
networks (WSNs). Different from WSNs that rely on a fusion
center, ad hoc WSNs are robust against fusion center failures
and require only single-hop communications among neigh-
boring sensors that aim to consent on local estimates formed
over a (possibly large) geographical area. Compared to alter-
native consensus-based distributed algorithms [5], [22]–[24],
the ones in [17] offer i) optimal distributed best linear unbiased
estimators (D-BLUE) and distributed maximum likelihood
estimators (D-MLE) based on the alternating-direction method
of Lagrange multipliers; ii) guaranteed convergence to their
centralized counterparts when inter-sensor links are ideal; and
iii) provable resilience to communication and quantization
noise which causes the estimation variance of [22], [23] to
grow unbounded.

The present paper signi�cantly broadens the scope of [17]
to encompass distributed estimation ofrandomstationary and
nonstationary signals based on generallycorrelatedsensor data
using ad hoc WSNs. In this context, distributed WSN-based
estimation of stationary Markov random �eld (MRF) models
was pursued in [9]. Distributed LMMSE estimation for MRFs
was considered in [8] when sensor observations obey a linear
Gaussian model. As far as nonstationary signals are concerned,
consensus-based suboptimum (in the MSE sense) Kalman �l-
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Fig. 1. (Top) Ad hoc wireless sensor network. (Bottom) Implementation of the
D-MAP estimation algorithm.

even fast varying processes, trading off delay for MSE reduc-
tion and remaining resilient to noise (Section VI). We conclude
the paper in Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider an ad hoc WSN comprising sensors, where
only single-hop communications are allowed; i.e., the th
sensor communicates solely with nodes in its neighborhood

, and . Communication links are symmetric,
and the WSN is modelled as an undirected graph whose vertices
are the sensors and its edges represent the available links; see
Fig. 1 (top). The connectivity information is summarized in the
so called adjacency matrix for which
if , while if . Since
if and only if , it holds that ( stands for
transposition).

The WSN is deployed to i) either estimate a stationary
signal vector using sensor data , or ii) track
a generally nonstationary based on sensor observations

, where denotes discrete time. Without
loss of generality (wlog) both , and are
assumed zero mean. If these vector signals have a nonzero
mean and the nonzero mean is known, what follows applies
to the corresponding mean-compensated signals. Further, we
can compensate for the mean by adding it back to the obtained
estimates. Starting with the stationary case i) and depending
on the available a priori information sensors have about , we
distinguish between two setups.

In the � rst one, the probability density function (pdf) is
assumed known to all sensors. Conditioned on , are
further assumed independent with pdfs known

. Under these assumptions, the MAP estimator (after

using Bayes’ rule and the natural logarithm ) can be written
as

(1)

The second scenario arises when the observations adhere to
an arbitrary data model, but contrary to (1) only the � rst- and
second-order statistics of and are known; i.e., sensors know
only (cross-) covariance matrices ,

and , where con-
tains all the sensor observations. Different from
[5], [17], [24], where sensor data are assumed uncorrelated,

does not have to be block diagonal. Sensor has available
, , and . These matrices can

be acquired either from the physics of the problem, or, during
a training phase. Notwithstanding, each sensor does not have to
know the entire matrices and but only a part of them
containing of the total covariance information. When ,

, and are available at a central location, it is possible to
form the LMMSE estimator as, see e.g., [12]

(2)

We will develop distributed iterative algorithms based on
communications with one-hop neighbors that generate (local)
time iterates so that:

s1) if the th sensor knows only and , the local
iterates converge as to the global (i.e., cen-
tralized) MAP estimator, i.e., ,
where is given by (1);

s2) if and are known at the th sensor and
is full rank, then .

The MAP estimator in s1) is of particular importance for es-
timating stationary signals in generally nonlinear data models
since it is optimal in the sense of minimizing the “hit-or-miss”
Bayes risk (see, e.g., [12, p. 372]). The LMMSE estimator on
the other hand is MSE optimal within the class of linear estima-
tors; but its separate treatment is well motivated because it re-
mains applicable even if the conditional independence required
in (1) does not hold and only and are known per
sensor . Clearly, if and are jointly Gaussian, then

, and consequently scenarios s1) and s2) coin-
cide.

In a third (dynamic) scenario, all sensors wish to track a
common generally nonstationary state process that obeys the
Gauss–Markov model

(3)

where is zero-mean Gaussian with covariance
and denotes the initial state which is also zero-mean
Gaussian with covariance . Matrices and

are assumed known to all sensors. Each sensor, say
the th, observes the time series

(4)
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(9)

and let the initial values , and
be arbitrary. Under a1), a2), and assuming ideal

communication links i.e., and , the local
estimates converge to the centralized MAP estimator as

and the WSN reaches consensus; i.e.,
.

Recursions (7)–(9) constitute the D-MAP algorithm. During
the th iteration, sensor receives the noisy consensus vari-
ables from all its bridge neighbors in .
Based on these consensus variables, it updates through (7) the
Lagrange multipliers , which are then utilized to
compute via (8). Then, sensortransmits to each of its
bridge neighbors the vector . Each
bridge sensor receives the vectors

from all its neighbors and averages them after
scaling with to obtain while suppressing noise [cf.
(9)]. Notice, that bridge sensoracquires from their
neighbors during a start-up period of the WSN. This completes
the th iteration, after which all sensors intransmit
to all their neighbors , which can proceed to the st
iteration; see also Fig. 1 (bottom).

The local minimization problem in (8) is strictly convex, due
to a2) and the strict convexity of the Euclidean norm. Thus, the
optimal solution of (8) is unique and can be obtained accurately
aftersolving,e.g.,usingNewton’smethod,thenonlinearequation

(10)

Resemblance of (7)–(9) with a stochastic gradient algorithm, ex-
plains why additive noise causes to � uctuate around the
optimal solution with the magnitude of� uctuations being
proportional to the noise variance. As with D-MLE in [17], this
implies that in the presence of noise is guaranteed to be
within a ball around with high probability. Noise robust-
ness of D-MAP will be con� rmed also by simulations.

Remark 1:The distributed schemes in [5], [8], [16], [22], and
[24] require knowledge of the desired centralized estimator in
closed form. Similar to D-MLE in [17], the D-MAP algorithm in
(7)–(9) does not require a closed-form expression for the MAP
estimator. The edge of D-MAP over D-MLE is twofold: i) sim-
ilar to all Bayesian approaches D-MAP facilitates incorporation
of a priori information about the unknown; and ii) the condi-
tional independence in (1) allows for correlated sensor data (not
possible in [17] and [24]). Furthermore, the D-MAP formulation
subsumes distributed estimation of Markov random� elds [9] if

is formed so that itsth entry is the sample of the� eld mea-
sured by sensor. Although� eld estimation is beyond the scope
of this paper, the D-MAP approach here allows for distributed
� eld estimation without imposing the Markovianity assumption
in [9].

Remark 2:In case of a bridge sensor failure, D-MAP incurs
performance loss, but remains operational after the neighbors
of the failed bridge sensor modify their local recursions accord-
ingly. Speci� cally, if bridge sensor fails, then some of the
nodes in can be converted to bridges as needed, in order for
the new bridge sensor set, call it, to satisfy the properties of

. This conversion can be accommodated using the algorithm in
[21]. Then, all sensors in can modify their local recursions
(7)–(9) by adding the corresponding terms associated with the
new bridges in , and removing the ones corresponding to.
D-MAP will converge to the MAP estimate given in (1) after ex-
cluding the term associated with sensor. The same approach
can also be followed in the following distributed algorithms.

B. Linear-Gaussian and Quantized Observations

Consider as a special case the popular linear-Gaussian model
, where is deterministic, is zero-mean

Gaussian, and is zero-mean Gaussian with covariance
and uncorrelated across sensors. Clearly is Gaussian
with mean and covariance matrix . After making
the necessary substitutions in (10), the optimal solution of (8) is
now available in closed form as

Because the matrix inverse does not depend onand can be
evaluated off-line, it is clear that D-MAP is simple to implement
for the important class of linear-Gaussian models.

The next special case entails a nonlinear data model, where
due to limited sensing capabilities sensors have to rely on a
binary quantized version of to estimate ; see also [18].
Also, note that such harsh quantization allows for employment
of powerful error control codes, where many redundant bits
can be used to mitigate nonideal channel effects. Each local
quantizer, say that of theth sensor, splits the measurement
space into convex regions . Vector quantiza-
tion of yields , where denotes the
indicator function; i.e., vector has binary 0/1 entries (1 if
and only if falls in the quantization region ). The MAP
estimator can be determined as in (1), with substi-
tuted by ,
where denotes Kronecker’s delta, while

. Being the integral of a log-concave
function over the convex set , is log con-
cave. Thus, the D-MAP algorithm is still applicable despite the
fact that the centralized MAP estimator is not expressible in
closed form. The local estimate is determined from
(8) after replacing with .

Example:Consider the D-MAP estimator with sen-
sors, each quantizing as described earlier. Nodes are ran-
domly placed in the unit square [0,1] [0,1] with uniform dis-
tribution. In this and all simulations of this paper the WSN is
generated using the geometric random graph model [10], where
two sensors are able to communicate if their Euclidean distance
is less than 1/4. Sensoracquires observations andhas
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(15)

where and quantities , , and involve only
local quantities and are de� ned as

(16)

(17)

(18)

(19)

with and
, while . If links are ideal, iterates

and converge under a1) to the LMMSE esti-
mator as ; i.e., for all and , it holds

Recursive updates (13)–(15) constitute the D-LMMSE es-
timator whereby every sensor keeps track of the local es-
timate along with and the Lagrange multipliers

. Sensors update also the consensus
variables and . During the th iteration, sensor re-
ceives from all its bridge neighbors in . Based on these,
it updates its Lagrange multipliers using
(13), which are then used next to compute via (14).
After completing this iteration step, sensortransmits to each
of its neighbors the vectors and

. Each sensor receives these vec-
tors from all its neighbors , multiplies them by and
respectively, and proceeds to compute via (15). This
completes theth iteration,afterwhichall sensors inproceed to
transmit and totheirneighbors .

Because matrix is symmetric, positive de� nite and does
not depend on , can be found off-line. Hence, the com-
plexity for computing is . Actually,
for the typical case one can take advantage of the spe-
cial structure of and utilize the linear system solving proce-
dure described in, e.g., [7, p. 512] to reduce complexity down
to . Furthermore, the communication process in-
volves transmission of scalars per iteration which is
expected since the correlation information in and is
scattered across the network.

Remark 3:Relative to [8], the D-LMMSE algorithm neither
requires linearity nor Gaussianity in the data model. When the
goal in [8] is to have all sensors consent to the LMMSE esti-
mator of a common signal vector (as here), the scheme in [8]

applies as long as each sensor can exchange information with
all other sensors in the network. However, D-LMMSE guar-
antees convergence to via single-hop links. Notice also
that D-LMMSE inverts in a distributed fashion, through
the local variables which is essential since every sensor
needs to know only a portion of . A fair comparison of
[8] with the present D-LMMSE algorithm does not appear pos-
sible, since the former requires full connectivity among sensors
so that each sensor can consent to the LMMSE estimator of.
Another issue is the fact that [8] relies on inverse covariance ma-
trices which facilitates estimation but leaves open the question
of whether possible and how costly acquiring this information
is. D-LMMSE recursions appear to have similar structure with
the D-BLUE ones in [17]. However, D-LMMSE is more gen-
eral in scope because it can handle correlated sensor data and
guarantees convergence to the MSE optimal linear estimators
regardless of the underlying data model.

Algorithm 1 D-LMMSE Estimation

Initialize , and
to zero. All bridge sensors , acquire

.

for do

Bridge sensor : transmit to its
neighbors in

All : update using (13).

All : update and using (14).

All : transmit and
to each

Bridge sensors : compute and
through (15).

end for

B. D-LMMSE Estimation for the Linear Data Model

For arbitrary data models, D-LMMSE estimation requires
and at sensor . For the linear

model , however, D-LMMSE estimation is pos-
sible so long as sensorhas available only its local parameters

, and . Indeed, for the linear model (2) reduces to

(20)
Arguing as in [17, App. A and C] the LMMSE estimator in (20)
can be equivalently written as

(21)

where . Forming the augmented La-
grangian corresponding to (21) and applying the alternating-di-
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rection method of multipliers as in Appendix B, we obtain the
following.

Proposition 3: For each sensor let iterates
and be de� ned by the recursions

(22)

(23)

(24)

where . Under
ideal links and a1), and converge to the centralized
LMMSE estimator in (20) as ; i.e.,

.
Relative to Proposition 2 which requires at sensor ,

the D-LMMSE estimator for linear data models summarized in
Proposition 3 requires only and which are avail-
able at sensor .

V. NOISE ROBUST D-LMMSE

In this section we derive a provably noise resilient D-LMMSE
algorithm and analyze its convergence by studying the
and updates.

A. Multiplier-Free D-LMMSE

As a � rst step, we eliminate the Lagrange multipliers
and initialize properly recursions (13)–(15) to rewrite them as
described next (see Appendix C for the proof).

Lemma 3: Initialize (13)–(15) with

, and , with
as in (19). The local iterates in (14) and the

consensus enforcing variables in
(15) can be rewritten for as

(25)

(26)

where , and
.

Devoid of and , recursions (25) and (26) are
simpler than (13)–(15). Through (26) the consensus variables

are expressed as a weighted average of the neigh-
borhood estimates , while the constant terms

are used to initialize . As suggested by Lemma
3, the th iteration starts with all sensors receiving

from their bridge-neighbors to compute
via (25). Then, the bridge-sensors receive from their
neighbors to update using (26),

and � nally form that they transmit to their
neighbors to start the st iteration. It follows from (25) and
(26) that is updated using the consensus variables

and for , which are formed using the
local estimates of sensors in the set , that contains all
sensors within a distance of up to two hops from sensor .

B. Differences-Based Noise Resilient D-LMMSE Estimation

Recursions (25) and (26) constitute an intermediate step
based on which we build next a distributed noise-robust al-
gorithm for D-LMMSE estimation. As in [17], we replace

by the local variable . We will show that the
mean of successive differences of converges (in the
mean when the noise is zero-mean) to the LMMSE estimates;
i.e., , while
the covariance matrix of this difference remains bounded.
Intuitively, noise terms that propagate from to
cancel when considering the difference , thus
achieving the desired noise resilience. The following lemma is
the counterpart of Lemma 3 for noise-resilient operation.

Lemma 4: If and , the
second-order recursions

(27)

(28)

yield iterates and whose differences
and equal

the iterates and produced by (25) and (26), re-
spectively.

Proof: Lemma 4 holds true for , 0, since from
and we � nd that

and .
For , Lemma 4 follows by induction after subtracting the
recursion for from the one for .

Using Lemma 4 and Proposition 2 we deduce that as ,
and converge to under ideal links.

In the presence of noise, let and
. Note that equals the

th summand in (27), and replace (28) by

(29)

Notice that (27)–(28) as well as (27) and (29) produce the same
sequence of under ideal channels. However, when sensors
communicate to their neighbors the vectors and
over nonideal links the noise present per iteration is smaller than
when exchanging and sep-
arately. The steps involved in implementing locally (27) and
(29) are i) all sensors receive from
to form a (noisy) iterate ; and ii) bridge sensors re-
ceive from to form the (noisy)
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iterate . The noisy versions of (27) and (29) are

(30)

(31)
Note that is excluded from the second sum in (30) because if
the th sensor belongs also to then it maintains a noise-free
version of . Similarly, the th bridge sensor has available
locally ; thus, is excluded from the second sum-
mation in (31), The local recursions (30) and (31) form the
noise resilient (R) D-LMMSE algorithm. Both RD-LMMSE
here and the RD-BLUE in [17] involve linear updating of state
variables and and follow the same communication
steps. Although RD-LMMSE recursions appear similar to
those in RD-BLUE, the matrices involved in RD-LMMSE have
different structure necessitating separate convergence analysis.
Pertinent to the ensuing RD-LMMSE convergence analysis
is the global RD-LMMSE recursion formed by stacking (30)
for . To this end, let us de� ne the matrices

and
with and

(32)

where denotes the th column of the adjacency ma-
trix and is the Kronecker product. Upon substituting
(31) into (30), and stacking from (30) in

, we show in Appendix D that

(33)
where , and the noise vectors

and have
entries

(34)

(35)

Observe the differences in matrices , as well as
in and wrt the corresponding ones in RD-BLUE
[17]. Before proceeding with the convergence analysis, we will
� nd the covariance matrices for the noise vectors in (33) which
are essential for the subsequent derivations. It follows from
(34)–(35) that the covariance matrices of and are
given respectively by

(36)

where . The
matrix is diagonal with diagonal blocks

, while matrix
consists of the submatrices for which

(37)

C. Convergence Results

We want to show that converges to
as , while remains bounded. The
RD-LMMSE global recursion has the same structure as that of
RD-BLUE, but matrices , and are dif-
ferent. In fact, we can express as (cf. [17, App. G])

(38)

where is formed by the submatrices
, , and

, while and . The mean of is
equal to the � rst term in (38). The per iteration noise covariance
matrix

can be evaluated using [17, eq. (44)] after
making the necessary substitutions. The following proposition
summarizes the asymptotic behavior of the RD-LMMSE esti-
mator (see Appendix D for the proof).

Proposition 4: The RD-LMMSE recursions (30)–(31) reach
consensus in the mean sense, i.e.,

(39)

while the noise covariance matrix converges to

(40)

where denote the th largest eigenvalue of
and the corresponding left and right eigenvectors, respectively,
for , while
and .

Remark 4: The bounded covariance asserted by Proposition 4
has to be contrasted with the unbounded noise that is inherent to
consensus averaging [23]. Notice also that Proposition 4 holds
universally for general data models, allowing for and exploiting
arbitrary correlation patterns among sensor data (not possible
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with the RD-BLUE in [17]). Further, the noise-robust frame-
work and the corresponding analysis carries over to the simpli-
� ed D-LMMSE algorithm for linear-Gaussian models.

D. Simulations

Here we test the convergence of D-LMMSE and RD-LMMSE
along with their noise resilience properties in the presence of
either reception or quantization noise. Consider sen-
sors with observations obeying the linear model in Section III-B.
Fig. 3 (top) depicts the normalized error versus itera-
tion index for different SNR values. The penalty coef� cients
for both D-LMMSE and RD-LMMSE are set to .
Analytical guidelines for selecting seem to be dif� cult to
derive if not impossible without global information. However,
we have observed that increasing up to a point usually im-
proves the convergence speed. Notice that under ideal channel
links both D-LMMSE and RD-LMMSE iterates coincide as as-
serted by Lemma 4, and as as per
Proposition 2. In the presence of reception noise, we average

over 50 independent D-LMMSE and RD-LMMSE es-
timates. As expected by Proposition 4, obtained from
RD-LMMSE exhibits error� oor con� rming that the noise co-
variance converges to a matrix with bounded entries. Relative
to RD-LMMSE, the D-LMMSE algorithm exhibits noise re-
silience at the expense of higher steady-state variance. Clearly,
as the SNR increases the steady-state error for both D-LMMSE
and RD-LMMSE decreases. RD-LMMSE and D-LMMSE ex-
hibit the same behavior also in Fig. 3 which depicts the ensemble
average of over 50 independent realizations, for a vari-
able number of quantization bits (common across all sensors).

VI. OPTIMAL DISTRIBUTED KALMAN FILTERING AND

SMOOTHING

In this section we consider distributed estimation and
smoothing under the dynamical setups3). For future use, recall
the information form of the correction step of the centralized
KF for obtaining and , see e.g., [3, pp. 40 and 139]

(41)

(42)

(43)

(44)

where denotes the� ltered covariance matrix of the es-
timation error and likewise for the predicted co-
variance , while . If sen-
sors had available local estimates and the corre-
sponding covariance , they could run (41) and
(42) in a distributed fashion since and are as-
sumed locally known. However, (43) and (44) can be run only
if quantities

(45)

(46)

Fig. 3. Normalized errore (k) versus iteration indexk for D-LMMSE and
RD-LMMSE in the presence of (top) reception noise with SNR= 15, 22, and
1 dB, and (bottom) quantization noise usingm = 5, 10, and1 number of
bits.

could be somehow estimated at each sensor. This is possible
because as the last equalities in (45) and (46) show, and

can be expressed as averages with theth summand avail-
able at sensor.

Through iterations that start atand end at , [1],
[19] proposed (in our notation) to form estimates
and using the consensus averaging based algo-
rithms in [15], [20], and [24], respectively; see also [13], where

was adopted since only one iteration can be afforded
during the interval . With these estimates plugged into
recursions (43) and (44), it is possible to obtain local� ltered
estimates , that become available at .
Clearly, there is a delay in forming these estimates limiting
the operation of [1], [19] only to applications with slow varying

and/or fast communications needed to complete con-
sensus steps betweenand . In addition, [1] and [19] in-
herit the noise sensitivity of [20] and [24]. More important, the
estimates in [1], [13], and [19] are not MSE
optimal given the available information in , unless

. This suboptimality renders the D-KF estimates in [1],
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[13], [19] inconsistent with the underlying data model, which
in turn is known to yield tracking errors violating the uncer-
tainty bounds [4, p. 233]. In the distributed approach of [2] each
sensor performs local KF after substituting its local state predic-
tions in (41) and (44) with a weighted average of the neighboring
sensors predictions. Though, each sensor should also update ap-
propriately the covariance matrices of the resulting prediction
error. However, this update requires global statistical informa-
tion from all other sensors (cf. [2, eq. (11) and (15)]).

A. Smoothing Versus Filtering

Instead of � ltering advocated by [1], [2], [13], and [19], the
delay incurred by the consensus averaging iterations needed
to form prompts us to consider � xed-lag dis-
tributed Kalman smoothing. Speci� cally, our � rst idea is to seek
at time instant , local MSE optimal smoothed estimates,

for , that take advantage of
all available data during the interval and generally yield
a lower MSE than the � ltered estimates . Fur-
ther, we wish to obtain zero delay � ltered estimates,
i.e., , as well as any-time MSE optimal estimates

which are not available
in the alternatives [1], [2], [13], [19].

To this end, we � rst express the � xed-lag Kalman smoother
(KS) as a KF applied to a properly augmented state model. Con-
sider the augmented state model [cf. (3)]

...
. . .

...
...

(47)

where . The aggregate observa-
tions obey

(48)

where and
has covariance matrix . Note
that this state augmentation guarantees that the augmented noise

is uncorrelated across time. The latter readily implies
that � xed-lag centralized KS can be implemented equivalently
as a centralized KF on the augmented model in (47) and (48),
as follows (cf. (41)–(44) and [3, p. 177]):

(49)

(50)

(51)

(52)

where and are the predicted and � ltered esti-
mates of , while and denote the covariance
matrices for the corresponding state estimation and prediction
errors.

Since
, the KF estimate for the augmented state contains

both a � ltered estimate of the original state as well as
smoothed estimates of , for , using
all the available data up to .

B. The D-KS Algorithm

The second summand in (52) is the LMMSE esti-
mator based on the innovations

. This estimator could be formed in
a distributed fashion using the D-LMMSE estimator developed
in Section IV-B. However, if D-(or RD-) LMMSE is run for a
� nite number of consensus steps , to track a fast varying ,
sensors can only use local estimates which are
suboptimum because data becoming available during
are not exploited. Next, we develop a distributed algorithm that
guarantees any-time MSE optimality under ideal links, while
being robust when noise is present.

To derive such an algorithm we will need local estimates of
, and the

covariance [cf. (51) and (52)]. But since
and , it suf� ces

to devise distributed estimators of and . Towards this
objective, let us re-express vector in (46) as

(53)

where the term is locally available at sensor
. Matrix in (45) can be rewritten likewise. Then, we can

readily utilize the alternating-direction method of multipliers to
form as in Section V iterates whose successive differences yield
estimates and which converge to

and respectively as under ideal channel links.
Indeed, upon modifying (27) and (28) by setting and
substituting , ,

and , the estimate
can be formed locally at the th sensor after setting

in (27), and computing the
differences of the successive iterates produced after steps by
the modi� ed pair of recursions (27), (28). Likewise,

can be obtained after replacing the vector iterates in (27)
and (28) with matrices ( ’s are in this case matrices),
while setting .

Following the steps used to derive the RD-LMMSE global
recursion in (38), we can write the local recursions for

and for , in compact form as

(54)

(55)

where

and ,


