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Abstract—When dealing with decentralized estimation, it is
important to reduce the cost of communicating the distributed
observations—a problem receiving revived interest in the context
of wireless sensor networks. In this paper, we derive and analyze
distributed state estimators of dynamical stochastic processes,
whereby the low communication cost is effected by requiring
the transmission of a single bit per observation. Following a
Kalman filtering (KF) approach, we develop recursive algorithms
for distributed state estimation based on the sign of innovations
(SOI). Even though SOI-KF can afford minimal communication
overhead, we prove that in terms of performance and complexity
it comes very close to the clairvoyant KF which is based on the
analog-amplitude observations. Reinforcing our conclusions, we
show that the SOI-KF applied to distributed target tracking based
on distance-only observations yields accurate estimates at low
communication cost.

Index Terms—Distributed state estimation, Kalman filter (KF),
target tracking, wireless sensor networks.

I. INTRODUCTION

DISTRIBUTED signal processing is a well-appreciated
toolbox for decentralized tracking applications involving,

e.g., multiple radars, but has received a revived interest recently
in the context of wireless sensor networks (WSNs) [5]. Unlike
centralized signal processing, observations and the resultant
algorithms are physically distributed across sensors in the
network, dictating that intersensor communications should be
viewed as an integral part of the problem at hand, be it recon-
struction, filtering or estimation. For distributed estimation of
dynamical stochastic processes dealt with in this paper, only
quantized observations are communicated. Thus, the estimation
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problem is certainly different from state estimation based on
the original (analog-amplitude) observations.

Without explicitly considering quantization, spatial redun-
dancy across sensor observations has been exploited to reduce
communication requirements [3], [4], [9], [21], [23], [24].
Accounting for quantization, distributed estimation algorithms
were explored in early works, see, e.g., [10] and [17]; and
recently in the context of WSNs. The design of quantizers in
different scenarios was studied in [22], where the concept of in-
formation loss was defined as the relative increase in estimation
variance when using quantized observations with respect to
the equivalent estimation problem based on analog-amplitude
observations. To address the challenge of building suitable
noise models for WSNs, universal estimators that work irre-
spective of the noise distribution were introduced in [18] and
shown to have an information loss independent of the network
size. Another insight when estimating signals using very noisy
sensor data was offered by [25], [26], where it was shown that
as the noise variance becomes comparable with the parameter’s
dynamic range, quantization to a single bit per observation
leads to low complexity estimators of time-invariant deter-
ministic parameters with minimal information loss. This holds
true for a large class of problems, where the noise probability
distribution function (pdf) may be parametrically described or
even unknown [25].

Taking into account the stringent bandwidth constraints
of WSNs, this paper studies state estimation of dynamical
stochastic processes based on severely quantized observations,
whereby low-cost communications restrict sensors to transmit a
single bit per observation. The quantization rule manifests itself
in a non-linear measurement equation in a Kalman Filtering
(KF) setup. While the discontinuous non-linearity precludes
application of the extended (E) KF, it can be handled with more
powerful techniques such as the unscented (U) KF [14], or the
particle filter (PF) [7], [16]—algorithms that have also been
applied in the context of filtering [6], [29] and target tracking
with a WSN [1], [8]. However, all these approaches are signif-
icantly more complex than a KF and, besides, no insight has
been provided with regards to their performance degradation
when quantized data are used in lieu of the analog-amplitude
observations. The contribution of the present paper is precisely
to address these two issues with the goal being to construct state
estimators based on binary observations so that: i) complexity
is rendered comparable to the equivalent KF based on the
original observations; and ii) the mean squared error (MSE) of
the resultant estimate based on binary observations is close to
the MSE of the estimate based on the original observations.
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We begin by introducing our WSN setup and formulating
the problem in Section II, where we delineate the KF that
we will use to benchmark algorithms in the rest of this paper
(Section II-A). State estimation based on the sign of innovations
(SOI) is considered first for a vector state-scalar observation
model in Section III, where we discuss the minimum mean
squared error (MMSE) estimator (Section III-A). As the latter
may be prohibitive for a resource-limited WSN, we pursue
a reduced-complexity approximation in Section III-B which
leads to the SOI-KF algorithm whose complexity and perfor-
mance are surprisingly close to the clairvoyant KF, even when
intersensor communication relies on the low-cost transmission
of a single bit per sensor. These results are extended to a
general vector state-vector parameter model in Section IV. The
performance of the SOI-KF is analyzed in Section V, where
using the underlying continuous-time physical processes we
show that the MSE of the SOI-KF is closely related to the
MSE of a KF with measurement noise covariance matrix only

times the original one. We present a motivating example
in Section VI, entailing temperature monitoring with a WSN.
Finally, we apply a modified version of the SOI-KF to the
canonical problem of distributed target tracking based on bi-
nary observations in Section VI-A. Section VII concludes this
paper.

Notation: We use to denote the probability den-
sity function (pdf) of the random variable (r.v.) given the
r.v. evaluated at ; when using the same letter to denote the
r.v. and the argument of the pdf we abbreviate

. When an r.v. is normally distributed with mean
and covariance matrix , we write

, where stands for transposition. In the partic-
ular case of a scalar r.v., we write and
define the Gaussian tail function as .
We will use to denote the Dirac delta function defined by

, and ; and to denote
the Kronecker delta function defined as and

. For any function the notation will
imply that . Throughout this paper, will de-
note the identity matrix, and lower (upper) case boldface letters
will stand for column vectors (matrices).

II. PROBLEM STATEMENT AND PRELIMINARIES

We are primarily concerned with so called ad-hoc WSNs in
which the network itself is responsible for collecting and pro-
cessing information; see Fig. 1. Let us consider an ad-hoc WSN
with distributed sensors deployed with the objec-
tive of tracking a real random vector (state) .
The state evolution in continuous-time is described by

(1)

where , and the driving input
is a zero-mean white Gaussian process with autocorrelation

. The sensors ob-
serve the state through a linear transformation. Letting

denote the observation at sensor , we have

(2)

Fig. 1. Ad-hoc WSN: the network itself is in charge of tracking the state x(n).

where and the observation noise
is also a zero-mean Gaussian process with

,
i.e., the noise is uncorrelated across time and sensors.

To track , we consider uniform sampling with period
and define the discrete-time state and observations as

and , respectively. Using the
continuous-time model described by (1) and (2) we can obtain
an equivalent discrete-time model [20, Sec. 4.9]. Upon defining

, we can solve the differential
equation in (1) between and with initial condition

to obtain

(3)

For simplicity, define the matrix
and the white Gaussian driving noise input

. With these definitions, the re-
sultant discrete-time equivalent model is given by the vector
time-varying autoregressive (AR) process

(4)

where and the observation noise is
white Gaussian with pdf .
Since sampling (2) requires passing through a low-
or band-pass filter of bandwidth , the sampled covari-
ance matrix satisfies

[20, Sec. 4.9]. Finally, note that ’s
definition implies that
with covariance matrix

.
Supposing that , , and are

available , the goal of the WSN is for each sensor to
form an estimate of to be used in e.g., a habitat monitoring
application [19], or, as a first step in e.g., a distributed control
setup [13]. In any event, estimating necessitates each
sensor to communicate to the remaining sensors

. This communication takes place over the shared
wireless channel that we will assume can afford transmission
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of a single packet per time slot , leading to a one-to-one cor-
respondence between time and sensor index and allowing
us to drop the sensor argument in (4). The decision of which
sensor is active at time , and consequently which
observation gets transmitted, depends on the
underlying scheduling algorithm—see, e.g., [11], [21]. and the
references therein—but is assumed given for the purpose of
this paper. Digital transmission of also implies some form
of quantization to map the analog observations into
binary data

with (5)

where is an -component bi-
nary message. Implicit to (5) is the fact that we are restricting the
sensors to transmit one bit per scalar observation which effects
low-cost communications among sensors. Indeed, the quantiza-
tion function partitions in regions, implying that on
the average each component of is quantized to 1 bit. We
further suppose that the messages are correctly received
by all sensors, which assumes deployment of sufficiently pow-
erful error-control codes.

The objective of this paper is to derive and analyze the per-
formance of MMSE estimators of based on the messages

that are available to each and
every sensor. It is well known that the MMSE estimator is given
by the conditional expectation [15, Ch. 12]; consequently, if we
let denote the MMSE estimator of given , we
have

(6)

Instrumental to the ensuing derivations are the so called pre-
dictors that estimate (predict) the state and observation vectors
based on past observations

(7)

For each of the state estimators in (6) and (7), we define the
error covariance matrices (ECM)

, and
for the filtered and the predicted es-

timate, respectively. The mean square errors (MSEs) of
and are given by and
with these traces being minimum among all possible estimators

and of . The ECM of the state predictor
can be obtained from the ECM of the state estimator through the
recursion

(8)

which we will use in later derivations. Note that the relations
between and and and

in (7) and between and
in (8) follow from the linearity of the expected value operator
and are independent of the quantization rule in (5).

Fig. 2. WSN with a fusion center: The sensors act as data gathering devices.

Remark 1: When a fusion center (FC) is present, the WSN
is termed hierarchical in the sense that sensors act as informa-
tion gathering devices for the FC that is in charge of processing
this information; see Fig. 2. Results in this paper also apply to
networks of this type provided that the FC feeds back to the sen-
sors packets . As we will discuss in Sections III-B
and IV, the sole condition for applying the proposed method is
to have the predicted observation available at ,
a condition that can be met in the hierarchical WSN with feed-
back .

A. The Kalman Filter Benchmark

Before considering estimation based on binary observations,
let us highlight some properties of the clairvoyant KF that will
come handy in subsequent derivations. Consider for simplicity
a vector state-scalar observation model described by

(9)

The model in (9) is a particular case of the general model (4) in
which ; the observations , noise

and noise covariance are scalar; and
is a row vector.

If we had infinite bandwidth available, we could commu-
nicate the observations error-free. This is rightfully a
clairvoyant benchmark for our bandwidth-constrained estima-
tors and corresponds to the problem setup of Section II with
messages . In this case, we have a well known
linear Gaussian vector AR estimation problem whose MMSE
can be recursively obtained by the KF [15, Ch. 13]. Assuming
that the estimate and the ECM
are known at step , we compute the predicted estimate

and the corresponding ECM using
(7) and (8), respectively. Next, the filtered estimate is
obtained by solving the integral in (6) with the posterior pdf
computed by means of Bayes’ rule

(10)

The key observation is that because of the linear Gaussian model
(9), the posterior is
normal, leading to the so called correction step



4 IEEE TRANSACTIONS ON SIGNAL PROCESSING

(11)

where we defined the innovation sequence
. Recursive application of (7), (8) and (11) yields the

MMSE estimate of given .

III. STATE ESTIMATION USING THE SIGN OF INNOVATIONS

The corrector in (11) depends on the innovation sequence
corresponding to the differ-

ence between the current observation and the prediction based
on past observations. This suggests that a convenient form for
the quantization function is . We start
by considering the vector state-scalar observation model in (9)
and define the message as the SOI

if
if

(12)

Notice that the SOI is not a standard quantizer of the data
. It can be thought as one that judiciously sets the quanti-

zation threshold at the data prediction . The focus of
the present section is to study MMSE estimation of based
on .

A. Exact MMSE Estimator

To find the MMSE in (6) based on the SOI in (12) we can, in
principle, proceed as we described in Section II-A for the KF.
However, while we can update the estimate and
its ECM using (7) and (8) to obtain the pre-
dictor and its corresponding ECM , the
analogy with the KF cannot be pursued any further. The reason
is that due to the non-linearity in the definition of in (12)
the distribution is no longer normal; and, thus,
its description requires additional information besides its mean
and variance. This characteristic problem of nonlinear filtering
motivates the need for a means of propagating the posterior pdf

so that the integral in (6) can be evaluated. Such a
rule is described in the following proposition.

Proposition 1: Consider the vector state-scalar observation
model defined by (9), and the SOI messages defined as in (12).
Then, the posterior pdf of given the binary observations

can be obtained using the recursions

(13)

(14)

where is a normalizing constant ensuring that
.

Proof: The prior pdf in (13) follows from
the theorem of total probability

(15)

Note, however, that since is given in
, conditioning on

is irrelevant and

yielding (13). The posterior pdf in (14) can be obtained from
Bayes’ rule

(16)
But the term

can be easily expressed in terms of the
Gaussian tail function

(17)

where the first equality follows from the definition of the SOI
in (12) and the fact that since is given we can ignore

the conditioning on ; the second equality is obtained by
substituting for the observation model expression in (9);
and the last equality is a consequence of the observations’ noise
distribution, .

Substituting (17) into (16) yields (14) after setting
.

Two recursive algorithms for computing the MMSE
can be derived from Proposition 1. Algorithm 1-A is run at
the sensors when the scheduling algorithm dictates that is their
turn to transmit the SOI. At this time slot, the sensor com-
putes the distribution using (13) from where
it predicts the state value by numerically evaluating

. Based on this prediction,
the sensor evaluates as in (7) in
order to obtain and transmit the SOI as defined in (12). Al-
gorithm 1-B is run by all sensors during the life of the network to
keep track of the state via the filtered estimate (corrector)

. To this end, all sensors compute the pdf
using (13), and subsequently apply (14) to find .
The estimate of interest is obtained by numerical inte-
gration of the expression in (6).

Albeit optimal, the process described by Algorithms 1-A
and 1-B requires numerical integration at three different times.
We first have to evaluate the integral necessary to obtain

as stated in (13) for step 1 of Algorithm 1-A
and step 2 of Algorithm 2-B. A second numerical integration in
step 2 of Algorithm 1-A is required to compute and
another one in step 5 of Algorithm 1-B to compute the desired
estimate, . As these can be prohibitively expensive



RIBEIRO et al.: SOI-KF: DISTRIBUTED KALMAN FILTERING WITH LOW-COST COMMUNICATIONS 5

for a resource limited WSN, we are motivated to pursue a
reduced-complexity approximation that we introduce next.

B. Approximate MMSE Estimator

A customary simplification in non-linear filtering is to assume
that the pdf

is Gaussian; see, e.g., [16]. In general, the normal approx-
imation of is introduced to reduce the problem
of tracking the evolution of a pdf to that of tracking its mean

and covariance . For the problem at
hand though, it also leads to a very simple algorithm as asserted
by the following proposition.

Proposition 2: Consider the vector state-scalar observation
model in (9) and binary observations defined as in (12). If

, then the
MMSE estimator can be obtained from the recursions

(18)

(19)

(20)

(21)

Proof: The predictor recursions (18) and (19) are identical
to (7) and (8), respectively, and are included here for complete-
ness. To establish (20), recall that the conditional mean can be
obtained by averaging over the posterior pdf :

(22)

Using Bayes’ rule, we can find the posterior
as

(23)
We now examine the three terms on the right-hand side of
(23). The first one is

, which after repeating the steps used to
establish (17) in the proof of Proposition 1 can be expressed in
terms of the Gaussian tail function

(24)

To obtain an expression for the term
, we use the normal assumption on the

distribution of to obtain

(25)
where the first equality follows from the definition of in
(12). To obtain the second equality note that Gaussianity of

implies that of since is a
linear transformation of ; and also that the probability of
a normal variable to be greater or smaller than its mean equals
1/2.

Substituting (24) and (25) into (23) and using the (assumed)
normal distribution

, we obtain an expression for the posterior
distribution that we substitute in (22) to arrive at

(26)

In the Appendix, we prove that the integral in (26) can be re-
duced to (20).

To obtain (21), we write
with the explicit value of as deduced from (20), so that we
can write the ECM as

(27)

where the first equality follows by definition and, in the second
equality, we used that

. The last term in (27) can be further
simplified after recalling that ,
and using the theorem of total probability to obtain

(28)
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Substituting (28) into (27) and noting that , we
obtain

(29)

which after using the expression for leads to (21).
As we commented earlier, the simplification

yields the low-complexity SOI-KF that implements distributed
state estimation based on single-bit observations using the
recursions (18)–(21). To estimate , we only require a few
basic algebraic operations per iteration. Moreover, the SOI-KF
recursion is strikingly reminiscent of the KF recursions (7), (8),
and (11). The ECM updates in particular are identical except
for the factor in (21).

The algorithmic description of the SOI-KF is summarized
in Algorithm 2-A which is run by the sensors as dictated by
the scheduling algorithm; and Algorithm 2-B which is continu-
ously run by all sensors to track . These algorithms are to
be contrasted with their exact MMSE counterparts (Algorithms
1-A and 1-B) to note that the numerical integrations have been
replaced by simple algebraic expressions. Indeed, the SOI-KF
observation and transmission Algorithm 2-A computes the pre-
diction by successive application of (18) and (7) to
compute and transmit the SOI in (12). The reception and esti-
mation Algorithm 2-B is identical to a KF algorithm except for
the (minor) differences in the update equations.

A few remarks are now in order.
Remark 2: It is possible to express the SOI-KF corrector in

(20) in a form that exemplifies its link with the KF corrector in
(11). Indeed, if we define the SOI-KF innovation as

(30)
we can re-write the SOI-KF corrector as

(31)

Note that (31) is identical to (11) if we replace with
the innovation . Moreover, note
that the units of and are the same, and
that . Even more interesting
[cf. (11) and (32)]

(32)

which explains the relationship between the ECM corrections
for the KF in (11) and for the SOI-KF in (21). The difference
between (11) and (31) is that in the SOI-KF the magnitude of
the correction at each step is determined by the magnitude of

and it is the same regardless of how large or
small the actual innovation is.

Remark 3: As , the Gaussian tail function
converges uniformly

to 1/2 and, consequently, converges uni-
formly to a normal distribution. Thus, the assumption

holds
asymptotically as . For this reason, the SOI-KF yields
an accurate approximation of the MMSE estimator at low
signal to noise ratios (SNRs). The accuracy of the approxima-
tion decreases as the SNR increases.

Remark 4: When matrices in the state–space model (4) are
time-invariant, it is well known that the KF converges to the
Wiener filter (WF) as , which, as is also known, can be
approximately implemented by the least-mean-squares (LMS)
algorithm. Consequently, one may wonder whether there is a re-
lation between the SOI-KF of this paper and the sign-LMS [28,
Sec. 5.7]. Apart from offering low complexity versions of the
KF and WF, respectively, the two schemes are fundamentally
different. In the sign-LMS algorithm, the SOI sequence is used
to recursively update the coefficients of the WF which has as
input the analog-amplitude observations. In the SOI-KF, how-
ever, the gain coefficients are computed from the KF correlation
matrices and the SOI sequence is used as the filter input.

IV. VECTOR STATE-VECTOR OBSERVATION CASE

The general vector state-vector observation case defined by
(4) can be reduced to the vector state-scalar observation problem
considered in Section III-B. If the noise vectors are white,
i.e., then Proposition 2 can be applied verbatim,
for is not more than a collec-
tion of independent scalar observations . If

is not white, the idea is to whiten the observations so that
we can rewrite the problem as a sequence of vector state-scalar
observation problems. To this end, we define the observation

to obtain [c.f. (4)]

(33)

where . For future reference,
we write ,

and
that allows us to write (33)

componentwise as
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(34)

where the observation noise variance is
.
Equation (34) has the same form as (9) in the sense that

the state is a vector but the observation is
scalar. Mimicking the treatment in Section III, we define

and introduce the
MMSE estimator

(35)

which is the MMSE estimator based on past messages and the
first components of the current message. We adopt the con-
vention , and note that

with as defined in (7) and
as defined in (6). From (35), we obtain the MMSE predictor of

as [c.f. (34) and (35)]

(36)

From (36), we define the SOI observations for the vector state-
vector observation problem as

(37)
Setting aside the necessary differences in notation, the problem
of finding the MMSE estimator in (35) based on the observation
model (34) when the binary observations are given by (37) is
equivalent to a sequence of MMSE estimation problems for
the vector state-scalar observation model in (9) with binary ob-
servations as in (12). An approximate MMSE for this problem
was summarized in Proposition 2 that, with proper notational
modifications, can now be generalized as follows.

Proposition 3: Consider the vector state-vector obser-
vation model defined by (4), binary observations defined
as in (37) and let
be defined as [c.f. (33)]. If

, then the MMSE estimate can
be obtained from the recursions

(38)

(39)

(40)

(41)

(42)

where for each time index , steps (40) to (42) are repeated
for . We adopt the conventions

and , and note that the
MMSE estimate and the ECM are given by

and .

Proof: As pointed out earlier, Proposition 3 follows from
repeated application of Proposition 2. Indeed, if we define the
vector the state equation for

can be written as

(43)

On the other hand, the whitened observations can be written as
[c.f. (34) with ]

(44)

Define now the MMSE estimators
and

with corresponding ECM
and . Applying

Proposition 2, we obtain the prediction recursions for
[c.f. (18), (19), and (43)]

(45)

and for [c.f. (18), (19), and (43)]

(46)

From Proposition 2, we also obtain the correction recursions.
Upon defining the gain

(47)
the filtered estimate and ECM can be written as [c.f. (20), (21),
(44), and (47)]

(48)

Note however, that since for , we
have that and

; and likewise for the ECMs:
and

. To obtain (38) and (39), it suffices
to substitute the latter into (45). To obtain (40)–(42), we simply
make these same substitutions in (48) after plugging (46) into
(48).

The algorithmic description of the SOI-KF is summarized in
Algorithms 3-A and 3-B. Algorithm 3-A is run at the sensors
when the scheduling algorithm dictates that it is their turn to
transmit an observation. When this happens, the sensor runs the
predictor using (38) and (39) (step 1) and whitens the observa-
tion (step 2). Subsequently, it recursively computes par-
tial MMSE estimators via (36) and (40)–(42) in order to obtain
the binary observations by means of (37). When this
process is complete, the message is transmitted. Interest-
ingly enough, when the observations are scalar, Algorithm 3-A
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amounts to sequential application of steps 1, 2, 4, 5, and 8; which
is, of course, equivalent to Algorithm 2-A.

Algorithm 3-B is continuously ran by the sensors to estimate
the state . At each time slot we compute the predictors
along with and move on to process the received mes-
sage . Processing of entails recursive application of
(40)–(42) for the entries of . After this process is com-
plete, we obtain the MMSE estimate .

V. PERFORMANCE ANALYSIS

By definition, any MMSE estimator minimizes the trace of
the corresponding ECM. Thus, to the extent that the approxi-
mation
is accurate enough, the SOI-KF in Proposition 2 is optimum in
the sense of minimizing and . How-
ever, this optimality does not provide any insight with respect to
the performance of the SOI-KF relative to the MMSE based on
the original observations which are used by the clairvoyant KF
in (7), (8), and (11). In this section, we compare
and for the SOI-KF with and

reserved to denote the corresponding quan-
tities for the KF.

To simplify notation, define . Inter-
estingly, is independent of the observations , and
regardless of the data we can find by solving the dis-
crete-time Ricatti equation that is obtained by substituting the
expression for in (21) into the ECM update for

in (19)

(49)

Likewise, upon defining , we obtain
the discrete-time Ricatti equation for the clairvoyant KF [c.f. (8)
and (11)]

(50)

Notice that (49) and (50) differ only by the factor in the
numerator of the ratio in (49). A possible performance com-
parison could be to solve the difference (49) and (50) for spe-
cific models and compare with . However,
better insight can be gained by recalling the underlying contin-
uous-time model, for which we start with the following defini-
tion.

Definition 1: Consider the continuous-time model (1), (2)
and a family of corresponding discrete-time models (4) parame-
terized by . Let and be the ECM
of the filtered and predicted estimates of the SOI-KF in Propo-
sition 2 when sampling period is used in (4). Then, the con-
tinuous-time ECM is defined as

(51)

An equivalent definition can be written for the clairvoyant KF
whose continuous-time ECM will be denoted [20]. In
general, the continuous-time MSE is easier to analyze but at the
same time more general since, being independent of the sam-
pling time, it provides insights about the fundamental properties
of the problem. Moreover, it is well known that [20]

(52)
Equation (52) reveals that the continuous-time MSE, ,
serves as an upper (lower) bound for

. The continuous-time ECM
can be obtained by solving a continuous-time Ricatti equation
as we show in the next proposition.

Proposition 4: For the SOI-KF introduced in Proposition 2,
consider the continuous-time ECM given by Definition
1. Then, can be obtained as the solution of the differential
equation

(53)

Proof: Consider a neighborhood around . To es-
tablish (53), it suffices to subtract from both sides of (49),
divide by and let . Indeed, the limit of the left-hand
side of (49) is

(54)
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where the first equality follows from the definition of
in (51) and in the second equality, we used the definition of
derivative and set . On the right-hand side, we start
with the limit shown in

(55)

where in the second equality we used the definitions of
and in (51). How-

ever, since , we
find

(56)

Consider now the variance of the driving input whose limit is

(57)

where in obtaining the first equality we used the definition of
. To obtain the last equality we applied the mean value

theorem and wrote
.

For the remaining term on the right-hand side of (49), we
define the limit

(58)

where in the second step the key substitution is
; and we also used the fact that

, and the
definition of in (51).

Finally, note that according to (49) and the definitions of ,
we have that . Combining this with the limit

expressions in (54), (56), (57) and (58), we obtain (53) after
rearranging terms.

Either repeating Proposition 4 for the KF, or using standard
references for the continuous-time KF, we know that can
be obtained as the solution of the Ricatti equation [20]

(59)

which is identical to (53) with the substitution
. Thus, the continuous-time MSE of the SOI-KF

coincides with the continuous-time MSE of a KF with
times larger measurement noise variance.

To state an analogous result for the vector state-vector obser-
vation SOI-KF of Proposition 3, we will need the definition of
the -equivalent system that we introduce next.

Definition 2: Consider a state-observation model
as in (1), (2), where the noise autocorrelation is

.
We say that a model with otherwise identical parame-
ters but noise autocorrelation

, is -equivalent.
For a given sampling period , the KF for this latter model
will be henceforth called the -KF. We will denote
its filtered and predicted ECM as and

and the continuous-time ECM as
.

Using Definition 2, we can establish the relationship between
the MSEs of the SOI-KF and the KF as follows.

Corollary 1: For the state-observation model in (1), (2), and
its corresponding -equivalent system, it holds that

(60)

Proof: Define the time index and
apply Proposition 4 to the state-observation model defined by
(4) and (34). Observe next that if holds
for a model based on the observations , it also holds
for a model based on because im-
plies that the MMSE estimates are equal; i.e.,

.
Corollary 1 establishes that the MSE of the SOI-KF is

closely related to the MSE of the -KF, since as
the MSEs of these two filters are equal. For a particular ex-
ample, Fig. 3 depicts and
for different values of illustrating how the gap between these
two MSEs narrows as decreases, eventually converging to

. Fig. 4 compares the KF, the SOI-KF and the
-KF for two representative sampling periods . Note

that for large , and
are not equal (bottom); but as decreases, these two quan-
tities eventually coincide (top). It is is also worth noting that

is a valid upper bound for
. We finally stress that the gap between the KF

and the SOI-KF is small even for moderate values of .

VI. SIMULATIONS

The SOI-KF can be applied in a number of situations. Con-
sider for instance measuring, e.g., room temperature with a
WSN. A common state propagation model is the zero-acceler-
ation model [2, p. 262]

(61)

where is the room’s temperature, and and de-
note first and second derivatives. Consistent with having



10 IEEE TRANSACTIONS ON SIGNAL PROCESSING

Fig. 3. MSEs tr[M(T ;njn)] of the estimator and tr[M(T ;njn�1)] of the
predictor converge to the continuous-time MSE tr[M (nT )] as T decreases
(A (t) = I, h (t) = [1; 2] ,C (t) = I, and � (t) = 1).

Fig. 4. MSE tr[M(T ;njn)] of the SOI-KF and the MSE
tr[M (T ;njn)] of the (�=2)-KF (SOI-eq.) are indistinguish-
able for small T ; as T increases there is a noticeable but still small difference.
The penalty with respect to tr[M (T ;njn)] is small for moderate T
(A (t) = I, h (t) = [1; 2] ,C (t) = I, and � (t) = 1).

variance , the driving input’s covariance matrix is
.

Sensor measures the temperature, but due to thermal in-
ertia the observations are given by

(62)

with a sensor dependent constant and denoting
the measurement noise variance. For simplicity, we further as-
sume that there are only two sensors that alternate in transmit-
ting their observations.

Simulations for this problem are depicted in Figs. 5 and 6,
where we can see that the theoretical MSE curves found as the
solution of the corresponding Ricatti equations closely match
the empirical results. In Fig. 5, we compare the SOI-KF with
the -KF for different sampling periods . While for small

these two filters yield indeed indistinguishable performance
(top), as increases there is a noticeable gap between them

Fig. 5. SOI-KF compared with the (�=2)-KF. The filtered MSEs of the two
filters are indistinguishable for smallT , but asT becomes large, the (�=2)-KF
is not a good predictor of the SOI-KF’s performance (� = 0:1, � = 0:2,
� = 1 and � = 1).

Fig. 6. SOI-KF compared with KF: even for moderate values of T , the per-
formance penalty is small (� = 0:1, � = 0:2, � = 1 and � = 1).

(bottom). On the other hand, by inspecting the comparison be-
tween SOI-KF and KF in Fig. 6, we deduce that even for rela-
tively large sampling intervals, the MSE penalty paid for quan-
tizing to a single bit per sensor is small.

We finally consider the variation of the predicted and fil-
tered MSEs ( and respec-
tively) with respect to the sampling period . The steady state
value as of these quantities is shown in Fig. 7 for the
SOI-KF, and corresponding KF and -KF. We can see that
as , the gap between and

narrows, and eventually both reach the continuous time MSE
obtained as the solution of (53) or (59). More inter-

esting, let us note that in many applications we want suffi-
ciently small so that and
are not very different. However, for these cases the SOI-KF
incurs a negligible performance penalty since we can see that

for .

A. Target Tracking With SOI-EKF

Target tracking based on distance-only measurements is a
typical problem in bandwidth-constrained distributed estima-
tion with WSNs (see, e.g., [1] and [8]) for which a variation
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Fig. 7. Variation of estimates and predicted estimates for the SOI-KF,
KF, and (�=2)-KF. For the given parameters we want T < 0:5 so that
tr[M (T ;njn)] and tr[M (T ;njn � 1)] are not very different, but for
these T values the SOI-KF incurs a minimal variance penalty (� = 0:1,
� = 0:2, � = 1 and � = 1).

of the SOI-KF appears to be particularly attractive. Consider
sensors randomly and uniformly deployed in a square region of

meters and suppose that sensor positions are
known.

The WSN is deployed to track the position
of a target, whose state model accounts for

and the velocity , but not for the
acceleration that is modelled as a random quantity. Under these
assumptions, we obtain the state equation [12]

(63)

where is the sampling period and the random vector
is zero-mean white Gaussian, i.e.,

. The sensors gather information about their
distance to the target by measuring the received power of a
pilot signal following the path-loss model:

(64)

with a constant, denoting the distance
between the target and , and the observation noise with
distribution .

Mimicking an EKF approach, we linearize (64) in a neigh-
borhood of to obtain

(65)

where and is
an explicit function of , and .

The approximate model in (63)–(65) is of the form (9) and
we can apply the SOI-KF outlined in Algorithms 2-A and 2-B
to track the target’s position . This procedure amounts to

Fig. 8. Target tracking with EKF and SOI-EKF yield almost identical esti-
mates. The scheduling algorithm works in cycles of duration T slots. At the be-
ginning of the cycle, we schedule the sensor S closest to the estimate x̂(njn�
1), next the second closest and so on until we complete the cycle (T = 4 slots,
T = 1 s, L = 2 km, K = 100, � = 3:4; � = 0:2 m=s , � = 1).

Fig. 9. Standard deviation of the estimates in Fig. 8 are in the order of 10–15
m for both filters.

the implementation of an extended SOI-(E)KF which is a low
communication cost version of the EKF.

The results of simulating this setup are depicted in Figs. 8
and 9, where we see that the SOI-KF succeeds in tracking the
target with distance error for the position estimates of less than
10 m. Similar conclusions can be obtained from Fig. 10 that
depicts the error in the first coordinate com-
pared with the curves for the SOI-KF and the
KF. As expected, the SOI-KF error matches the KF error with
both of them within the corresponding curves.
While this accuracy is just a result of the specific parameters of
the experiment, the important point here is that the clairvoyant
EKF and the SOI-EKF yield almost identical performance even
when the former relies on analog-amplitude observations and
the SOI-EKF on the transmission of a single bit per sensor.

VII. CONCLUDING REMARKS

Relying on the SOI, we considered the problem of distributed
state estimation in the context of wireless sensor networks.
The binary SOI data render the problem nonlinear and lead to
prohibitively complex MMSE state estimation. This motivated
an approximation leading to the SOI-KF which constitutes an
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Fig. 10. SOI-KF error in the first component of the position estimate x (n)�
x̂ (njn) (error in x (n)) is within the�3 [M(njn)] curves (3�� curves).

approximate MMSE estimator whose complexity and perfor-
mance are very close to that of a KF even when the latter fuses
the original (analog-amplitude) observations and the SOI-KF is
based on the transmission of a single bit per observation.

Relating the discrete-time KF and SOI-KF with the under-
lying continuous-time physical process monitored by the WSN,
we established that the MSE of the SOI-KF coincides with the
MSE of a KF applied to an otherwise equivalent system model
with larger measurement noise covariance matrix. This re-
sult was derived in the limit as the sampling period becomes ar-
bitrarily small; practical simulations confirmed its validity even
for moderate-size sampling intervals.

The SOI-KF was applied to a motivating application entailing
temperature monitoring and to the canonical target tracking
problem based on distance-only measurements. In both cases,
we corroborated that at low communication cost the SOI-KF
and the SOI-EKF yield estimates that are indistinguishable
from the estimates of the clairvoyant KF and EKF for all
practical purposes.

Future research directions include SOI-based estimators in
different setups. As we pursued the SOI-EKF, one can envision
similar combinations with the (SOI-)UKF and the (SOI-)PF in
which we trade complexity for performance in highly non-linear
state estimation problems. On the other hand, a multi-bit version
of the SOI-KF can be devised in which the bit of a quantized
observation is defined as the SOI relative to the estimator based
on the previous bits. In both cases, the goal is to effect
distributed state estimation with low-cost communications.

APPENDIX

PROOF OF (20)

To simplify notation, we will drop the time argument to write
and . Due to the symmetry of the

problem, it suffices to consider the case . Start with
the change of variables , so that we
can write (26) as

(66)

Introduce a second change of variables
, and also let to obtain

(67)

where we recall that
. Define the integral

, that we can express componentwise as

(68)

where we used the definition
, introduced the

notations and
, and separated the

exponent as .
We can now observe that

and interchange the last two in-
tegrals in (68) to obtain

(69)

with the last equality following from the fundamental theorem
of calculus. We can further rearrange terms in (69) and inter-
change the integrals to arrive at

(70)
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Consider now the quadratic form in the exponent of the second
integral, and let us summarize a number of properties about this
form in the following lemma.

Lemma 1: If we define the matrix ,
it holds that:

a) the inverse of is given by ;
b) the determinant of is ;
c) the quadratic form in the exponent of the second integral

in (70) can be written as

(71)

with .
Proof: Statement a) follows from the matrix inversion

lemma, and can also be proved by verifying that . To
prove b), let be an eigenvector of ; being an eigenvector
of , must satisfy

(72)

for some constant . Note that (72) is satisfied by
with , and by any perpendicular to

such that with . Since the determinant
can be expressed as the product of the eigenvalues, we have

(73)

However, the dimension of the subspace perpendicular to
is , and thus, . Statement b) is obtained by
simply rearranging terms.

To prove c), expand the right-hand side and verify that the
equality is indeed true.

Using Lemma 1-c), we can rewrite (70) as

(74)

where the two integrals are independent. The second integral is
the integral of a -dimensional Gaussian distribution over

which regardless of is equal to ;
given that is given by the inverse of the expression in
Lemma 1-b), we obtain

(75)

The first integral in (74) is the integral of a Gaussian bell over
and is thus given by times the standard deviation

(76)

Substituting (75) and (76) into (74), we obtain

(77)

Placing the components of given by (77) into (67) yields the
expression

(78)

Recalling that , (26) follows for .
For , the opposite result follows from symmetry.
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