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Abstract—In this paper, we study estimator inconsistency in
vision-aided inertial navigation systems (VINS) from the stand-
point of system’s observability. We postulate that a leading cause
of inconsistency is the gain of spurious information along unob-
servable directions, which results in smaller uncertainties, larger
estimation errors, and divergence. We develop an observability
constrained VINS (OC-VINS), which explicitly enforces the un-
observable directions of the system, hence preventing spurious
information gain and reducing inconsistency. This framework is
applicable to several variants of the VINS problem such as vi-
sual simultaneous localization and mapping (V-SLAM), as well as
visual-inertial odometry using the multi-state constraint Kalman
filter (MSC-KF). Our analysis, along with the proposed method
to reduce inconsistency, are extensively validated with simulation
trials and real-world experimentation.

Index Terms—Consistency, nonlinear estimation, observability
analysis, vision-aided inertial navigation.

I. INTRODUCTION

AVISION-AIDED inertial navigation system (VINS) fuses
data from a camera and an inertial measurement unit

(IMU) to track the six-degrees-of-freedom (d.o.f.) position and
orientation (pose) of a sensing platform. This sensor pair is
ideal since it combines complementary sensing capabilities [1].
Specifically, an IMU can accurately track dynamic motions over
short time durations, while visual data can be used to estimate
the pose displacement (up to scale) between consecutive views.
Within the robotics community, VINS has gained popularity as
a method to address GPS-denied navigation for several reasons.
First, contrary to approaches which utilize wheel odometry,
VINS uses inertial sensing that can track general 3-D motions
of a vehicle. Hence, it is applicable to a variety of platforms
such as aerial vehicles, legged robots, and even humans, which
are not constrained to move along planar trajectories. Second,
unlike laser-scanner-based methods that rely on the existence of
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structural planes [2] or height invariance in semistructured en-
vironments [3], using vision as an exteroceptive sensor enables
VINS methods to work in unstructured areas such as collapsed
buildings or outdoors. Furthermore, both cameras and IMUs are
light-weight and have low power-consumption requirements,
which has lead to recent advances in onboard estimation for
payload-constrained platforms such as micro aerial vehicles
(e.g., [4]–[7]).

Numerous VINS approaches have been presented in the lit-
erature, including methods based on the extended Kalman filter
(EKF) [8]–[11], the unscented Kalman filter [12], and batch
least squares (BLS) [13]. Nonparametric estimators, such as
the particle filter, have also been applied to visual odometry
(e.g., [14], [15]). However, these have focused on the simplified
problem of estimating the pose of a vehicle whose motion is
constrained to 2-D, since the number of particles required is
exponential in the size of the state vector. Existing work has
addressed a variety of issues in VINS, such as reducing its com-
putational cost [4], [9], dealing with delayed observations [7],
improving fault detection by processing the visual and inertial
measurements in a loosely coupled manner [5], increasing the
accuracy of feature initialization and estimation [16], and im-
proving the robustness to estimator initialization errors [17].

A fundamental issue that has only received limited attention
in the literature is how estimator inconsistency affects VINS.
As defined in [18], a state estimator is consistent if the estima-
tion errors are zero-mean and have covariance equal to the one
calculated by the filter. Estimator inconsistency can have a dev-
astating effect, particularly in navigation applications, since both
the current pose estimate and its uncertainty must be accurate in
order to address tasks that depend on the localization solution,
such as path planning. For nonlinear systems, several potential
sources of inconsistency exist (e.g., motion-model mismatch in
target tracking), and great care must be taken when designing
an estimator to improve consistency.

In this paper, we report on VINS inconsistency.1 We focus
specifically on estimator inconsistency due to spurious informa-
tion gain which arises from approximations incurred when ap-
plying linear estimation tools to nonlinear problems (i.e., when
using linearized estimators such as the EKF). In summary, the
main contributions of this work are as follows.

1A poster describing the main results of this study appeared in [19]. Moreover,
a short version of this paper detailing the OC-VINS framework applied to V-
SLAM appeared in [20], while the application to the MSC-KF appeared in [21].
In comparison with [20] and [21], in this paper, we provide an extended theoretic
analysis of the problem, including an observability analysis of the linearized
VINS system model, and present extensive simulation and experimental results
that validate our approach.
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1) We analyze the structure of the true and estimated systems
and show that for the true system four unobservable di-
rections exist (i.e., three-d.o.f. global translation and one-
d.o.f. rotation about the gravity vector), while the system
employed for estimation purposes has only three unob-
servable directions (three-d.o.f. global translation). More-
over, we postulate that a main source of inconsistency
in VINS is spurious information gained when orientation
information is incorrectly projected along the direction
corresponding to rotations about the gravity vector.

2) We propose a simple, yet powerful, estimator modification
that explicitly prohibits this incorrect information gain.
Our approach is general enough to be applied in multiple
VINS domains (e.g., V-SLAM and the MSC-KF [22])
when linearized estimators, such as the EKF, are used.

3) We provide extensive evidence to demonstrate the incon-
sistency in standard VINS approaches as well as validate
our method with Monte-Carlo simulations to show that
it improves consistency and reduces estimation errors as
compared with standard VINS. In addition, we demon-
strate the performance of our approach experimentally
using a miniature IMU and a small-size camera.

The rest of this paper is organized as follows: We begin with
an overview of the related work in Section II. In Section III, we
describe the system and measurement models, followed by our
analysis of VINS inconsistency in Section IV. The proposed esti-
mator modification is presented in Section V and, subsequently,
validated both in simulations and experimentally in Sections VI
and VII. Finally, we provide our concluding remarks and outline
our future research directions in Section VIII.

II. RELATED WORK

Until recently, little attention was paid to the effect that the ob-
servability properties of a system can have on the consistency of
a linearized estimator that is employed to solve a nonlinear esti-
mation problem. The work by Huang et al. [23]–[25] was the first
to identify this connection for several 2-D localization problems
[i.e., simultaneous localization and mapping (SLAM), and co-
operative localization (CL)]. The authors showed that, for these
problems, a mismatch exists between the number of unobserv-
able directions of the true nonlinear system and the linearized
system used for estimation purposes. In particular, the estimated
(linearized) system has one fewer unobservable direction than
the true system, which allows the estimator to surreptitiously
gain spurious information along the direction corresponding to
global orientation (yaw). This increases the estimation errors,
while erroneously reducing the estimator uncertainty, and leads
to inconsistency.

No similar analysis existed that link the VINS observabil-
ity properties to the estimator inconsistency until recently
[19]–[21], [26], despite the fact that several authors have stud-
ied the observability properties of VINS for various scenarios.
For the task of IMU-camera extrinsic calibration, Mirzaei and
Roumeliotis [27], as well as, Kelly and Sukhatme [28], have
analyzed the system observability using Lie derivatives [29] to
determine when the IMU-camera transformation is observable.

Jones and Soatto [16] studied VINS observability by examining
the indistinguishable trajectories of the system [30] under differ-
ent sensor configurations (i.e., inertial only, vision only, vision
and inertial), while Martinelli [31] utilized the concept of con-
tinuous symmetries to show that the IMU biases, 3-D velocity,
and absolute roll and pitch angles are observable for VINS. Li
and Mourikis [26] recently presented an observability analysis
of a bias-free linearized VINS model and leveraged the first-
estimates Jacobian methodology of [23] to reduce the impact
of inconsistency in visual-inertial odometry. In contrast, our ob-
servability analysis examines the linearized system comprising
the full VINS state (i.e., including IMU biases). Furthermore,
our approach to reduce the inconsistency is more general since
any linearization method can be employed by the estimator (e.g.,
computing Jacobians analytically, numerically, or using sample
points).

In this paper, we study the observability properties of the
ideal linearized VINS model (i.e., the one whose Jacobians are
evaluated at the true states) and prove that it has four unobserv-
able d.o.f., corresponding to three-d.o.f. global translations and
one-d.o.f. global rotation about the gravity vector. Moreover,
we show that when the estimated states are used to evaluate
the Jacobians, as is the case for the EKF, the number of unob-
servable directions is reduced by one. In particular, the global
rotation about the gravity vector becomes (erroneously) observ-
able, which allows the estimator to gain spurious information
and leads to inconsistency. These results confirm the findings
of [16] and [31] using a different approach (i.e., the observabil-
ity matrix), while additionally specifying the exact mathemati-
cal structure of the unobservable directions necessary to assess
the EKF’s inconsistency.2 Finally, in order to improve incon-
sistency, we introduce a modification of the VINS EKF where
its estimated Jacobians are updated to ensure that the number
of unobservable directions is the same as when using the true
Jacobians. In this manner, the global rotation about the gravity
vector remains unobservable (as it should), and the consistency
of the VINS EKF is significantly improved.

III. VINS ESTIMATOR DESCRIPTION

We begin with an overview of the propagation and measure-
ment models which govern the VINS. In particular, we employ
an EKF to fuse the camera and IMU measurements to estimate
the state of the system including the pose, velocity, and IMU bi-
ases, as well as the 3-D positions of visual landmarks observed
by the camera. We operate in a previously unknown environment
and utilize two types of visual features in our VINS framework.
The first are opportunistic features (OFs) that can be accurately
and efficiently tracked across short image sequences (e.g., using
KLT [32]) but are not visually distinctive enough to be efficiently
recognized when revisiting an area. OFs can be efficiently used
to estimate the motion of the camera over short time horizons
(i.e., using the MSC-KF), but they are not included in the state
vector. The second are distinguishable features (DFs), which

2The analysis in [31] addresses the special case with one known feature at
the origin, which, in contrast with our approach, cannot be used to determine
the nullspace directions when multiple features are considered.
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Fig. 1. Sensor platform comprising an IMU and a camera. {I q̄G , G pI } is
the quaternion of orientation and position vector pair describing the pose of
the sensing frame {I} with respect to the global frame {G}. The ith feature’s
3-D coordinates are denoted as G fi and I fi , with respect to {G} and {I},
respectively.

are typically significantly fewer in number, and can be reliably
redetected when revisiting an area (e.g., scale-invariant feature
transform (SIFT) keys [33]). The 3-D coordinates of the DFs
are estimated to construct a map of the area.

A. System State and Propagation Model

The EKF estimates the 3-D IMU pose and linear velocity
together with the time-varying IMU biases and a map of visual
features (see Fig. 1). In particular, the filter state is the (16 +
3N) × 1 vector.

x =
[

I q̄T
G bT

g
GvT

I bT
a

GpT
I | G fT

1 · · · G fT
N

]T

=
[
xT

s | xT
f

]T

(1)

where xs(t) is the 16 × 1 sensor-platform state, and xf (t) is
the 3N × 1 state of the feature map. The first component of the
sensor-platform state is I q̄G (t) which is the unit quaternion that
represents the orientation of the global frame {G} in the IMU
frame {I} at time t. The frame {I} is attached to the IMU,
while {G} is a local-vertical reference frame whose origin co-
incides with the initial IMU position. The sensor-platform state
also includes the position and velocity of {I} in {G}, which
are denoted by the 3 × 1 vectors GpI (t) and GvI (t), respec-
tively. The remaining components are the biases, bg (t) and
ba(t), which affect the gyroscope and accelerometer measure-
ments, which are modeled as random-walk processes driven
by the zero-mean, white Gaussian noise nwg (t) and nwa(t),
respectively.

The map state, xf , comprises the 3-D coordinates of N DFs,
G fi , i = 1, . . . , N , and grows as new DFs are observed [34].
In contrast, we do not store OFs in the map. Instead, all OFs
are processed and marginalized on-the-fly using the MSC-KF
approach [22] (see Section III-B). With the state of the system
now defined, we turn our attention to the continuous-time model
which governs the state of the system.

1) Continuous-Time Model: The system model that de-
scribes the time evolution of the state is (see [35] and [36])

I ˙̄qG (t) =
1
2
Ω(ω(t))I q̄G (t) (2)

ḃg (t) = nwg (t) (3)
G v̇I (t) = Ga(t) (4)

ḃa(t) = nwa(t) (5)
G ṗI (t) = GvI (t) (6)
G ḟi(t) = 03×1 , i = 1, . . . , N. (7)

In these expressions, ω(t) = [ω1(t) ω2(t) ω3(t)]T is the ro-
tational velocity of the IMU, expressed in {I}, Ga is the IMU
acceleration expressed in {G}, and

Ω(ω) =
[−�ω×� ω

−ωT 0

]
, �ω×��=

⎡
⎢⎣

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎥⎦.

The gyroscope and accelerometer measurements, ωm and am ,
are modeled as

ωm (t) = ω(t) + bg (t) + ng (t) (8)

am (t) = C(I q̄G (t)) (Ga(t) − Gg) + ba(t) + na(t), (9)

where ng and na are zero-mean, white Gaussian noise pro-
cesses, and Gg is the gravitational acceleration. The matrix
C(q̄) is the rotation matrix corresponding to q̄. The DFs belong
to the static scene; thus, their time derivatives are zero [see (7)].

Linearizing at the current estimates and applying the expec-
tation operator on both sides of (2)–(7), we obtain the state
estimate propagation model

I ˙̄̂qG (t) =
1
2
Ω(ω̂(t))I ˆ̄qG (t) (10)

˙̂bg (t) = 03×1 (11)

G ˙̂vI (t) = CT (I ˆ̄qG (t)) â(t) + Gg (12)

˙̂ba(t) = 03×1 (13)
G ˙̂pI (t) = G v̂I (t) (14)

G ˙̂f i(t) = 03×1 , i = 1, . . . , N (15)

where â(t) = am (t) − b̂a(t), and ω̂(t) = ωm (t) − b̂g (t).
The (15 + 3N) × 1 error-state vector is defined as

x̃ =
[

I δθT
G b̃T

g
G ṽT

I b̃T
a

G p̃T
I | G f̃T

1 · · · G f̃T
N

]T

=
[
x̃T

s | x̃T
f

]T
(16)

where x̃s(t) is the 15 × 1 error state corresponding to the sens-
ing platform, and x̃f (t) is the 3N × 1 error state of the map. For
the IMU position, velocity, biases, and the map, an additive error
model is utilized (i.e., x̃ = x − x̂ is the error in the estimate x̂
of a quantity x). However, for the quaternion we employ a mul-
tiplicative error model [36]. Specifically, the error between the
quaternion q̄ and its estimate ˆ̄q is the 3 × 1 angle-error vector,
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δθ, implicitly defined by the error quaternion

δq̄ = q̄ ⊗ ˆ̄q−1 �
[ 1

2 δθT 1
]T

(17)

where δq̄ describes the small rotation that causes the true and
estimated attitudes to coincide. This allows us to represent the
attitude uncertainty by the 3 × 3 covariance matrix E[δθδθT ],
which is a minimal representation.

The linearized continuous-time error-state equation is

˙̃x =

[
Fs 015×3N

03N ×15 03N

]
x̃ +

[
Gs

03N ×12

]
n

= F x̃ + Gn (18)

where 03N denotes the 3N × 3N matrix of zeros. Here, n is the
vector comprising the IMU measurement noise terms, as well
as the process noise driving the IMU biases, i.e.,

n =
[
nT

g nT
wg nT

a nT
wa

]T
(19)

while Fs is the continuous-time error-state transition matrix
corresponding to the sensor-platform state, and Gs is the
continuous-time input noise matrix, i.e.,

Fs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−�ω̂×� −I3 03 03 03

03 03 03 03 03

−CT (I ˆ̄qG )�â×� 03 03 −CT (I ˆ̄qG ) 03

03 03 03 03 03

03 03 I3 03 03

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(20)

Gs =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−I3 03 03 03

03 I3 03 03

03 03 −CT (I ˆ̄qG ) 03

03 03 03 I3

03 03 03 03

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where I3 is the 3 × 3 identity matrix. The system noise is mod-
eled as a zero-mean white Gaussian process with autocorrelation
E[n(t)nT (τ)] = Qcδ(t − τ), where Qc depends on the IMU
noise characteristics and is computed off-line [36].

2) Discrete-Time Implementation: The IMU signals ωm and
am are sampled at a constant rate 1/δt, where δt = tk+1 − tk .
Every time a new IMU measurement is received, the state esti-
mate is propagated using numerical integration of (10)–(15). In
order to derive the covariance propagation equation, we compute
the discrete-time state transition matrix, Φk+1,k , from time-step
tk to tk+1 , as the solution to the following matrix differential
equation:

Φ̇k+1,k = FΦk+1,k (22)

initial condition Φk,k = I18 (23)

which can be calculated analytically as we show in [34], or
numerically using Runge–Kutta. We also compute the discrete-
time system noise covariance matrix Qk as

Qk =
∫ tk + 1

tk

Φk+1,τ GQcGT ΦT
k+1,τ dτ (24)

and finally, we perform the covariance propagation as

Pk+1|k = Φk+1,kPk |kΦT
k+1,k + Qk . (25)

We note that in the aforementioned expression, and throughout
the paper, Pi|j and x̂i|j denote the estimates of the error-state
covariance and state, respectively, at time-step i computed using
measurements up to time-step j.

B. Measurement Update Model

As the camera-IMU platform moves, the camera observes
both opportunistic and distinguishable visual features. These
measurements are utilized to concurrently estimate the motion
of the sensing platform and the map of DFs. We perform three
types of filter updates: 1) DF updates of features already in the
map, 2) initialization of DFs not yet in the map, and 3) OF
updates. We first describe the feature measurement model, and
subsequently, detail how it is employed in each case.

To simplify the discussion, we consider the observation of
a single DF point fi . The camera measures zi , which is the
perspective projection of the 3-D point I fi , expressed in the
current IMU frame {I}, onto the image plane,3 i.e.,

zi =
1
z

[
x

y

]
+ ηi (26)

where

⎡
⎢⎣

x

y

z

⎤
⎥⎦ = I fi = C

(
I qG

) (
G fi − GpI

)
. (27)

The measurement noise, ηi , is modeled as zero mean, white
Gaussian with covariance Ri . The linearized error model is

z̃i = zi − ẑi � Hix̃ + ηi (28)

where ẑ is the expected measurement computed by evaluating
(26)–(27) at the current state estimate, and the measurement
Jacobian Hi is

Hi = Hc [Hq̄ 03×9 Hp |03 · · ·Hfi
· · ·03 ] (29)

with

Hc =
1
z2

[
z 0 −x

0 z −y

]
(30)

Hq̄ = �C
(
I q̄G

) (
G fi − GpI

)
×� (31)

Hp = −C
(
I q̄G

)
(32)

Hfi
= C

(
I q̄G

)
(33)

evaluated at the current state estimate. Here, Hc , is the Jaco-
bian of the camera’s perspective projection with respect to I fi ,
while Hq̄ ,Hp , and Hfi

are the Jacobians of I fi with respect to
I qG , GpI , and G fi .

3Without loss of generality, we express the image measurement in normalized
pixel coordinates, and consider the camera frame to be coincident with the
IMU. In practice, we perform both intrinsic [37] and extrinsic [27] IMU-camera
calibration off-line.
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This measurement model is utilized in each of the three up-
date methods. For DFs that are already in the map, we directly
apply the measurement model (26)–(29) to update the filter. In
particular, we compute the measurement residual ri , along with
its covariance Si , and the Kalman gain Ki , i.e.,

ri = zi − ẑi (34)

Si = HiPk+1|kHT
i + Ri (35)

Ki = Pk+1|kHT
i S−1

i (36)

and update the EKF state and covariance as

x̂k+1|k+1 = x̂k+1|k + Kiri (37)

Pk+1|k+1 = Pk+1|k − KiSiKT
i . (38)

Each time a new (previously unobserved) DF is measured, we
initialize it into the state vector. Since a single visual observation
does not provide enough information to resolve all three-d.o.f.
of a DF’s position, we utilize multiple observations to initial-
ize each feature. In order to compute the initial landmark posi-
tion estimate, uncertainty, and cross-correlation with the current
state, we solve a bundle-adjustment problem over a short time
window [38], which is described in detail in Appendix A.

In contrast, OFs are not estimated as part of the state. Instead,
we employ the MSC-KF to impose an efficient (linear com-
plexity) update, which constrains all of the camera poses from
which the feature was observed. For a detailed description of
the MSC-KF algorithm, see [11] and [22].

IV. VINS OBSERVABILITY ANALYSIS

In this section, we examine the observability properties of the
linearized VINS model in the general case when a single point
feature is observed by a sensor platform performing arbitrary
motion. Specifically, we first study and analytically determine
the four unobservable directions of the ideal linearized VINS
model (i.e., the system whose Jacobians are evaluated at the true
states). Subsequently, we show that the linearized VINS model
used by the EKF, whose Jacobians are evaluated using the cur-
rent state estimates, has only three unobservable directions (i.e.,
the ones corresponding to global translation), while the one cor-
responding to global rotation about the gravity vector becomes
(erroneously) observable. The key findings of this analysis are
then employed in Section V to improve the consistency of the
EKF-based VINS.

The observability matrix M is defined as [39]

M (x�) =

⎡
⎢⎢⎢⎢⎣

H1

H2Φ2,1

...

HkΦk,1

⎤
⎥⎥⎥⎥⎦

(39)

where Φk,1 = Φk,k−1 . . .Φ2,1 is the state transition matrix
from time-step 1 to k, and Hk , is the measurement Jacobian
[see (29)], for the feature observation at time-step k. Note
that, since all the Jacobians are evaluated at a particular state
x� = [x�T

1 · · · x�T
k ]T , the observability matrix is also a

function of x� . If M (x�) was full column rank, then the lin-
earized VINS model would be observable. However, as we will
show in the following analysis, M (x�) is rank deficient, and
hence, the VINS model is unobservable. More importantly, the
number of unobservable directions (right nullspace dimension)
differs, depending on the selection of the linearization point.

A. Observability Analysis of the Ideal Linearized VINS Model

In the ideal linearized VINS model, the system and measure-
ment Jacobians are evaluated at the true state (i.e., x� = x).
Based on this definition, the first block-row of M (x) can be
written as follows [see (29)]:4

Hk = Hc,kC
(
Ik q̄G

)

·
[
�G f − GpIk

×�C
(
Ik q̄G

)T 03 03 03 −I3 I3
]

(40)

where Ik q̄G denotes the rotation of {G} with respect to frame
{Ik}.

To compute the remaining block rows of the observability
matrix, we require Φk,1 , which satisfies the following matrix
differential equation [40]:

Φ̇k,1 = FΦk,1 (41)

initial condition Φ1,1 = I18 (42)

where F is defined in (18).
By examining the block elements of (41), we can obtain an

analytical solution for the ones necessary for our observability
analysis. In particular, the (2, 1) element of Φ̇k,1 is the product
of the second block row5 of F [i.e., F(2,:) = 03×18 ; see (18)]

and the first block column of Φk,1 [see (41)]. Hence, Φ̇
(2,1)
k,1 =

F(2,:) · Φ(:,1)
k,1 = 03 , and recalling the initial condition Φ(2,1)

1,1 =
03 [see (42)], we obtain

Φ(2,1)
k,1 = 03 . (43)

Following a similar approach, we can easily determine all block
elements of Φk,1 that are either 03 or I3 , respectively (see [34]
for details). Specifically, Φk,1 has the following structure:

Φk,1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ(1,1)
k,1 Φ(1,2)

k,1 03 03 03 03

03 I3 03 03 03 03

Φ(3,1)
k,1 Φ(3,2)

k,1 I3 Φ(3,4)
k,1 03 03

03 03 03 I3 03 03

Φ(5,1)
k,1 Φ(5,2)

k,1 δtkI3 Φ(5,4)
k,1 I3 03

03 03 03 03 03 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(44)

where δtk = δt(k − 1), is the time difference between time-
steps 1 and k.

4We hereafter focus on the case of a single point feature, i.e., i = 1, for the
purpose of simplifying the presentation. Extending this analysis to the case of
multiple features is straightforward.

5The superscript notations E(i , :) and E(:, i) refer to the ith block row and
block column of matrix E, respectively, while E(i ,j ) references the block
element (i, j).
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For the purposes of the observability analysis, we only require
a selected number of the remaining block elements, while the
expressions for all of them are provided in [34]. We begin by
computing Φ(1,1)

k,1 . Proceeding from (41)

Φ̇
(1,1)
k,1 = F(1,:)Φ(:,1)

k,1

= [−�Ik ω×� −I3 03 03 03 03 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ(1,1)
k,1

03

Φ(3,1)
k,1

03

Φ(5,1)
k,1

03

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −�Ik ω×�Φ(1,1)
k,1 (45)

with the initial condition Φ(1,1)
1,1 = I3 . Thus, the solution for

Φ(1,1)
k,1 is computed as

Φ(1,1)
k,1 = Φ(1,1)

1,1 exp
(∫ tk

t1

−�Iτ ω×�dτ

)

= exp
(
−

∫ tk

t1

�Iτ ω×�dτ

)
= C(Ik q̄I1 ). (46)

We follow an analogous approach to compute the other elements
pertinent to the observability study (see Appendix B), i.e.,

Φ(1,2)
k,1 = −

∫ tk

t1

C
(
Ik q̄Iτ

)
dτ (47)

Φ(5,1)
k,1 =�GpI1 + GvI1 δtk − 1

2
Ggδt2k − GpIk

×�C(G q̄I1 ) (48)

Φ(5,2)
k,1 =

∫ tk

t1

∫ θ

t1

C(G q̄Is
)�Is a×�

∫ s

t1

C(Is q̄Iτ
) dτ dsdθ (49)

Φ(5,4)
k,1 = −

∫ tk

t1

∫ s

t1

C(G q̄Iτ
) dτ ds. (50)

Using these expressions, we can obtain the kth block row, Mk ,
of M, for any k > 1, as follows [see (39), (40), (44), and
(46)–(50)]:

Mk = HkΦk,1

= Γ1 [Γ2 Γ3 −δtkI3 Γ4 −I3 I3 ] (51)

where

Γ1 = Hc,kC
(
Ik q̄G

)
(52)

Γ2 = �G f − GpI1 − GvI1 δtk +
1
2

Gg δt2k ×�CT
(
I1 q̄G

)
(53)

Γ3 = �G f − GpIk
×�CT (Ik q̄G )Φ(1,2)

k,1 − Φ(5,2)
k,1 (54)

Γ4 = −Φ(5,4)
k,1 . (55)

We note that for generic motions (i.e., ω �= 03×1 ,a �= 03×1)
Φ(1,2)

k,1 ,Φ(5,2)
k,1 ,Φ(5,4)

k,1 , and thus, Γ3 and Γ4 are time varying
matrices, whose columns are linearly independent. The structure

of the remaining block elements of Mk [see (51)] is employed
to form a basis of the nullspace of M analytically.

At this point, we state the main result of our analysis:
Theorem 1: The right nullspace N1 of the observability

matrix M(x�) [see (39)] of the linearized VINS model

M(x�)N1 = 0 (56)

is spanned by the following four directions:

N1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 C
(
I1 q̄G

)
Gg

03 03×1

03 −�GvI1 ×�Gg

03 03×1

I3 −�GpI1 ×�Gg

I3 −�G f ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= [Nt,1 | Nr,1 ]. (57)

Proof: The fact that N1 is indeed the right nullspace of
M(x�) can be verified by multiplying each of its block rows
[see (51)] with Nt,1 and Nr,1 in (57). Specifically

MkNt,1 = Γ1 [Γ2 Γ3 −δtkI3 Γ4 −I3 I3 ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03

03

03

03

I3

I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Γ1(−I3 + I3) = 02×3 (58)

while

MkNr,1 = Γ1 [Γ2 Γ3 −δtkI3 Γ4 −I3 I3 ]

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
(
I1 q̄G

)
Gg

03×1

−�GvI1 ×�Gg

03×1

−�GpI1 ×�Gg

−�G f ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Γ1(�G f − GpI1 − GvI1 δtk +
1
2

Gg δt2k ×�Gg

+ �GvI1 δtk + GpI1 − G f ×�Gg)

= Γ1
(
�Gg×�Gg

) 1
2
δt2k = 02×1 .

Since MkNt,1 = 0 and MkNr,1 = 0, ∀k ≥ 1, it follows that
MN1 = 0. Hence, N1 belongs to the right nullspace of M. The
fact that the right nullspace contains only the four directions of
N1 follows from the structure of Γ3 and Γ4 , which are full rank
and time varying (see (54), (55), and [41]). �

Remark 1: The 18 × 3 block column Nt,1 corresponds to
global translations, i.e., translating both the sensing platform
and the landmark by the same amount.
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Remark 2: The 18 × 1 column Nr,1 corresponds to global
rotations of the sensing platform and the landmark about the
gravity vector.

B. Observability Analysis of the EKF Linearized VINS Model

Ideally, any VINS estimator should employ a linearized sys-
tem with an unobservable subspace that matches the true unob-
servable directions (57), both in number and structure. However,
when linearizing about the estimated state, x̂, the observability
matrix, M (x̂), gains rank due to errors in the state estimates
across time [34].

In particular, the last two block elements of Mk comprise
identity matrices (i.e., are not a function of the linearization
point), and thus, the nullspace directions corresponding to trans-
lation are preserved, i.e.,

M (x̂)Nt,1 = 0. (59)

In contrast, in general, M (x̂) N̂r,1 �= 0, since N̂r,1 as well as
Γ̂2 , and thus, M (x̂) depend on the linearization point [see (51),
(53), and (57)]. That is, as different state estimates (i.e., the prior
and posterior) are utilized when evaluating the system and mea-
surement Jacobians, the directions in which the estimator gains
information are altered. This causes the vector corresponding to
global rotations, N̂r,1 , not to be in the nullspace of M (x̂), and
as a result the rank of the observability matrix corresponding to
the EKF linearized VINS model increases by one. This effect
can also be easily verified by numerically evaluating the observ-
ability matrix during any experiment. The approach to address
this issue is described in the following section.

V. OC-VINS: ALGORITHM DESCRIPTION

In order to address the EKF VINS inconsistency problem,
we must ensure that (56) is satisfied for every block row of
M (x̂) when the state estimates are used for computing Ĥk , and
Φ̂k,1 ,∀k > 0, i.e.,

Ĥk Φ̂k,1N̂1 = 0, ∀k > 0. (60)

One way to enforce this is by requiring that at each time step,
Φ̂k+1,k and Ĥk satisfy the following constraints:

N̂k+1 = Φ̂k+1,kN̂k (61a)

ĤkN̂k = 0, ∀k > 0 (61b)

where N̂k , k > 0 is computed analytically (see Section V-A).
This can be accomplished by appropriately modifying Φ̂k+1,k

(see Section V-B) and Ĥk (see Section V-C).
In particular, rather than changing the linearization points ex-

plicitly (e.g., as in [23]), we maintain the nullspace, N̂k , at each
time step, and use it to enforce the unobservable directions. This
has the benefit of allowing us to linearize with the most accurate
state estimates, hence, reducing the linearization error, while
still explicitly adhering to the system observability properties.

A. Nullspace Determination

The initial nullspace is analytically defined as [see (57)]

N̂1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 C
(
I ˆ̄qG,1|0

)
Gg

03 03×1

03 −�G v̂I ,1|0 ×�Gg

03 03×1

I3 −�G p̂I ,1|0 ×�Gg

I3 −�G f̂1,1|0 ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (62)

At subsequent time steps, the nullspace is augmented to include
additional block-rows corresponding to each new DF in the filter
state, i.e.,

N̂k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03 C
(
I ˆ̄qG,k |k−1

)
Gg

03 03×1

03 −�G v̂I ,k |k−1 ×�Gg

03 03×1

I3 −�G p̂I ,k |k−1 ×�Gg

I3 −�G f̂1,k |k−�1 ×�Gg

...
...

I3 −�G f̂N,k |k−�N
×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
N̂t,k | N̂r,k

]

(63)
where the block-row N̂fi

= [ I3 −�G f̂i,k |k−�i
×�Gg ], i =

1 . . . N , corresponds to the ith feature in the map, and is a func-
tion of the feature estimate G f̂i,k |k−�i

at the time-step k − �i , it
was initialized.
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B. Modification of the State Transition Matrix Φ

During the covariance propagation step, we must ensure that
N̂k+1 = Φ̂k+1,kN̂k , or equivalently

N̂t,k+1 = Φ̂k+1,kN̂t,k (64)

N̂r,k+1 = Φ̂k+1,kN̂r,k . (65)

We note that the constraint involving N̂t,k and N̂t,k+1 is au-
tomatically satisfied due to the structure of Φ̂k+1,k [see (44)
and (63)], so we focus on N̂r,k . Specifically, we rewrite (65)
element-wise as follows:6

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
(
I ˆ̄qG,k+1|k

)
Gg

03×1

−�G v̂I ,k+1|k ×�Gg

03×1

−�G p̂I ,k+1|k ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ̂
(1,1)
k+1,1 Φ̂

(1,2)
k+1,1 03 03 03

03 I3 03 03 03

Φ̂
(3,1)
k+1,1 Φ̂

(3,2)
k+1,1 I3 Φ̂

(3,4)
k+1,1 03

03 03 03 I3 03

Φ̂
(5,1)
k+1,1 Φ̂

(5,2)
k+1,1 δtI3 Φ̂

(5,4)
k+1,1 I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C
(
I ˆ̄qG,k |k−1

)
Gg

03×1

−�G v̂I ,k |k−1 ×�Gg

03×1

−�G p̂I ,k |k−1 ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(66)

and collect the constraints resulting from each block row of the
aforementioned vector. Specifically, from the first block row, we
have

C
(
I ˆ̄qG,k+1|k

)
Gg = Φ̂

(1,1)
k+1,1C

(
I ˆ̄qG,k |k−1

)
Gg. (67)

As we saw in Section IV-A [see (46)], the 3 × 3 matrix Φ̂
(1,1)
k+1,k

is a rotation matrix. Let Φ̂
(1,1)
k+1,k be the rotation matrix obtained

by integrating the gyroscopes, which is described by the quater-
nion ˆ̄q. That is

C(ˆ̄q) = Φ̂
(1,1)
k+1,k . (68)

We seek a perturbed q̄� as a solution, to the optimization problem

minimize
q̄

J(q̄) =
1
2
‖q̄ − ˆ̄q‖2

2

subject to C
(
I ˆ̄qG,k+1|k

)
Gg = C(q̄)C

(
I ˆ̄qG,k |k−1

)
Gg

q̄T q̄ = 1. (69)

As we show in Appendix C, we can compute the solution to
(69) in closed-form, and determine the observability constrained

6Note that due to the structure of the matrices Φk+1 ,k [see (44)], Nr,k , and
Nr,k+1 [see (63)], we only need to consider the first five block elements of (65),
while the equalities for the remaining ones, i.e., the elements corresponding to
the features, are automatically satisfied.

Φ̂
(1,1)�
k+1,k as

Φ̂
(1,1)�
k+1,k = C(q̄�). (70)

The requirements for the third- and fifth-block rows are

Φ̂
(3,1)
k+1,1C

(
I ˆ̄qG,k |k−1

)
Gg = �G v̂I ,k |k−1 − G v̂I ,k+1|k ×�Gg

(71)

Φ̂
(5,1)
k+1,1C

(
I ˆ̄qG,k |k−1

)
Gg = �δtG v̂I ,k |k−1 + G p̂I ,k |k−1 ×�Gg

− �G p̂I ,k+1|k ×�Gg (72)

both of which are in the form Au = w, where u and w are
nullspace vector elements that are fixed. In order to ensure that
(71) and (72) are satisfied, we seek to find a perturbed A� , for

A = Φ̂
(3,1)
k+1,1 and A = Φ̂

(5,1)
k+1,1 that fulfills the constraint. To

compute the minimum perturbation, A� , of A, we formulate
the following minimization problem:

minimize
A�

‖A� − A‖2
F

subject to A�u = w (73)

where ‖ · ‖F denotes the Frobenius matrix norm. After em-
ploying the method of Lagrange multipliers, and solving the
corresponding KKT optimality conditions, the optimal A� that
fulfills (73) is

A� = A − (Au − w)(uT u)−1uT . (74)

Once we have computed the modified Φ̂
(1,1)�
k+1,1 from (70), and

Φ̂
(3,1)�
k+1,1 and Φ̂

(5,1)�
k+1,1 from (73) and (74), we update the corre-

sponding elements of Φ̂k+1,k and proceed with the covariance
propagation (see Section III-A).

C. Modification of the Measurement Jacobian H

During each update step, we seek to satisfy ĤkN̂k = 0 [see
(61b)]. In turn, this means that

ĤkN̂t,k = 0 (75)

ĤkN̂r,k = 0 (76)

must both hold.
Expressing (75) for a single point, we have [see (29) and (63)]

Ĥc

[
Ĥq̄ 03×9 Ĥp | Ĥf

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03

03

03

03

I3

I3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 (77)

which is satisfied automatically, since Ĥp = −Ĥf [see (32) and
(33)]. Hence, the nullspace direction corresponding to transla-
tion is not violated.
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Expanding the second constraint (76), we have

Ĥc

[
Ĥq̄ 03×9 Ĥp | Ĥf

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C
(
I ˆ̄qG,k |k−1

)
Gg

03×1

−�G v̂I ,k |k−1 ×�Gg

03×1

−�G p̂I ,k |k−1 ×�Gg

−�G f̂k |k−� ×�Gg

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.

(78)
Since Ĥp = −Ĥf , (78) is equivalent to satisfying the following
relationship:

[
Ĥcq̄ Ĥcp

]
[

C
(
I ˆ̄qG,k |k−1

)
Gg

�G f̂k |k−� − G p̂I ,k |k−1 ×�Gg

]
= 0 (79)

with Ĥcq̄ = ĤcĤq̄ , and Ĥcp = ĤcĤp . Note that (79) is a
constraint of the form Au = 0, where u is a function of the
nullspace elements, and hence, is fixed, while A comprises
block elements of the measurement Jacobian.

We compute the optimal A� that satisfies (79) by formulat-
ing an optimization problem similar to (73) for w = 0, whose
optimal solution [see (74)] A� is computed as

A� = A − Au(uT u)−1uT . (80)

After determining the optimal A� , we recover the Jacobian
elements as

Ĥ�
cq̄ = A(1:2,1:3)� (81)

Ĥ�
cp = A(1:2,4:6)� (82)

Ĥ�
cf = −Ĥ�

cp (83)

where the superscripts (i:j, m:n) denote the submatrix spanning
rows i to j and columns m to n. Hence, the modified observation
matrix is

Ĥ�
k =

[
Ĥ�

cq̄ 02×9 Ĥ�
cp Ĥ�

cf

]
. (84)

Having computed the modified measurement Jacobian, we
proceed with the filter update as described in Section III-B. By
following this process, we ensure that the EKF does not gain
information along the unobservable directions of the system.

VI. SIMULATIONS

We conducted Monte-Carlo simulations to evaluate the im-
pact of the proposed OC-VINS method on estimator consistency.
We applied the proposed methodology to two VINS systems:
1) V-SLAM (see Section VI-A) and 2) the MSC-KF, which
performs visual-inertial localization without constructing a map
(see Section VI-B).

We employed two error metrics in order to evaluate the consis-
tency and the accuracy of the considered estimators, namely, the
normalized estimation error squared (NEES) and the root mean
squared error (RMSE) [18]. For each Monte-Carlo simulation,

i, i = 1, . . . ,Ms , we compute the pose estimate at each time-
step j, comprising the orientation error δθij and the position
error p̃ij [see (16)]. We compute the NEES for each estimator
at each time-step j, averaged over all Monte-Carlo simulations
as

θNEESj
=

1
Ms

Ms∑
i=1

δθT
ijP

−1
δθi j

δθij (85)

pNEESj
=

1
Ms

Ms∑
i=1

p̃T
ijP

−1
p̃ i j

p̃ij (86)

where Pδθi j
and Pp̃ i j

are the 3 × 3 covariance matrices cor-
responding to orientation and position, respectively, which are
computed by the filter at the jth time step of the ith simulation.
The RMSE at each time step is computed as

θRMSEj
=

√√√√ 1
Ms

Ms∑
i=1

δθT
ijδθij (87)

pRMSEj
=

√√√√ 1
Ms

Ms∑
i=1

p̃T
ij p̃ij . (88)

These metrics are used in both simulations (see Figs. 2 and 3).

A. Simulation 1: Application of the Proposed Framework to
V-SLAM

In this section, we present the results of applying our pro-
posed OC-VINS to V-SLAM, which we term OC-V-SLAM.
We compared its performance with the standard V-SLAM (Std-
V-SLAM), as well as the ideal V-SLAM that linearizes about the
true state.7 Specifically, we computed the RMSE and NEES over
20 trials in which the camera-IMU platform traversed a circular
trajectory of radius 5 m at an average velocity of 60 cm/s. The
camera8 observed visual features distributed on the interior wall
of a circumscribing cylinder with radius 6 m and height 2 m [see
Fig. 2(c)]. The effect of inconsistency during a single run is de-
picted in Fig. 2(f), where the error and corresponding 3σ bounds
of uncertainty are plotted for the rotation about the gravity vec-
tor. As evident, the Std-V-SLAM gains spurious information,
hence, reducing its 3σ bounds of uncertainty, while the Ideal-V-
SLAM and the OC-V-SLAM do not. The Std-V-SLAM becomes
inconsistent on this run as the orientation errors fall outside of
the uncertainty bounds, while both the Ideal-V-SLAM and the
OC-V-SLAM remain consistent. Fig. 2 also displays the RMSE
and NEES plots, in which we observe that the OC-V-SLAM
attains orientation accuracy and consistency levels similar
to the Ideal-V-SLAM, while significantly outperforming the
Std-V-SLAM [see Fig. 2(a) and (b)]. Similarly, the OC-V-SLAM
obtains better positioning accuracy compared with the
Std-V-SLAM [see Fig. 2(d) and (e)].

7Since the ideal V-SLAM has access to the true state, it is not realizable in
practice, but we include it here as a baseline comparison.

8The camera had 45◦ field of view, with σpx = 1px, while the IMU was
modeled after MEMS quality sensors.
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Fig. 2. Simulation 1: The RMSE and NEES errors for orientation (a)–(b) and position (d)–(e) plotted for all three filters, averaged per time step over 20
Monte-Carlo trials. (c) Camera-IMU trajectory and 3-D features. (f) Error and 3σ bounds for the rotation about the gravity vector, plotted for the first 100 s of a
representative run.

Fig. 3. Simulation 2: The average RMSE and NEES over 30 Monte-Carlo simulation trials for orientation (a)–(b) and position (c)–(d). Note that the OC-MSC-KF
attains performance almost indistinguishable to the Ideal-MSC-KF.

B. Simulation 2: Application of the Proposed Framework
to MSC-KF

We applied our OC-VINS methodology to the MSC-KF [11],
[22], which we term the OC-MSC-KF. In the MSC-KF frame-
work, all the measurements to a given OF are incorporated
during a single update step of the filter, after which each OF is
marginalized. Hence, in the OC-MSC-KF, we do not maintain
the block-rows of the nullspace corresponding to the features
[i.e., Nfi

, i = 1, . . . , N ; see (63)]. Instead, we propagate for-
ward in time only the portion of the nullspace corresponding

to the sensor-platform state, and we form the feature nullspace
block row for each feature only when it is processed in an update.

We conducted Monte-Carlo simulations to evaluate the con-
sistency of the proposed method applied to the MSC-KF. Specif-
ically, we compared the standard MSC-KF (Std-MSC-KF), with
the observability constrained MSC-KF (OC-MSC-KF), which
is obtained by applying the methodology described in Section V,
as well as the Ideal-MSC-KF, whose Jacobians are linearized
at the true states, which we use as a benchmark. We evaluated
the RMSE and NEES over 30 trials (see Fig. 3) in which the
camera-IMU platform traversed a circular trajectory of radius
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Fig. 4. (a) Experimental testbed comprises a light-weight InterSense NavChip
IMU and a PointGrey Chameleon Camera. IMU signals are sampled at a fre-
quency of 100 Hz, while camera images are acquired at 7.5 Hz. The dimensions
of the sensing package are approximately 6 cm tall, by 5 cm wide, by 8 cm deep.
(b) AscTech Pelican quadrotor on which the camera-IMU package was mounted
during the indoor experiments (see Sections VII-B and C).

5 m at an average speed of 60 cm/s and observed 50 randomly
distributed features per image. As evident, the OC-MSC-KF
outperforms the Std-MSC-KF and attains performance almost
indistinguishable from the Ideal-MSC-KF in terms of RMSE
and NEES.

VII. EXPERIMENTAL RESULTS

The proposed OC-VINS framework has been validated ex-
perimentally and compared with standard VINS approaches.
Specifically, we evaluated the performance of OC-V-SLAM
(see Section VII-B) and OC-MSC-KF (see Sections VII-C and
VII-D) on both indoor and outdoor datasets. In our experimen-
tal setup, we utilized a light-weight sensing platform comprised
of an InterSense NavChip IMU and a PointGrey Chameleon
camera (see Fig. 4). During the indoor experimental tests (see

Sections VII-B and C), the sensing platform was mounted on
an Ascending Technologies Pelican quadrotor equipped with
a VersaLogic Core 2 Duo single board computer. For the out-
door dataset, the sensing platform was head-mounted on a bi-
cycle helmet (see Section VII-D) and interfaced to a handheld
Sony Vaio. We hereafter provide an overview of the system
implementation, along with a discussion of the experimental
setup and results.

A. Implementation Remarks

The image processing is separated into two components: One
to extract and track OFs over short time windows, and one to
extract and match DFs to use in V-SLAM.

The OFs are computed from images using the Shi–
Tomasi corner detector [42]. After acquiring image k, it
is inserted into a sliding-window buffer of m images,
{k − m + 1, k − m + 2, . . . , k}. We then extract features from
the first image in the window and track them pairwise through
the window using the KLT tracking algorithm [32]. To remove
outliers from the resulting tracks, we use a two-point algorithm
to find the essential matrix between successive frames [47].
Specifically, given the filter’s estimated rotation (from the gyro-
scopes’ measurements) between image i and j, i ˆ̄qj , we estimate
the essential matrix from only two feature correspondences.
This approach is more robust than the five-point algorithm [43]
because it provides two solutions for the essential matrix rather
than up to ten. Moreover, it requires only two data points, and
thus, it reaches a consensus with fewer hypotheses when used
in a RANSAC framework [44].

The DFs are extracted using SIFT descriptors [33]. To identify
global features observed from several different images, we first
utilize a vocabulary tree (VT) structure for image matching [45].
Specifically, for an image taken at time k, the VT is used to select
which image(s) taken at times 1, 2, . . . , k − 1 correspond to the
same physical scene. Among those images that the VT reports
as potential matches, the SIFT descriptors from each of them
are compared with those from image k to create tentative feature
correspondences. The epipolar constraint is then enforced using
RANSAC and Nister’s five-point algorithm [43] to eliminate
outliers. It is important to note that the images used to construct
the VT are not taken along our experimental trajectory, but
rather are randomly selected from a set of representative images
that were previously collected in similar environments. This is
beneficial, since it allows us to build the VT once, offline, and
reuse it during experimentation.

B. Experiment 1: Indoor Validation of OC-V-SLAM

In the first experimental trial, we compared the performance
of OC-V-SLAM with that of Std-V-SLAM on an indoor trajec-
tory. The sensing platform traveled a total distance of 172.5 m,
covering three loops over two floors in Walter Library, Univer-
sity of Minnesota. The quadrotor was returned to its starting
location at the end of the trajectory, to provide a quantitative
characterization of the achieved accuracy.

Opportunistic features were tracked using a window of m =
10 images. Every m camera frames, up to 30 features from all
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Fig. 5. Experiment 1: Estimated 3-D trajectory over the three traversals of the two floors of the building, along with the estimated positions of the DFs. (a)
Projection on the x- and y-axes, (b) projection on the y- and z-axes, and (c) 3-D view of the overall trajectory and the estimated features.

Fig. 6. Experiment 1: Comparison of the estimated 3σ error bounds for atti-
tude and position between Std-V-SLAM and OC-V-SLAM.

available DFs are initialized and the state vector is augmented
with their 3-D coordinates. The process of initializing DFs [34]
is continued until the occurrence of the first loop closure; from
that point on, no new DFs are considered and the filter relies
upon the reobservation of previously initialized DFs and the
processing of OFs.

For both the Std-V-SLAM and the OC-V-SLAM, the final po-
sition error was approximately 34 cm, which is less than 0.2% of
the total distance traveled (see Fig. 5). However, the estimated
covariances from the Std-V-SLAM are smaller than those from
the OC-V-SLAM (see Fig. 6). Furthermore, uncertainty esti-
mates from the Std-V-SLAM decreased in directions that are
unobservable (i.e., rotations about the gravity vector); this vi-
olates the observability properties of the system and demon-
strates that spurious information is injected to the filter. In
particular, Fig. 6(a) highlights the difference in estimated yaw
uncertainty between the OC-V-SLAM and the Std-V-SLAM.
In contrast to the OC-V-SLAM, the Std-V-SLAM covariance
rapidly decreases, although no absolute heading information is

provided by the system. Similarly, large differences can be seen
in the estimated covariance for the x-axis position estimates
[see Fig. 6(b)]. The Std-V-SLAM estimates a much smaller un-
certainty than the OC-V-SLAM, supporting the claim that the
Std-V-SLAM tends to be inconsistent.

C. Experiment 2: Indoor Validation of the OC-MSC-KF

We validated the proposed OC-MSC-KF on real-world data.
The first test comprised a trajectory 50 m in length that cov-
ered three loops in an indoor area, after which the testbed was
returned to its initial position. At the end of the trajectory, the
Std-MSC-KF had a position error of 18.73 cm, while the fi-
nal error for the OC-MSC-KF was 16.39 cm (approximately
0.38% and 0.33% of the distance traveled, respectively). In or-
der to assess the impact of inconsistency on the orientation
estimates of both methods, we used as ground truth the rota-
tion between the first and last images computed independently
using BLS and feature point matches. The Std-MSC-KF had
final orientation error [ 0.15 −0.23 −5.13 ] degrees for roll,
pitch, and yaw (rpy), while the rpy errors for the OC-MSC-
KF were [ 0.19 −0.20 −1.32 ] degrees, respectively. Note
that although the roll and pitch estimates for the two filters are
of comparable accuracy, the error in the yaw estimate of the
OC-MSC-KF is almost four times smaller than that of the
Std-MSC-KF.

In addition to achieving higher accuracy, for yaw in particular,
the OC-MSC-KF is more conservative since it strictly adheres
to the unobservable directions of the system. This is evident in
both the position and orientation uncertainties. We plot the y-axis
position and yaw angle uncertainties in Fig. 7, as representative
results. Most notably, the yaw uncertainty of the OC-MSC-KF
increases and reaches approximately 1.13◦ (3σ), while for the
Std-MSC-KF, it reduces to 0.87◦ (3σ). This indicates that the
Std-MSC-KF gains spurious (nonexistent) heading information,
which leads to inconsistency. Finally, in Fig. 8, we show the 3-D
trajectory along with an overhead (x–y) view. It is evident that
the Std-MSC-KF yaw error impacts the position accuracy, as
the Std-MSC-KF trajectory exhibits a rotation with respect to
the OC-MSC-KF.
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Fig. 7. Experiment 2: (a) Position and (b) orientation uncertainties (3σ
bounds) for the yaw angle and the y-axis, which demonstrate that the Std-
MSC-KF gains spurious information about its orientation.

Fig. 8. Experiment 2: (a) 3-D trajectory and (b) corresponding overhead (x–y)
view.

D. Experiment 3: Outdoor Validation of the OC-MSC-KF

In our final experimental trial, we tested the OC-MSC-KF
on a large outdoor dataset (approximately 1.5 km in length).
Fig. 9(a) depicts the OC-MSC-KF (red) and the Std-MSC-KF
(blue) trajectory estimates, along with position markers from
a low-grade onboard GPS receiver (green). In order to assess
the accuracy of both filters, the estimates are overlaid on an
overhead image taken from Google-Earth.

Fig. 9(b) depicts a zoomed-in plot of the starting location
(center) for both filters, along with the final position estimates.
In order to evaluate the accuracy of the proposed method, the
sensing platform was returned to its starting location at the end
of the trajectory. The OC-MSC-KF obtains a final position error
of 4.38 m (approximately 0.3% of the distance travelled), while
the Std-MSC-KF obtains a final position error of 10.97 m. This
represents an improvement in performance of approximately
60%.

The filters’ performance is also illustrated visually in Fig. 9(c)
which shows a zoomed-in plot of the turn-around point. The OC-
MSC-KF estimates remain on the light-brown portion of the

ground (which is the sidewalk), which coincides with the true
trajectory. In contrast, the Std-MSC-KF estimates drift over the
dark triangles in the image, which are wading pools filled with
water. This shifting of the trajectory represents a slight rotation
around the vertical axis, indicating a violation of the rotation
nullspace direction Nr .

Fig. 10 depicts the uncertainty in yaw (corresponding to rota-
tions about the gravity vector) and along the x-axis (perpendic-
ular to the direction of motion). It is clear that the Std-MSC-KF
reduces its uncertainty in its heading direction, indicating that
the filter gains spurious information, while for the OC-MSC-
KF, the uncertainty in yaw continuously increases, as it should
in the absence of absolute heading information.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we studied one of the root causes of incon-
sistency for linearized estimators applied to VINS. We were
motivated by the fact that in navigation applications, it is of
paramount importance to have not only a precise pose estimate
at each time instant but an accurate assessment of the corre-
sponding pose estimate uncertainty as well.

Since both the accuracy and attributed uncertainty of an es-
timate are affected by the directions in which information can
be injected into the system, we began by analytically studying
the observability properties of VINS. We corroborated earlier
findings that the true VINS model has four unobservable direc-
tions (corresponding to three d.o.f. global translations and one
d.o.f. rotation about the gravity vector) and, for the first time,
derived expressions for describing them analytically. Moreover,
we showed that for standard filtering approaches, such as the
EKF, linearization errors can alter the system’s observability
properties, both in the structure and number of the unobservable
directions, and cause the estimator to acquire spurious infor-
mation about its state. This, in effect, erroneously reduces the
estimator uncertainty, making it overconfident, and causes drift
along the unobservable directions of the system.

Based on our analysis, we proposed an estimator modifica-
tion that reduces inconsistency by ensuring the VINS observ-
ability properties are upheld within the framework of existing
linearized estimators. Specifically, we proposed simple rules to
modify the Jacobians of the system and measurement functions,
which explicitly enforce that no information would be gained
along the unobservable directions. This strategy required main-
taining the nullspace of the system’s observability matrix, which
we provide in closed form as a function of the state estimates.

In order to validate the accuracy and consistency of the pro-
posed OC-VINS framework, we evaluated the performance of
our method on simulated and real-world data. Specifically, in
simulation, we studied the NEES and RMSE for three ap-
proaches: 1) the standard VINS method that linearizes at the
current state estimate, 2) the ideal VINS method that linearizes
at the true state, and 3) the OC-VINS which ensures the ob-
servability properties of the system are respected. We observed
that the standard VINS approach tends to become inconsistent,
and in particular, it reduces its uncertainty about global yaw
(i.e., rotation about the gravity vector) over time. In contrast,
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Fig. 9. Experiment 3: (a) Outdoor experimental trajectory covering 1.5 km across the University of Minnesota campus. The red (blue) line denotes the OC-
MSC-KF (Std-MSC-KF) estimated trajectory. The green circles denote a low-quality GPS-based estimate of the position across the trajectory. (b) Zoom-in view
of the beginning/end of the run. Both filters start with the same initial pose estimate; however, the error for the Std-MSC-KF at the end of the run is 10.97 m, while
for the OC-MSC-KF, the final error is 4.38 m (an improvement of almost 60%). Furthermore, the final error for the OC-MSC-KF is approximately 0.3% of the
distance traveled. (c) Zoomed-in view of the turn-around point. The Std-MSC-KF trajectory is shifted compared with the OC-MSC-KF, which remains on the path
(light-brown region).

Fig. 10. Experiment 3: (a) Orientation uncertainty about the vertical axis (z).
Since rotations about gravity are unobservable, the Std-MSC-KF should not
gain any information in this direction. However, as evident from this plot, the
Std-MSC-KF uncertainty reduces, indicating inconsistency. For the OC-MSC-
KF, the uncertainty does not decrease, indicating that the OC-MSC-KF respects
the unobservable system directions. (b) Position uncertainty along the x-axis
(perpendicular to the direction of motion) for the Std-MSC-KF and OC-MSC-
KF, respectively. The OC-MSC-KF maintains more conservative estimates for
position, indicating that the Std-MSC-KF may be inconsistent.

both the ideal VINS method, and the proposed OC-VINS, re-
spect the observability properties of the system and do not gain
information about global yaw. We corroborated this analysis
through our experimental trials, in which we demonstrated that

the proposed approach has improved the consistency perfor-
mance compared with standard VINS methods. In particular, it
achieves smaller pose-estimate error and maintains more con-
servative uncertainty bounds primarily due to the fact that it
respects the observability properties of the system and does not
acquire information along the direction of rotation about gravity.

In our future work, we are interested in investigating addi-
tional sources of the estimator inconsistency. In particular, we
plan to focus on the case when the true pdf of the state has mul-
tiple modes, while we attempt to approximate it as unimodal.

APPENDIX A

As the camera-IMU platform moves into new environments,
new features must be added into the map. This entails inter-
secting the bearing measurements from multiple camera ob-
servations to obtain an initial estimate of each new feature’s
3-D location, as well as computing the initial covariance and
cross-correlation between the new landmark estimate and the
state. We solve this as a minimization problem over a parameter
vector x = [xT

s | fT ]T , where xs = [xT
s,1 · · · xT

s,m ]T

is the vector of m camera poses from which the new landmark,
f , was observed. Specifically, we minimize the following cost
function:

C (x) =
1
2
{(x − x̂)T

[
P−1

ss 0

0 0

]
(x − x̂)

+
m∑

i=1

(zi − hi (x))T R−1
i (zi − hi (x))} (89)
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whereP−1
ss is the information matrix (prior) of the state estimates

across all poses obtained from the filter.9 The fact that we have
no initial information about the feature location is denoted by
the block (2,2) element of the prior information being equal to
zero. The m measurements zi , i = 1 . . .m, are the perspective
projection observations of the point f [see (27)], which are
corrupted by zero-mean white Gaussian noise with covariance
Ri = σ2

η I2 .
We obtain an initial guess for the landmark location using any

intersection method, and then, we iteratively minimize (89). At
each iteration, we need to solve the following linear system of
equations:
[
P−1

ss + HT
s R−1Hs HT

s R−1Hf

HT
f R−1Hs HT

f R−1Hf

][
x̃s

f̃

]
=

[
HT

s R−1

HT
f R−1

]
z̃

⇔
[

A U

UT C

]
x̃ =

[
D

E

]
z̃ (90)

where x̃s and f̃ are the unknown correction terms for which
we are solving, and z̃ is the vector of stacked measurement
residuals, i.e.,

z̃ = z − h (x)

=
[
zT

1 · · · zT
m

]T −
[
h1(x)T · · · hm (x)T ]T (91)

R = diag (R1 , . . . ,Rm ), and Hf = ∇f h (x) and Hs =
∇xs

h (x) are the Jacobians of the stacked measurement vec-
tor, h (x), with respect to the feature position and camera poses,
respectively [see (29)].

Applying the Sherman–Morrison–Woodbury matrix identity,
we solve the system by inverting the matrix on the left-hand side
of (90) as

[
A B

BT C

]−1

=

[
Υ1 Υ2

ΥT
2 Υ4

]
(92)

where

Υ1 =
(
A − BC−1BT

)−1

= Pss − PssHT
s

· {M−1 − M−1Hf

(
HT

f M−1Hf

)−1
HT

f M−1}HsPss

(93)

Υ2 = −
(
A − BC−1BT

)−1
BC−1

= −PssHT
s M−1Hf

(
HT

f M−1Hf

)−1
(94)

Υ4 = C−1BT
(
A − BC−1BT

)−1
BC−1 + C−1

=
(
HT

f M−1Hf

)−1
(95)

and, M = HsPssHT
s + R.

9We employ stochastic cloning over m time steps to ensure that the cross-
correlations between the camera poses are properly accounted for [46].

During each iteration, the parameter vector is updated as

x⊕ = x� +

[
Υ1 Υ2

ΥT
2 Υ4

][
D

E

]
z̃. (96)

After the minimization process converges, we compute the pos-
terior covariance of the new state (including the initialized
feature) as

P⊕ =

[
Υ1 Υ2

ΥT
2 Υ4

]
(97)

where each element is defined in (93)–(94).

APPENDIX B

In this Appendix, we explicitly derive the block elements of
Φ employed in (47)–(50) in Section IV.

1. Structure of Φk,1

As we show in [34], Φk,1 has a specific structure compris-
ing block identity and zero matrices [see (44)], along with the
following subblocks that we show in analytic form.

2. Analytic Expression of Φ(1,2)
k,1

We begin by computing Φ(1,2)
k,1 from its definition [see (18),

(20), (41), and (42)] as follows:

Φ̇
(1,2)
k,1 = F(1,:)Φ(:,2)

k,1

= −�Ik ω̂×�Φ(1,2)
k,1 − I3

⇔ Φ̇
(1,2)
k,1 + �Ik ω̂×�Φ(1,2)

k,1 = −I3 . (98)

To solve (98), we multiply it from the left, by
exp(

∫ tk

t1
�Iτ ω̂×�dτ) to get

exp
(∫ tk

t1

�Iτ ω̂×�dτ

)
Φ̇

(1,2)
k,1

+ exp
(∫ tk

t1

�Iτ ω̂×�dτ

)
�Ik ω̂×�Φ(1,2)

k,1

= − exp
(∫ tk

t1

�Iτ ω̂×�dτ

)
=⇒

d
dt

[
exp

(∫ tk

t1

�Iτ ω̂×�dτ

)
Φ(1,2)

k,1

]

= − exp
(∫ tk

t1

�Iτ ω̂×�dτ

)
=⇒

d
dt

[
CT (Ik qI1 )Φ

(1,2)
k,1

]
= −CT (Ik qI1 ). (99)

From (99) and its initial condition Φ(1,2)
1,1 = 03

Φ(1,2)
k,1 = −C(Ik qI1 )

∫ tk

t1

CT (Iτ qI1 )dτ (100)

= −
∫ tk

t1

C(Ik qI1 )C
T (Iτ qI1 )dτ (101)
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= −
∫ tk

t1

CT (Iτ qIk
)dτ. (102)

3. Analytic Expression of Φ(5,1)
k,1

In order to compute the element Φ(5,1)
k,1 analytically, we will

require an expression for Φ(3,1)
k,1 ; hence, we begin by computing

Φ(3,1)
k,1 as follows:

Φ̇
(3,1)
k,1 = F(3,:)Φ(:,1)

k,1

= −CT (Ik qG )�Ik â×�Φ(1,1)
k,1

= −�CT (Ik qG )Ik â×�CT (Ik qG )Φ(1,1)
k,1

= −�CT (Ik qG )Ik â×�CT (Ik qG )C(Ik qI1 )

= −�G â×�C(GqI1 ) (103)

where G â := Ga + Gg [34], and the initial condition is
Φ(3,1)

1,1 = 03 . Thus

Φ(3,1)
k,1 = −

∫ tk

t1

�G â(τ)×�C(GqI1 )dτ

= −
(∫ tk

t1

�G â(τ)×�dτ

)
C(GqI1 )

= −
(∫ tk

t1

�Ga(τ) + Gg×�dτ

)
C(GqI1 )

= −�
(
GvIk

− GvI1

)
+ Ggδtk ×�C(GqI1 ) (104)

where δtk = (k − 1)δt.
We now turn our attention to Φ(5,1)

k,1 . Using the definition in
(41) and the structure of Φk,1 [see (44)], we have that

Φ̇
(5,1)
k,1 = F(5,:)Φ(:,1)

k,1 = Φ(3,1)
k,1 (105)

with initial condition Φ(5,1)
k,1 = 03 . Thus

Φ(5 ,1)
k ,1 = −

(∫ tk

t1

�
(

G vIτ − G vI1

)
+ G g (τ − t1 ) ×�dτ

)
C(G qI1 )

= −
(
�G pIk

− G pI1 − G vI1 δtk +
1
2

G g δt2
k ×�

)
C(G qI1 )

= �G pI1 + G vI1 δtk − 1
2

G g δt2
k − G pIk

×�C(G qI1 ). (106)

4. Analytic Expression for Φ(5,2)
k,1

In order to compute an analytic expression for Φ(5,2)
k,1 , we will

first need to determine the element Φ(3,2)
k,1 . Specifically

Φ̇
(3,2)
k,1 = F(3,:)Φ(:,2)

k,1

= −CT (Ik qG )�Ik â×�Φ(1,2)
k,1

= CT (Ik qG )�Ik â×�
∫ tk

t1

CT (Iτ qIk
)dτ. (107)

Using this expression and employing the initial condition
Φ(3,2)

k,1 = 03 , we obtain

Φ(3,2)
k,1 =

∫ tk

t1

CT (Is qG )�Is â×�
∫ s

t1

CT (Iτ qIs
)dτds. (108)

Now that we have an expression for Φ(3,2)
k,1 , we proceed with

the derivation of Φ(5,2)
k,1 , i.e.,

Φ̇
(5,2)
k,1 = F(5,:)Φ(:,2)

k,1 = Φ(3,2)
k,1

=
∫ tk

t1

CT (Is qG )�Is â×�
∫ s

t1

CT (Iτ qIs
)dτds (109)

with initial condition Φ(5,2)
k,1 = 03 . Thus

Φ(5,2)
k,1 =

∫ tk

t1

∫ θ

t1

CT (Is qG )�Is â×�
∫ s

t1

CT (Iτ qIs
)dτdsdθ.

(110)

5. Analytic Expression for Φ(5,4)
k,1

In order to compute Φ(5,4)
k,1 , we must first determine Φ(3,4)

k,1 :

Φ̇
(3,4)
k,1 = F(3,:)Φ(:,4)

k,1 = −CT (Ik qG ) (111)

with initial condition Φ(3,4)
1,1 = 03 . Employing this relationship,

we obtain

Φ(3,4)
k,1 = −

∫ tk

t1

CT (Iτ qG )dτ. (112)

We proceed now with the computation of Φ(5,4)
k,1 , i.e.

Φ̇
(5,4)
k,1 = F(5,:)Φ(:,4)

k,1 = Φ(3,4)
k,1

= −
∫ tk

t1

CT (Iτ qG )dτ (113)

with initial condition Φ(5,4)
k,1 = 03 . Thus

Φ(5,4)
k,1 = −

∫ tk

t1

∫ s

t1

CT (Iτ qG )dτds. (114)

APPENDIX C

We seek q̄� as a solution, to the optimization problem

minimize
q̄

J(q̄) =
1
2
‖q̄ − ˆ̄q‖2

2

subject to C
(
I ˆ̄qG,k+1|k

)
Gg = C(q̄)C

(
I ˆ̄qG,k |k−1

)
Gg

q̄T q̄ = 1. (115)

Although, q̄ ∈ R4 , we can find a more compact representation
through the feasible set of (115). Using quaternion algebra,10

10See [36] for the definition of the quaternion multiplication operation ⊗ and
its associated matrices L,R.
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we can write the first constraint equation as

C
(
I ˆ̄qG,k+1|k

)
Gg = C(q̄)C

(
I ˆ̄qG,k |k−1

)
Gg ⇔

[
C(I ˆ̄qG,k+1|k )Gg

1

]
= q̄ ⊗

[
C(I ˆ̄qG,k |k−1)Gg

1

]
⊗ q̄−1 (116)

where we have expressed the 3-D vector C(I ˆ̄qG,k |k−1)Gg as a
quaternion. Multiplying (116) from the right by q̄, we obtain

[
C(I ˆ̄qG,k+1|k )Gg

1

]
⊗ q̄ = q̄ ⊗

[
C(I ˆ̄qG,k |k−1)Gg

1

]
⇔

L
([

C(I ˆ̄qG,k+1|k )Gg

1

])
q̄ = R

([
C(I ˆ̄qG,k |k−1)Gg

1

])
q̄

(117)

where the matrix functions L (·) and R (·) denote the left- and
right-hand side quaternion multiplication matrices [36, pg. 3,
(8) and (10)]. Expanding (117) and collecting all the terms on
the left-hand side, we obtain

([
I3 − �C(I ˆ̄qG,k+1|k )Gg×� C(I ˆ̄qG,k+1|k )Gg

−(C(I ˆ̄qG,k+1|k )Gg)T 1

]

−
[
I3 + �C(I ˆ̄qG,k |k−1)Gg×� C(I ˆ̄qG,k |k−1)Gg

−(C(I ˆ̄qG,k |k−1)Gg)T 1

])
q̄ = 0.

(118)

In order to simplify our notation as we solve for q̄ in this ex-
pression, we define the following quantities:

q̄ =

[
q̄(1:3)

q̄(4)

]
(119)

u1 = C(I ˆ̄qG,k+1|k )Gg (120)

u2 = C(I ˆ̄qG,k |k−1)
Gg. (121)

Using this notation, we can write (118) as
[
−�u1 + u2 ×� (u1 − u2)

−(u1 − u2)T 0

]

︸ ︷︷ ︸
S

[
q̄(1:3)

q̄(4)

]
= 04×1 . (122)

The matrix S is of rank two, and hence, we can express q̄ as a
linear combination of any two vectors that span its nullspace.
To see this fact, we first note that S is at least rank two since its
last two columns are independent. To show it is exactly two, we
need only to find two independent nonzero vectors that belong
to its right nullspace. Two such vectors are

ξ1 =

[
u1 + u2

0

]
, ξ2 =

[
�u1 − u2 ×�(u1 + u2)

(u1 + u2)T (u1 + u2)

]
. (123)

Furthermore, it can be shown by direct computation that ξT
1 ξ2 =

0. Hence, ξ1 and ξ2 are independent.

We specify the unit vectors ξo
1 = 1

‖ξ1 ‖2
ξ1 , ξ

o
2 = 1

‖ξ2 ‖2
ξ2 , and

we note that any q̄ that satisfies S q̄ = 0, is of the following form:

q̄ = xξo
1 + yξo

2 , ∀(x, y) ∈ R, s.t. x2 + y2 = 1. (124)

Based on this expression, we return to the original cost function,
and substitute the relationship for q̄, i.e.,

J(q̄) = J(x, y) =
1
2
‖xξo

1 + yξo
2 − ˆ̄q‖2

2 (125)

= 1 − xˆ̄qT
ξo
1 − yˆ̄qT

ξo
2 . (126)

Hence, solving the optimization problem (115) is equivalent to
solving

minimize
(x,y )∈R

J(x, y) = 1 − xˆ̄qT
ξo
1 − yˆ̄qT

ξo
2 (127)

subject to x2 + y2 = 1 (128)

which can be computed in closed form as

x� =
ˆ̄qT

ξo
1√

(ˆ̄qT
ξo
1 )2 + (ˆ̄qT

ξo
2 )2

(129)

y� =
ˆ̄qT

ξo
2√

(ˆ̄qT
ξo
1 )2 + (ˆ̄qT

ξo
2 )2

. (130)

Finally, we recover the optimal quaternion as

q̄� = x�ξo
1 + y�ξo

2 . (131)
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