1|k xxk+1‘k k+1 g k+1

) ized landmarks, and the new landmark, we first note that the
whereuthe submatrid g, ,, corresponds to the robot poseregression matrix in (44) is [see (28)]:
while Hy, . corresponds to thg¢-th landmark. To construct _ _
J.k+1 _ _ —1

the inferred measurement Jacobian for the entire stat®wect A= [A" AZ] - Pyxko\krlpx’%\ko—l (47)
we note that according to the new sampling scheme tBgibsequently, using (43), (45), (46), and (5), we compuge th
unscented transformation is not applied to the landmards therror in the posterior estimate for the position of thh
are not currently observed (their regression matrices are z|andmark:
according to Lemma IV.1). Therefore, theferred measure- _ R
ment Jacobian for the entire SLAM state vector is: PLjkoine = PL;j = PLjion,

o . . — A. A * 1" 1 _A A —A _bI/

Hip = [Hp,, 0 - 0 Hy,, 0 - 0] (40) <R, e, Dk, Tk, T oK R 1, 1 T B Dk,

. . ) ’ . = AxXR, ., T AsVi, + € (48)

Once this matrix is available, (21)-(24) are applied to upda olte °
the SFate estimate and Cova”?'nce in the UKF. It is Importam"To preserve the clarity of presentation, we consider the edsere a single
to point out that the computational cost of the proposed UKfeasurement suffices to initialize the landmark. This idetuthe distance-
update equations is dominated by the covariance update (@gzmng measurement model, commonly _used in practice. Howihis is not

dh . dratic in the number of landmarks Similarﬁmgcessary assumption anq our ar_laIyS|s can be exte_nq_eel_msh where
an ence IS quadra ) Itiple measurements at different time steps are needgtitiadize the new
to the EKF. landmark (e.g., bearing-only or distance-only measuréshen
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Based on (48), the cross-correlation terms between the néw.f). However, the first state estimates may be inaccurate and
landmark and the robot and the old landmarks are given byesult in large linearization errors, thus degrading thterfg
_ - erformance. To improve the FEJ-EKEF, in [10], we developed

PrLiRi, =E [PLWMO ngowo—l} = AxPrR - (49) Fhe ObservabiIity-CcE)nstrained (OC)-EKF wLicf]1 instea(dasEslp
Proy, . =E [memf,{/vkauw] =AxPrr,, .._, (50) linearization points that not only ensure the linearizestey
model has thecorrect number of unobservable d.p.but
also minimize the linearization errorsAs a result, the OC-
EKF attains consistency better than that of the FEJ-EKF and

for j/=1,...,M andj’ # j. Hence, the covariance matrix
of the augmented state vector becomes:

_— Pr ot P o1 {OAf } 5 Comparable to that of the ideal EKF.
kolko = A Ovoi] P P 2Mx2 ( In this work, we adopt an analogous approach where we
[Ax QX_QM] Folko—1 LiLakolko first examine the observability properties of the UKF-SLAM
wherePr 1., ... = Pyy, ..., IS the sample covariance ofsystem model and compare them to those of the underlying

the set of the regression poin{9);(k.|k, — 1)}i_,. Note nonlinear SLAM system. Based on this analysis, we introduce
that the computational complexity of the UKF landmarkn efficient algorithm for computing the appropriatéerred
initialization is linear in the number of landmarks, whichaf measurement Jacobians that preserve the dimensions of the
the same order as in the EKF. unobservable subspace, thus improving consistency.

For our derivations in the following sections, it will be rec
essary to compute the inferred measurement Jacobian astric .
fIRkO andeijko, which correspond to the measurement usdl UKF-SLAM Observability
for initializing the landmark. For this purpose, by solvi(4B) To examine the observability properties of the UKF-SLAM
for z; and then substituting in (41), we have: system model, we form the observability matrix [50] for the

time intervallk,, k, + k| as follows:
z, = — A, 'Axxp,, +A,'pr,— A bl —A el +vi, (52) (Ko, ko + K]

H;,

We thus conclude that thmferred measurement Jacobians 9
Hy,+1®k,

corresponding to this measurement are:
Hp, =-A,'A,, Hp,, =A;"' (53)

(54)
ﬁko+k‘i>ko+k—1 i -‘i%o

V. SLAM OBSERVABILITY ANALYSIS . .
where the inferred measurement JaCObIaI‘ﬁ,O_L_g, IS

As discussed in Section Ill, the UKF carries out recursiV{e\O k}, and inferred state propagation Jacobiab, ¢
3ty 1 e — 1

state estimation based on a linear approximation (i.enngié € {1,...,k}, are computed based on the UKF regression
sigma points) of the nonlinear system model. In this section irices [s’ee ’(31) (37), (39), and (40)].

we examine th&)bservabilityproperti_es of the UKF linear- Since the UKF approximates the nonlinear SLAM model
regression-based system model, since they can affect fie; roqression-based linearized system [see (12) and {L.8)]
filter’s performance. To the best of our knowledge, no suGll yegjraple that its observability properties match thafsiae
analysis has appeared in the literature prior to [16]. underlying nonlinear system. That is, the UKF-SLAM system
model should have 3 unobservable d.o.f., or equivalensly it
A. Background observability matrix,M, should have a nullspace of dimen-
Our motivation arises from our previous work [8]-[10]sion 3.
where it was shown that the observability properties of the However, this is generallgotthe case. In fact, when numer-
EKF’s linearized system model greatly impact the filter'scally computing the dimension of the nullspaceMf, we find
consistency in SLAM. Specifically, we have proven in [8]that it is 3 only at time-step,, when a landmark is initialized.
[10] that the system model of ddeal EKF, whose Jacobians At that time, the observability matrix comprises only thestfir
are evaluated at theue state, has3 unobservable degreesinferred measurement Jacobian, i%l,= Hy,, which is a 2
of freedom (d.o.f.)These correspond to the global positionx 5 matrix and thus generally has a nullspace of dimension
and orientation, and match the unobservable directionfeof 3. Later on and as more measurements become available,
underlying nonlinear SLAM system [10], [49]. Moreover, ithe dimension of the nullspace of the observability matrix
was shown that the ideal EKF exhibits excellent performandecreases fast. Typically, the observability maivixbecomes
in terms of consistency. By contrast, the system model ffll-rank after two time steps of consecutive observations
the (standard) EKF, which uses tlarrent state estimates A full-rank observability matrix indicates that the linear
for computing the Jacobians, hasly 2 unobservable d.o.f. regression-based system model employed by the UKF is
corresponding to the global position. As a result, the saathd observable, which contradicts the observability analgsithe
EKF becomes inconsistent since it acquires non-existent imonlinear SLAM system [10], [49]. In practice, this implies
formation along the direction of the global orientationsBd that the UKF obtains “spurious” information, in all diremtis
on this analysis, in [8], [9], we derived the First-Estinsteof the state space, even in directions where no informason i
Jacobian (FEJ)-EKF, which, by evaluating the Jacobians atailable, such as the global position and orientations,Tini
the first available state estimates, achieves the desirgehwob turn, leads to an unjustified reduction of the state estighate
ability properties (i.e., its system model hasunobservable covariance matrix, which cannot be compensated for by the
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noise covariance increase that the UKF uses to account foR) Initialization of subsequent landmarkSuppose that the
linearization errors [see (35)]. As shown in the simulatiod  j-th landmark is detected for the first time at time-skgp- k.
experimental results in Sections VIl and VIII, the incorsisThis implies that the state vector already contains the first
tency due to the mismatch between the observability prof-— 1) landmarks and thuNz andN;, (: =1,...,j — 1)
erties of the UKF linear-regression-based system model dmave been computed. The nullspace mal¥ixnow will have
the nonlinear (or equivalently the ideal EKF) system modeb be augmented b, corresponding to the new landmark,
causes a significant degradation in the filter's performance L;. To determineNy,, we first notice that, based on the
structure of the measurement and state-propagation éaferr
VI. OBSERVABILITY-CONSTRAINED UKF SLAM Jacobians [see (40) and (37)], the corresponding block fow o

In this section, we introduce a novel OC-UKF algorithnihe observability matrix at this time step, denotedMy,, .,
that employs a linear-regression-based system model w@n be obtained as [see (54)]:
observability properties similar to those of the underyion- M 5 % b (58)
linear SLAM system. Specifically, we construct the “infette Ckotk = RhkotkThotk—177" Fho =
Jacobians of the UKF in such a way that the resulting system  [Hry, v ®ry s~ ®r,, O -+ 0 Hp, ]
model ha§ aminobservable supspace of dimension 3 Since this is the newest landmark, it is appended at the end

In particular, the propagation phase of the OC-UKF is
. . . ._Of the state vector. Then, we compudé,. based on the
identical to that of the standard UKF. The difference arises . J . .
) . . requirement that each block row of the observability matrix
in the update phase, where, instead of employing the up- has the same nullspace, spannedbyi.e
constrained minimization of (4) for computing the regressi pace, sp Y€
matrix, we formulgte aconstraine.o_rninimizati(.)n probler_n_ that null(My, 1 1) = span(N) = My, N =0 (59)
enforces the desired observability properties. Spedyicl col.
the first landmark was observed at time-step we require g pstitution of (56) (using/ = 5) and (58) in (59) yields:
that [see (54)]: y y y y

H; N =0, for (=0 Hr,, ®reins PR, Nr+Hrj, (N, =0 =

MN=0 &< o o 55 o . 3 2
{Hko+€<1)kv+€1 <P N=0, for />0 ( ) NLj = _HLl HRko+k¢Rko+k—l o .éRko Ngr (60)

Jikot+k
In the above expression® is a (3 + 2M) x 3 matrix, whose
columns span the desired nullspace. These constraintseen®l Computing the Inferred Measurement Jacobians
that all the block rows of the observability matrd (54)
have thesamenullspace, which coincides with thenobserv-
able subspacef the filter's system model. By ensuring tha{ : .
its inferred system model has an unobservable subspac o d. From Lemma IV.1, we know that for these Jacobians

dimension 3, the OC-UKF avoids the infusion of erroneou € only need to d(_etermme_ the regression maix instead
: . . o L of the full regression matrixA [see (39) and (40)]. In the
information, and is empirically shown to attain signifidgnt

: . . OC-UKEF, at each update step afiey has been initialized, we
improved consistency (see Sections VII and VIII). f late the followi trainedi ; bl
In what follows, we show how the nullspace matix ormuiate Ihe folowingeconstrainedinear-regression probiem

is determined, and based on that, we compute the infen)ggh respect toA; andb [see (4)]:
measurement Jacobians.

We now show how the inferred measurement Jacobians for
he observation of landmatk; at time-stepk,+¢ can be com-

10
min Y w2~ (A + b)]" [Zi — (A1 X +b)] (61)
1 i—0

A. Computing the Nullspace MatriX 5 5
st A®) @ N; =0 (62)

Consider the following partitioning of the matriX:
4 ‘iRkou 0

e T T T T = .
N =[N, N, NZ.,] (56)  where Q.. = [ o ¢ =0,....,k -1, is the

. . . I |’
whereN is a3 x3 submatrix corresponding to the robot posggy ced-size regression matrix obtained from propagation

andNy,, i =1,..., M, are2 x 3 submatrices correspondingiseq (31) and (37)], corresponding to the part of the state-co
to thei-th landmark. It is important to note that landmarks are

. . & NT 71T
typically observed and initialized at different time insts, and prising only the robot pose ant;; andN; = [Ny N |
: . o contains the corresponding block rows I§f [see (56)]. The
hence the number of submatrices comprisigill increase

over time, as new landmarks are included into the state lvectsoIgma points used in the minimization problem (61) are

1) Initialization of the first landmarkWhen the first land- C‘”T‘p“ted by_ the proc_edure _descr_|bed n Sectlon_ IV-B. The
L . . optimal solution ofA; is obtained inclosed formusing the
mark is initialized at time-step,, we chooséN to be a matrix . ]
. following lemma:
whose columns span the nullspace of the x 5 inferred
JacobianH,,, = [HRko HLMO] [see (53)], i.e., Lemma VI.1. The optimal solution to the constrained mini-
5 5 5 N mization problem(61)(62) is given by:
null(Hy,) = span(N) = [Hp, Hp,, ] {NR} =0 (57) . .
col ’ T A= [Hg Hi, o]
. . . ko+k Jikot+k
Thus, N can be readily computed via the singular value _

2 _ T (T T\~ 1
decomposition (SVD) oHj,, [51]. = Poxyuipen I (LP L") "L (63)

XXko+k|kotk—1



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, JUNE 2013

with

Algorithm 1 Observability-Constrained (OC)-UKF SLAM

L=[In Onxs_m] (Is—UUTU)"'UT) (64)
U=, &N, 65 2
wherem is the dimension of the measurement vector.
Proof. See Appendix B. O

Lastly, once we construct the full inferred measurement”
Jacobian matri>f{;%+k in (40) from the regression matri
in (63), we update the state estimate and covariance baséd
on (21)-(24). In summary, the main steps of the OC-UKF®
SLAM are outlined in Algorithm 1. r

We stress that if multiple landmarks are observed cons:
currently, the above process for determining the inferred
measurement Jacobians is repeated sequentially for each ®f
the landmarks. Note also that the maximum dimension of all
the matrices involved in (63)-(64) is 5 [see (38)], and thuso:
computing the regression matri&; incurs only aconstant
computational overhead, regardless of the number of langt:
marks in the state. As a result, the overall computationsi co12:
of the OC-UKF update step remains quadratic (as is the case
for EKF-SLAM). '

14:
VII. SIMULATION RESULTS

A series of Monte-Carlo comparison studies were conductgg:
under various conditions, in order to verify the preceding
consistency analysis and to compare the performance of the
proposed OC-UKF to that of the standard UKF/EKF andy.
the OC-EKF [10], as well as the iSAM algorithm [42]. The
metrics used to evaluate estimation performance are the rqg.
mean squared error (RMSE) and the average normalized)(state
estimation error squared (NEES) [11]. The RMSE provides a
measure of accuracy, while the NEES is a standard criterion
for evaluating estimator consistency. Specifically, it isWn

Require: Initial state estimate and covariance
1: loop

Pr opagati on: When an odometry measurement is
received,

determine sigma points by (25) with mean and covari-
ance (29).

produce regression points by passing the sigma points
through (10).

compute the state estimate via (14).

compute the regression matrix via (31).

compute the propagated covariance via (33).

Updat e: When a robot-to-landmark measurement is
received,

determine sigma points by (25) with mean and covari-
ance (38).

produce regression points by passing the sigma points
through the nonlinear function (17).

compute the regression matrix via (63) and (39).
update the state and covariance via (21)-(24).

Initialization: When a new landmark is de-
tected,

determine sigma points by (25) with mean and covari-
ance (45).

produce regression points by passing the sigma points
through (42).

compute the inferred Jacobian matrices via (53).
initialize the new landmark position (46) and update the
state covariance (51).

if this is the first observed landmark, compute the
nullspace matrixN via (57), else augment the nullspace
matrix N with N, corresponding to the new land-
mark (60).

19: end loop

that the NEES of aV-dimensional Gaussian random variable
follows a x? distribution with N d.o.f.. Therefore, if an

estimator is consistent, we expect that the average NEES {elocities, v, and v;, respectively), with standard deviation
the robot pose will be close to 3 for all time steps, angqual too = 2%u for each wheel. These measurements were

the average landmark NEES will be close to 2. The larggged to obtain the linear and rotational velocity measurgsne
the deviations of the NEES from these values, the worse tfig the robot, which are given by:

inconsistency of the estimator. Note that when two estinsato
produce comparable RMSE, the one whose NEES is closer to

Uy +U; Vp — U]
V= R w =

2 a

the expected value is also the one whose estimated covaria\%erea — 05 m is the distance between the active wheels

is closer to the true_covananéeBy st_udymg both the RMS_E The robot recorded distance and bearing measurements to
and NEES of an, estimator, we obtain a comprehensive PICYIR dmarks lying within its sensing range of 5 m. The standard
of the estimator's performance. deviation of the distance-measurement noise was equal to
10% of the robot-to-landmark distance, while the standard
A. SLAM with Range-and-Bearing Measurements deviation of the bearing-measurement noise was sl tteg.
In the simulation tests presented in this section, a robldtshould be noted that the sensor-noise levels selected for
with a differential-drive model drove on a planar surface, &he simulations are larger than what is typically encoweter
a constant velocity of = 0.25 m/sec. The two drive wheelsin practice. This was done on purpose in order to make the
were equipped with encoders, which measure their revaisticeffects of inconsistency more apparent.
and provide measurements of velocity (i.e., right and léfeal For the results shown here, a SLAM scenario with multiple
loop closures was considered, where during each run, tfeg rob
4_It is important to stress that knowing the uncertainty of twmputed eyecuted 10 loops on a circular trajectory, and observed 20
estimates is often as important as the estimates themseéiwemconsistent .
landmarks in total. The reported results were averagedser

estimator that reports covariance values smaller than rtree dnes can be s . - )
unreliable for use in practice. Monte-Carlo trials. During the test, six estimators preees
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Fig. 1. [Simulation results. Range-and-bearing SLAM] Mefarlo results for a SLAM scenario with multiple loop closst (a) average NEES of the
robot-pose errors, and (b) average RMSE for the robot pas&tign and orientation). In these plots, the dotted linesespond to the ideal EKF, the solid
lines with circles to the standard EKF, the dashed lines ¢oQIC-EKF, the solid lines with crosses to the standard UK& siblid lines to the OC-UKF, and
the dash-dotted lines to the iISAM algorithm. Note that theSEVbf the ideal EKF, the OC-EKF, the OC-UKF and the iSAM algon are very close, which
makes the corresponding lines difficult to distinguish.

the same data, to ensure a fair comparisdihe compared TABLE |

estimators were: (i) the ideal EKF, (i) the standard EKF) (i [S'MULAT'OLN RESULTS-P%ASNG'ZAEE'BEARQGS'—A’!] ROBST PosE
the OC-EKF [10], (iv) the standard UKF, (v) the OC-UKF, AND LANDMARKC FOSITIONESTIMATION FERFORMANCE

and (vi) the iSAM algonthm [42].Nc_)te_that, as shown in [36], \dealEKF _ SIO.EKF OG.EKF SW.UKE OC.UKE _ iSAM
the performance of iSAM is very similar to (or even slightly:

better than) that of iISAM2 in landmark-based SLAM, which Robot Position RMSE (m)
is the case considered in this work. Hence, in this test, we 0.6297 1.2664 0.6771 1.1002 0.6635 0.7587
compared our algorithm to iISAM [42], using version 1.6 of Robot Heading RMSE (rad)

its open-source implementation [53] with standard paranset
i.e., solving at every time step and reordering/relinéagiz
every 100 time steps. We also point out that, in order to Robot Pose NEES

ensure a fair comparison, we report the current-state attgn ~ 3.1284 20.6195  4.6896  14.8696  3.9305  4.2649
(instead of the final batch estimates) of the iISAM algorithm
at each time step, which are computed by processing the
measurements up to the current time step, without using any
future measurements’ information. Clearly, these incresale Landmark Position NEES

causalestimates are of more practical importance in any real- 2.1569 19.5556  4.6150  13.7205  2.8303  10.1408
time robotic operation. Lastly, it is important to note tlila¢
ideal EKF isnotrealizable in practice since its Jacobians are

evaluated at the (unknown) true values of the state. However

we included it as a benchmark in our simulations, since it hé@bl? | presents the average values of all relevant perfocma
been shown to possess tt@rrectobservability properties and metrics for the landmarks and the robot. For the landmarks,

exhibit the best performance in terms of both consistendy alf® computed the average RMSE and NEES by_ averaging
accuracy [8]-[10], [16] over all Monte-Carlo runs, all landmarks, and all time steps

The comparative results for all the estimators are preden{:eOr the robot position and orientation RMSEs and the robot

in Fig. 1 and Table I. Specifically, Figs. 1(a) and 1(b) show t ose NEES, we averaged 'Fhe corresponding quantities dver al
average NEES and RMSE, respectively, over all Monte-Ca onte-Carlo runs and all time steps.

runs for each time step for the robot pose. On the other handSeveral interesting conclusions can be drawn from these
results. Firstly, it becomes clear that the performancehef t
5In [10], the OC-EKF was shown to perform better, in terms afumacy proposed OC_'UKF Isvery closeto that of the ideal EKF,
and consistency, than both the FEJ-EKF [8] and the robdcemapping and substantially better than both the standard EKF and
algorithr_n [52], which aims at improving the consistency O(IfESL_AM by the standard UKF, in terms of both RMSE (accuracy) and
expressing the landmarks in a robot-relative frame. Tloeeefin this paper NEES . Th b d f in ire
we omitted the comparison between the proposed OC-UKF an&HI-EKF (ConS'StenCy)' € observed performance gain irescat

as well as the robocentric mapping filter. that the observability properties of the linear-regresdiased

0.0648 0.1070 0.0696 0.0954 0.0680 0.0760

Landmark Position RMSE (m)
0.6071 1.2552 0.6539 1.0890 0.6325 0.7732
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system model employed in the UKF play a key role in TABLE II
determining the filter consistency: When these properiféard ~ [SIMULATION RESULTS. BEARING-ONLY SLAM] ROBOT POSE AND
from those of the underlying nonlinear system, which is the LANDMARK POSITIONESTIMATION PERFORMANCE
case for the standard EKF and UKF, the filter’s consistency is
negatively impacted.

A second observation is that both the OC-UKF and the Robot Position RMSE (m)
OC-EKF attain slightly better performance than the iSAM 0.0427 0.1132 0.0529 0.0707 0.0455
algorithm, in terms of consistency and accuracy (see Fig. 1
and Table I). This can be justified by the fact that in order to

Ideal-EKF  Std-EKF OC-EKF Std-UKF  OC-UKF

Robot Heading RMSE (rad)

. ) X . . 0.0045 0.0130 0.0055 0.0075 0.0043
reduce its processing requirements, the iISAM algorithmsdoe
notiteratively update the whole measurement Jacobian matrix Robot Pose NEES
(and thus the square-root information matrix) at every time  2.6054 12.6715 4.4730 4.8453 2.6917
step. Instead, it reuses partial resglts from. the previous t Landmark Position RMSE (m)
steps and only updates the Jacobian matrix incrementally by

. : . 0.1066 0.1770 0.1305 0.1630 0.1471
appending to it new rows corresponding to the most recent
measurements. However, the previously-computed partseof t Landmark Position NEES
Jacobian matrix can be quite inaccurate (especially rigfare 1.8964 12.7627 12.6085 6.1927 4.3216

a loop closure event or in the presence of large measurement

noise). Moreover, incremental updating does not guarantee

the appropriate observability properties. These factas cposition estimation are shown in Fig. 2 and Table II. As

lead to significant estimation errors, which will propagatevident, in the case of BOSLAM where the measurement

in time and degrade the iISAM algorithm’s performance foronlinearity is more significant than that of the range-and-

all time steps except the ones where batch relinearizasionbearing SLAM considered earlier, the standard UKF performs

applied. Clearly, this issue can be mitigated by performirgybstantially better than the standard EKF, in terms of both

periodic relinearization more frequently, which, howeueil ~ consistency (NEES) and accuracy (RMSE). This performance

significantly increase the computational cost. gain is also shared by the OC-UKF over the OC-EKF. We
Lastly, the OC-UKF also outperforms the OC-EKF [10]thus see that the OC-UKF combines the benefits of the OC-

by a smaller margin, in terms of both RMSE and NEESKF (i.e., correct observability properties) with thosetioé

It is interesting to note that the advantage of the OC-UKBKF (i.e., better linearization), to form an estimator waos

over the OC-EKF is more pronounced in terms of NEE$erformance is comparable to that of the ideal EKF.

This indicates that the OC-UKF provides a more accurate

uncertainty measure (covariance) than the OC-EKF, and also VIIl. EXPERIMENTAL RESULTS

implies that the filter's inconsistency primarily affectset  To further test the proposed OC-UKF SLAM algorithm,

covariance, rather than the state estimates. To furthélipig we also conducted real-world experiments in both indoor and

this performance difference, in the next section, we alsmitdoor environments. These tests also allow us to examine

compare these algorithms in the case of bearing-only SLAMe algorithm’s runtime, as compared to the OC-EKF and

(BOSLAM), whose severe nonlinearities make the need ftite state-of-the-art iISAM algorithm. All the timing result

a better linearization scheme, such as the one offered by fesented in this section were obtained on a Mac laptop with

OC-UKF, more evident. an Intel i5 processor at 2.53 GHz, and 4GB of RAM.

B. SLAM with Bearing-only Measurements A. Indoor Environment

In this BOSLAM simulation test, we employed the same We first present the results of the indoor experiment con-
simulation setup as in the preceding case, with some chandested in an office building. The robot was commanded to
in the parameters. Specifically, the robot moved on a circulperform 11 loops around a square with sides approximately
trajectory at a constant velocity of= 0.5 m/sec, with wheel- equal to 20 m (see Fig. 3). This trajectory was selected since
velocity measurement noise standard deviation equal to repeated re-observation of the same landmarks tends to make
1%w, while the standard deviation of the bearing-measuremehé effects of inconsistency more apparent, and facifitate
noise was set to 2 deg. Note that we doubled the robot veloaitiscerning the performance of the various estimators. A Pi-
in this simulation, because a larger linear velocity inesesathe oneer robot equipped with a SICK LMS200 laser range-finder
baseline between two consecutive time steps, leading tora mand wheel encoders was used in this experiment. From the
reliable triangulation-based landmark initializatiot]J50nce laser-range data, corner features were extracted and ssed a
a landmark is initialized, the inferred Jacobians for tharbrey landmarks, while the wheel encoders provided the linear and
measurements to this landmark are computed in the same watational velocity measurements. In particular, thisadat
as for the range-and-bearing measurements (see SectiBh VIwas recorded over about 40 minutes, and contains 23425 robot

The comparative resuftof the robot pose and landmarkposes and 63 landmarks with 11392 measurements to them.

e _ _ _ _ Since no ground truth for the robot pose could be obtained

Since the current implementation of iISAM [53] does not idduthe

bearing-only case, in this test we omit the comparison of @@ UKF to ysmg external SﬁﬂSOI’S (e.g., overhgad Cameras) n thE!’-eXp
the iISAM algorithm. iment, we obtained a reference trajectory, treated as groun
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Fig. 2. [Simulation results. Bearing-only SLAM] Monte-@aresults for a SLAM scenario with multiple loop closurea) verage NEES of the robot-pose
errors, and (b) average RMSE for the robot pose (positioncai@htation). In these plots, the dotted lines correspanthé ideal EKF, the solid lines with
circles to the standard EKF, the dashed lines to the OC-Hi&solid lines with crosses to the standard UKF, and the $ioks to the OC-UKF. Note that
the RMSE of the ideal EKF and the OC-UKF are almost identisddich makes the corresponding lines difficult to distinguis

truth, by utilizing the known map of the area where the experi J
ment took place. Specifically, the exact locations of 20 emsn

were known from the blueprints of the building. Measureraent

to these corners, as well as all other measurements obtaine—
by the robot (including those to corners whose locationewer -
not known a priori), were processed offline using a batch
maximum a posteriori (MAP) estimator [55] to obtain an
accurate estimate of the entire trajectory. This estinzstevell

as the locations of the known corners, are shown in Fig. 3 Thi ____
constitutes the ground truth against which the performafice ;
the following five estimators was compared: (i) the standard
EKF, (ii) the OC-EKF, (iii) the standard UKF, (iv) the OC- ____
UKF, and (v) iSAM. Clearly, due to the way the ground truth o
is computed, the estimation errors are expected to have som
correlation to the errors in the ground truth. However, sinc d
these correlations are the same for all estimators, we dan st -
have a fair comparison of their relative performance. _E\'

o

The comparative results for all estimators are presentec ) : — Estimated Trajectory | |
in Figs. 4(a) and 4(b), while Table Il shows the averaged h===% {,| O Corner Features —
NEES and RMSE of the robot pose and landmark position, o
respectively. We point out that during the experiment th&g. 3. [indoor Experiment] The batch maximum-a-postétAP) estimate
robot detected a number of landmarks that weoéeincluded of the robot trajectory during the indoor experiment (sdiite), overlaid

; ; the blueprint of the building. The boxe&lY denote the corners whose
in the set of 20 known corners (e'g" movable ObleCtS Sug‘:‘act locations were known from the building’s blueprinffie batch MAP

as furniture). Since no ground truth was available for thegimates of the robot poses and the known corners were sgrbund truth
objects, we only used the 20 known corners for computirigg computing the NEES and RMSE values shown in Table Il aigd &

the landmarks’ error statistics. From the experimentalltes

it becomes evident that the OC-UKF outperforms both the

standard EKF and UKF, and also achieves better accurangtric, while the NEES values in a single experiment do not
than the OC-EKF. This agrees with the simulation resultiictate which estimator is consistent or not. Regardless, w
presented in the preceding section. It should be noted hieat show these results mainly to demonstrate the large diféeren
reported NEES in Fig. 4(a) was computed only from a single performance between the OC-EKF/UKF and the standard
run (i.e., this is not an average over many Monte-Carlo ruKF/UKF. These experimental results, along with those from
as in the simulations). To evaluate an estimator’s consigte the simulations, further support our conjecture that the-mi
the average NEES over many Monte-Carlo runs is a suitaliatch in the dimension of the unobservable subspace between
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Fig. 4. [Indoor Experiment] Experimental results: (a) NE&She robot-pose errors, and (b) estimation errors of thetr@ose (position and orientation).
In these plots, the solid lines with circles correspond ® standard EKF, the dashed lines to the OC-EKF, the solid lvigh crosses to the standard UKF,
the solid lines to the OC-UKF, and the dash-dotted lines &i8AM algorithm. Note that the NEES and estimation errousal of the standard EKF and
the standard UKF are almost identical, and the estimatiooreiof the OC-UKF, the OC-EKF and the iISAM algorithm are al®wvy close to each other,
which makes the corresponding lines difficult to distinguis

TABLE Il iISAM in this experiment, although all the algorithms attain
['NDOOREéSPTEIF:/:L"TElgL]E:RBF%TRTAOASNEC’ENA[:J-DAFQ‘UDN"’:'\;EK POSITION faster-than-real-time performance. This can be justifigd b
the fact that the computational cost of the iISAM algorithm

increases as the robot trajectory grows. Moreover, the 11

Std-EKF  OC-EKF Std-UKF OC-UKF  iSAM . _ . .
loop-closing events occurring along the robot trajectamy i
Robot Position RMSE (m) this experiment significantly increase fill-in in the squavet
0.7323 0.5896 0.7268 0.5384  0.6108 information matrix and thus the computational complexdy f
Robot Heading RMSE (rad) Sowing_the _SyStem' . L .
0.0512 0.0392 0.0508 00349 00388 At this point we should note that in this indoor e_xperlment
(as well as the outdoor experiment presented in the next
Robot Pose NEES section) the measurement correspondences were known. If
6.0939 3.4575 6.0307 4.5442 9.1270 not, then to solve the data association problem, the iISAM
Landmark Position RMSE (m) allgor_ithr.n. Would_need to recover ma_rginal cqvariances, whic
0.9929 0.8438 0.9894 08183 06528 will S|gn|f|c_antly |ncrease.|ts processing reqwre_mem‘_ﬂ[‘By
contrast, since the covariance matrix is maintained in tBe O
Landmark Position NEES EKF/UKF, the marginal covariances are immediately avédélab
7.3180 6.0354 7.2928 7.0123  9.6627 and hence the maximume-likelihood data association incurs

minimal overhead.

Lastly, it is very important to observe from Table Il that
the two UKFs (i.e., the standard UKF and the proposed OC-
UKF) have similar timing performance as the two EKFs (i.e,
the standard EKF and the OC-EKF). This is attributed to the
the statistically-linearized SLAM system and the undewyi proposed sampling strategy (see Lemma IV.1), which results
nonlinear system is a fundamental cause of filter inconsigte the UKF having computational complexity of the same order

As evident from Fig. 4(b) and Table Ill, the OC-EKF/UKFas that of the EKF.
achieve similar accuracy to, and better consistency than, t
iISAM algorithm. As mentioned in the previous section, one )
possible explanation for this is that the iISAM algorithm o Outdoor Environment
not iteratively update the whole measurement Jacobian affo further examine the performance of the proposed OC-
each time step, which may incur large linearization and thiF, we tested our algorithm on a publicly available SLAM
estimation errors. Inaccuracies in the measurement Jatohiataset, the Sydney Victoria Park dataset. The experithenta
propagate into the covariance estimated by the iISAM algplatform was a 4-wheeled vehicle equipped with a kinematic
rithm, which results in significantly higher NEES values a6PS, a laser sensor, and wheel encoders. The GPS system
compared to the OC-EKF/UKF. Interestingly, as seen fromias used to provide ground truth for the robot position. Whee
Table Ill, the OC-UKF has a lower computational cost thaencoders were used to provide odometry measurements, and

Total CPU Execution Time (sec)
304.761  304.251 306.689 307.930  350.379
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Fig. 5. [Outdoor Experiment] Experimental results: (a)abtrajectory and landmark estimates as compared to the @RSahd (b) robot position estimation
errors. Note that, since in this test the GPS satellite $gware not always available, we computed the estimatiooremnly when GPS was available. In
these plots, the dash-dotted lines and stars corresporitk iSAM estimates of the trajectory and the landmarks, aisedy, the dashed lines and triangles
to the OC-EKF, and the solid lines and circles to the OC-UKERilevthe dots denote the sparse GPS data points.

TABLE IV on the comparison of accuracy and processing requirements.
[OUTDOOREXPERIMENT] ESTIMATION ACCURACY AND RUNTIME Specifically, Fig. 5(a) depicts the trajectory and landmark
estimates produced by the three estimators as compared to th

ISAM OC-EKF OC-UKF GPS ground truth, while Fig. 5(b) shows the corresponding

estimation errors of the robot position. Table 1V shows the

Robot Position RMSE (m)
average estimation errors (i.e., RMSE) of robot position as

4.2111 5.9069 3.8084 . _
—— well as the total CPU runtime for the three estimators com-
Total CPU Execution Time (sec) pared. Clearly, the OC-UKF achieves better accuracy than

31.5482 35.6811 34.6138 both the OC-EKF and iSAM, while incurring comparable

computational cost. In particular, the OC-UKF attains 36% a
10% reduction in robot position estimation errors as comgar
- i i 0,
propagation was carried out using the Ackerman model. l% the_OC EKF and .'SAM’ while at 3./0 lower and only
. . L . . % higher computational cost, respectiveve repeat that

this particular application, since the most common featime . . . :

. ' the timing result for iISAM does not include the runtime of
the environment were trees, the profiles of trees were drtlac . i . .

computing marginal covariances for data association. dhes
from the laser data, and the centers of the trunks were thr%r% lts aaree with what we have observed in the indoor
used as the point landmarks. It should be pointed out thateln uer'me?]t re\;vénte\éiv in S\évct'on \\//III—A ved | !
this test, to ensure a fair comparison with the iISAM alganith xper P ! : '
we employed the preprocessed dataset which is also awilabl
in the ISAM package [53]. This preprocessed dataset cantain
6969 robot poses and 151 landmarks with 3640 measurement§;his work focuses on UKF-based SLAM, and particularly
recorded over 26 minutes. on the issues of computational complexity and filter incensi
Since the OC-EKF and the OC-UKF were already showgNncy. The first contribution of this work is the formulatiof

in the preceding simulations and experiment to perform sig-novel UKF-based SLAM algorithm that has computational
nificantly better, in terms of accuracy and consistencyn th&omplexity of the same order as that of EKF-based SLAM. In
the standard EKF and UKF, in this test, we omitted thRarticular, we have proposed a new sampling scheme in which
comparison to the two latter filters for clarity of preseinat the unscented transformation employed by the UKF is only ap-

Instead, we focus on the accuracy comparison of the Opied to the subset of states that appear in the nonlineaepso
UKF with the OC-EKF and the iSAM algorithm. In this@nd measurement models, instead of the entire state. Thus, b
experiment, true landmark positions and true robot orteorta  @dopting this new sampling scheme, the UKF-based SLAM
were not available. We hence only compared the positiofduires computing the square root of small, constantrsize
estimation performance of the three approaches (i.e., the grices, which leads to computational complexityear during
EKF, the OC-UKF, and the iSAM algorithm). Note also that?ropagation, andjuadratic during update. Furthermore, we
as mentioned in Section VIII-A, the NEES computed from a , . _

Note that in this experiment, the OC-UKF has lower cost thHae ®C-

Smgl? experimental run is not well-suited for analyzing thgyp primarily because the Mahalanobis-distance test [alhe OC-UKF
consistency of the estimators, and thus we hereafter fogeigcts more outlier measurements than that in the OC-EKF.

IX. CONCLUSIONS ANDFUTURE WORK
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have shown that a mismatch between the observability propBased on (70), we have:

ties of the linear-regression-based system model emplbyed T _ T, B, . _ 2 T . D .

the UKF, and those of the underlying nonlinear SLAM system,IE (axy) =B (o) B (AXZ) T Prazs = A2y + Praz, (71)
causes inconsistency. To address this issue, we haveucedd SUbstitutingE(x;) £ X,, from (70) andE(x,x3 ) from (71)
a novel observability-constrained (OC)-UKF, which ensurdn (68) and simplifying it, we obtain:

that the UKF system model has an unobservable subspace of . ) _ .
appropriate dimensions, by enforcing observability caists €~ ZwiHyﬁAlel —Ax Xy, —b||" + tr (AzPz, A2) (72)

. s . . i=0
on the filter'sinferred Jacobians. Through extensive Monte- Our goal is to minimize the cost function in (72) with

Carlo simulations and real-world experiments, the OC'UKﬁaspect toh and A 2 [A1 AQ] To do so, we first compute

is shown to achieve comparable or better performance, (1), optimal solution forb, by setting the derivative of (72)

terms of consistency, accuracy and computational complex'with respect tob to zero. This yields:

to other state-of-the-art SLAM algorithms such as the OG-EK

and iSAM. e _ 93w, (yi A — Agds, — b>T o

In this work, we have focused on 2D SLAM. However, 9P =0
the proposed approach is also applicable to the case of robot ~ " T - . .
localization in 3D using inertial sensors. The details of th P~ ;wiyi — A ;wiX“ - AQ;WXZ =Y A - Ass
application of the proposed OC-UKF to 3D SLAM will be - - a (73)

the focus of our future work. where for the last step, we have used (62, the equality=

APPENDIX A S wiXy,, and the identityks = >°7_ w;Xa,, which stems
PROOF OFLEMMA V.1 frogn é7?2 ing (73) in (72 P
We start with the linearization error in the linear regreasi ! S: uting (73) in (72), we have:

e(x)=y—(Ax+b)=y—A1x; —Aoxo — b (66) d = szHj}z — A Xy, — ApXy || + tr (AgPs,s,A%)  (74)

Substituting (66) in the expression of the expected value of o =
the squared linearization error (1), the cost function wekse

to minimize becomes: X, 22X, %, Vi2Vi-y (75)
+oo Xy, 2 Xy, — Xy = Pyp, P7L X 76
/ ly — A1x1 — Agxs — b|’p(x)dx = i 2 .XQ 2o 11- . (76)

—00 Note that (70) was used in (76). Taking derivatives of the cos

+o0 - H . -
// lly— Ay — Aoxs — bl [2p(xalxi )p(xt Jdxidxs  (67) function in (74) with re_spect t\; and A, and setting them
o equal to zero, we obtain:

i 2 A T / r N . N N
where we have employed the notatif||* = o «, and o 93w, <31rA1X1rAzXzi) & =0 (77)
=0

the propertyp(x) = p(x1,%x2) = p(xa|x1)p(x1). Now  9A;
using the standard sample-based approximatjgx;) ~ o r i i L )
> i—o wid(x1 —X1,), where the samples are selected to matchy;~ = 2> w, ()&:—Al?ﬁ, _AQXQL)XQI:+2A2P§<25<2 =0 (78)
the mean and covariance pfx;) [see (2) and (3)], we rewrite =0

the cost function (67) as follows: At this point, we use the fact that, due to the selection of the
r too sigma points, we have:
Cc .= w; yi*Alez —Asxs—b 2]) X9 |X1 :Xlz dxo r o _ r L
; /WH IPp(| ) S wii Xl =Py, . Y widy Xl =Py, (79)
T =0 =0
=Y wiE (||Y; — A1 X1, — Aoxs — b||? L o
; (H 141 2X2 I ) Zwinf le; — PX2X1P;11X1 Zwininj: =P,x, (80)
- i=0 i=0
=N"wi | (Vi—A X, —b)T (Vi—A1 X, —b) — o L _
; w [(y 141, =b)" (Vi—A1X1, —b) Zwiyiszz _ Zu}iinlj:P;lllexl)(Q — P, P;L P, (81)
=0 =0
2(Vi— A1, —b)" AsE(xe)| +tr [AsE(xxE)AT] (68) ,
. . . Zwv\?g X —p P! Zw??l xXr\p;L P
where have used the following identity: T 2 et | T L ] F st xaxz

E(x3 A Aoxo) = tr [AsE(x0x5 )A] ] (69) =Py, P2l Py, (82)

Note that the expectation operaff(-) is with respect to the where (76) was used for deriving these relations. Subistiut
pdf p(xa2|x; = A},). For the Gaussian case, this pdf can bihe above results in (77) and (78) yields:
expressed analytically as follows:

1syxl - AlPx1x1 - A2szx1 =0 (83)

plxafxi =4,) =N <X2” PiQﬁQ) - (70) pyxlp;llxlpxmz — A1Pyx, — AZPX2X1P;11x1 Pyix; — AoPsox, =0
(84)

N | o4 Pr P2l (X1, —%1), Prsxs — Pro P2l Pri It is easy to verify (e.g., by substitution) that the solotio

the system of equations (83)-(84) is; = f’yle‘l and

X1X1

X, Pxoxs A, = 0. This completes the proof.
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APPENDIXB
PROOF OFLEMMA VI.1

Using (65), we write the equality constraint ¢y, (62) as [10]

AU = 0. This equation states that the rowsAf lie in the
left nullspace of thes x 3 matrix U. Therefore, ifL is a2 x 5
matrix whose rows span this nullspace, we can wAteas:

111

16

[9] ——, “A first-estimates Jacobian EKF for improving SLAM msis-
tency,” in Proc. of the 11th International Symposium on Experimental
Robotics Athens, Greece, Jul. 14-17, 2008.

——, “Observability-based rules for designing consigt EKF SLAM

estimators,’International Journal of Robotics Reseayalol. 29, no. 5,
pp. 502-528, Apr. 2010.

] Y. Bar-Shalom, X. Li, and T. KirubarajarkEstimation with applications

A, =BL (85)

whereB is anm x 2 unknown matrix that we seek to compute.
We note that there are several possible ways of computing]
an appropriate matrit,, whose rows lie in the nullspace of

U. For instance, such a matrix is given, in closed form, by

the expression (64). Substituting (85) in the original peab

formulation [see (4) and (61)], we obtain:

10
g Loz B en) [z - B b (66)
where we have defined! = LX;, i = 0,...,10. This is

(16

an unconstrained minimization problem with respect to the
design variable8 andb, and has exactly the same structure

as that in (4). Thus, by analogy, the optimal solution Bis

computed by [see (5)]:
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