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Abstract—Target tracking is investigated using particle filter-
ing of data collected by distributed sensors. In lieu of a fusion
center, local measurements must be disseminated across the
network for each sensor to implement a centralized particle
filter (PF). However, disseminating raw measurements incurs
formidable communication overhead as large volumes of data
are collected by the sensors. To reduce this overhead and
thus enable distributed PF implementation, the present paper
develops a set-membership constrained (SMC) PF approach
that: i) exhibits performance comparable to the centralized
PF; ii) requires only communication of particle weights among
neighboring sensors; and iii) can afford both consensus-based
and incremental averaging implementations. These attractive
attributes are effected through a novel adaptation scheme, which
is amenable to simple distributed implementation using min-
and max-consensus iterations. The resultant SMC-PF exhibits
high gain over the bootstrap PF when the likelihood is peaky,
but not in the tail of the prior. Simulations corroborate that
for a fixed number of particles, and subject to peaky likelihood
conditions, SMC-PF outperforms the bootstrap PF, as well as
recently developed distributed PF algorithms, by a wide margin.

Index Terms—Particle filter, sensor network, adaptation, dis-
tributed, set-membership.

I. INTRODUCTION

Consider collaborating agents (e.g., robots) equipped with
wireless sensors measuring distance and/or bearing from a
target that they wish to track. The nonlinearities present
in these measurements prevent sensors from employing the
clairvoyant (linear) Kalman tracker. Linearized trackers such
as the extended Kalman filter (EKF) [30, Chap. 13] or the
unscented Kalman filter (UKF) [28], [31], have been typically
used to approximate the minimum mean-square error (MMSE)
state estimator. However, high-variance measurement and/or
state noise combined with the aforementioned nonlinearities
lead such linearized trackers to inconsistent estimates [2].
As an alternative, deterministic numerical methods can be
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employed to evaluate the integrals associated with MMSE
state estimates per time step, and yield accurate results [27].
Unfortunately, their complexity increases exponentially with
the problem dimension.

Trading-off accuracy for complexity, non-parametric, non-
linear estimators based on the particle filter (PF), improve
estimation accuracy while maintaining a reasonable com-
putational burden. In addition to complexity, when sensors
are deployed to perform decentralized tracking, coping with
the inter-sensor communication overhead presents an extra
challenge. Especially when a fusion center (FC) is not avail-
able, sensors have to share raw measurements via flooding,
which renders the communication overhead prohibitively high.
These considerations motivate the context and objective of this
paper, which is distributed PF with affordable complexity, and
reduced overhead by communicating processed (as opposed to
raw) measurements among neighboring sensors.

Tutorial treatment of PFs can be found in [6], [13], and
[15]; see also [12], [38] for FC-based approaches. In-network
(non-FC based) PF trackers are reported in [1], [5], [7],
[19], [23], [24], [25], [32], [34], [36], [40], [42] and [43].
Specifically, local PFs are run at individual sensors in [1],
and their estimates are spatially smoothed using a consensus
filter. A query-response approach is advocated by [40] to
exchange measurements among distributed robots. While easy
to implement, the distributed schemes in [1] and [40] are ad-
hoc, and can not perform close to a centralized PF tracker.
Assuming a uniform prior, [5] adopts a mixture of local
posteriors as the PF importance density, but does not account
for past measurements in the current state estimate, which
is tantamount to sub-optimality. Both [19] and [43] use a
Gaussian mixture model (GMM) to approximate the posterior.
They apply principal component analysis successively in an
incremental loop to update GMM parameters. These two
approaches as well as those in [7], [25] and [42] belong to
the class of incremental algorithms that rely on GMM or
similar parametric models to communicate partial posteriors
or likelihoods.

Specifically, [7], [25] and [42] approximate the centralized
PF by sequential training of a parametric model. While [25]
and [42] sequentially approximate the posterior of interest by
a GMM, whose parameters are communicated incrementally
from sensor to sensor, [7] sequentially trains a parametric
model to match the likelihood. To further improve perfor-
mance, [25] incorporates measurements from the current sen-
sor along with measurements from the next sensor which
is transmitted back to the current sensor in its importance
sampling step to generate more efficient particles. All these
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approaches have the following limitations: i) they require
establishment of a Hamiltonian cycle that goes through all
sensors in the network, which is an NP-hard problem; ii)
affordable sub-optimal paths used in lieu of a Hamiltonian
cycle can miss some of the sensors and their data; iii) they
incur excessive delays due to sequential GMM training; and
iv) they lack robustness to sensor failures e.g., if the sensor
who is currently processing fails, the whole estimation task is
compromised.

Such limitations can be avoided if consensus-based ap-
proaches are utilized instead [1], [23], [24], [34], [36]. In [23],
sensor data are used to train a GMM in a distributed fashion
based on which particles are generated per sensor. In [24],
sensors consent on the average mean and covariance of their
local particle filters and use them to generate particles. Support
vector machines were utilized in [34] to consent on the average
of local functions yielding a reduced subset of particles. Being
suboptimal, the performance of [1], [23], [24], [34] cannot
approach the performance of centralized PF. Re-formulating
the posterior as the geometric mean of locally known Gaussian
terms, [36] invokes consensus to make the parameters of the
resultant Gaussian posterior available across sensors. While
this approach has potential to approach the performance of
centralized PF, it cannot cope with multi-modal posteriors.

Another major challenge in distributed PF is whether to
communicate a GMM approximation of the posterior density
or raw particles and weights. For low-dimensional data with
a small number of modes, GMMs are reasonable. However,
communicating GMMs amounts to transmitting covariance
matrices which are proportional to the square of the state
dimension. Therefore, GMMs can become costly for problems
with large dimensions or a large number of peaks which can
arise in multi-target tracking scenarios. Under such conditions,
[32] proposes a Markov chain based approach, where particles
and weights are communicated among sensors. The communi-
cation of such schemes can be greatly reduced if one can afford
to communicate particle weights (that are scalars) only, and not
the particles themselves. It will be demonstrated that this is
possible at the cost of enforcing synchronism among sensors.
The first contribution of this work is a synchronous non-
parametric distributed PF operating either in an incremental-
or a consensus-based mode. The proposed distributed PF can
approach the performance of centralized PF, and requires
communication of particle weights only.

Affordable inter-sensor communications are enabled
through a novel distributed adaptation scheme, which
considerably reduces the number of particles needed to
achieve a given performance. Adaptation amounts to taking
into account the current measurements in the importance
density employed by the PF. The particles drawn according
to a data-adapted importance density are more efficient,
meaning they represent the posterior more accurately than
particles drawn from a non-adapted density. Hence, one can
afford fewer particles while alleviating the particle depletion
problem.

Many works are available on adaptation methods for PFs
[11], [14], [16], [18], [21], [22], [29], [35], [37], [39], [45].
However, none is developed to ensure affordable distributed

implementation. In the centralized PF setting, existing ap-
proaches fall under two categories. The first includes para-
metric schemes which fit a Gaussian to the true posterior, and
aim to find the associated mean and covariance. The latter can
be obtained by an EKF iteration [14] or a UKF iteration [35],
after equating terms in a Taylor series expansion of the un-
normalized posterior [37], or, via support vector regression
[29]. Application-specific methods, such as the one in [4]
for visual tracking, also fall under the first category. On the
other hand, prior-editing [22], likelihood sampling [18] and its
modifications [45], belong to the second category. Additional
non-parametric approaches here include the particle flow using
log-homotopy [11], where particles representing the prior are
deterministically migrated to the region where the posterior
has most of its probability mass; and its “stochastic” counter-
parts, which rely on a combination of bridging densities, and
either Markov chain Monte Carlo methods [21], or, adaptive
importance sampling [16]. The auxiliary PF benefits from
adaptation as well [39]. The second contribution of the present
paper is a novel adaptation method that does not assume
Gaussian posteriors. From this vantage point, it belongs to
the second category of centralized adaptation methods, but is
particularly attractive for distributed implementation.

The rest of the paper is organized as follows. Section II
outlines the basics of PF to establish context and notation,
before formulating the problem of interest. Section III deals
with distributed PF. The novel adaptation method is developed
in Section IV, followed by performance analysis in Section
V. Implementation issues are discussed in Section VI, and
corroborating simulations are presented in Section VII. Section
VIII concludes the paper.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a network of N sensors distributed randomly on
a field measuring their distance and/or bearing from a moving
object. At time k, the object’s state vector xk ∈ Rdx evolves
as

xk = f(xk−1,wk)

where wk denotes the state noise of known distribution, which
dictates the predictor density p(xk|xk−1). Sensor n measures
the vector

yn
k = hn(xk) + vn

k

where vn
k ∈ Rdy stands for measurement noise of known

distribution, giving rise to the likelihood p(yn
k |xk). Functions f

and h are generally nonlinear, and vn
k is assumed independent

across sensors. The network is connected, meaning that there
is a (perhaps multi-hop) path connecting any two sensors.

Based on its own measurements {yn
k} as well as those of

others percolated through inter-sensor communications, sensor
n wishes to obtain the MMSE optimal estimate of the state,
namely the posterior mean x̂k := E[xk|y1:k], and its error
covariance Ĉk := E[(xk − x̂k)(xk − x̂k)T |y1:k], where
y1:k := [yT

1 , . . . ,yT
k ]T and yk := [(y1

k)T , . . . , (yN
k )T ]T .

Treating these estimates together for brevity, the goal is to
form in a distributed fashion the MMSE estimate of a function
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φ(xk) : Rdx → R, given by

Iφ(k) := E[φ(xk)|y1:k] =
∫

φ(xk)p(xk|y1:k)dxk . (1)

Clearly, (1) yields as a special case1 x̂k when φ(xk) :=
xk(i), with xk(i) denoting the ith entry of xk; and also its
error covariance entries Ĉk(i, j) when φ(xk) := [xk(i) −
x̂k(i)][xk(j)− x̂k(j)].

Since the likelihood and the predictor density are known,
Bayes’ rule allows in principle for recursive evaluation of the
wanted posterior as

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫

p(yk|xk)p(xk|y1:k−1)dxk
(2a)

p(xk|y1:k−1) =
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (2b)

Unfortunately, nonlinearity (and hence non-Gaussianity) of the
processes involved render it impossible to evaluate exactly
the integrals in (2). Among the available approximations, a
popular one pursued here relies on particle filtering (PF) – the
sequential version of importance sampling (IS) [3, Chapter
11].

IS refers to the process of estimating Eqt [φ(x)], where
x is distributed according to a target (but inconvenient to
sample from) density qt(x), based on samples (a.k.a. particles)
{x(m)}M

m=1 drawn from a surrogate density qIS (x), which is
selected so that samples from it are “of importance” to capture
qt(x) too. The resultant consistent estimate is a weighted
average (with scale-invariant weights) given by

Îφ :=
M∑

m=1

w̄(m)φ(x(m)), w̄(m) =
w(m)

∑M
m=1 w(m)

(3)

w(m) =
qt(x(m))
qIS (x(m))

, ∀m = 1, . . . , M .

Since densities can be expressed via moments, it turns out the
same IS weights can be employed to estimate qt as q̂t(x) =∑M

m=1 w̄(m)δ(x − x(m)), where δ(.) denotes Dirac’s delta.
With identical IS weights one can also estimate marginals
of qt. As far as performance, it is known that the variance
of Îφ in (3) is minimized when the surrogate is selected
as qIS (x) ∝ |φ(x) − Eqt [φ(x)]|qt(x) [20]. This choice is
obviously challenging to sample from, and also φ-dependent.
The φ-independent selection (q

IS
∝ qt) on the other hand,

emerges from a tractable approximation of the minimum IS
variance given by [33]

VarIS := E

[(
Îφ − Eqt [φ(x)]

)2
]

≈ (1/M) Varqt (φ(x))Eq
IS

[(
qt(x)
qIS (x)

)2
]

. (4)

Returning to PF, online estimation of Iφ(k) in (1) amounts
to sequential IS with qt(xk) := p(xk|y1:k). In fact, it is con-
venient to select as target density the joint posterior qt(xk) :=
p(x0:k|y1:k), bearing in mind that identical weights can be

1Likewise, any moment and thus the posterior density can be sequentially
estimated, in par with the goal of PF.

employed to estimate the marginal density of interest. With
regards to the IS density q

IS
(x0:k), consider the following

convenient factorization of the joint posterior

p(x0:k|y1:k) =
p(yk|xk)p(xk|xk−1)

π(xk|yk,xk−1)

× π(xk|yk,xk−1)p(x0:k−1|y1:k−1)
p(yk|y1:k−1)

(5)

where π here denotes an arbitrary density function (thus
integrates to 1), for which both ratios in the right hand side
(r.h.s.) of (5) are bounded away from infinity.

Suppose that at time step k, the particles and
weights {w̄(m)

k−1,x
(m)
0:k−1}M

m=1 are available from
step k − 1. With qt(x0:k) := p(x0:k|y1:k) and
q

IS
(x0:k) := π(xk|yk,xk−1)p(x0:k−1|y1:k−1), the IS scheme

at time k draws samples {x(m)
0:k }M

m=1 from qIS (x0:k), forms
un-normalized weights w

(m)
k = p(yk|x(m)

k )p(x(m)
k |x(m)

k−1)
/π(x(m)

k |yk,x(m)
k−1) as well as their normalized versions

{w̄(m)
k }M

m=1, and relies on the set {w̄(m)
k ,x(m)

0:k }M
m=1 to

estimate Iφ(k) as in (3). To draw samples from the chosen
q

IS
(x0:k) requires the estimate

p̂(x0:k−1|y1:k−1) =
M∑

m=1

w̄
(m)
k−1δ(x0:k−1 − x(m)

0:k−1) . (6)

With (6) available from time step k − 1, the IS density
approximant to sample from at step k is

π(xk|xk−1,yk)p̂(x0:k−1|y1:k−1)

=
M∑

m=1

w̄
(m)
k−1π(xk|x(m)

k−1,yk)δ(x0:k−1 − x(m)
0:k−1) (7)

which amounts to re-sampling from {w̄(m)
k−1,x

(m)
0:k−1}, followed

by particle augmentation by sampling from π(xk|x(m)
k−1,yk).

While the product π(xk|yk,xk−1)p(x0:k−1|y1:k−1) is the IS
density at step k, the factor π(xk|yk,xk−1) used to augment
the re-sampled particles, is often referred to as the IS density.
Note that there is no need to store the whole trajectory
{x(m)

0:k }M
m=1, but only the current set {x(m)

k }M
m=1.

Summarizing, after initialization the PF implements these
steps per time instant k; see e.g., [13].
S1) Re-sample from the particles and weights
{x(m)

k−1, w̄
(m)
k−1}M

m=1 available from time k − 1 (cf. (6),
(7));
S2) Draw the new sample x(m)

k ∼ π(xk|x(m)
k−1,yk) from the

chosen (augmenting IS) density;
S3) Find weights through Bayes’ rule, and normalize them to
sum up to one, as (cf. (3), (5))

w
(m)
k =

p(yk|x(m)
k )p(x(m)

k |x(m)
k−1)

π(x(m)
k |x(m)

k−1,yk)
, w̄

(m)
k =

w
(m)
k∑M

m=1 w
(m)
k

;

(8)
S4) Form Îφ(k) :=

∑M
m=1 w̄

(m)
k φ(x(m)

k ) as in (3), and output
current state estimate and its covariance.

Selecting π is a performance-critical issue of the PF al-
gorithm. A popular but not necessarily efficient choice is
π(xk|x(m)

k−1,yk) := p(xk|x(m)
k−1), which corresponds to the so-

termed bootstrap PF (B-PF). Setting the IS density equal to the
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prior, the B-PF weights in (8) become w
(m)
k = p(yk|x(m)

k ).
The attractive feature of B-PF is its simplicity, since it is easy
to generate particles from the prior, and have their weights sim-
ply given by the likelihood. The optimum π in S2 in the sense
of minimizing the variance of w

(m)
k is π(xk|x(m)

k−1,yk) :=
p(xk|x(m)

k−1,yk), and amounts to choosing the IS density equal
to true posterior [14]. Since it is impossible to draw samples
from the true posterior, sub-optimal choices of π accounting
for the new data yk in the IS density are well motivated. They
are referred to as data-adapted (or simply adapted) densities, to
be differentiated from non-adapted choices such as the one in
B-PF. The significance of adaptation in the present framework
will become clear in the next section.

The described PF algorithm is centralized because it re-
quires knowledge of yk to operate. Specifically, to generate
particles in S2 and obtain weights in S3, it is necessary to
disseminate yk throughout the network (e.g., via flooding),
which is impractical especially for a large number of sensors
N , or, a large size measurement vector (dy). To cope with this
challenge, the ensuing section presents a distributed PF that
requires exchanging only particle weights, while the follow-
up section introduces a novel adaptation scheme based on set-
membership for reducing the number of particles.

III. DISTRIBUTED PF

At initialization (k = 0), each sensor draws new samples
from p(x0) and weighs them equally. Setting the seed of
random number generators at all sensors to the same value
ensures identical particles x(m)

0 , ∀m = 1, . . . , M generated
at all sensors. Next, recall that after step k − 1, sensors
have available {x(m)

k−1, w̄
(m)
k−1}M

m=1. Since the random number
generators at all sensors are initialized with the same seed, re-
sampled particles across all sensors will be identical; see also
[7]. Thus, S1 can be performed locally per sensor provided
that {w̄(m)

k−1,x
(m)
k−1}M

m=1 is known at all sensors. In the same
spirit, S4 can be run locally provided that {w̄(m)

k ,x(m)
k }M

m=1

is commonly available to all sensors. If in addition a common
non-adapted IS density is utilized (meaning π(·) is not depen-
dent on yk), then S2 can also be run locally at each sensor.
In a nutshell, it is possible to implement S1, S2, and S4 in a
distributed fashion.

Focusing on S3, one can invoke the noise independence
across sensors, and take logarithms on both sides of (8) to
obtain

log
(
w

(m)
k

)
= log

(
p(x(m)

k |x(m)
k−1)

)
+

N∑
n=1

log
(
p(yn

k |x(m)
k )

)

− log
(
π(x(m)

k |x(m)
k−1,yk)

)
. (9)

Because sensors have available the particles {x(m)
k−1}M

m=1 at
time k − 1 from S1 as well as the newly generated ones
{x(m)

k }M
m=1 from S2, all terms except the sum on the r.h.s. of

(9) are locally known when π(x(m)
k |x(m)

k−1,yk) = π(xk|x(m)
k−1).

This sum can become available per sensor either through
incremental averaging or via consensus averaging, as described
next.

Consider that each sensor n in the network has a scalar ψn.
Through collaborative exchanges all sensors wish to find the
sample mean ψ̄N := (1/N)

∑N
n=1 ψn, when no fusion center

is available to receive and centrally average {ψn}N
n=1. For the

problem at hand, ψn = log
(
p(yn

k |x(m)
k )

)
. Operation without

fusion centers is desirable for scalability, and also because
isolated points of failure are avoided.

Incremental averaging relies on passing partial sums over
a Hamiltonian path, which goes through every sensor exactly
once. With sensors indexed by the order they appear in this
Hamiltonian path, the algorithm commences with sensor 1
transmitting ψ1 to sensor 2, which forms ψ1+ψ2 and transmits
it to sensor 3. Likewise, sensor n receives the partial sum
ψ1 + · · · + ψn−1 from sensor n − 1, adds ψn to it and
communicates the sum to sensor n + 1. The desired ψ̄N

formed at sensor N is then percolated through the Hamiltonian
path in order for all sensors to have a copy of the sample
average. The incremental averaging scheme converges in finite
time. But finding a Hamiltonian path is NP-hard, and requires
perfect knowledge of the communication graph at every sensor
[46]. Furthermore, the algorithm is not robust because a new
Hamiltonian cycle must be established each time a sensor fails.

Alternatively, it is possible to make the sum in (9) available
per sensor via consensus averaging, see e.g., [47]. Here sensors
do not need to know the communication graph or establish
Hamiltonian paths, but only need to communicate with their
immediate neighbors. The desired ψ̄N is obtained per sensor
iteratively. After iteration i−1, sensor n broadcasts ψn(i−1)
to its neighbors. Having received {ψ`(i− 1)}`∈N (n) from its
one-hop neighbors denoted by the set N (n), sensor n updates
its iterate as

ψn(i) = ψn(i− 1) + µ
∑

`∈N (n)

[ψ`(i− 1)− ψn(i− 1)]

where ψn(0) = ψn and µ is a constant stepsize. If µ is chosen
small enough, and the communication graph remains con-
nected, the iterates ψn(i) converge asymptotically (as i →∞)
to the desired sample mean [47]; that is, limi→∞ ψn(i) =
ψ̄N , ∀n. Consensus-averaging is robust to sensor failures so
long as the network remains connected. A remark is now due
on the practical operation of consensus averaging.
Remark 1. Since only a finite number of consensus-averaging
iterations can be afforded in practice, some residual error will
be inevitable. To mitigate these residual weight mismatches,
one can apply min- (max-) consensus iterations to form
the minn ψn(i) (correspondingly maxn ψn(i)), after the
consensus-averaging iterations are completed. In the simula-
tions, both min- and max- consensuses will be run on the
ψn(i)s and the final weight value will be set equal to their
average.

Clearly from (9), either consensus or incremental averaging
should be run per particle x(m)

k . Hence, the number of particles
increases the communication overhead of S3 considerably,
because M such consensus or incremental operations must
be run in parallel. It will become evident that this requirement
also limits the options for distributing S2, when adapted IS
densities are employed. As mentioned earlier, performing S2
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in a distributed fashion is possible when using a non-adapted
IS density, such as the prior p(xk|x(m)

k−1) in B-PF, which does
not require knowledge of yk. Such a selection of π however,
requires a large number of particles to cope with particle
depletion [6], which in turn increases the communication cost
of S3 and renders the distributed algorithm inefficient. Indeed,
recall from (4) that for M sufficiently large the error variance
per PF step is E[(Îφ(k)−E[φ(xk)|y1:k])2] ≈ C/M . Constant
C, and the threshold value for M above which this per-step
PF variance decreases as O(M−1), depend on the similarity
between the true posterior p(xk|x(m)

k−1,yk), and the selected
IS density π(xk|x(m)

k−1,yk) [10], [14]. To ensure that p and
π are “similar,” information in the observations yk must be
exploited by the selected π.

This certainly advocates data adaptation when selecting the
IS density. In non-adapted PF renditions, such as the B-PF,
many particles x(m)

k receive almost zero weights in S3, and
have to be discarded since they are generated from a density
far different from the true posterior. The latter leads to particle
depletion, which compromises performance. In contrast, data-
adapted IS densities ensure that the new measurements yk

are accounted for during the particle generation phase, and
thus fewer particles are needed to approximate the posterior
accurately. Therefore, adaptation brings significant benefits
because it reduces the number of required particles, which
translates to a commensurate reduction in communication
overhead of the proposed distributed PF. From the large list of
sub-optimal adaptation methods for centralized PF mentioned
in the Introduction, none of them is amenable to efficient
distributed implementation.

To bypass this challenge, the next section introduces a novel
adaptation method, which renders the distributed implementa-
tion of S2 affordable by reducing the overhead of inter-sensor
communications.

IV. SET MEMBERSHIP-BASED ADAPTATION

The key idea behind the proposed low-overhead distributed
adaptation scheme is to approximate the posterior density
p(xk|xk−1,yk) with an appropriately scaled (distorted) ver-
sion of the prior p(xk|xk−1). To this end, suppose temporarily
that a local set En

k can be constructed per sensor n from the
domain of p(xk|xk−1,yn

k ) to capture most of its probability
mass. And based on these local sets, consider the global set
Ek :=

⋂
n En

k , over which all sensors have high local posterior
masses. With 1{.} representing the indicator function, the
proposed adapted IS density is

πEk
(xk|xk−1) :=

αk1{xk∈Ek} + βk1{xk /∈Ek}
ck

p(xk|xk−1)
(10)

where βk ¿ αk (w.l.o.g. αk = 1), and ck is a normalization
constant so that πEk

(.) integrates to 1.
Before describing the process for selecting {En

k }N
n=1, which

define the global set Ek, the ensuing subsection explains why
πEk

(xk|xk−1) offers an attractive approximation of the global
posterior.
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Fig. 1. Similarity between scaled prior (set-membership approximation) and
posterior densities

A. Posterior Density Approximation

Consider that each sensor n has determined the local set
En

k containing most of the probability mass of its local
posterior p(xk|xk−1,yn

k ), and approximate the latter using
πEn

k
(xk|xk−1). Since the noise across sensors is independent,

the global posterior can be expressed as

p(xk|xk−1,yk) ∝
[

N∏
n=1

p(xk|xk−1,yn
k )

p(xk|xk−1)

]
p(xk|xk−1)

≈
[

N∏
n=1

πEn
k
(xk|xk−1)

p(xk|xk−1)

]
p(xk|xk−1)

≈ πEk
(xk|xk−1) (11)

where the product
∏N

n=1

πEn
k

(xk|xk−1)

p(xk|xk−1)
is approximated using

the function
(
αk1{xk∈Ek} + βk1{xk /∈Ek}

)
/ck, which is valid

for βk ¿ 1 since Ek :=
⋂

n En
k . Compared to the prior itself,

the scaled prior in (10), later referred to as the set-membership
approximation, can be much closer to the posterior, which is
the density of interest; see also Fig. 1.

B. Local Set Selection

In view of (11), the local set En
k at sensor n must be

constructed so that πEn
k
(xk|xk−1) ≈ p(xk|xk−1,yn

k ). Note
though that it is impossible to specify directly the set En

k that
contains a high probability mass of p(xk|xk−1,yn

k ) because
the latter is conditioned on xk−1, which is not available.
One way around this obstacle is to construct a separate local
En

k for every p(xk|x(m)
k−1,y

n
k ) corresponding to each particle

m = 1, . . . ,M . However, the computational burden of this
construction defeats the purpose of introducing the local sets
at the first place. (Indeed, instead of computing a single En

k

per sensor which requires consensus on a single Ek, multiple
local sets necessitate consenting on one Ek per particle m,
which increases the communication overhead prohibitively.)

The remedy at an intuitive level is to construct En
k so

that it contains a high probability mass of p(xk|xk−1,yn
k )
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on the average performed over xk−1. This motivates select-
ing En

k to contain a large probability mass of the density
p(xk|y1:k−1,yn

k ). Such a choice is prudent because

p(xk|y1:k−1,yn
k ) =

∫
p(xk|xk−1,yn

k )p(xk−1|y1:k−1,yn
k )dxk−1

where xk−1 is averaged over the posterior p(xk−1|y1:k−1,yn
k )

that is estimated using particles and their weights at step k−1.
Through this density, averaging out xk−1 takes into account
not only the locally available current measurement yn

k , but also
all past measurements y1:k−1 through {x(m)

k−1, w̄
(m)
k−1}M

m=1.
In the remainder of this subsection, three schemes will

be developed to select local sets En
k containing most of the

probability mass under p(xk|y1:k−1,yn
k ). Their efficacy will

be tested via simulations.
1) Particle Bounding Box: The crux of this construction is

reliance on local B-PF to form the corresponding local set En
k .

Toward this objective, consider (re-) sampling per sensor as in
S1-S2 from the prior π(xk|x(m)

k−1,y
n
k ) := p(xk|x(m)

k−1), which
is the IS density of B-PF. Since this local prior is non-adapted,
it is expected that many less than M particles re-sampled as
in S1-S2 will fall in the region where the likelihood (and
hence the local posterior) is high. Thus, each sensor must over-
sample particles as in S1 by a factor L > 1 (L ∈ N), so that a
few of the LM particles will fall in the region that the set En

k is
sought to capture. Recall also that with the same seed across
sensors, these LM particles at all sensors will be identical.
Once the local likelihood p(yn

k |x(m)
k ) is weighted in, the

sensors generate different weights, which along with the LM
particles yield an estimate of p(xk|y1:k−1,yn

k ). Re-sampling
M particles from the latter, and fitting an axes-aligned box
around them yields the desired En

k , which represents the region
where p(xk|y1:k−1,yn

k ) contains most of its mass.
Letting {¯̃xn,(m)

k }M
m=1 denote these re-sampled particles, the

axes-aligned bounding box describing the local set at sensor
n at time k is specified by the following polyhedron:

En
k :=

{
x : min

m
¯̃xn,(m)

k ¹ x ¹ max
m

¯̃xn,(m)
k

}

:=
{
x : xn

k,min ¹ x ¹ xn
k,max

}
(12)

where the minimum, maximum, and inequalities (¹) should
be understood component-wise. Fig. 2 depicts the min and
max operations for dx = 2.

In summary, to arrive at the set in (12) each sensor runs the
following three local steps.
LS1) Over re-sample particles and weights {x(m)

k−1, w̄
(m)
k−1}M

m=1

to obtain {x̃(m′)
k−1 }LM

m′=1 with L ∈ N.
LS2) Generate LM new particles from the prior x̃(m′)

k ∼
p(xk|x̃(m′)

k−1 ); form their weights using the local likelihood
w̃

n,(m′)
k = p(yn

k |x̃(m′)
k ); and normalize them to obtain

¯̃wn,(m′)
k .

LS3) Re-sample M particles from {x̃(m′)
k , ¯̃wn,(m′)

k }LM
m′=1, and

construct En
k as in (12).

Note in closing that the weights in LS1 and LS2 are not used
subsequently, since the aim here is not PF but construction
of the local sets, which are specified only by the (min and
max per entry) particles re-sampled at LS3. Fig. 3 depicts

Fig. 2. Particle bounding box approach

High 

likelihood 

region

Fig. 3. Graphical depiction of selecting the local set En
k

the particle bounding box approach for a sensor measuring its
distance from the target.

2) UKF-based Local Set: This construction capitalizes on
the unscented particle filter (UPF) [35], which enables fitting
to the local posterior, namely p(xk|y1:k−1,yn

k ), a Gaussian
density specified by its mean and covariance. Per time step
k, the latter can be found through a UKF update. Given the
obtained mean and covariance, each local set is constructed
to encapsulate a prescribed amount of probability mass from
the corresponding local posterior of interest. For the Gaussian
approximating density, this set takes the form of an ellipsoid.
The local set En

k is then specified as the smallest axes-aligned
box containing this ellipsoid. Specifically, the following local
steps are performed at each sensor n.
LS1′) Given the particles and weights {x(m)

k−1, w̄
(m)
k−1}M

m=1 from
step (k − 1), find the mean and covariance matrix of the
Gaussian density approximating the posterior at time step
(k − 1), that is

x̂k−1 =
M∑

m=1

w̄
(m)
k−1x

(m)
k−1

Ĉk−1 =
M∑

m=1

w̄
(m)
k−1(x

(m)
k−1 − x̂k−1)(x

(m)
k−1 − x̂k−1)T .
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LS2′) With input the estimates x̂k−1 and Ĉk−1 found in
LS1′, run a UKF prediction-correction iteration as in [31].
Incorporating the local measurement yn

k in the correction
step, the UKF output yields the conditional mean x̂n

k , and
covariance matrix Ĉn

k per sensor n at time step k.
LS3′) Based on x̂n

k and Ĉn
k , form En

k as the smallest axes-
aligned box containing the ellipsoid

(xk − x̂n
k )T

(
Ĉn

k

)−1

(xk − x̂n
k ) ≤ η2 (13)

where η is set depending on the probability mass the designer
chooses to capture by the ellipsoid.

As an example, suppose one requires 99% of the probability
mass to be contained in the ellipsoid. The linear transformation

xnew =
(
Ĉn

k

)−1/2

(xold− x̂n
k ) expresses the quadratic form

in (13) as a sum of dx independent, zero-mean, and unit-
variance Gaussian-squared random variables, which amounts
to a random variable distributed according to a centralized χ2

dx

density with dx degrees of freedom. Parameter η2 is the point
for which the integral of this density over [0, η2] equals 0.99.

To visualize the smallest axes-aligned box containing the
ellipsoid, consider as an example the two-dimensional case
(dx = 2), illustrated graphically in Fig. 4. The smallest axes-
aligned bounding box is completely determined by the four
boundary points xmin, xmax, ymin, and ymax. These points are
obtained by projecting the ellipsoid on the x- and y-axes. To
generalize for any dx and specify analytically the smallest
axes-aligned box in LS3′, let ed denote the elementary dx×1
vector having its dth entry equal to 1, and all other entries
equal to 0. Clearly, the projection of a point x on the ellipsoid
over the dth side of the polyhedral box is given by the inner
product eT

d x. Hence, the minimum [xn
k (d)]min along the dth

coordinate axis can be obtained as the solution of the following
constrained optimization problem:





min
x

eT
d x

subject to (x− x̂n
k )T

(
Ĉn

k

)−1

(x− x̂n
k ) ≤ η2

This problem is convex, and admits the following closed-form
solution

[xn
k (d)]min = x̂n

k (d)− η

√
Ĉn

k (d, d) .

Clearly, solving the related optimization problem with ed

replaced by −ed will yield the maximum [xk(d)]max along the
dth coordinate axis. Finding likewise the minima and maxima
for all d = 1, . . . , dx, specifies the desired box.
Remark 2. While an EKF update can be employed instead of
the UKF in LS2′, the superior performance of UKF confirmed
by simulations suggests that not much is gained when adopting
the EKF. Notwithstanding, UKF is not used here as a tracker,
but only to specify the local sets {En

k }N
n=1.

3) UKF with Gaussian Mixture Model: When the local
posterior p(xk|y1:k−1,yn

k ) is multi-modal, UKF can not ap-
proximate it well with a single Gaussian bell, which is uni-
modal. To cope with multi-modality, a GMM can be trained
from the particles representing the prior, using the expectation-
maximization (EM) algorithm; see e.g., [3, Chapter 9]. Then,
the UKF-based algorithm of the uni-modal case can be applied

Fig. 4. The smallest axis-aligned bounding box for a 2-D ellipsoid

to each mixture component separately. This amounts to one
axes-aligned box per mixture component. The local set En

k is
then constructed as the smallest box containing the union of
these boxes. While the number of components (modes) can
be preselected based on complexity considerations, it is also
possible to fit a GMM with unknown model order. In this case,
one of the criteria outlined in e.g., [44, Appendix C] can be
utilized for model order determination.

C. Global Set Determination

Once sensor n processes its own yn
k to obtain the local set

En
k =

{
x : xn

k,min ¹ x ¹ xn
k,max

}
, the global set Ek can be

constructed as

Ek :=
N⋂

n=1

En
k =

{
x : max

n
xn

k,min ¹ x ¹ min
n

xn
k,max

}
.

(14)
Since boxes are used to represent local sets, distributing their
intersection is very simple because it only requires finding
minima and maxima of scalar quantities available per sensor;
see also Fig. 5. Distinct from the distributed B-PF algorithm
of Section III that requires consensus averaging iterations,
constructing the global set Ek in a distributed fashion entails
consenting on the minimum and maximum points of the local
set boundaries.

It is possible to find, say these maximum points, using
a max-consensus approach along the lines of the consensus
averaging scheme outlined in Section III. Except that instead
of ψ̄N , sensors now wish to compute ψmax := maxn ψn in
a distributed fashion. Clearly, one scalar ψn = xn

k,min(d) is
involved here per coordinate d. In iteration i of the max-
consensus algorithm, sensor n communicates ψn(i − 1) to
its immediate neighborhood N (n), and updates the local
auxiliary variables ψn(i) as

ψn(i) = max{ψn(i−1), max
l∈N (n)

ψl(i−1)}, ψn(0) = ψn .
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Fig. 5. Intersection of two boxes amounts to computing minima and maxima

Most importantly when compared to consensus averaging, the
iterates ψn(i) converge to the exact ψmax in finite time, and
the number of required iterations does not exceed the diameter
of the communication graph; see e.g., [8]. The min-consensus
scheme operates similarly with the obvious substitutions.

Because min- and max-consensus algorithms converge in
finite iterations bounded by the diameter of the communica-
tion graph, a distributed implementation becomes available at
much lower communication cost compared to propagating (or
performing consensus of) raw measurements across sensors.
Remark 3. When the intersection Ek in (14) is empty, local
sets are stretched out by a constant factor before re-computing
the intersection. This is repeated until the process arrives
at a non-empty intersection. Simulations indicate that two
repetitions are typically sufficient, while the first intersection
is non-empty most of the time.

D. Distributed SMC-PF

Once Ek is available to all sensors, samples are drawn per
sensor (cf. S2) from the scaled prior density πEk

(xk|x(m)
k−1). To

generate these samples, rejection sampling (RS) is employed,
see e.g., [3, Chapter 11], with IS density p(xk|x(m)

k−1) and target
density πEk

(xk|x(m)
k−1), upper-bounded as: πEk

(xk|x(m)
k−1) ≤

(αk/ck)p(xk|x(m)
k−1). Specifically, samples are drawn first

from the prior p(xk|x(m)
k−1). Then, they are accepted with

probability ckπEk
(xk|x(m)

k−1)/[αkp(xk|x(m)
k−1)] = 1{xk∈Ek} +

(βk/αk)1{xk /∈Ek}. Therefore, if a sample belongs to Ek, it
is accepted with probability 1; otherwise, it is rejected with
high probability. In other words, the accept probability satisfies
βk/αk ¿ 1.

Now all pieces of the novel distributed SMC-PF can be
put together. Sensors start with a common seed, and (re-)
sample identical particles as per S1 locally. For S2, RS-based
sampling from πEk

(·) is run also locally after Ek becomes
available to every sensor via consensus on the set boundaries.
Incremental or consensus averaging distributes the weights in

S3, which is all every sensor needs to perform S4. Specifically
for consensus averaging, one uses π(.) = πEk

(x(m)
k |x(m)

k−1) in
(9) to obtain the weights as

log
(
w

(m)
k

)
=

N∑
n=1

log
(
p(yn

k |x(m)
k )

)
+ log

(
c
(m)
k

)

− log
(
αk1{x(m)

k ∈Ek} + βk1{x(m)
k /∈Ek}

)
. (15)

The SMC-PF algorithm is summarized in Table I.
Remark 4. The novel approach is referred to as set mem-
bership constrained (SMC) PF for two reasons: i) successive
set intersections are computed, which is a trade-mark of set-
membership approaches [41]; and, ii) rejection sampling relies
on an accept-reject criterion assessing membership in the set
Ek.
Remark 5. (Communication Cost) Let κ denote the number
of consensus averaging iterations in either B-PF or SMC-
PF, and Dgraph the diameter of the communication graph.
Then, B-PF requires κM + 2DgraphM scalars to be com-
municated per time step and sensor, while SMC-PF requires
2dxDgraph + κM + 2DgraphM scalars; hence, for the same
number of particles M , SMC-PF needs communication of
2dxDgraph more scalars than B-PF. Note that κM denotes the
number of scalars that are transmitted per time step and sensor
for consensus-averaging iterations. Afterwards, min- and max-
consensuses should be run, as a consequence of Remark 1,
which requires communication of 2DgraphM scalars. Finally,
SMC-PF needs to run min- and max- consensuses to find the
global set which requires transmission of 2dxDgraph scalars.

V. PERFORMANCE ANALYSIS

This section analyzes the performance of SMC-PF using
the state estimator’s mean-square error (MSE) as figure of
merit. First, the MSE is expressed as the superposition of
its minimum MSE (MMSE) value plus the PF-related error
variance denoted by VarP F . Subsequently, a per-step tractable
approximation of the Var

P F
is introduced to allow for com-

paring SMC-PF with the B-PF. This finite-sample approximate
analysis is also complemented with the asymptotic MSE per-
formance of SMC-PF as the number of particles grows large
to establish that the MMSE is indeed attained asymptotically;
see also [9] and [26].

Consider first the MSE at iteration k, namely

MSE(k):= E

[(
Îφ(k)− φ(xk)

)2
]

= E

[(
Îφ(k)− Iφ(k) + Iφ(k)− φ(xk)

)2
]

= E

[(
Îφ(k)− Iφ(k)

)2
]

+ E
[
(Iφ(k)− φ(xk))2

]

+2E
[
(Îφ(k)− Iφ(k))(Iφ(k)− φ(xk))

]

= Var
P F

(k) + MMSE(k) + Cross Term. (16)

The cross term vanishes because

Cross Term
= 2Ey1:k

[
E

[
(Îφ(k)− Iφ(k))(Iφ(k)− φ(xk))

∣∣∣y1:k

]]
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Table I. SMC-PF Algorithm
Initialization. Draw x

(m)
0 ∼ p(x0), ∀m = 1, . . . , M . Set w̄

(m)
0 = 1

M
.

Repeat for time k ≥ 1
Repeat for sensors n = 1, . . . , N (can be implemented in parallel)

Given {x(m)
k−1, w̄

(m)
k−1}M

m=1 and yn
k , run either LS1-LS3 or LS1′-LS3′ to obtain En

k .
End for
Given {En

k }N
n=1, construct Ek as in (14) in a distributed fashion.

At each sensor run in parallel
Re-sample from {x(m)

k−1, w̄
(m)
k−1}M

m=1, [S1].

Draw the new sample x
(m)
k ∼ π(xk|x(m)

k−1,yk) := πEk
(xk|x(m)

k−1) [S2].
Update the weights as in (15) [S3]. Use incremental or consensus averaging.
Obtain {x(m)

k , w̄
(m)
k }M

m=1 at the output of S2-S3.
Form Îφ(k) :=

∑M
m=1 w̄

(m)
k φ(x

(m)
k ) as the final estimate [S4].

End for

= 2Ey1:k

[
E

[
Îφ(k)− Iφ(k)

∣∣y1:k

]
E

[
Iφ(k)− φ(xk)

∣∣∣y1:k

]]

= 2Ey1:k

[
E

[
Îφ(k)− Iφ(k)

∣∣y1:k

]
× 0

]
= 0 (17)

where the second equality holds because Iφ(k) is constant
when conditioned on y1:k and the operations required to obtain
the PF estimate Îφ(k), namely re-sampling in S1 and drawing
new particles in S2, do not depend on the true state xk when
conditioned on y1:k.

Equations (16) and (17) imply that MSE(k) =
Var

P F
(k) + MMSE(k). The MMSE(k) that lower bounds

the MSE(k) depends on the way the latent state variables
and measurements are related - a dependency specified by the
nonlinear functions f and h of the model. Therefore, it is
prudent to minimize Var

P F
(k) per step k since this amounts

to minimizing the MSE(k).
In the next subsection, Var

P F
(k) will be approximated

using the IS variance in (4) in order to obtain a performance
metric, which will be useful to assess the finite-sample effi-
ciency of the SMC-PF tracker.

A. Finite-sample analysis

Consider specializing (4) for the following target and IS
densities:

qt(xk):=p(x0:k|y1:k)

=
p(yk|xk)p(xk|xk−1)p(x0:k−1|y1:k−1)

p(yk|y1:k−1)
(18a)

qIS (xk):=π(x0:k|y1:k)
=π(xk|xk−1,yk)p(x0:k−1|y1:k−1) (18b)

and express the per-step variance of PF as

VarP F (k) = Ey1:k

[
E

[(
Îφ(k)− Iφ(k)

)2 ∣∣∣y1:k

]]
(19)

where the inner expectation in (19) corresponds to VarIS in
(4) with the specific choices in (18). Substituting (4) into (19)
one arrives at

VarP F (k) ≈ (1/M)×

Ey1:k

[
Varp (φ(xk)) Eπ

[(
p(x0:k|y1:k)
π(x0:k|y1:k)

)2 ∣∣∣y1:k

]]
.

(20)

Recall that the choice of π is what differentiates B-PF from
SMC-PF. Using (18), the π-dependent inner expectation in
(20) can be written as

Eπ

[(
p(x0:k|y1:k)
π(x0:k|y1:k)

)2 ∣∣∣y1:k

]

=
∫

p2(yk|xk)p2(xk|xk−1)
p2(yk|y1:k−1)π(xk|xk−1,yk)

p(x0:k−1|y1:k−1)dx0:k

≈ 1
p2(yk|y1:k−1)

M∑
m=1

w̄
(m)
k−1

∫
p2(yk|xk)p2(xk|x(m)

k−1)

π(xk|x(m)
k−1,yk)

dxk

(21)

where for the approximation p(x0:k−1|y1:k−1) was replaced
by its estimate in (6).

For comparison with B-PF, set π(xk|x(m)
k−1,yk) :=

p(xk|x(m)
k−1) to specialize (21) to

∫
p2(yk|xk)p2(xk|x(m)

k−1)

π(xk|x(m)
k−1,yk)

dxk

=
(∫

p2(yk|xk)p(xk|x(m)
k−1)dxk

)
× 1

=
(∫

Ek

p2(yk|xk)p(xk|x(m)
k−1)dxk

+
∫

Ēk

p2(yk|xk)p(xk|x(m)
k−1)dxk

)

×
(∫

Ek

p(xk|x(m)
k−1)dxk +

∫

Ēk

p(xk|x(m)
k−1)dxk

)

= A(m)(Ek)B(m)(Ek) + A(m)(Ek)B(m)(Ēk)

+ A(m)(Ēk)B(m)(Ek) + A(m)(Ēk)B(m)(Ēk) (22)

where Ēk denotes the complement set of Ek, and A(m), B(m)

are defined as

A(m)(Ek) :=
∫

Ek

p2(yk|xk)p(xk|x(m)
k−1)dxk

B(m)(Ek) :=
∫

Ek

p(xk|x(m)
k−1)dxk.

For the SMC-PF, set π(xk|x(m)
k−1,yk) := πEk

(xk|x(m)
k−1), to

obtain
∫

p2(yk|xk)p2(xk|x(m)
k−1)

π(xk|x(m)
k−1,yk)

dxk
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= c
(m)
k

∫
p2(yk|xk)p(xk|x(m)

k−1)
αk1{xk∈Ek} + βk1{xk∈Ēk}

dxk

=
c
(m)
k

αk
A(m)(Ek) +

c
(m)
k

βk
A(m)(Ēk) (23)

where the normalization constant c
(m)
k is given by

c
(m)
k =

∫ (
αk1{xk∈Ek} + βk1{xk∈Ēk}

)
p(xk|x(m)

k−1)dxk

= αkB(m)(Ek) + βkB(m)(Ēk).

Substituting c
(m)
k back into (23) one arrives at

∫
p2(yk|xk)p2(xk|x(m)

k−1)

π(xk|x(m)
k−1,yk)

dxk

= A(m)(Ek)B(m)(Ek) +
βk

αk
A(m)(Ek)B(m)(Ēk)

+
αk

βk
A(m)(Ēk)B(m)(Ek) + A(m)(Ēk)B(m)(Ēk).

(24)

Comparison of (22) with (24) reveals that SMC-PF is a
generalization of B-PF, which allows for more flexibility by
adjusting the ratio αk/βk to minimize Var

P F
(k). For a given

set Ek, it is possible to plug (24) back into (21), differentiate
with respect to this ratio, and solve to find the optimal

(
αk

βk

)∗
=

√√√√
∑M

m=1 w̄
(m)
k−1A

(m)(Ek)B(m)(Ēk)
∑M

m=1 w̄
(m)
k−1A

(m)(Ēk)B(m)(Ek)
.

Unfortunately, this optimal ratio is given in terms of in-
tractable integrals emerging in the definitions of A(m)(Ek) and
B(m)(Ek). While numerical methods or additional IS estimates
can in principle be considered per step to approximate these
integrals, this is hardly justified from a complexity perspective.
In practice, it is thus reasonable to adjust the ratio αk/βk

heuristically. Simulations will confirm that the MSE(k) is
robust to changes of αk/βk, and a heuristic selection yields
satisfactory performance.

It is of interest now to investigate the conditions under
which the SMC-PF outperforms the B-PF by the largest mar-
gin. To this end, consider the following operating assumptions.
A1. Let Ek ⊆ Rdx be a set in the state-space of xk such that

p2(yk|xk) ≤ ε1 ¿ 1, ∀xk ∈ Ēk.

A2. For the set Ek in A1, it holds that
∫

Ek

p(xk|x(m)
k−1)dxk ≤ ε2 ¿ 1, ∀ m = 1, . . . , M.

A3. The likelihood p(yk|xk) does not have most of its mass
in the tail of the prior p(xk|x(m)

k−1); thus,
∫

Ek

p2(yk|xk)p(xk|x(m)
k−1)dxk := C(m) À ε := max{ε1, ε2}

for all m = 1, . . . ,M .
A4. Given ε0 ¿ ε, the number of particles M is selected large
enough so that the approximation errors in (20) and (21) are
bounded by ε0.

For notational brevity, the dependence of ε1, ε2 and C(m)

on k is suppressed. Condition A1 ensures that the likelihood
takes high values for xk lying inside Ek; while A2 guarantees
that the same set Ek contains only a small probability mass
of the prior. Together, A1 and A2 enforce the so-called peaky
likelihood condition. A3 asserts that the likelihood does not
fall in the tail of the prior density by requiring the relevant
integral of their product to be large. Combination of A1-A3
suggests that the likelihood is peaky, but does not fall in the tail
of the prior. A4 is needed to ensure that (21) offers an accurate
approximation of the MSE(k). Under conditions A1-A4, the
SMC-PF provides considerable MSE improvement per step k
when compared to the B-PF, as summarized in the following
proposition.
Proposition 1. Under A1-A4, for a fixed number of particles
M , and with βk/αk := ε, the SMC-PF error variance in (20)
lowers that of B-PF by a factor O(ε).
Proof: Condition A2 implies that B(m)(Ek) ≤ ε2, and hence
1 − ε2 ≤ B(m)(Ēk) ≤ 1; while A3 implies that A(m)(Ek) =
C(m). On the other hand, A1 yields

A(m)(Ēk) =
∫

Ēk

p2(yk|xk)p(xk|x(m)
k−1)dxk

≤
∫

Ēk

ε1p(xk|x(m)
k−1)dxk ≤ ε1 .

For the B-PF it thus follows that (cf. (22))
∫

p2(yk|xk)p2(xk|x(m)
k−1)

π(xk|x(m)
k−1,yk)

dxk ≥ A(m)(Ek)B(m)(Ēk)

≥ C(m)(1− ε2) (25)

while for the SMC-PF it holds that (cf. (24))
∫

p2(yk|xk)p2(xk|x(m)
k−1)

π(xk|x(m)
k−1,yk)

dxk ≤ C(m)ε2 +
βk

αk
C(m)

+
αk

βk
ε1ε2 + ε1.

Upon selecting βk/αk = ε, the π-dependent factor in the PF
error variance can be bounded as
∫

p2(yk|xk)p2(xk|x(m)
k−1)

π(xk|x(m)
k−1,yk)

dxk ≤ C(m)ε2 + εC(m) +
ε1ε2
ε

+ ε1

≤ 2(C(m) + 1)ε. (26)

Consider two cases. In the first case C(m) ≥ 1, which implies
that the upper bound in (26) becomes 4C(m)ε. Comparing
this against (25), shows a factor 4ε/(1 − ε2) reduction in
the evaluated integral for SMC-PF compared to B-PF. In the
second case C(m) ≤ 1, the upper bound in (26) becomes 4ε.
Comparing this against (25), shows a factor 4ε/(C(m)(1−ε2))
reduction in the evaluated integral for SMC-PF compared to B-
PF. With C(m) ≤ 1, there is at least a reduction of 4ε/(1−ε2)
in the second case as well. For both cases, the improvement
of SMC-PF over B-PF is 4ε/(1 − ε2) = O(ε). This gain is
achieved for every summand and thus for the overall sum
in (21). Hence, under A4 a factor O(ε) improvement is
established for the per-step variance in (20), and the proof
is complete. ¤
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B. Asymptotic analysis

Proposition 1 is important because it provides an approxi-
mate performance analysis for finite M . Even though PFs in
practice always entail a finite M , it is also critical to ensure
that the novel SMC-PF achieves zero error asymptotically as
M → ∞. For B-PF, this line of convergence results can be
found in [9] and [26]. In order to tailor related theorems for the
SMC-PF, it is necessary to define an equivalent system with
a properly modified likelihood, and state-transition kernel. To
this end, consider factorizing the posterior as

p(x0:k|y1:k) ∝ p(x0)
k∏

τ=1

p(yτ |xτ )p(xτ |xτ−1)

= p(x0)
k∏

τ=1

p(yτ |xτ )p(xτ |xτ−1)
πEτ (xτ |xτ−1)

× πEτ (xτ |xτ−1)

:= p(x0)
k∏

τ=1

p̃(yτ |xτ )p̃(xτ |xτ−1) (27)

where p̃(yτ |xτ ) := p(yτ |xτ )p(xτ |xτ−1)/πEτ
(xτ |xτ−1) and

p̃(xτ |xτ−1) := πEτ
(xτ |xτ−1). To guarantee that p̃(yk|xk)

and p̃(xk|xk−1) satisfy the conditions for convergence in [9]
and [26], it will be necessary to invoke the following additional
assumptions.
A5. It holds that αk, βk > 0, and p(yk|xk) is a bounded
function of xk for the given yk.
A6. The following lower bound (νk) is valid:
∫

Ek

p(yk|xk)
(∫

Ek

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

)
dxk

> νk > 0.

A7. The prior density is finite, that is p(xk|xk−1) < ∞.
A8. With p(yk|xk) satisfying A5, let L4

k denote the class of
all Borel-measurable functions φ : Rdx → R upper-bounded
by a constant function B̄(y1:k), that is

sup
xk

|φ(xk)|4p(yk|xk) < B̄(y1:k). (28)

Corollary 1. Given A5 and for any bounded Borel-measurable
function φ : Rdx → R, the SMC-PF estimator has its per-step
error variance bounded as

E

[(
Îφ(k)− Iφ(k)

)2
]
≤ C(k)

‖φ‖2
M

(29)

where C(k) is a constant, and ‖φ‖ := sup
x
|φ(x)|.

Proof: If A5 holds, then the required conditions for [9, Theo-
rem 2] are satisfied for the SMC-PF, which readily establishes
the validity of (29). ¤

Corollary 1 asserts convergence in the mean-square sense of
the SMC-PF estimate Îφ(k) to the MMSE estimate Iφ(k). It
implies that as M →∞, the per-step error variance of SMC-
PF vanishes, and MMSE(k) is achieved. However, Corollary
1 applies only to bounded φ’s, which excludes many functions
of interest such as φ(xk) = xk(i). Those are accommodated
under Corollary 2.

To apply the next corollary, two minor modifications of
SMC-PF are needed. Let

{
ξl
m

}l=1:M

m=1:M
denote a set of non-

negative weights such that
∑M

m=1 ξl
m =

∑M
l=1 ξl

m = 1. Instead
of drawing x(m)

k ∼ πEk
(xk|x(m)

k−1), consider that particles in
S2 are generated from a mixture IS density as follows

x(l)
k ∼

M∑
m=1

ξl
mπEk

(xk|x(m)
k−1), ∀l = 1, . . . , M. (30)

For each l, drawing particles as in (30) amounts to re-sampling
one particle from the IS density described by {ξl

m,x(m)
k−1}M

m=1,
and subsequently generating one particle from the correspond-
ing πEk

. Selecting ξm
m = 1 and ξl

m = 0 with l 6= m, one
arrives at the unmodified SMC-PF. Once all the M samples
are generated as in (30), the second modification proceeds to
check whether the generated particles satisfy

1
M

M∑
m=1

p̃(yk|x(m)
k ) ≥ ν̌k > 0 (31)

where p̃(·) is the density defined after (27), and ν̌k denotes an
estimate of νk in A6.

If (31) is satisfied, the weights can be obtained as in S3
of the unmodified SMC-PF; otherwise, the generated particles
are discarded, and a new set of particles is drawn according
to (30). This process is repeated until (31) is satisfied. It is
known that iterating between (30) and (31) is not an infinite
loop, so long as ν̌k is chosen close to or smaller than νk in
A6 [26].
Corollary 2. Suppose that A5-A8 hold, and the SMC-PF is
modified as in (30) and (31). For any function φ ∈ L4

k the
SMC-PF estimator thus satisfies

E

[(
Îφ(k)− Iφ(k)

)4
]
≤ C(k)

‖φ‖4k,4

M2

‖φ‖k,4 := max
{

1,

[∫
|φ(xs)|4p(xs|y1:s)dxs

]
, s ∈ [1, k]

}
.

It then follows from [26, Corollary 6.1] that

lim
M→∞

Îφ(k) = Iφ(k), almost surely.

Proof: A5-A8 ensure that SMC-PF satisfies the conditions
H0-H2 of [26, Theorem 6.1]. ¤

Corollary 2 considerably broadens the range of allowable
φ’s by allowing for unbounded functions. It only requires the
product of φ raised to the fourth power with the likelihood
p(yk|xk) to be bounded away from infinity as a function of xk

(cf. (28)). All such φ’s belong to L4
k. When the measurement

noise is Gaussian, the likelihood decays exponentially as
xk(i) grows. Therefore, all polynomial functions of xk(i) will
belong to L4

k. For any such function φ ∈ L4
k, Corollary 2

asserts that the fourth-order moment of the per-step error of
the SMC-PF vanishes as M →∞. Furthermore, the SMC-PF
estimator converges to the MMSE one with probability 1.

It should be stressed that Corollaries 1 and 2 are applicable
only when exact weights are known in SMC-PF. This pertains
to the incremental version of SMC-PF or the consensus-based
version with the number of consensus iterations approaching
infinity. For consensus with finite number of iterations, a
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residual error in particle weights remains, and more sophisti-
cated analysis would be necessary to derive results similar to
Corollaries 1 and 2.

VI. EFFICIENT SAMPLING FROM THE SMC IS DENSITY

This section deals with an efficient means of sampling from
the adapted IS density πEk

(·). Recall from Section IV-D that
sampling from πEk

(xk|x(m)
k−1) in S2 relies on RS. The well-

known problem with RS is its variable (and possibly large)
delay before a sample is accepted [3, Chapter 11]. If βk ¿ 1 in
the present setup and B(m)(Ek) ¿ 1, then RS incurs unreason-
ably large delays because almost all samples fall outside Ek,
and are discarded with high probability. Implementing SMC-
PF would thus benefit from bounding the maximum delay of
RS by allowing only a prescribed maximum of P samples to
be rejected. If P samples are rejected and no sample is yet
accepted, the recommendation is to resort to IS with a properly
chosen surrogate density.

To perform IS, choose as target density qt(xk) :=
πEk

(xk|x(m)
k−1), and select the IS one as the mixture

q
IS

(xk) := γ U(xk|Ek) + (1− γ)p(xk|x(m)
k−1) (32)

where γ ∈ [0, 1] is a design parameter, and U(xk|Ek) denotes
the density which is uniform over Ek, and zero outside Ek.
Although γ and q

IS
are not indexed by m for brevity, these as

well as other quantities in this subsection are for a given m, but
the results apply to all particles. Since Ek represents an axes-
aligned box, drawing samples uniformly inside Ek amounts
to drawing one independent uniform sample per coordinate.
Therefore, sampling from the surrogate q

IS
(xk) in (32) is easy.

Next, draw M ′ samples x̌(m′)
k from qIS (xk), and weigh

them as

w̌
(m′)
k ∝

(
αk1{x̌(m′)

k ∈Ek} + βk1{x̌(m′)
k ∈Ēk}

)
p(x̌(m′)

k |x(m)
k−1)

γ U(x̌(m′)
k |Ek) + (1− γ)p(x̌(m′)

k |x(m)
k−1)

.

If a particle is now re-sampled from {x̌(m′)
k , w̌

(m′)
k }M ′

m′=1, it
will be approximately coming from πEk

(xk|x(m)
k−1).

To optimize this IS process, γ will be selected to minimize
the mean-square of IS weights, which is equivalent to mini-
mizing VarIS (cf. (4)). This mean-square is given by

E[w̌2
k] =

∫ (
αk1{xk∈Ek} + βk1{xk∈Ēk}

)2
p2(xk|x(m)

k−1)

γ U(xk|Ek) + (1− γ)p(xk|x(m)
k−1)

dxk

=
∫

Ek

α2
kp2(xk|x(m)

k−1)

γ U(xk|Ek) + (1− γ)p(xk|x(m)
k−1)

dxk

+
∫

Ēk

β2
kp(xk|x(m)

k−1)
(1− γ)

dxk

≈ α2
k Vol(Ek)

γ

∫

Ek

p2(xk|x(m)
k−1)dxk

+
β2

k

1− γ

∫

Ēk

p(xk|x(m)
k−1)dxk :=

C1

γ
+

C2

1− γ
(33)

where in obtaining the last approximation it was assumed
that U(xk|Ek) À p(xk|x(m)

k−1) for all xk ∈ Ek; and used

the fact that U(xk|Ek) = 1/Vol(Ek), where Vol represents
the space volume. The aforementioned assumption is justified
because performing IS presumes that the RS stage has failed.
Hence, p(xk|x(m)

k−1) has a very low probability mass inside Ek.
Minimizing (33) with respect to γ leads to

γ∗ =
√

C1√
C1 +

√
C2

.

What remains is to obtain, at least approximately, the constants
C1 and C2. To specify C2, it suffices to recognize that most
of p(xk|x(m)

k−1) mass should lie outside Ek; hence,

C2 := β2
k

∫

Ēk

p(xk|x(m)
k−1)dxk ≈ β2

k .

For C1, note that out of P samples drawn from p(xk|x(m)
k−1)

none falls inside Ek; hence, Ek contains less than 1/P of the
probability mass. In essence, the approximation p(xk|x(m)

k−1) ≈
U(xk|Ek)/P is invoked inside Ek. Thus, C1 can be expressed
as

C1 := α2
k Vol(Ek)

∫

Ek

p2(xk|x(m)
k−1)dxk

≈ α2
k Vol(Ek)

∫

Ek

U2(xk|Ek)
P 2

dxk =
α2

k

P 2
.

Upon substituting C1 and C2 back into γ∗, one arrives at

γ∗ =
αk

αk + Pβk
.

Remark 6. (Computational Cost) Due to the RS step,
the exact computational complexity of SMC-PF is a random
quantity. However, the IS algorithm proposed in this section
provides a deterministic upper bound on complexity. Denoting
the complexity of B-PF with M particles as bpf(M), which
is O(M), the worst- case complexity per time step and
sensor of SMC-PF is approximately bpf(LM)+M bpf(M ′)+
M SampleComp(P ) + Weight(15)(M), where SampleComp(P )
represents the complexity of sampling P particles from the
prior and checking if they fall in the set Ek, and Weight(15)(M)
stands for the complexity of updating the weights in (15).
Note that at the beginning of each step sensors run a local
B-PF with LM particles; hence, the term bpf(LM), which
is O(M), appears in the complexity. After consenting on the
global set, sensors sample from the set-membership density. In
the worst case, the RS steps fail and one has to resort to the IS
method described in this section. For the failed RS steps, the
complexity is M SampleComp(P ), that is also O(M); while
for the IS step, the complexity is M bpf(M ′), which is O(M)
as well. Finally, one has to update the weights of the sampled
particles whose complexity is given by Weight(15)(M) that is
also O(M). Since each individual summand in the complexity
of SMC-PF is O(M), the sum is also O(M). In a nutshell,
SMC-PF is computationally more demanding than B-PF, but
the complexity of both is linear with respect to the number of
particles M .

VII. SIMULATIONS

A network with 100 sensors is considered organized in 20
clusters. Each sensor communicates its distance measurement
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Fig. 6. Sensor network and its communication graph

from the target to its cluster-head sensor. Cluster-head sensors
collaboratively perform tracking. For a fixed number of clus-
ters, as the number of sensors increases so does the dimension
of data available to cluster-head sensors. In this case, it
is prohibitive to communicate raw measurements across the
network and distributed approaches should be utilized instead.
Fig. 6 depicts the network setup along with the associated
communication graph. Sensors are depicted as circles and
cluster-heads as squares.

The target moves according to a white Gaussian acceleration
model [2, p. 273]. The continuous-time state vector x(t) :=
[x1(t), x2(t), ẋ1(t), ẋ2(t)]T comprises the target coordinates
in two dimensions along with their derivatives. After sampling
the continuous model with period Ts (set throughout the
simulations to Ts = 1), the state equation in discrete time
becomes

xk = Fxk−1 + Bwk

F =




1 0 Ts 0
0 1 0 Ts

0 0 1 0
0 0 0 1


 , B =




T 2
s

2 0
0 T 2

s

2
Ts 0
0 Ts


 .

The measurement equation expressing the distance from sen-
sor n (located at position sn) to the target in the presence of
zero-mean, unit-variance, additive white Gaussian noise vn

k , is
given by

yn
k =

cn

250 + ‖sn − xk(1 : 2)‖2 + vn
k (34)

where the target position is denoted by the vector xk(1 : 2)
using MATLAB notation; and the constant cn is adjusted
so that the signal-to-noise ratio (SNR) in (34) is 10dB at a
60 meter distance. These numbers are selected to ensure a
sufficiently peaky likelihood function highlighting the gains of
SMC-PF relative to B-PF. On the other hand, these numbers
and specifically 250 in the denominator of (34) prevent a very
peaky likelihood, which may lead to divergence of all filters.

The time-averaged root MSE (RMSE) of x̂k(1 : 2) is used

to assess performance and is defined as

Average RMSE :=


 1

J

J∑

j=1

1
(Kmax −Kmin)

×
Kmax∑

k=Kmin+1

‖x(j)
k (1 : 2)− x̂(j)

k (1 : 2)‖22
)1/2

where j indexes Monte Carlo runs, J = 100 represents the
total number of Monte Carlo runs, and Kmin = 8, Kmax = 16
specify the time interval over which the MSE is averaged. A
non-zero Kmin is selected to ensure that choice of initialization
does not greatly impact the average RMSE, while Kmax = 16
is chosen to ensure that the target stays in the sensing area
for most realizations. Furthermore, the state noise standard
deviation is σw = 10. SMC-PF parameters are βk = 0.001,
P = 200, L = 10, and M ′ = 100. Unless stated otherwise,
the particle bounding box method is employed for SMC-PF.
Furthermore, the efficient sampling approach of Section VI
is utilized for SMC-PF. The simulation run-time for SMC-PF
directly depends on the choice of parameters βk and P . A
larger value of βk increases simulation speed as particles are
accepted with higher probability, at the price of a possible
performance degradation. On the other hand, a smaller P also
increases simulation speed as transition from the RS stage to
the IS stage is faster, but can also incur loss in performance.
The values selected for these parameters lead to a reasonable
trade-off between run-time and performance.

A. Comparison with B-PF
Fig. 7 compares the performance of SMC-PF with that

of B-PF and a benchmark centralized PF, which comprises
the combination of the auxiliary particle filter (APF) and the
unscented particle filter (UPF). In the APF - UPF combination,
the two-stage weighting approach of APF is combined with
the importance density obtained from UPF. The consensus
averaging required for distributed implementation of B-PF and
SMC-PF is assumed to be perfect in these figures. Clearly,
SMC-PF outperforms B-PF and its performance comes very
close to that of the benchmark filter.

The effect of finite number of consensus-averaging itera-
tions is demonstrated in Fig. 8. The approach described in
Remark 1 is utilized to mitigate residual mismatch between
particle weights. With as few as 6 consensus-averaging itera-
tions (note that 6 is also the diameter of the communication
graph), the performance of SMC-PF comes close to that with
perfect consensus averaging.

Finally, RMSE is plotted versus communication cost in
Fig. 9. To generate each square in this plot, a single data
point corresponding to a given number of particles and given
number of consensus iterations is selected from Fig. 8. Then,
the communication cost for this data point is computed and
the result is plotted as a single square in Fig. 9. Repeating this
process for every data point in Fig. 8 yields all the squares
(and similarly triangles) in Fig. 9. Thanks to its distributed
adaptation, SMC-PF entails lower communication overhead
relative to B-PF for a given RMSE in Fig. 9. The difference
is considerable especially for small RMSE values.
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Fig. 7. Comparison (mean ± one standard deviation) of B-PF, SMC-PF, and
APF combined with UPF as benchmark
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Fig. 8. SMC-PF with different number of consensus iterations

As the number of particles grows large, both SMC-PF (all
variants) and B-PF converge to the true MMSE estimator
E[xk|y1:k]. However, these asymptotic results can be deceiv-
ing as the finite-sample performance of the two approaches can
be dramatically different; see Fig. 7. In addition, the threshold
at which the asymptotic results “kick in” can vary considerably
depending on the choice of the IS density π(.) [10]. Our
simulations corroborate that in a practical setup with a finite
number of particles, the SMC-PF markedly outperforms the
B-PF, while also offering an affordable distributed implemen-
tation.

B. Comparison with Distributed GMM-based PFs

SMC-PF is compared here against the consensus-based
algorithm in [36], which will be referred to as the distributed
PF-1 (DPF-1), and the incremental algorithm in [25], which
will be referred to as DPF-2. While comparing an incremental
algorithm with a consensus-based one might be unfair as
they belong to different classes, the sensor selection approach
introduced in [25] to establish the incremental loop allows
one to conduct a fair comparison. The proposed method does
not require a Hamiltonian cycle. In fact, each sensor in the
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Fig. 9. RMSE versus communication complexity for B-PF and SMC-PF

incremental loop checks its neighbors and determines the ones
who have not participated in the incremental loop per round.
Among these, the “current” sensor selects the one closest to
the target as the next sensor in the loop. When one arrives
at a sensor whose neighbors have already participated, the
incremental loop ends and the loop for the next round of
measurements begins. This approach may lead to sensors left
out.

Fig. 10 compares SMC-PF with DPF-1 and DPF-2. Here,
200 consensus averaging iterations are performed for DPF-1,
and the number of GMM components in DPF-2 is set to 4. It
can be seen that SMC-PF outperforms both methods in terms
of RMSE. The communication cost of all methods is plotted
in Fig. 11 versus RMSE. One observes that DPF-2 incurs
the lowest communication overhead, but its performance is
worse than what is achievable by DPF-1 and SMC-PF for
higher communication cost. SMC-PF also outperforms DPF-
1 with smaller communication complexity. Note that the
stars corresponding to DPF-2 in Fig. 11 are obtained from
their respective data points in Fig. 10 for different number
of particles. Since DPF-2 communicates GMMs rather than
particles, its communication complexity is independent of
the number of particles and thus all stars fall on the same
vertical line in Fig. 11. Similarly, the data point for DPF-
1 is obtained from Fig. 10. Only one data point is plotted
as all other ones yielded much higher RMSEs. Finally, we
should note that while 6 consensus-averaging iterations seem
to be enough for SMC-PF, DPF-1 requires close to 200 or
more iterations to yield sufficiently small RMSEs. The main
reason for this difference is that consenting on the average
of values that are spread, requires more iterations than that
of concentrated values. Due to the re-sampling phase, the
weights are all given by 1/M prior to multiplication by the
likelihood. After multiplication by the local likelihood, these
weights take values in the interval [0, 1/M ]; hence, consensus-
averaging is run among very concentrated values. On the other
hand, the means and covariances that DPF-1 aims to consent
on, can have values spread far away from each other; hence,
consensus-averaging requires more iterations to converge.
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DPF algorithms

C. Different SMC-PF Implementations

In this section, 20 sensors are considered without cluster
heads, collecting measurements

yn
k =

cn

1 + ‖sn − xk(1 : 2)‖2 + vn
k (35)

where cn is chosen to have an SNR of 10 dB at distance
equal to 150 meters. Due to the peaky-likelihood conditions,
divergent estimated tracks appear and affect the RMSE. To
assess performance of each algorithm, the percentage of accu-
rate tracks is plotted as a metric. The latter is defined as the
fraction of Monte Carlo runs in which the estimated position
error stays below a given RMSE threshold (set equal to 10 in
the simulated tests)

∥∥∥x̂(j)
k (1 : 2)− x(j)

k (1 : 2)
∥∥∥ ≤ RMSEthr

for all k such that Kmin ≤ k ≤ Kmax.
Fig. 12 demonstrates the effect of βk on performance. SMC-

PF exhibits robustness to changes in βk, and only when βk

increases beyond 0.1 its performance begins to deteriorate.
The effect of measurement noise is illustrated in Fig. 13,

where the SNR is reduced by a factor of 9, and approaches
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Fig. 12. SMC-PF percentage of accurate tracks for different values of βk
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Fig. 13. SNR effect on performance: Percentage of accurate tracks

0 dB at 150 meters distance. In this scenario, an interesting
feature emerges. B-PF at SNR= 0 dB outperforms the one at
SNR= 10 dB. This is a manifestation of particle depletion,
which is more pronounced at 10 dB (more accurate measure-
ments). However, this trend is not observed in SMC-PF whose
performance degrades as the SNR decreases.

Different methods for computing the local sets are compared
in Fig. 14, where the percentages of accurate tracks are plotted.
This figure compares the particle bounding box, the UKF-
based set selection, and the UKF with a 4-component GMM
for βk = 0.001, and σw = 10. Parameter η2 = 13.277
is chosen to ensure that 99% of the probability mass is
contained in the ellipsoid defined in LS3′. It is observed that
the particle bounding box and UKF with GMM approaches
outperform the UKF-only by a small margin, which increases
as the number of particles grows. In terms of computational
complexity, UKF with GMM is the most demanding while
UKF-only and the particle bounding box methods exhibit
similar and noticeably lower complexity. Overall, for these
simulations, the particle bounding box approach offers the best
performance-complexity trade-off.
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Fig. 14. Local set selection methods: Percentage of accurate tracks

VIII. CONCLUSIONS

A distributed PF scheme was developed to approximate the
practically infeasible optimum MMSE state estimator involved
when tracking targets using a network of wireless sensors.
The novel non-parametric approach offers a decentralized
tracker with performance approaching that of centralized PF,
affordable complexity, and inter-sensor communications at
reduced overhead.

Instrumental to these desirable features was a data-adapted
IS density introduced to draw particles per sensor. The novel
IS density relies on a judiciously constructed global set, which
becomes available to all sensors using a finite number of min-
or max-consensus iterations. Membership to this set allows
for distributed PF iterations to be run in a connected network
by exchanging only particle weights (but not particles) among
neighboring sensors.

Asymptotic analysis established consistency of the dis-
tributed PF tracker, while finite-sample analysis based on
the reduction of the state-estimator variance per PF iteration
revealed conditions under which the novel SMC-PF tracker
improves upon a bootstrap PF alternative. Simulated tests
confirmed that the novel SMC-PF outperforms the bootstrap
PF by a wide margin, which becomes more pronounced as
measurements become more accurate, and the peaky likelihood
conditions are satisfied.
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