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A Quadratic-Complexity Observability-Constrained
Unscented Kalman Filter for SLAM

Guoquan P. Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis

Abstract—This paper addresses two key limitations of the
unscented Kalman filter (UKF) when applied to the simultaneous
localization and mapping (SLAM) problem: the cubic computa-
tional complexity in the number of states, and the inconsistency of
the state estimates. To address the first issue, we introducea new
sampling strategy for the UKF, which has constant computational
complexity. As a result, the overall computational complexity of
UKF-based SLAM becomes of the same order as that of the
extended Kalman filter (EKF)-based SLAM, i.e., quadratic in
the size of the state vector. Furthermore, we investigate the in-
consistency issue by analyzing the observability properties of the
linear-regression-based model employed by the UKF. Based on
this analysis, we propose a new algorithm, termed observability-
constrained (OC)-UKF, which ensures the unobservable subspace
of the UKF’s linear-regression-based system model is of thesame
dimension as that of the nonlinear SLAM system. This results
in substantial improvement in the accuracy and consistencyof
the state estimates. The superior performance of the OC-UKF
over other state-of-the-art SLAM algorithms is validated by both
Monte-Carlo simulations and real-world experiments.

Index Terms—SLAM, unscented Kalman filter, computational
complexity, estimator consistency, system observability

I. I NTRODUCTION

For autonomous vehicles exploring unknown environments,
the ability to perform simultaneous localization and mapping
(SLAM) is essential. Among the algorithms developed thus far
to solve the SLAM problem, the extended Kalman filter (EKF)
remains a popular choice and has been used in many applica-
tions [1]–[3], primarily due to its relative low computational
complexity and ease of implementation. However, EKF-based
SLAM is vulnerable to linearization errors, which can cause
poor performance or even divergence, and its state estimates
are typicallyinconsistent[4]–[10]. As defined in [11], a state
estimator isconsistentif the estimation errors are zero-mean,
and the estimated covariance is equal to the true covariance.
Consistency is one of the primary criteria for evaluating the
performance of any estimator; if an estimator is inconsistent,
then the accuracy of the computed state estimates is unknown,
which in turn makes the estimator unreliable. In order to
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reduce the estimation errors due to the EKF’s linearization,
the unscented Kalman filter (UKF) [12] was introduced. The
UKF has been shown to generally perform better than the
EKF in nonlinear estimation problems, and one would expect
similar gains in the case of SLAM.

However, one of the main limitations of the standard (i.e.,
original) UKF algorithm [12] is its computational complexity,
which is cubic in the size of the state vector. In the case of
SLAM, where hundreds of landmarks are typically included in
the state vector, this increased computational burden can pre-
clude real-time operation. Moreover, when applied to SLAM,
the performance gains of the UKF over the EKF are generally
not overwhelming (see [13]–[15]). Most importantly, empirical
evidence suggests [13]–[16] that the UKF also results in
inconsistent estimates in SLAM, even though its performance
is better than the EKF in this respect.

Our objective in this paper is to address the aforementioned
limitations of UKF-based SLAM. In particular, the main
contributions of this work are the following:

• We introduce a new sampling strategy for UKF-based
SLAM that hasconstantcomputational cost, regardless
of the number of landmarks included in the state vector.
This sampling scheme is provably optimal, in the sense
that it minimizes the expected squared error between the
nonlinear function and its linear approximation employed
by the UKF. Using this strategy, the computational cost
of UKF-based SLAM becomeslinear during propagation
andquadraticduring update, which is of the same order
as that of EKF-based SLAM. We stress that this new
UKF sampling strategy is applicable to a large class
of nonlinear estimation problems (not only the SLAM
problem) where the measurements at each time step are
of dimension lower than the state.

• We analytically examine the consistency of UKF-based
SLAM, by studying the observability properties of the
statistically-linearized (i.e., linear-regression-based) sys-
tem model employed by the UKF. This analysis identifies
a mismatch between the observability properties of this
model and those of the underlying nonlinear system,
which is a fundamental cause of inconsistency. Based on
this theoretical analysis, we propose a novel UKF-based
SLAM algorithm, termed observability-constrained (OC)-
UKF SLAM. By imposing the appropriate observability
constraints on the linear regression carried out by the
UKF, the proposed OC-UKF ensures that its system
model has observability properties similar to those of
the underlying nonlinear SLAM system. As a result,
the OC-UKF outperforms the standard UKF as well as
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other state-of-the-art algorithms, in terms of accuracy
and consistency, as validated by both simulation and
experimental tests.

II. RELATED WORK

The SLAM problem has received considerable attention
over the past two decades. Since [17] first introduced a
stochastic-mapping solution to this problem, rapid and exciting
progress has been made, resulting in many competing solu-
tions, including both filtering and smoothing approaches. In
particular, filtering methods such as the EKF and the UKF
recursively estimate a state vector consisting of the current
robot pose and the observed landmarks [18]–[21]. Due to the
fact that any (implicit or explicit) linearization-based filter
marginalizes out the previous robot poses, it cannot relinearize
the nonlinear system and measurement models at the past
states, which may result in large linearization errors and thus
degrade the filter’s performance.

To better deal with nonlinearity, batch iterative optimization
methods can be applied to the SLAM problem [22]–[28].
These methods, following the paradigm of bundle-adjustment
(BA) algorithms originally developed in photogrammetry and
computer vision [29]–[35], iteratively minimize a cost function
involving the residuals of all the measurements, with respect
to the entire robot trajectory and all landmarks (i.e., with
no marginalization). These BA-based approaches exploit the
sparsity of the measurement graph so as to speed up com-
putation. However, for large-scale SLAM problems, a batch
solution may be too computationally expensive to obtain in
real time [36].

In order to reduce the computational complexity of BA,
different approximate methods have been developed that either
use a subset of the data to optimize over only few variables, or
solve the BA problem only intermittently. Specifically, sliding-
window filters (e.g., [37], [38]), compute a solution for a
constant-size, sliding window of states (robot poses and land-
mark positions) using only the measurements correspondingto
that time interval. Similarly, keyframe-based approaches(e.g.,
[39]–[41]), perform batch optimization over only a subset of
views/keyframes. On the other hand, incremental approaches
to BA such as the iSAM algorithm [42] reduce computation
by employing factorization-updating methods which allow
reusing the information-matrix factorization available from
previous time steps. Computationally demanding procedures,
such as relinearization and batch factorization, are only per-
formed intermittently. Alternatively, the iSAM2 algorithm [36]
uses the Bayes tree data structure [43], which allows for
fluid or just-in-time relinearization (i.e., relinearizing only
when the linearization point significantly deviates from the
current estimate), as well as partial variable reordering at
every update (instead of only periodic batch reordering as in
iSAM [42]). Nevertheless, incremental methods can also suffer
from increased computational cost, due to the accumulationof
fill-in that occurs with frequent landmark re-observations.

Even though both filtering and smoothing approaches have
been widely used, to this date, very little is known about which
conditions favor the use of one over the other. In particular,

Strasdat et al. [28], [44] recently argued that BA is, in gen-
eral, better than filtering in terms of accuracy and efficiency.
However, their analysis focused exclusively on the restrictive
scenario of “small-scale” visual SLAM where overlapping
views of the same scene are assumed over a short trajectory
(less than 16 camera poses in total) and without any loop
closure. Clearly, based on this limiting case study, one cannot
make inferences about the relative accuracy and efficiency of
filtering and smoothing algorithms in more realistic SLAM
scenarios (i.e., lengthy paths with varying number of visible
landmarks and loop closure events).

Although such a general study is beyond the scope of this
work, in this paper we have compared the proposed OC-UKF
and the state-of-the-art iSAM algorithm [42] in various SLAM
scenarios, both in simulations and in real-world datasets.In
particular, as shown in Sections VII and VIII, iSAM does
not necessarily perform better than the proposed OC-UKF (in
terms of estimation accuracy/consistency and computational
cost). Specifically, while BA methods are certainly preferable
in problems involving thousands of landmarks and few loop
closures, filtering-based methods are still competitive inthe
case of sparser environments (e.g., tens to a few hundreds of
landmarks), long-term operation, and frequent loop closures.
This is due to the fact that, in the latter scenario, the compu-
tational cost of smoothing methods will continuously increase
with the length of the robot’s path, while the runtime of
filtering algorithms will remain bounded. It is worth notingthat
many applications of interest (e.g., a service robot operating
inside a home for an extended time period) fall under the
second category.

A. UKF Computational Complexity

A number of researchers have applied the standard UKF
to the SLAM problem (e.g., [13], [45], [46]). However, this
requires computing the square root of the state covariance
matrix at each time step, which has computational complexity
cubic in the number of landmarks, and thus is not suitable
for real-time operation in larger environments. To address
this problem, Holmes et al. [14], [15] proposed the square-
root UKF (SRUKF) for monocular visual SLAM, which has
computational complexityquadratic both in the propagation
and in the update phases. This approach offers a significant
improvement in terms of computational complexity, at the
cost of a considerably more complicated implementation.
Additionally, as shown in [14], [15], the algorithm is an order
of magnitude slower than the standard EKF, due to the need
to carry out expensive numerical computations.

Andrade-Cetto et al. [47] presented a “hybrid” EKF/UKF
algorithm, where the EKF is employed in the update phase,
while the UKF is used during propagation for computing
only the robot pose estimate and its covariance. The cross-
correlation terms during propagation are handled in a fashion
identical to the EKF. Even though this algorithm achieves com-
putational complexity linear during propagation and quadratic
during updates, the positive definiteness of the state covariance
matrix cannot be guaranteed during propagation. Moreover,the
use of the EKF for updates makes the approach vulnerable to
large linearization errors.
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In contrast to the aforementioned approaches, the proposed
algorithm described in Section IV employs the unscented
transformationboth in the propagation and update phases, is
simple to implement, and attains computational complexity
linear during propagation, andquadraticduring update.

B. UKF Consistency

The consistencyof UKF-based SLAM has received limited
attention in the literature. In [13]–[15], the consistencyof
the UKF was empirically examined, but, to the best of our
knowledge, no theoretical analysis exists to date. On the other
hand, the consistency of EKF-based SLAM has been studied in
a number of publications [4]–[10]. In particular, in our recent
work [8]–[10], we have presented an analytical study of this
issue by focusing on the observability properties of the EKF
linearized system model.

In this paper, we extend this analysis to the case of
UKF-based SLAM. We analytically show that the implicit
(statistical) linearization performed by the UKF results in
a system model with “incorrect” observability properties,
which is a fundamental cause of inconsistency. Moreover,
we introduce the OC-UKF, which attains better performance
than the standard UKF, by ensuring that the observability
requirements on the filter’s system model are satisfied. It is
important to point out that, as compared to our previously-
developed OC-EKF [10], the OC-UKF proposed in this paper
introduces a new paradigm for computing filter Jacobians.
Specifically, the OC-EKF employs a derivative-based approach
to find the filter Jacobians, and subsequently optimizes the
selection of linearization points. In contrast, the OC-UKF
uses statistical linearization anddirectly calculates the optimal
(inferred) Jacobians by solving an observability-constrained
optimization (linear-regression) problem. Note also that, in
comparison to our previous conference publication [16], in
this paper we study in depth the observability properties of
the linear-regression-based UKF system model, present in
detail the derivations of the OC-UKF SLAM, and thoroughly
validate its superior performance, as compared to other state-
of-the-art algorithms, both in Monte-Carlo simulations and in
real-world experiments.

III. LRKF AND UKF

In this section, we present the UKF in the context of the
linear-regression Kalman filter (LRKF). As shown in [48], the
UKF is closely related to the LRKF (with its sample points
chosen deterministically, instead of randomly in the LRKF)
and it can be viewed as performing an implicitstatistical
linearizationof the nonlinear propagation and update models.
In what follows, we present the details of this linearization
mechanism, which will be instrumental in the development of
the quadratic-complexity UKF in Section IV.

A. Linear Regression

The LRKF seeks to approximate a nonlinear function
y = g(x) with a linear modely ≃ Ax + b, where A

andb are the regression matrix and vector, respectively, and

e , y − (Ax + b) denotes the linearization error. Once
this linear approximation is computed, the LRKF proceeds
by applying the regular Kalman filter equations. In particular,
in computing the linear approximation ofg(x), it aims to
minimize the expected value of the linearization error square:

min
A,b

∫ +∞

−∞

[y − (Ax+ b)]T [y − (Ax+ b)] p(x)dx (1)

where p(x) is the probability density function (pdf) of the
statex. Due to the nonlinearity ofy = g(x), it is generally
impossible to compute the optimal solution of this minimiza-
tion problem in closed form. To solve this problem, the LRKF
instead first selectsr+1 weighted sample points,{Xi, wi}ri=0,
so that their sample mean and covariance are equal to the mean
and covariance ofx:1

x̄ =

r∑

i=0

wiXi = E(x) (2)

P̄xx =

r∑

i=0

wi (Xi−x̄) (Xi−x̄)
T
= E

[
(x−x̄)(x−x̄)T

]
(3)

where E(·) denotes the expectation operator. Then, using

the sample-based approximationp(x) ≃
r∑

i=0

wiδ(x − Xi),

where δ(·) is the Dirac delta function, the linear-regression
problem (1) becomes:

min
A,b

r∑

i=0

wi [Yi − (AXi + b)]
T
[Yi − (AXi + b)] (4)

whereYi , g(Xi) are the regression points. We denote the
linearization error corresponding to the sample pointXi by
ei , Yi − (AXi + b). Note that the above cost function is
identical to the one in [48], and hence the optimal solutions
for A andb are given by [48]:

A = P̄yxP̄
−1
xx , b = ȳ −Ax̄ (5)

where

ȳ =
r∑

i=0

wiYi (6)

P̄yx =

r∑

i=0

wi (Yi − ȳ) (Xi − x̄)
T (7)

P̄yy =

r∑

i=0

wi (Yi − ȳ) (Yi − ȳ)
T (8)

In addition, using (5), (7) and (8), the sample covariance of
the linearization errors is computed by:

P̄ee =
r∑

i=0

wieie
T
i = P̄yy −AP̄xxA

T (9)

1Throughout this paper,̄x andP̄xx denote the sample mean and covariance
of sample pointsXi, drawn from the pdf of the random variablex. P̄xy

denotes the sample cross-correlation between the sets of samplesXi andYi,
drawn from the pdfs of the random variablesx andy, respectively.̂x is used
to denote the estimate ofx, and x̃ = x − x̂ is the error in this estimate.
The subscriptℓ|j refers to the estimate of a quantity at time-stepℓ, after all
measurements up to time-stepj have been processed. Finally,0m×n is the
m× n matrix of zeros, andIn is then× n identity matrix.
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During recursive estimation, the LRKF employs the above
statistical linearization procedure to approximate the nonlinear
process and measurement models. It is important to note that,
in this case, the regression matrixA serves as aninferred
Jacobianmatrix, analogous to the Jacobian matrices in the
EKF. The details are explained next.

B. LRKF Propagation

During propagation, the LRKF approximates the nonlinear
process model by a linear function:

xk+1 = f(xk,ok) (10)

= Φ̆kxk + Ğkok + bk + ek (11)

=
[

Φ̆k Ğk

]

︸ ︷︷ ︸

A

[
xk

ok

]

+ bk + ek (12)

where xℓ is the state vector at time-stepℓ ∈ {k, k + 1},
ok = omk

− wk is the control input (e.g., odometry),omk

is the corresponding measurement, andwk is the process
noise vector, assumed to be zero-mean white Gaussian, with
covariance matrixQk. The matrices̆Φk andĞk can be viewed
as inferred Jacobians, in an analogy to the corresponding
Jacobians in the EKF. We hereafter use the symbol “˘ ” to
denote the inferred Jacobians.

In the LRKF propagation step,r + 1 sample points
{Xi(k|k)}ri=0 are selected based on theaugmentedvector that
comprises the filter state and the control input [see (12)]. The
sample mean and sample covariance of{Xi(k|k)}ri=0 are thus
chosen as:

x̄k|k =

[
x̂k|k

omk

]

, P̄xxk|k
=

[
Pk|k 0

0 Qk

]

(13)

Subsequently, the LRKF produces the regression points,
{Yi(k+1|k) = f(Xi(k|k))}ri=0, by passing the sample points
through the nonlinear process function (10). The sample mean,
ȳk+1|k, and sample covariance,̄Pyyk+1|k

, of the regression
points Yi are used as the mean,̂xk+1|k, and covariance,
Pk+1|k, of the propagated state estimates, respectively, i.e.,

x̂k+1|k = ȳk+1|k , Pk+1|k = P̄yyk+1|k
(14)

Moreover, the inferred Jacobian matrices,Φ̆k andĞk, which
will be needed later on, are given by [see (5) and (12)]:

A =
[

Φ̆k Ğk

]
= P̄yxk|k

P̄−1
xxk|k

(15)

whereP̄yxk|k
is computed as in (7). Substituting (5) in (11)

and using (13), (14) and (15), we have:

xk+1 = Φ̆kxk + Ğkok + ȳk+1|k −Ax̄k|k + ek

= Φ̆kxk + Ğkok + x̂k+1|k −
[

Φ̆k Ğk

]
[
x̂k|k

omk

]

+ ek

⇒ x̃k+1|k = Φ̆kx̃k + Ğkwk + ek (16)

This last equation describes the linearized (based on regres-
sion) error-state propagation model used by the LRKF.

C. LRKF Update

During update, the LRKF employs statistical linearization
to approximate the nonlinear measurement function:

zk+1 = h(xk+1) + vk+1 (17)

= H̆k+1xk+1 + b′
k+1 + e′k+1 + vk+1 (18)

wherezk+1 is the measurement andvk+1 is the zero-mean
white Gaussian measurement noise, with covariance matrix
Rk+1. A set of r + 1 sample points,{Xi(k + 1|k)}ri=0, are
selected, whose sample mean and sample covariance are equal
to x̂k+1|k andPk+1|k, respectively, i.e.,

x̄k+1|k = x̂k+1|k , P̄xxk+1|k
= Pk+1|k (19)

We pass these sample points through the nonlinear measure-
ment function (17), to obtain the regression points,{Zi(k +
1|k) = h(Xi(k + 1|k))}ri=0. The regression matrix (i.e., in-
ferred measurement Jacobian)H̆k+1is computed by [see (5)]:

H̆k+1 = P̄zxk+1|k
P̄−1

xxk+1|k
(20)

whereP̄zxk+1|k
is computed as in (7). Subsequently, the state

and covariance are updated using the EKF update equations:

Sk+1 = P̄zzk+1|k
+Rk+1 (21)

Kk+1 = Pk+1|kH̆
T
k+1S

−1
k+1 (22)

x̂k+1|k+1 = x̂k+1|k +Kk+1(zk+1 − z̄k+1|k) (23)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
T
k+1 (24)

where z̄k+1|k and P̄zzk+1|k
are computed from (6) and (8),

respectively.

D. UKF Sampling

In contrast to the LRKF [48], where the sample points are
drawn randomly, in the UKF,r+1 = 2n+1 so-called sigma
pointsXi aredeterministicallychosen along with their weights
wi, i = 1, . . . , n, according to the following equations [12]:

X0(ℓ|k) = x̄ℓ|k , w0 =
2κ

2(n+ κ)
(25)

Xi(ℓ|k) = x̄ℓ|k +
[√

(n+ κ)P̄xxℓ|k

]

i
, wi =

1

2(n+ κ)

Xi+n(ℓ|k) = x̄ℓ|k −
[√

(n+ κ)P̄xxℓ|k

]

i
, wi+n =

1

2(n+ κ)

where n is the dimension ofx̄ℓ|k [see (13) and (19)],
[√

(n+ κ)P̄xxℓ|k

]

i
is the i-th column of the matrix

√

(n+ κ)P̄xxℓ|k
, ℓ ∈ {k, k+1}, andκ is a design parameter

in the selection of the sigma points, usually chosen so that
n + κ = 3. This set of sigma points captures the moments
of the underlying distribution up to the third order for the
Gaussian case [12].

IV. QUADRATIC-COMPLEXITY UKF SLAM

In this section, we show how the computational cost of the
UKF, when applied to the SLAM problem, can be reduced. In
particular, in this paper we focus on 2D SLAM, in which
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the state vector consists of the robot pose (position and
orientation) and the positions ofM landmarks:

xk =
[
xT
Rk

pT
L

]T
=
[
xT
Rk

pT
L1

· · · pT
LM

]T
(26)

wherexRk
,
[
pT
Rk

φRk

]T
denotes the robot pose (position

and orientation), andpLi
(i = 1 . . .M ) is the position of the

i-th landmark.
In the UKF algorithm presented in the preceding section, the

main bottleneck is the computation of the square root of the
covariance matrix [see (25)], which has complexityO(M3).
Clearly, in a scenario where a large number of landmarks
are included in the state vector, carrying out this operation
during each propagation and update would incur an unac-
ceptable computational burden. To address this problem, we
here propose a new sampling scheme for the UKF, which has
computational costO(1), and hence reduces the complexity
of the propagation and update steps to linear and quadratic,
respectively. The derivation of this sampling scheme is based
on the observation that, during SLAM, only asmall subset
of the state vector appears in the nonlinear propagation and
measurement models. In particular, in the propagation onlythe
robot state changes, while in the update, every measurement
involves only the robot pose and one observed landmark.2

To take advantage of this important property, we employ the
following lemma:

Lemma IV.1. Consider a nonlinear functiony = g(x) =
g(x1), where only the state entriesx1 of the vector x

partitioned asx =

[
x1

x2

]

appear ing(x). Moreover, consider

the regression matrixA of the linear-regression problem(4)
accordingly partitioned asA =

[
A1 A2

]
, i.e.,

y = Ax+ b+ e = A1x1 +A2x2 + b+ e (27)

Then, the optimal solution to(4) is:

A1 = P̄yx1
P−1

x1x1
, A2 = 0, b = ȳ −A1x̂1 (28)

Proof. See Appendix A.

This lemma shows that, in order to minimize the expected
squared error of the statistical linearization (4), it suffices to
draw sample points from the pdf ofx1. As mentioned before,
in SLAM the number of states participating in the nonlinear
process and measurement models is constant. Thus, we can
reduce the cost of UKF sampling toO(1) by applying the
unscented transformation only to the pertinent state entries,
instead of sampling over the whole state. Compared to the
EKF-SLAM, the proposed UKF-SLAM only incurs a small
computational overhead (for computing the square roots of
constant-size matrices), and has computational complexity of
the same order. In the following, we present in detail this new
sampling strategy used in UKF-SLAM. We stress again that
apart from the particular problem of SLAM treated in this
paper, this new UKF sampling scheme is applicable toany
problem where the measurements only involve a subset of the
state vector.

2When more than one landmarks are detected concurrently, their measure-
ments can be processed sequentially, given that the measurement noise in
different observations is independent.

A. Propagation

During propagation, only the robot pose and the control
input (odometry) participate in the process model [see (10)].
Therefore, we are able to reduce the computational complexity
by applying the unscented transformation only to the part of
the state comprising the robot pose and the control input,
instead of the full state vector. The resulting Jacobians are
then used for efficiently propagating the covariance matrix
corresponding to the entire state.

We start by drawing the sigma pointsXi(k|k) based on the
vector with the following mean and covariance [see (13)]:

x̄k|k =

[
x̂Rk|k

omk

]

, P̄xxk|k
=

[
PRRk|k

0

0 Qk

]

(29)

wherePRRk|k
is the covariance matrix corresponding to the

robot pose, obtained by partitioning the state covariance matrix
as follows [see (26)]:

Pk|k =

[
PRRk|k

PRLk|k

PT
RLk|k

PLLk|k

]

(30)

Note that the vector̄xk|k in (29) is of dimensionn = 5 (assum-
ing that the odometry measurementomk

is two-dimensional),
and thus the computational cost of computing the sigma points
is very low.

Subsequently, we transform the sigma points,{Xi(k|k)}10i=0,
using the process model (10), to obtain the regression points
of the propagated robot pose,{Yi(k+1|k) = f(Xi(k|k))}10i=0.
This enables us to compute the mean,x̂Rk+1|k

= ȳk+1|k,
and covariance,PRRk+1|k

= P̄yyk+1|k
, of the propagated

robot pose, in the same way as in the standard LRKF/UKF
[see (14)]. Moreover, we can evaluate theinferred robot state
and odometry Jacobians as [see (28) and (15)]:

A1 = P̄yxk|k
P̄−1

xxk|k
=
[

Φ̆Rk
ĞRk

]
(31)

while A2 = 0.
Next, using (16), we compute the propagated cross-

correlation between the robot and the landmarks as follows:

PRLk+1|k
= E

[

x̃Rk+1|k
p̃T
Lk|k

]

= E

[(

Φ̆Rk
x̃Rk|k

+ ĞRk
wk + ek

)

p̃T
Lk|k

]

= Φ̆Rk
PRLk|k

(32)

Thus, the propagated state covariance matrix is given by:

Pk+1|k =

[

P̄yyk+1|k
Φ̆Rk

PRLk|k

PT
RLk|k

Φ̆T
Rk

PLLk|k

]

(33)

which is evaluated at a cost onlylinear in the size of the state
vector, similarly to the EKF.

The matrixΦ̆Rk
derived in (31) is the inferred propagation

Jacobian for the robot state. To compute the inferred Jacobian
matrix for the entire SLAM state vector, which will be useful
for our ensuing analysis, we use (9), (29) and (31) to write

P̄yyk+1|k
=A1P̄xxk|k

AT
1 + P̄eek

=Φ̆Rk
PRRk|k

Φ̆T
Rk

+ ĞRk
QkĞ

T
Rk

+ P̄eek
(34)

and therefore, (33) can equivalently be written as:

Pk+1|k = Φ̆kPk|kΦ̆
T
k +Q∗

k (35)



IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. X, JUNE 2013 6

where

Q∗
k =

[

ĞRk
QkĞ

T
Rk

+ P̄eek
0

0 0

]

(36)

Φ̆k =

[

Φ̆Rk
0

0 I2M

]

(37)

In the above expression,̆Φk is the inferred propagation
Jacobian matrix for the SLAM state vector comprising the
robot pose and the landmark positions.

B. Update

Measurements used for updates involve only the robot pose
and the position of one observed landmark. Therefore, we can
apply the unscented transformation only to this subset of states
so as to reduce the computational cost. In particular, assume
that thej-th landmark,Lj, is observed at time-stepk + 1.
Then, the set of sigma points{Xi(k + 1|k)}10i=0 are drawn
from a distribution with the following mean and covariance:

x̄k+1|k =

[
x̂Rk+1|k

p̂Lj,k+1|k

]

, P̄xxk+1|k
=

[
PRRk+1|k

PRLj,k+1|k

PLjRk+1|k
PLjLj,k+1|k

]

(38)

where PRRk+1|k
and PLjLj,k+1|k

are the covariance ma-
trices of the robot and the landmark, respectively, while
PRLj,k+1|k

= PT
LjRk+1|k

is the corresponding cross-
correlation matrix, obtained from the following partitioning
of the state covariance matrix:

Pk+1|k =











PRRk+1|k
· · · PRLj,k+1|k

· · · PRLM,k+1|k

...
. . .

...
. . .

...
PLjRk+1|k

· · · PLjLj,k+1|k
· · · PLjLM,k+1|k

...
. . .

...
. . .

...
PLMRk+1|k

· · · PLMLj,k+1|k
· · · PLMLM,k+1|k











Note that the matrix used for generating the sigma points has
constant size [see (38)], regardless of the number of landmarks
in the state vector.

Once the set of sigma points are generated, the linear
regression of the LRKF update (see Section III-C) is applied
to obtain theinferred measurement Jacobian for the pertinent
states [see (20) and (28)]:

A1 = P̄zxk+1|k
P̄−1

xxk+1|k
=
[

H̆Rk+1
H̆Lj,k+1

]
(39)

where the submatrix̆HRk+1
corresponds to the robot pose,

while H̆Lj,k+1
corresponds to thej-th landmark. To construct

the inferred measurement Jacobian for the entire state vector,
we note that according to the new sampling scheme the
unscented transformation is not applied to the landmarks that
are not currently observed (their regression matrices are zero
according to Lemma IV.1). Therefore, theinferred measure-
ment Jacobian for the entire SLAM state vector is:

H̆k+1 =
[

H̆Rk+1
0 · · · 0 H̆Lj,k+1

0 · · · 0
]

(40)

Once this matrix is available, (21)-(24) are applied to update
the state estimate and covariance in the UKF. It is important
to point out that the computational cost of the proposed UKF
update equations is dominated by the covariance update (24),
and hence is quadratic in the number of landmarks, similarly
to the EKF.

C. Landmark Initialization

Suppose that thej-th landmark,Lj, is first observed at time-
stepko. The corresponding measurement is given by:3

zko
= h(xRko

,pLj
) + vko

= z∗ko
+ vko

(41)

By solving z∗ko
= h(xRko

,pLj
) for pLj

, we can express the
landmark position as a (generally nonlinear) function of the
robot pose and the noiseless measurement:

pLj
= g(xRko

, z∗ko
) (42)

In order to carry out the landmark initialization in the
LRKF/UKF framework, we approximate this nonlinear initial-
ization function by a linear function:

pLj
= AxxRko

+Azz
∗
ko

+ b′′
ko

+ e′′ko
(43)

=
[
Ax Az

]

︸ ︷︷ ︸

A1

[
xRko

z∗ko

]

+ b′′
ko

+ e′′ko
(44)

whereAx andAz are the regression matrices corresponding
to the robot pose and the measurement, respectively. These
matrices are computed by statistical linearization, similarly to
the cases of propagation and update.

Specifically, it becomes clear from (42) that only the robot
pose and the measurement of the newly detected landmark are
involved in the initialization process. Therefore, we can apply
the result of Lemma IV.1 to draw the sigma points based on
the vector with the following mean and covariance:

x̄ko|ko−1 =

[
x̂Rko |ko−1

zko

]

, P̄xxko|ko−1
=

[
PRRko|ko−1

0

0 Rko

]

(45)

Suppose the measurement vector is of dimensionm. Then,
the UKF choosesr + 1 = 2 × (3 + m) + 1 sigma points,
{Xi(ko|ko−1)}ri=0, and transforms them through the nonlinear
initialization model (42) to obtain the regression points of
the new landmark position{Yi(ko|ko − 1) = g(Xi(ko|ko −
1))}ri=0. The sample mean of the regression points is used to
initialize the new landmark position:

p̂Lj,ko|ko
= ȳko|ko−1 (46)

In order to compute the covariance matrix of the augmented
state vector comprising the robot pose, the previously initial-
ized landmarks, and the new landmark, we first note that the
regression matrix in (44) is [see (28)]:

A1 =
[
Ax Az

]
= P̄yxko|ko−1

P̄−1
xxko|ko−1

(47)

Subsequently, using (43), (45), (46), and (5), we compute the
error in the posterior estimate for the position of thej-th
landmark:

p̃Lj,ko|ko
= pLj

− p̂Lj,ko|ko

= AxxRko
+Azz

∗
ko
+b′′

ko
+e′′ko

−Axx̂Rko|ko−1
−Azzko

−b′′
ko

= Axx̃Rko |ko−1
+Azvko

+ e′′ko
(48)

3To preserve the clarity of presentation, we consider the case where a single
measurement suffices to initialize the landmark. This includes the distance-
bearing measurement model, commonly used in practice. However, this is not
a necessary assumption and our analysis can be extended to the case where
multiple measurements at different time steps are needed toinitialize the new
landmark (e.g., bearing-only or distance-only measurements).
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Based on (48), the cross-correlation terms between the new
landmark and the robot and the old landmarks are given by:

PLjRko|ko
= E

[

p̃Lj,ko|ko
x̃T
Rko |ko−1

]

= AxPRRko|ko−1
(49)

PLjLj′,ko|ko
= E

[

p̃Lj,ko|ko
p̃T
Lj′,ko|ko−1

]

= AxPRLj′ ,ko|ko−1
(50)

for j′ = 1, . . . ,M and j′ 6= j. Hence, the covariance matrix
of the augmented state vector becomes:

Pko|ko
=




Pko|ko−1 Pko|ko−1

[
AT

x

02M×2

]

[
Ax 02×2M

]
Pko|ko−1 PLjLj,ko|ko



 (51)

wherePLjLj,ko|ko
= P̄yyko|ko−1

is the sample covariance of
the set of the regression points{Yi(ko|ko − 1)}ri=0. Note
that the computational complexity of the UKF landmark
initialization is linear in the number of landmarks, which is of
the same order as in the EKF.

For our derivations in the following sections, it will be nec-
essary to compute the inferred measurement Jacobian matrices,
H̆Rko

andH̆Lj,ko
, which correspond to the measurement used

for initializing the landmark. For this purpose, by solving(43)
for z∗ko

and then substituting in (41), we have:

zko
= −A−1

z AxxRko
+A−1

z pLj
−A−1

z b′′
ko
−A−1

z e′′ko
+vko

(52)

We thus conclude that theinferred measurement Jacobians
corresponding to this measurement are:

H̆Rko
= −A−1

z Ax , H̆Lj,ko
= A−1

z (53)

V. SLAM OBSERVABILITY ANALYSIS

As discussed in Section III, the UKF carries out recursive
state estimation based on a linear approximation (i.e., using
sigma points) of the nonlinear system model. In this section,
we examine theobservabilityproperties of the UKF linear-
regression-based system model, since they can affect the
filter’s performance. To the best of our knowledge, no such
analysis has appeared in the literature prior to [16].

A. Background

Our motivation arises from our previous work [8]–[10],
where it was shown that the observability properties of the
EKF’s linearized system model greatly impact the filter’s
consistency in SLAM. Specifically, we have proven in [8]–
[10] that the system model of anideal EKF, whose Jacobians
are evaluated at thetrue state, has3 unobservable degrees
of freedom (d.o.f.). These correspond to the global position
and orientation, and match the unobservable directions of the
underlying nonlinear SLAM system [10], [49]. Moreover, it
was shown that the ideal EKF exhibits excellent performance
in terms of consistency. By contrast, the system model of
the (standard) EKF, which uses thecurrent state estimates
for computing the Jacobians, hasonly 2 unobservable d.o.f.,
corresponding to the global position. As a result, the standard
EKF becomes inconsistent since it acquires non-existent in-
formation along the direction of the global orientation. Based
on this analysis, in [8], [9], we derived the First-Estimates
Jacobian (FEJ)-EKF, which, by evaluating the Jacobians at
the first available state estimates, achieves the desired observ-
ability properties (i.e., its system model has3 unobservable

d.o.f.). However, the first state estimates may be inaccurate and
result in large linearization errors, thus degrading the filter’s
performance. To improve the FEJ-EKF, in [10], we developed
the Observability-Constrained (OC)-EKF which instead selects
linearization points that not only ensure the linearized system
model has thecorrect number of unobservable d.o.f., but
also minimize the linearization errors. As a result, the OC-
EKF attains consistency better than that of the FEJ-EKF and
comparable to that of the ideal EKF.

In this work, we adopt an analogous approach where we
first examine the observability properties of the UKF-SLAM
system model and compare them to those of the underlying
nonlinear SLAM system. Based on this analysis, we introduce
an efficient algorithm for computing the appropriateinferred
measurement Jacobians that preserve the dimensions of the
unobservable subspace, thus improving consistency.

B. UKF-SLAM Observability

To examine the observability properties of the UKF-SLAM
system model, we form the observability matrix [50] for the
time interval[ko, ko + k] as follows:

M =








H̆ko

H̆ko+1Φ̆ko

...
H̆ko+kΦ̆ko+k−1 · · · Φ̆ko








(54)

where the inferred measurement Jacobians,H̆ko+ℓ, ℓ ∈
{0, . . . , k}, and inferred state propagation Jacobians,Φ̆ko+ℓ−1,
ℓ ∈ {1, . . . , k}, are computed based on the UKF regression
matrices [see (31), (37), (39), and (40)].

Since the UKF approximates the nonlinear SLAM model
by a regression-based linearized system [see (12) and (18)], it
is desirable that its observability properties match thoseof the
underlying nonlinear system. That is, the UKF-SLAM system
model should have 3 unobservable d.o.f., or equivalently its
observability matrix,M, should have a nullspace of dimen-
sion 3.

However, this is generallynot the case. In fact, when numer-
ically computing the dimension of the nullspace ofM, we find
that it is 3 only at time-stepko, when a landmark is initialized.
At that time, the observability matrix comprises only the first
inferred measurement Jacobian, i.e.,M = H̆ko

, which is a 2
× 5 matrix and thus generally has a nullspace of dimension
3. Later on and as more measurements become available,
the dimension of the nullspace of the observability matrix
decreases fast. Typically, the observability matrixM becomes
full-rank after two time steps of consecutive observations.

A full-rank observability matrix indicates that the linear-
regression-based system model employed by the UKF is
observable, which contradicts the observability analysisof the
nonlinear SLAM system [10], [49]. In practice, this implies
that the UKF obtains “spurious” information, in all directions
of the state space, even in directions where no information is
available, such as the global position and orientation. This, in
turn, leads to an unjustified reduction of the state estimates’
covariance matrix, which cannot be compensated for by the
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noise covariance increase that the UKF uses to account for
linearization errors [see (35)]. As shown in the simulationand
experimental results in Sections VII and VIII, the inconsis-
tency due to the mismatch between the observability prop-
erties of the UKF linear-regression-based system model and
the nonlinear (or equivalently the ideal EKF) system model,
causes a significant degradation in the filter’s performance.

VI. OBSERVABILITY-CONSTRAINED UKF SLAM

In this section, we introduce a novel OC-UKF algorithm
that employs a linear-regression-based system model with
observability properties similar to those of the underlying non-
linear SLAM system. Specifically, we construct the “inferred”
Jacobians of the UKF in such a way that the resulting system
model has anunobservable subspace of dimension 3.

In particular, the propagation phase of the OC-UKF is
identical to that of the standard UKF. The difference arises
in the update phase, where, instead of employing the un-
constrained minimization of (4) for computing the regression
matrix, we formulate aconstrainedminimization problem that
enforces the desired observability properties. Specifically, if
the first landmark was observed at time-stepko, we require
that [see (54)]:

MN = 0 ⇔

{

H̆ko
N = 0, for ℓ = 0

H̆ko+ℓΦ̆ko+ℓ−1 · · · Φ̆ko
N = 0, for ℓ > 0

(55)

In the above expressions,N is a (3+ 2M)× 3 matrix, whose
columns span the desired nullspace. These constraints ensure
that all the block rows of the observability matrixM (54)
have thesamenullspace, which coincides with theunobserv-
able subspaceof the filter’s system model. By ensuring that
its inferred system model has an unobservable subspace of
dimension 3, the OC-UKF avoids the infusion of erroneous
information, and is empirically shown to attain significantly
improved consistency (see Sections VII and VIII).

In what follows, we show how the nullspace matrixN
is determined, and based on that, we compute the inferred
measurement Jacobians.

A. Computing the Nullspace MatrixN

Consider the following partitioning of the matrixN:

N =
[
NT

R NT
L1

· · · NT
LM

]T
(56)

whereNR is a3×3 submatrix corresponding to the robot pose,
andNLi

, i = 1, . . . ,M , are2× 3 submatrices corresponding
to thei-th landmark. It is important to note that landmarks are
typically observed and initialized at different time instants, and
hence the number of submatrices comprisingN will increase
over time, as new landmarks are included into the state vector.

1) Initialization of the first landmark:When the first land-
mark is initialized at time-stepko, we chooseN to be a matrix
whose columns span the nullspace of the2 × 5 inferred
JacobianH̆ko

=
[

H̆Rko
H̆L1,ko

]
[see (53)], i.e.,

null(H̆ko
) = span

col.
(N) ⇒

[

H̆Rko
H̆L1,ko

]
[
NR

NL1

]

= 0 (57)

Thus, N can be readily computed via the singular value
decomposition (SVD) of̆Hko

[51].

2) Initialization of subsequent landmarks:Suppose that the
j-th landmark is detected for the first time at time-stepko+k.
This implies that the state vector already contains the first
(j − 1) landmarks and thusNR andNLi

(i = 1, . . . , j − 1)
have been computed. The nullspace matrixN now will have
to be augmented byNLj

, corresponding to the new landmark,
Lj. To determineNLj

, we first notice that, based on the
structure of the measurement and state-propagation inferred
Jacobians [see (40) and (37)], the corresponding block row of
the observability matrix at this time step, denoted byMko+k,
can be obtained as [see (54)]:

Mko+k , H̆ko+kΦ̆ko+k−1 · · · Φ̆ko
= (58)

[
H̆Rko+k

Φ̆Rko+k−1
· · · Φ̆Rko

0 · · · 0 H̆Lj,ko+k

]

Since this is the newest landmark, it is appended at the end
of the state vector. Then, we computeNLj

based on the
requirement that each block row of the observability matrix
M has the same nullspace, spanned byN, i.e.,

null(Mko+k) = span
col.

(N) ⇒ Mko+kN = 0 (59)

Substitution of (56) (usingM = j) and (58) in (59) yields:

H̆Rko+k
Φ̆Rko+k−1

· · · Φ̆Rko
NR + H̆Lj,ko+k

NLj
= 0 ⇒

NLj
= −H̆−1

Lj,ko+k
H̆Rko+k

Φ̆Rko+k−1
· · · Φ̆Rko

NR (60)

B. Computing the Inferred Measurement Jacobians

We now show how the inferred measurement Jacobians for
the observation of landmarkLj at time-stepko+ℓ can be com-
puted. From Lemma IV.1, we know that for these Jacobians
we only need to determine the regression matrixA1, instead
of the full regression matrixA [see (39) and (40)]. In the
OC-UKF, at each update step afterLj has been initialized, we
formulate the followingconstrainedlinear-regression problem
with respect toA1 andb [see (4)]:

min
A1,b

10∑

i=0

wi [Zi − (A1Xi + b)]T [Zi − (A1Xi + b)] (61)

s. t. A1Φ̆
′
ko+k−1 · · · Φ̆

′
ko
Nj = 0 (62)

where Φ̆′
ko+ℓ ,

[

Φ̆Rko+ℓ
0

0 I2

]

, ℓ = 0, . . . , k − 1, is the

reduced-size regression matrix obtained from propagation
[see (31) and (37)], corresponding to the part of the state com-
prising only the robot pose andLj; andNj ,

[
NT

R NT
Lj

]T

contains the corresponding block rows ofN [see (56)]. The
sigma points used in the minimization problem (61) are
computed by the procedure described in Section IV-B. The
optimal solution ofA1 is obtained inclosed formusing the
following lemma:

Lemma VI.1. The optimal solution to the constrained mini-
mization problem(61)-(62) is given by:

A1 =
[

H̆Rko+k
H̆Lj,ko+k

]

= P̄zxko+k|ko+k−1
LT
(
LP̄xxko+k|ko+k−1

LT
)−1

L (63)
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with

L =
[
Im 0m×(5−m)

] (
I5 −U(UTU)−1UT

)
(64)

U = Φ̆′
ko+k−1 · · · Φ̆

′
ko
Nj (65)

wherem is the dimension of the measurement vector.

Proof. See Appendix B.

Lastly, once we construct the full inferred measurement
Jacobian matrix̆Hko+k in (40) from the regression matrixA1

in (63), we update the state estimate and covariance based
on (21)-(24). In summary, the main steps of the OC-UKF
SLAM are outlined in Algorithm 1.

We stress that if multiple landmarks are observed con-
currently, the above process for determining the inferred
measurement Jacobians is repeated sequentially for each of
the landmarks. Note also that the maximum dimension of all
the matrices involved in (63)-(64) is 5 [see (38)], and thus
computing the regression matrixA1 incurs only aconstant
computational overhead, regardless of the number of land-
marks in the state. As a result, the overall computational cost
of the OC-UKF update step remains quadratic (as is the case
for EKF-SLAM).

VII. S IMULATION RESULTS

A series of Monte-Carlo comparison studies were conducted
under various conditions, in order to verify the preceding
consistency analysis and to compare the performance of the
proposed OC-UKF to that of the standard UKF/EKF and
the OC-EKF [10], as well as the iSAM algorithm [42]. The
metrics used to evaluate estimation performance are the root
mean squared error (RMSE) and the average normalized (state)
estimation error squared (NEES) [11]. The RMSE provides a
measure of accuracy, while the NEES is a standard criterion
for evaluating estimator consistency. Specifically, it is known
that the NEES of anN -dimensional Gaussian random variable
follows a χ2 distribution with N d.o.f.. Therefore, if an
estimator is consistent, we expect that the average NEES for
the robot pose will be close to 3 for all time steps, and
the average landmark NEES will be close to 2. The larger
the deviations of the NEES from these values, the worse the
inconsistency of the estimator. Note that when two estimators
produce comparable RMSE, the one whose NEES is closer to
the expected value is also the one whose estimated covariance
is closer to the true covariance.4 By studying both the RMSE
and NEES of an estimator, we obtain a comprehensive picture
of the estimator’s performance.

A. SLAM with Range-and-Bearing Measurements

In the simulation tests presented in this section, a robot
with a differential-drive model drove on a planar surface, at
a constant velocity ofv = 0.25 m/sec. The two drive wheels
were equipped with encoders, which measure their revolutions
and provide measurements of velocity (i.e., right and left wheel

4It is important to stress that knowing the uncertainty of thecomputed
estimates is often as important as the estimates themselves. An inconsistent
estimator that reports covariance values smaller than the true ones can be
unreliable for use in practice.

Algorithm 1 Observability-Constrained (OC)-UKF SLAM
Require: Initial state estimate and covariance

1: loop
2: Propagation: When an odometry measurement is

received,
3: determine sigma points by (25) with mean and covari-

ance (29).
4: produce regression points by passing the sigma points

through (10).
5: compute the state estimate via (14).
6: compute the regression matrix via (31).
7: compute the propagated covariance via (33).

8: Update: When a robot-to-landmark measurement is
received,

9: determine sigma points by (25) with mean and covari-
ance (38).

10: produce regression points by passing the sigma points
through the nonlinear function (17).

11: compute the regression matrix via (63) and (39).
12: update the state and covariance via (21)-(24).

13: Initialization: When a new landmark is de-
tected,

14: determine sigma points by (25) with mean and covari-
ance (45).

15: produce regression points by passing the sigma points
through (42).

16: compute the inferred Jacobian matrices via (53).
17: initialize the new landmark position (46) and update the

state covariance (51).
18: if this is the first observed landmark, compute the

nullspace matrixN via (57), else augment the nullspace
matrix N with NLj

, corresponding to the new land-
mark (60).

19: end loop

velocities, vr and vl, respectively), with standard deviation
equal toσ = 2%v for each wheel. These measurements were
used to obtain the linear and rotational velocity measurements
for the robot, which are given by:

v =
vr + vl

2
, ω =

vr − vl

a

wherea = 0.5 m is the distance between the active wheels.
The robot recorded distance and bearing measurements to
landmarks lying within its sensing range of 5 m. The standard
deviation of the distance-measurement noise was equal to
10% of the robot-to-landmark distance, while the standard
deviation of the bearing-measurement noise was set to10 deg.
It should be noted that the sensor-noise levels selected for
the simulations are larger than what is typically encountered
in practice. This was done on purpose in order to make the
effects of inconsistency more apparent.

For the results shown here, a SLAM scenario with multiple
loop closures was considered, where during each run, the robot
executed 10 loops on a circular trajectory, and observed 20
landmarks in total. The reported results were averaged over50
Monte-Carlo trials. During the test, six estimators processed
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Fig. 1. [Simulation results. Range-and-bearing SLAM] Monte-Carlo results for a SLAM scenario with multiple loop closures: (a) average NEES of the
robot-pose errors, and (b) average RMSE for the robot pose (position and orientation). In these plots, the dotted lines correspond to the ideal EKF, the solid
lines with circles to the standard EKF, the dashed lines to the OC-EKF, the solid lines with crosses to the standard UKF, the solid lines to the OC-UKF, and
the dash-dotted lines to the iSAM algorithm. Note that the RMSE of the ideal EKF, the OC-EKF, the OC-UKF and the iSAM algorithm are very close, which
makes the corresponding lines difficult to distinguish.

the same data, to ensure a fair comparison.5 The compared
estimators were: (i) the ideal EKF, (ii) the standard EKF, (iii)
the OC-EKF [10], (iv) the standard UKF, (v) the OC-UKF,
and (vi) the iSAM algorithm [42]. Note that, as shown in [36],
the performance of iSAM is very similar to (or even slightly
better than) that of iSAM2 in landmark-based SLAM, which
is the case considered in this work. Hence, in this test, we
compared our algorithm to iSAM [42], using version 1.6 of
its open-source implementation [53] with standard parameters,
i.e., solving at every time step and reordering/relinearizing
every 100 time steps. We also point out that, in order to
ensure a fair comparison, we report the current-state estimates
(instead of the final batch estimates) of the iSAM algorithm
at each time step, which are computed by processing the
measurements up to the current time step, without using any
future measurements’ information. Clearly, these incremental
causalestimates are of more practical importance in any real-
time robotic operation. Lastly, it is important to note thatthe
ideal EKF isnot realizable in practice since its Jacobians are
evaluated at the (unknown) true values of the state. However,
we included it as a benchmark in our simulations, since it has
been shown to possess thecorrectobservability properties and
exhibit the best performance in terms of both consistency and
accuracy [8]–[10], [16].

The comparative results for all the estimators are presented
in Fig. 1 and Table I. Specifically, Figs. 1(a) and 1(b) show the
average NEES and RMSE, respectively, over all Monte-Carlo
runs for each time step for the robot pose. On the other hand,

5In [10], the OC-EKF was shown to perform better, in terms of accuracy
and consistency, than both the FEJ-EKF [8] and the robocentric mapping
algorithm [52], which aims at improving the consistency of EKF-SLAM by
expressing the landmarks in a robot-relative frame. Therefore, in this paper
we omitted the comparison between the proposed OC-UKF and the FEJ-EKF
as well as the robocentric mapping filter.

TABLE I
[SIMULATION RESULTS. RANGE-AND-BEARING SLAM] ROBOT POSE

AND LANDMARK POSITION ESTIMATION PERFORMANCE

Ideal-EKF Std-EKF OC-EKF Std-UKF OC-UKF iSAM

Robot Position RMSE (m)

0.6297 1.2664 0.6771 1.1002 0.6635 0.7587

Robot Heading RMSE (rad)

0.0648 0.1070 0.0696 0.0954 0.0680 0.0760

Robot Pose NEES

3.1284 20.6195 4.6896 14.8696 3.9305 4.2649

Landmark Position RMSE (m)

0.6071 1.2552 0.6539 1.0890 0.6325 0.7732

Landmark Position NEES

2.1569 19.5556 4.6150 13.7205 2.8303 10.1408

Table I presents the average values of all relevant performance
metrics for the landmarks and the robot. For the landmarks,
we computed the average RMSE and NEES by averaging
over all Monte-Carlo runs, all landmarks, and all time steps.
For the robot position and orientation RMSEs and the robot
pose NEES, we averaged the corresponding quantities over all
Monte-Carlo runs and all time steps.

Several interesting conclusions can be drawn from these
results. Firstly, it becomes clear that the performance of the
proposed OC-UKF isvery closeto that of the ideal EKF,
and substantially better than both the standard EKF and
the standard UKF, in terms of both RMSE (accuracy) and
NEES (consistency). The observed performance gain indicates
that the observability properties of the linear-regression-based
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system model employed in the UKF play a key role in
determining the filter consistency: When these properties differ
from those of the underlying nonlinear system, which is the
case for the standard EKF and UKF, the filter’s consistency is
negatively impacted.

A second observation is that both the OC-UKF and the
OC-EKF attain slightly better performance than the iSAM
algorithm, in terms of consistency and accuracy (see Fig. 1
and Table I). This can be justified by the fact that in order to
reduce its processing requirements, the iSAM algorithm does
not iteratively update the whole measurement Jacobian matrix
(and thus the square-root information matrix) at every time
step. Instead, it reuses partial results from the previous time
steps and only updates the Jacobian matrix incrementally by
appending to it new rows corresponding to the most recent
measurements. However, the previously-computed parts of the
Jacobian matrix can be quite inaccurate (especially right before
a loop closure event or in the presence of large measurement
noise). Moreover, incremental updating does not guarantee
the appropriate observability properties. These factors can
lead to significant estimation errors, which will propagate
in time and degrade the iSAM algorithm’s performance for
all time steps except the ones where batch relinearization is
applied. Clearly, this issue can be mitigated by performing
periodic relinearization more frequently, which, however, will
significantly increase the computational cost.

Lastly, the OC-UKF also outperforms the OC-EKF [10],
by a smaller margin, in terms of both RMSE and NEES.
It is interesting to note that the advantage of the OC-UKF
over the OC-EKF is more pronounced in terms of NEES.
This indicates that the OC-UKF provides a more accurate
uncertainty measure (covariance) than the OC-EKF, and also
implies that the filter’s inconsistency primarily affects the
covariance, rather than the state estimates. To further highlight
this performance difference, in the next section, we also
compare these algorithms in the case of bearing-only SLAM
(BOSLAM), whose severe nonlinearities make the need for
a better linearization scheme, such as the one offered by the
OC-UKF, more evident.

B. SLAM with Bearing-only Measurements

In this BOSLAM simulation test, we employed the same
simulation setup as in the preceding case, with some changes
in the parameters. Specifically, the robot moved on a circular
trajectory at a constant velocity ofv = 0.5 m/sec, with wheel-
velocity measurement noise standard deviation equal toσ =
1%v, while the standard deviation of the bearing-measurement
noise was set to 2 deg. Note that we doubled the robot velocity
in this simulation, because a larger linear velocity increases the
baseline between two consecutive time steps, leading to a more
reliable triangulation-based landmark initialization [54]. Once
a landmark is initialized, the inferred Jacobians for the bearing
measurements to this landmark are computed in the same way
as for the range-and-bearing measurements (see Section VI-B).

The comparative results6 of the robot pose and landmark

6Since the current implementation of iSAM [53] does not include the
bearing-only case, in this test we omit the comparison of theOC-UKF to
the iSAM algorithm.

TABLE II
[SIMULATION RESULTS. BEARING-ONLY SLAM] ROBOT POSE AND

LANDMARK POSITION ESTIMATION PERFORMANCE

Ideal-EKF Std-EKF OC-EKF Std-UKF OC-UKF

Robot Position RMSE (m)

0.0427 0.1132 0.0529 0.0707 0.0455

Robot Heading RMSE (rad)

0.0045 0.0130 0.0055 0.0075 0.0043

Robot Pose NEES

2.6054 12.6715 4.4730 4.8453 2.6917

Landmark Position RMSE (m)

0.1066 0.1770 0.1305 0.1630 0.1471

Landmark Position NEES

1.8964 12.7627 12.6085 6.1927 4.3216

position estimation are shown in Fig. 2 and Table II. As
evident, in the case of BOSLAM where the measurement
nonlinearity is more significant than that of the range-and-
bearing SLAM considered earlier, the standard UKF performs
substantially better than the standard EKF, in terms of both
consistency (NEES) and accuracy (RMSE). This performance
gain is also shared by the OC-UKF over the OC-EKF. We
thus see that the OC-UKF combines the benefits of the OC-
EKF (i.e., correct observability properties) with those ofthe
UKF (i.e., better linearization), to form an estimator whose
performance is comparable to that of the ideal EKF.

VIII. E XPERIMENTAL RESULTS

To further test the proposed OC-UKF SLAM algorithm,
we also conducted real-world experiments in both indoor and
outdoor environments. These tests also allow us to examine
the algorithm’s runtime, as compared to the OC-EKF and
the state-of-the-art iSAM algorithm. All the timing results
presented in this section were obtained on a Mac laptop with
an Intel i5 processor at 2.53 GHz, and 4GB of RAM.

A. Indoor Environment

We first present the results of the indoor experiment con-
ducted in an office building. The robot was commanded to
perform 11 loops around a square with sides approximately
equal to 20 m (see Fig. 3). This trajectory was selected since
repeated re-observation of the same landmarks tends to make
the effects of inconsistency more apparent, and facilitates
discerning the performance of the various estimators. A Pi-
oneer robot equipped with a SICK LMS200 laser range-finder
and wheel encoders was used in this experiment. From the
laser-range data, corner features were extracted and used as
landmarks, while the wheel encoders provided the linear and
rotational velocity measurements. In particular, this dataset
was recorded over about 40 minutes, and contains 23425 robot
poses and 63 landmarks with 11392 measurements to them.

Since no ground truth for the robot pose could be obtained
using external sensors (e.g., overhead cameras) in this exper-
iment, we obtained a reference trajectory, treated as ground
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Fig. 2. [Simulation results. Bearing-only SLAM] Monte-Carlo results for a SLAM scenario with multiple loop closures: (a) average NEES of the robot-pose
errors, and (b) average RMSE for the robot pose (position andorientation). In these plots, the dotted lines correspond to the ideal EKF, the solid lines with
circles to the standard EKF, the dashed lines to the OC-EKF, the solid lines with crosses to the standard UKF, and the solidlines to the OC-UKF. Note that
the RMSE of the ideal EKF and the OC-UKF are almost identical,which makes the corresponding lines difficult to distinguish.

truth, by utilizing the known map of the area where the experi-
ment took place. Specifically, the exact locations of 20 corners
were known from the blueprints of the building. Measurements
to these corners, as well as all other measurements obtained
by the robot (including those to corners whose locations were
not known a priori), were processed offline using a batch
maximum a posteriori (MAP) estimator [55] to obtain an
accurate estimate of the entire trajectory. This estimate,as well
as the locations of the known corners, are shown in Fig. 3. This
constitutes the ground truth against which the performanceof
the following five estimators was compared: (i) the standard
EKF, (ii) the OC-EKF, (iii) the standard UKF, (iv) the OC-
UKF, and (v) iSAM. Clearly, due to the way the ground truth
is computed, the estimation errors are expected to have some
correlation to the errors in the ground truth. However, since
these correlations are the same for all estimators, we can still
have a fair comparison of their relative performance.

The comparative results for all estimators are presented
in Figs. 4(a) and 4(b), while Table III shows the averaged
NEES and RMSE of the robot pose and landmark position,
respectively. We point out that during the experiment the
robot detected a number of landmarks that werenot included
in the set of 20 known corners (e.g., movable objects such
as furniture). Since no ground truth was available for these
objects, we only used the 20 known corners for computing
the landmarks’ error statistics. From the experimental results,
it becomes evident that the OC-UKF outperforms both the
standard EKF and UKF, and also achieves better accuracy
than the OC-EKF. This agrees with the simulation results
presented in the preceding section. It should be noted that the
reported NEES in Fig. 4(a) was computed only from a single
run (i.e., this is not an average over many Monte-Carlo runs
as in the simulations). To evaluate an estimator’s consistency,
the average NEES over many Monte-Carlo runs is a suitable

Fig. 3. [Indoor Experiment] The batch maximum-a-posteriori (MAP) estimate
of the robot trajectory during the indoor experiment (solidline), overlaid
on the blueprint of the building. The boxes (�) denote the corners whose
exact locations were known from the building’s blueprints.The batch MAP
estimates of the robot poses and the known corners were used as ground truth
for computing the NEES and RMSE values shown in Table III and Fig. 4.

metric, while the NEES values in a single experiment do not
dictate which estimator is consistent or not. Regardless, we
show these results mainly to demonstrate the large difference
in performance between the OC-EKF/UKF and the standard
EKF/UKF. These experimental results, along with those from
the simulations, further support our conjecture that the mis-
match in the dimension of the unobservable subspace between
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Fig. 4. [Indoor Experiment] Experimental results: (a) NEESof the robot-pose errors, and (b) estimation errors of the robot pose (position and orientation).
In these plots, the solid lines with circles correspond to the standard EKF, the dashed lines to the OC-EKF, the solid lines with crosses to the standard UKF,
the solid lines to the OC-UKF, and the dash-dotted lines to the iSAM algorithm. Note that the NEES and estimation error values of the standard EKF and
the standard UKF are almost identical, and the estimation errors of the OC-UKF, the OC-EKF and the iSAM algorithm are alsovery close to each other,
which makes the corresponding lines difficult to distinguish.

TABLE III
[I NDOOR EXPERIMENT] ROBOT POSE AND LANDMARK POSITION

ESTIMATION PERFORMANCE ANDRUNTIME

Std-EKF OC-EKF Std-UKF OC-UKF iSAM

Robot Position RMSE (m)

0.7323 0.5896 0.7268 0.5384 0.6108

Robot Heading RMSE (rad)

0.0512 0.0392 0.0508 0.0349 0.0388

Robot Pose NEES

6.0939 3.4575 6.0307 4.5442 9.1270

Landmark Position RMSE (m)

0.9929 0.8438 0.9894 0.8183 0.6528

Landmark Position NEES

7.3180 6.0354 7.2928 7.0123 9.6627

Total CPU Execution Time (sec)

304.761 304.251 306.689 307.930 350.379

the statistically-linearized SLAM system and the underlying
nonlinear system is a fundamental cause of filter inconsistency.

As evident from Fig. 4(b) and Table III, the OC-EKF/UKF
achieve similar accuracy to, and better consistency than, the
iSAM algorithm. As mentioned in the previous section, one
possible explanation for this is that the iSAM algorithm does
not iteratively update the whole measurement Jacobian at
each time step, which may incur large linearization and thus
estimation errors. Inaccuracies in the measurement Jacobian
propagate into the covariance estimated by the iSAM algo-
rithm, which results in significantly higher NEES values as
compared to the OC-EKF/UKF. Interestingly, as seen from
Table III, the OC-UKF has a lower computational cost than

iSAM in this experiment, although all the algorithms attain
faster-than-real-time performance. This can be justified by
the fact that the computational cost of the iSAM algorithm
increases as the robot trajectory grows. Moreover, the 11
loop-closing events occurring along the robot trajectory in
this experiment significantly increase fill-in in the square-root
information matrix and thus the computational complexity for
solving the system.

At this point we should note that in this indoor experiment
(as well as the outdoor experiment presented in the next
section) the measurement correspondences were known. If
not, then to solve the data association problem, the iSAM
algorithm would need to recover marginal covariances, which
will significantly increase its processing requirements [42]. By
contrast, since the covariance matrix is maintained in the OC-
EKF/UKF, the marginal covariances are immediately available
and hence the maximum-likelihood data association incurs
minimal overhead.

Lastly, it is very important to observe from Table III that
the two UKFs (i.e., the standard UKF and the proposed OC-
UKF) have similar timing performance as the two EKFs (i.e,
the standard EKF and the OC-EKF). This is attributed to the
proposed sampling strategy (see Lemma IV.1), which resultsin
the UKF having computational complexity of the same order
as that of the EKF.

B. Outdoor Environment

To further examine the performance of the proposed OC-
UKF, we tested our algorithm on a publicly available SLAM
dataset, the Sydney Victoria Park dataset. The experimental
platform was a 4-wheeled vehicle equipped with a kinematic
GPS, a laser sensor, and wheel encoders. The GPS system
was used to provide ground truth for the robot position. Wheel
encoders were used to provide odometry measurements, and
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Fig. 5. [Outdoor Experiment] Experimental results: (a) robot trajectory and landmark estimates as compared to the GPS data, and (b) robot position estimation
errors. Note that, since in this test the GPS satellite signals were not always available, we computed the estimation errors only when GPS was available. In
these plots, the dash-dotted lines and stars correspond to the iSAM estimates of the trajectory and the landmarks, respectively, the dashed lines and triangles
to the OC-EKF, and the solid lines and circles to the OC-UKF, while the dots denote the sparse GPS data points.

TABLE IV
[OUTDOOREXPERIMENT] ESTIMATION ACCURACY AND RUNTIME

iSAM OC-EKF OC-UKF

Robot Position RMSE (m)

4.2111 5.9069 3.8084

Total CPU Execution Time (sec)

31.5482 35.6811 34.6138

propagation was carried out using the Ackerman model. In
this particular application, since the most common features in
the environment were trees, the profiles of trees were extracted
from the laser data, and the centers of the trunks were then
used as the point landmarks. It should be pointed out that in
this test, to ensure a fair comparison with the iSAM algorithm,
we employed the preprocessed dataset which is also available
in the iSAM package [53]. This preprocessed dataset contains
6969 robot poses and 151 landmarks with 3640 measurements,
recorded over 26 minutes.

Since the OC-EKF and the OC-UKF were already shown
in the preceding simulations and experiment to perform sig-
nificantly better, in terms of accuracy and consistency, than
the standard EKF and UKF, in this test, we omitted the
comparison to the two latter filters for clarity of presentation.
Instead, we focus on the accuracy comparison of the OC-
UKF with the OC-EKF and the iSAM algorithm. In this
experiment, true landmark positions and true robot orientations
were not available. We hence only compared the position-
estimation performance of the three approaches (i.e., the OC-
EKF, the OC-UKF, and the iSAM algorithm). Note also that,
as mentioned in Section VIII-A, the NEES computed from a
single experimental run is not well-suited for analyzing the
consistency of the estimators, and thus we hereafter focus

on the comparison of accuracy and processing requirements.
Specifically, Fig. 5(a) depicts the trajectory and landmark
estimates produced by the three estimators as compared to the
GPS ground truth, while Fig. 5(b) shows the corresponding
estimation errors of the robot position. Table IV shows the
average estimation errors (i.e., RMSE) of robot position as
well as the total CPU runtime for the three estimators com-
pared. Clearly, the OC-UKF achieves better accuracy than
both the OC-EKF and iSAM, while incurring comparable
computational cost. In particular, the OC-UKF attains 36% and
10% reduction in robot position estimation errors as compared
to the OC-EKF and iSAM, while at 3% lower and only
10% higher computational cost, respectively.7 We repeat that
the timing result for iSAM does not include the runtime of
computing marginal covariances for data association. These
results agree with what we have observed in the indoor
experiment presented in Section VIII-A.

IX. CONCLUSIONS ANDFUTURE WORK

This work focuses on UKF-based SLAM, and particularly
on the issues of computational complexity and filter inconsis-
tency. The first contribution of this work is the formulationof
a novel UKF-based SLAM algorithm that has computational
complexity of the same order as that of EKF-based SLAM. In
particular, we have proposed a new sampling scheme in which
the unscented transformation employed by the UKF is only ap-
plied to the subset of states that appear in the nonlinear process
and measurement models, instead of the entire state. Thus, by
adopting this new sampling scheme, the UKF-based SLAM
requires computing the square root of small, constant-sizema-
trices, which leads to computational complexitylinear during
propagation, andquadratic during update. Furthermore, we

7Note that in this experiment, the OC-UKF has lower cost than the OC-
EKF, primarily because the Mahalanobis-distance test [11]in the OC-UKF
rejects more outlier measurements than that in the OC-EKF.
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have shown that a mismatch between the observability proper-
ties of the linear-regression-based system model employedby
the UKF, and those of the underlying nonlinear SLAM system,
causes inconsistency. To address this issue, we have introduced
a novel observability-constrained (OC)-UKF, which ensures
that the UKF system model has an unobservable subspace of
appropriate dimensions, by enforcing observability constraints
on the filter’s inferred Jacobians. Through extensive Monte-
Carlo simulations and real-world experiments, the OC-UKF
is shown to achieve comparable or better performance, in
terms of consistency, accuracy and computational complexity,
to other state-of-the-art SLAM algorithms such as the OC-EKF
and iSAM.

In this work, we have focused on 2D SLAM. However,
the proposed approach is also applicable to the case of robot
localization in 3D using inertial sensors. The details of the
application of the proposed OC-UKF to 3D SLAM will be
the focus of our future work.

APPENDIX A
PROOF OFLEMMA IV.1

We start with the linearization error in the linear regression:

e(x) = y − (Ax+ b) = y −A1x1 −A2x2 − b (66)

Substituting (66) in the expression of the expected value of
the squared linearization error (1), the cost function we seek
to minimize becomes:

∫ +∞

−∞

||y −A1x1 −A2x2 − b||2p(x)dx =

∫∫ +∞

−∞

||y−A1x1−A2x2−b||2p(x2|x1)p(x1)dx1dx2 (67)

where we have employed the notation||α||2 , α
T
α, and

the property p(x) = p(x1,x2) = p(x2|x1)p(x1). Now
using the standard sample-based approximation,p(x1) ≃
∑r

i=0 wiδ(x1−X1i), where the samples are selected to match
the mean and covariance ofp(x1) [see (2) and (3)], we rewrite
the cost function (67) as follows:

c :=
r∑

i=0

wi

∫ +∞

−∞

||Yi−A1X1i−A2x2−b||2p(x2|x1=X1i)dx2

=
r∑

i=0

wiE
(
||Yi −A1X1i −A2x2 − b||2

)

=
r∑

i=0

wi

[

(Yi−A1X1i−b)
T
(Yi−A1X1i−b) −

2 (Yi−A1X1i−b)T A2E(x2)
]

+ tr
[
A2E(x2x

T
2 )A

T
2

]
(68)

where have used the following identity:

E(xT
2 A

T
2 A2x2) = tr

[
A2E(x2x

T
2 )A

T
2

]
(69)

Note that the expectation operatorE(·) is with respect to the
pdf p(x2|x1 = X1i). For the Gaussian case, this pdf can be
expressed analytically as follows:

p(x2|x1 = X1i) = N
(

X̂2i , P̄x̂2x̂2

)

= (70)

N






x̂2+Px2x1

P−1
x1x1

(X1i−x̂1)
︸ ︷︷ ︸

X̂2i

,Px2x2
−Px2x1

P−1
x1x1

Px1x2

︸ ︷︷ ︸

P̄x̂2x̂2







Based on (70), we have:

E
(
x2x

T
2

)
= E (x2)E (x2)

T
+ P̄x̂2x̂2

= X̂2iX̂
T
2i + P̄x̂2x̂2

(71)

SubstitutingE(x2) , X̂2i from (70) andE(x2x
T
2 ) from (71)

in (68) and simplifying it, we obtain:

c =

r∑

i=0

wi||Yi−A1X1i−A2X̂2i−b||2 + tr
(
A2P̄x̂2x̂2

AT
2

)
(72)

Our goal is to minimize the cost function in (72) with
respect tob andA ,

[
A1 A2

]
. To do so, we first compute

the optimal solution forb, by setting the derivative of (72)
with respect tob to zero. This yields:

∂c

∂b
= −2

r∑

i=0

wi

(

Yi −A1X1i −A2X̂2i − b
)T

= 0 ⇒

b =

r∑

i=0

wiYi −A1

r∑

i=0

wiX1i −A2

r∑

i=0

wiX̂2i = ȳ −A1x̂1 −A2x̂2

(73)

where for the last step, we have used (6), the equalityx̂1 =
∑r

i=0 wiX1i , and the identitŷx2 =
∑r

i=0 wiX̂2i , which stems
from (70).

Substituting (73) in (72), we have:

c′ =

r∑

i=0

wi||Ỹi −A1X̃1i −A2X̃2i ||
2 + tr

(
A2P̄x̂2x̂2

AT
2

)
(74)

where

X̃1i , X1i − x̂1 , Ỹi , Yi − ȳ (75)

X̃2i , X̂2i − x̂2 = Px2x1
P−1

x1x1
X̃1i (76)

Note that (70) was used in (76). Taking derivatives of the cost
function in (74) with respect toA1 andA2, and setting them
equal to zero, we obtain:

∂c′

∂A1
= −2

r∑

i=0

wi

(

Ỹi−A1X̃1i−A2X̃2i

)

X̃ T
1i = 0 (77)

∂c′

∂A2
= −2

r∑

i=0

wi

(

Ỹi−A1X̃1i−A2X̃2i

)

X̃ T
2i+2A2P̄x̂2x̂2

= 0 (78)

At this point, we use the fact that, due to the selection of the
sigma points, we have:

r∑

i=0

wiỸiX̃
T
1i = P̄yx1

,

r∑

i=0

wiX̃1iX̃
T
1i = Px1x1

(79)

r∑

i=0

wiX̃2iX̃
T
1i = Px2x1

P−1
x1x1

r∑

i=0

wiX̃1iX̃
T
1i = Px2x1

(80)

r∑

i=0

wiỸiX̃
T
2i =

r∑

i=0

wiỸiX̃
T
1iP

−1
x1x1

Px1x2
= P̄yx1

P−1
x1x1

Px1x2
(81)

r∑

i=0

wiX̃2iX̃
T
2i = Px2x1

P−1
x1x1

(
r∑

i=0

wiX̃1iX̃
T
1i

)

P−1
x1x1

Px1x2

= Px2x1
P−1

x1x1
Px1x2

(82)

where (76) was used for deriving these relations. Substituting
the above results in (77) and (78) yields:

P̄yx1
−A1Px1x1

−A2Px2x1
= 0 (83)

P̄yx1
P−1

x1x1
Px1x2

−A1Px1x2
−A2Px2x1

P−1
x1x1

Px1x2
−A2P̄x̂2x̂2

= 0

(84)

It is easy to verify (e.g., by substitution) that the solution to
the system of equations (83)-(84) isA1 = P̄yx1

P−1
x1x1

and
A2 = 0. This completes the proof.
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APPENDIX B
PROOF OFLEMMA VI.1

Using (65), we write the equality constraint onA1 (62) as
A1U = 0. This equation states that the rows ofA1 lie in the
left nullspace of the5×3 matrixU. Therefore, ifL is a2×5
matrix whose rows span this nullspace, we can writeA1 as:

A1 = BL (85)

whereB is anm×2 unknown matrix that we seek to compute.
We note that there are several possible ways of computing
an appropriate matrixL, whose rows lie in the nullspace of
U. For instance, such a matrix is given, in closed form, by
the expression (64). Substituting (85) in the original problem
formulation [see (4) and (61)], we obtain:

min
B,b

10∑

i=0

wi [Zi − (BX ′
i + b)]

T
[Zi − (BX ′

i + b)] (86)

where we have definedX ′
i , LXi, i = 0, . . . , 10. This is

an unconstrained minimization problem with respect to the
design variablesB andb, and has exactly the same structure
as that in (4). Thus, by analogy, the optimal solution forB is
computed by [see (5)]:

B = P̄zℓP̄
−1
ℓℓ

(87)

where

P̄zℓ =

10∑

i=0

wi(Zi − z̄)(LXi − Lx̄)T = P̄zxL
T

P̄ℓℓ =
10∑

i=0

wi(LXi − Lx̄)(LXi − Lx̄)T = LP̄xxL
T

By combining these two identities with those of (87) and (85),
we obtain the optimal solution ofA1 [see (63)].
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