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Abstract

This paper introduces a “weighted” matching algorithm to
estimate a robot’s planar displacement by matching two-
dimensional range scans. The influence of each scan point on
the overall matching error is weighted according to its uncer-
tainty. We develop uncertainty models that account for effects
such as measurement noise, sensor incidence angle, and corre-
spondence error. Based on models of expected sensor uncer-
tainty, our algorithm computes the appropriate weighting for
each measurement so as to optimally estimate the displacement
between two consecutive poses. By explicitly modeling the var-
ious noise sources, we can also calculate the actual covariance
of the displacement estimates instead of a statistical approxi-
mation of it. A realistic covariance estimate is necessary for
further combining the pose displacement estimates with addi-
tional odometric and/or inertial measurements within a local-
ization framework [1]. Experiments using a Nomad 200 mobile
robot and a Sick LMS-200 laser range finder illustrate that the
method is more accurate than prior techniques.

1 Introduction and Preliminaries

A robot’s ability to determine and maintain knowledge of its ab-
solute position is a basic requirement for long term autonomous
navigation and operation. Consequently, the subjects of local-
ization and mapping have received considerable attention (e.g.,
see [2, 3, 4, 5, 6]). Two-dimensional range finders, such as laser
range finders [7] or rings of ultrasonic range sensors [8], are
commonly used as a part of many mobile robot localization and
mapping procedures. This paper introduces a “weighted” range
sensor matching algorithm to estimate a robot’s displacement
between the configurations where range scans are obtained.
This novel algorithm takes into account several important physi-
cal phenomena that affect range sensing accuracy, and that have
been neglected in prior work. Our experiments (Section 6) show
that this algorithm is not only efficient, but more accurate than
non-weighted matching methods, such as that of Ref. [9]. In
addition, by computing the actual covariance of the displace-
ments, the weighted matching algorithm provides the basis for
optimal fusion of these estimates with odometric and/or iner-
tial measurements [1] and subsequently support localization and
mapping tasks.

To best understand the content of this paper and its contribu-
tions, we first describe the basic problem, and how our solution
approach differs from previous ones. We focus on mobile robots
operating in planar environments. Our method is best suited to
indoor environments, though it can be extended to structured
outdoor environments. We assume that the robot is equipped
with odometry and a steerable range sensor. These distance
measurements can come from sensors such as sonars, infrareds,
cameras, radars etc. The basic principle behind our approach of
incorporating sensor noise models into the displacement estima-
tion algorithm generally applies to any case of dense range data
matching processes. Different sensor noise/uncertainty mod-
els, which will be based on the particular characteristics of each
sensor, are needed for different applications.
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Figure 1: Geometry of the range sensing process

The robot starts at an initial configuration, g1, and moves
through a sequence of configurations, or poses, gi, i =
2, . . . , m. Here gi ∈ SE(2) denotes the robot’s position and
orientation relative to a fixed reference frame, g0. We assume
that at each pose, the robot measures the range to the boundary
of its nearby environment along rays which are separated by a
uniform angle,1 β (see Fig. 1). Let the set of ni scan points in
the ith pose be denoted by {ui

k}, k = 1, . . . , ni. The scan point
coordinates are described in the robot’s body frame, and the kth

scan point in pose i takes the form:

ui
k = lik

[
cos θi

k

sin θi
k

]

(1)

1The extension to non-uniform angle β is straight forward.



where lik is the measured distance to the environment’s bound-
ary in the direction denoted by θi

k (see Fig. 1).

Our main goal is to accurately estimate the robot’s displace-
ment between poses by matching range data. First, assume
that the range scans at poses i and j have a sufficient number
of corresponding points to be successfully matched (see Sec-
tion 4). Let {ui

k, u
j
k} for k = 1, . . . , nij be the set of cor-

responding scan point pairs. From these pairs we first want
to estimate the relative displacement between poses i and j:
gij = g−1

i gj = (Rij , pij) where

Rij =

[
cos∆φij − sin∆φij

sin∆φij cos∆φij

]

pij =

[
∆xij

∆yij

]

(2)

i.e., the displacement is described by a translation (∆xij , ∆yij)
and a rotation, ∆φij . We next wish to estimate the covariance,
P ij , of the displacement estimate. This covariance is necessary
mainly for two reasons. First, it is an indicator of the quality of
the displacement estimates. Large diagonal elements of the co-
variance matrix indicate increased uncertainty. Any localization
process should be aware of the level of confidence in the com-
puted pose estimates. Second, the covariance is also required
when combining the displacement estimates with measurements
provided by other sensors. For example, within a Kalman filter
framework, the contribution of different sensor measurements
to the state estimate is weighted by the Kalman gains. The val-
ues of these gains depend on the covariances of all the sources
of information contributing to the filter.

Our approach differs from prior work in that we incorporate,
within the estimation algorithm, models of the uncertainty asso-
ciated with the sensor measurements as well as with the match-
ing process itself. This can be better understood by examining
Fig. 1. This diagram shows a set of adjacent scan points that
would be obtained when a range sensor samples points on a
nearby wall. The boundary points sampled in pose i are in-
dicated by circles, and labeled by ui

k−1, ui
k, and ui

k+1. The
boundary points sampled in pose j are indicated by X’s and are
labeled by uj

k−1, uj
k, and uj

k+1. Prior range matching methods
(e.g., [10, 9]) have made the simplifying assumption that the
range scans of different poses sample the environment’s bound-
ary at exactly the same points—i.e., point ui

k corresponds ex-
actly to uj

k, etc. This is generally not true. In this paper, we
model this correspondence error, which has been neglected in
prior work, and incorporate this effect into our matching algo-
rithm. As described in Sections 3.1 and 3.3, the range measure-
ments are corrupted by noise and a bias term that is a function
of the range sensing direction, θi

k, and the incidence angle, αi
k

(see Fig. 1). While the existence of these sources of uncertainty
has previously been suggested [11, 12, 7, 10], our algorithm
is the first to model their effect and account for it within the
estimation process. Finally, by explicitly incorporating these
models of uncertainty, our algorithm computes a realistic co-
variance estimate that accurately reflects the true uncertainty in
the displacement estimates. Previous displacement estimation
algorithms have neglected these effects in the covariance esti-
mate, and thus their results may be overly optimistic [13].

Section 2 describes the general weighted point feature match-
ing problem and its solution. Section 3 develops the corre-
spondence and range measurement error models, and derives
the associated weighting terms. Sections 4 and 5 summarize
the point pairing selection and sensor incidence angle estima-
tion procedures. The experiments in Section 6 demonstrate the
accuracy, robustness and convergence range of our algorithm.
Direct comparisons between this algorithm and previous meth-
ods (e.g. [9]) validate the effectiveness of our approach.

2 The Weighted Range Sensor Matching Problem

This section describes a general point feature matching problem
and its formulation. The weighted matching solution for any
specific implementation will depend upon models of a given
range sensor’s operation, which are subsequently developed.

Consider the range data from poses i and j: {ui
k} and {uj

k}.
The actual range measurements will be imperfect. Let {ri

k} and
{rj

k} be the “true” range measurements. The actual measure-
ments will consist of:

ui
k = ri

k + δui
k + bi

k

uj
k = rj

k + δuj
k + bj

k (3)

where δui
k and δuj

k represent range measurement “process
noise,” while bi

k and bj
k denote the range measurement “bias.”

These terms are discussed in Sections 3.1 and 3.3. The term
δuk is generally well modelled as a zero-mean Gaussian noise
process. The bias bk in this case is an unknown offset. It can
be approximated by a nonzero constant ok (estimated based on
a statistical model derived by measurement data), corrupted by
a zero-mean additive Gaussian noise δbk [12]. The covariance
of this noise component reflects the level of confidence in the
choice of the value ok. Contigent on this approximation, bi

k and
bj
k take the form:

bi
k = oi

k + δbi
k; bj

k = oj
k + δbj

k (4)

We will ignore the offsets for now (i.e., assume that oi
k = oj

k =
0), but will consider their effect in Section 3.3.

Let (ui
k, uj

k) be corresponding points from the range scans at
poses i and j. Accounting for the fact that scan data is measured
in a robot-fixed frame, the error between the two corresponding
points is

εij
k = ui

k − Riju
j
k − pij (5)

for a given value of Rij and pij . Substituting from Eq.s (3) and
(4) into Eq. (5) results in

εij
k = (ri

k − Rijr
j
k − pij)

︸ ︷︷ ︸

(i)

+ (δui
k − Rijδu

j
k)

︸ ︷︷ ︸

(ii)

+ (δbi
k − Rijδb

j
k)

︸ ︷︷ ︸

(iii)

(6)
A relative pose estimation algorithm aims to find the displace-
ment gij = (Rij , pij) that suitably minimizes Eq. (6) over the



set of all correspondences. If the range scans do sample the ex-
act same boundary points, then ri

k −Rijr
j
k − pij = 0 when Rij

and pij assume their proper values. However, ri
k and rj

k gen-
erally do not correspond to the same boundary point. Hence,
term (i) in Eq. (6) is the correspondence error, denoted by cij

k :
cij
k = ri

k −Rijr
j
k − pij . The matching error εij

k for the kth cor-
responding point is also a function of: (ii) the error due to the
actual measurement noise, and (iii) the measurement bias error.

We first make the realistic assumption that the correspondence
errors, noise, and bias errors are mutually independent. The act
of taking range measurements in the ith pose will generally be
independent of the measurement process in the jth pose, and
thus δui

k will be independent of δuj
k (similarly for δbi

k and δbj
k).

Hence, the covariance of the matching error at the kth point
correspondence of poses i and j is:

P ij
k

4
= E

[

εij
k (εij

k )T
]

= E
[

cij
k (cij

k )T
]

+ E
[
δui

k(δui
k)T
]

+ RijE
[

δuj
k(δuj

k)T
]

RT
ij + E

[
δbi

k(δbi
k)T
]

+ RijE
[

δbj
k(δbj

k)T
]

RT
ij (7)

= CP ij
k + NP i

k + Rij
NP j

k RT
ij + BP i

k + Rij
BP j

k RT
ij

= Qij
k + RijS

ij
k RT

ij

where E[·] is the expectation operation, and

CP ij
k = covariance due to correspondence error

NP i
k = noise covariance in the ith pose scan points

NP j
k = noise covariance in the jth pose scan points

BP i
k = bias covariance in the ith pose scan points

BP j
k = bias covariance in the jth pose scan points

Qij
k

4
= CP ij

k + NP i
k + BP i

k

Sij
k

4
= NP j

k + BP j
k .

The matrices Qij
k and Sij

k represent the configuration indepen-
dent and dependent terms of P ij

k . As shown below, the cor-
respondence and bias errors depend on the sensor’s incidence
angle. The noise covariances are functions of the variables θi

k,
θj

k, lik, and ljk. In summary, the covariance matrix P ij
k varies

significantly for each scan point pair. Hence, it is not suitable to
assume, as in prior work (e.g. [14, 9]), that P ij

k is the identity
matrix for all scan point pairs.

Maximum Likelihood Formulation. We use a maximum like-
lihood (ML) approach to formulate a general strategy for es-
timating the robot’s displacement from a set of nonuniformly
weighted point correspondences. Let L({εij

k }|gij) denote the
likelihood function that captures the likelihood of obtaining the
matching errors {εij

k } given a displacement gij . Assuming the
independence of the k = 1, . . . , nij measurements, the likeli-
hood can be written as a product:

L({εij
k }|gij) = L(εij

1 |gij)L(εij
2 |gij) · · · L(εij

n |gij).

Recall that the measurement noise is considered to be a zero-
mean Gaussian process. Also the bias is approximated as a

zero-mean Gaussian noise superimposed on a contant offset. Fi-
nally, as it is shown in Section 3.2, the correspondence noise can
be approximated as a zero-mean Gaussian process. Neglecting
the bias offset for the moment (see Section 3.3), εij

k is the sum
of zero-mean Gaussian random variables. Thus, L({εij

k }|gij)
takes the form:

L({εij
k }|gij) =

nij∏

k=1

e−
1
2
(εij

k
)T (P ij

k
)−1ε

ij

k

2π
√

det P ij
k

=
e−Mij

Dij
(8)

where M ij =
1

2

nij∑

k=1

(εij
k )T (P ij

k )−1εij
k (9)

Dij =

nij∏

k=1

2π

√

det P ij
k (10)

The optimal estimate of the displacement maximizes
L({εij

k }|gij) with respect to displacement. One can use
any numerical optimization scheme to obtain this displacement
estimate. Note however that maximizing Eq. (8) is equivalent
to maximizing the log-likelihood function:

ln[L({εij
k }|gij)] = −M ij − ln(Dij) (11)

and from the numerical point of view, it is often preferable to
work with the log-likelihood function.

This problem’s inherent structure allows for efficiency in the
maximization procedure. Appendix A proves that the optimal
estimate of the robot’s translation can be found as follows.

Proposition 1 The weighted scan match translational dis-
placement estimate, p̂ij , is:

p̂ij = Ppp

(
nij∑

k=1

(P ij
k )−1

(
ui

k − qk

)

)

(12)

where R̂ij = R̂ij(φ̂
−

ij) is the rotational matrix calculated with

the current estimate of the absolution orientation φ̂ij before it-
eration, and:

Ppp =

(
nij∑

k=1

(P ij
k )−1

)−1

, qk = R̂iju
j
k. (13)

There is not an exact closed form formula to estimate ∆φij .
However, there are two efficient approaches to this problem. In
the first approach, the estimate of ∆φij can be found by numer-
ically maximizing Eq. (8) (or Eq. (11)) with respect to ∆φij

for a constant p̂ij calculated according to Prop. 1. This pro-
cedure reduces to numerical maximization over a single scalar
variable ∆φij , for which there are many efficient algorithms.
Alternatively, one can develop the following second order iter-
ative solution to this non-linear optimization problem (see [15]
for details):



Proposition 2 The weighted scan match rotational displace-
ment estimate is updated as φ̂+

ij = φ̂−

ij + δφ̂ij , where:

δφ̂ij ' −

∑nij

i=1 pT
k (P ij

k )−1Jqk
∑nij

k=1 qT
k J(P ij

k )−1Jqk

(14)

with qk as above, and

J =

[
0 −1
1 0

]

, pk = ui
k − p̂ij − R̂iju

j
k (15)

Using experimental data, this approximation agrees with the ex-
act numerical solution up to 5 significant digits.

Prop.s 1 and 2 suggest an iterative algorithm for estimating dis-
placement. An initial guess φ̂−

ij for φij is chosen (usually based
on the odometry estimate). A translation estimate p̂ij is com-
puted using Prop. 1. This estimate is employed by Prop. 2 to
update the current rotational estimate φ̂−

ij . The improved φ̂+
ij

is the basis for the next iteration. The iterations stop when a
convergence criterion is reached. We prefer an iterative algo-
rithm for two reasons. First, nonlinear ML problems are suited
to iterative computation. Second, the correct correspondence
between point pairs cannot be guaranteed, especially in the first
few algorithm iterations, where some inaccurate initial pairings
are unavoidable.

Letting p̃ij = pij−p̂ij , φ̃ij = φij−φ̂ij (i.e, p̃ij , φ̃ij are transla-
tional and the rotational displacement error estimates), a direct
calculation yields the following.

Proposition 3 The covariance of the displacement estimate is:

P ij =

[
Ppp Ppφ

Pφp Pφφ

]

=

[
E{p̃ij p̃

T
ij} E{p̃ij φ̃

T
ij}

E{φ̃ij p̃
T
ij} E{φ̃ij φ̃

T
ij}

]

with Ppp as above and

Ppφ =
1

rT

(
nij∑

k=1

(P ij
k )−1

)−1 nij∑

k=1

(

(P ij
k )−1Jqk

)

Pφφ =
1

rT

rT = −

nij∑

k=1

qT
k J(P ij

k )−1Jqk.

For a given sensor, one must derive appropriate uncertainty
models which are the substituted into the above procedure.

3 Scan Matching Error/Noise Models

In order to derive explicit expressions for the covariances of Eq.
(7), this section develops models for the errors inherent in the
range scan matching process.

3.1 Measurement Process Noise
Many range sensing methods are based on the time of flight
(e.g., ultrasound and some laser scanners) or modulation of
emitted radiation [12, 7]. The circuits governing these mea-
surement methods are subject to noise. These effects often can
be well modelled in a simple way, enabling the computation of
NP i

k and NP j
k . We focus on the computation of NP i

k , as the
one for NP j

k is completely analogous.

Recall the polar representation of scan data, Eq. (1). Let the
range measurement, lik, be comprised of the “true” range, Li

k,
and an additive noise term, εl: lik = Li

k + εl. The noise εl

is assumed to be a zero-mean Gaussian random variable with
variance σ2

l (see e.g., [12] for justification). Also assume that
error exists in the measurement θi

k, i.e. the actual scan angle
differs (slightly) from the reported or assumed angle. Thus,
θi

k = Θi
k + εθ, where Θi

k is the “true” angle of the kth scan
direction, and εθ is again a zero-mean Gaussian random vari-
able with variance σ2

θ . Hence:

ui
k = (Li

k + εl)

[
cos(Θi

k + εθ)
sin(Θi

k + εθ)

]

(16)

If we assume that εθ � 1 (which is a good approximation for
most laser scanners), expanding Eq. (16) and using the relation-
ship δui

k = ui
k − ri

k yields

δui
k = (Li

k + εl)εθ

[
− sinΘi

k

cosΘi
k

]

+ εl

[
cosΘi

k

sin Θi
k

]

(17)

Assuming that εθ and εl are independent, then:

NP i
k = E[δui

k(δui
k)T ] =

(Li
k)2σ2

θ

2

[
2 sin2 Θi

k − sin 2Θi
k

− sin 2Θi
k 2 cos2 Θi

k

]

+
σ2

l

2

[
2 cos2 Θi

k sin 2Θi
k

sin 2Θi
k 2 sin2 Θi

k

]

For practical computation, we can use θi
k and lik as a good esti-

mates for the quantities Θi
k and Li

k.

3.2 Correspondence Error
Here we analyze the correspondence error for the general point
correspondence method of Section 4. We then derive a sec-
ond order probabilistic approximation to this error. While our
derivation assumes that the sensor beam strikes a locally straight
line segment (Fig. 1), the derivation can be extended to other
boundary geometries, or serve as a good approximation for
modestly curved boundaries.

We first develop a formula for the maximum correspondence
error. Consider how points will be matched in the vicinity of
points ui

k and uj
k in Fig. 1. Let

δi
+ = ||ui

k+1 − ui
k||, δi

−
= ||ui

k − ui
k−1|| (18)

denote the distance to the adjacent scan points (from pose i’s
scan) near the candidate matching point ui

k (see Fig. 1). Simi-
larly, let δj

+ = ||uj
k+1 −uj

k|| and δj
−

= ||uj
k −uj

k−1|| denote the



distances to the adjacent scan points (from pose j’s scan) near
the candidate matching point uj

k. The maximum distance (or
error) between any pair of points that are chosen to be in corre-
spondence will be half of the minimum distance between adja-
cent scan points. If the error is greater than this value, the point
will be matched to another point, or it will not be matched at all.
On average, this error will be the minimum of (δi

+ + δi
−)/4 or

(δj
+ + δj

−)/4. Simple geometric analysis of Fig. 1 shows that

δi
+ + δi

−

4
=

lik sin β

4

[
1

sin(αi
k + β)

+
1

sin(αi
k − β)

]

=
lik sin β

2

[
sin αi

k cosβ

sin2 αi
k − sin2 β

]

(19)

Substituting j for i yields a formula for (δj
+ + δj

−
)/4.

We now derive the first two moments of the correspondence
error distribution. For simplicity, let the robot be situated so that
δi
+ + δi

−
< δj

+ + δj
−

(i.e., the correspondence error is defined
by pose i). Recall the correspondence error formula of Eq. (6):
cij
k = ri

k − Rijr
j
k − pij . The correspondence error is collinear

with the boundary’s tangent. Hence, let µij
k = cij

k · tk be the
projection of cij

k onto the unit boundary tangent vector, tk, at
ui

k. The vector tk is positive pointing from ui
k to ui

k+1. Hence,

µij
k is a signed quantity, and cij

k = µij
k tk. Letting x be the

position along the boundary relative to ui
k, the correspondence

error is locally a function of x. The expected value (mean) of
the error in the interval x ∈ [−δi

−
, δi

+] is:

E[µij
k ] =

∫ δi
+

−δi
−

µij
k (x)P(x)dx (20)

where P(x) is the probability that the kth scan point from pose
j will be located at x We reasonably assume that P(x) has an
a priori uniform probability. Hence P(x) = 1/(δi

+ + δi
−

). Re-
alizing that µij

k (x) = x in the interval [−δi
−
, δi

+], evaluation of
Eq. (20) yields:

E[µij
k ] =

(δi
+)2 − (δi

−
)2

δi
+ + δi

−

= δi
+ − δi

−
= −2

lik sin2 β cosαi
k

sin2 αi
k − sin2 β

.

Note that when the incidence angle is not normal (αi
k 6= 90o),

the mean is non-zero. However, since the mean is proportional
to sin2 β, this term is negligible when β is small. Hence, we
can practically consider the correspondence error to be a zero-
mean quantity when β is small (this holds for the experiments
described in Section 6). To compute the variance of the corre-
spondence error (using the zero-mean assumption),

E[(µij
k )2] =

∫ δi
+

−δi
−

x2

δi
+ + δi

−

dx =
(δi

+)3 + (δi
−

)3

3(δi
+ + δi

−
)

. (21)

Letting ηi
k = αi

k + θi
k, and keeping the above results in mind,

the covariance CP i
k of Eq. (7) can be found as

CP i
k = E[cij

k (cij
k )T ] = E[(µij

k )2]tktTk (22)

= E[(µij
k )2]

[
cos2(ηi

k) cos(ηi
k) sin(ηi

k)
cos(ηi

k) sin(ηi
k) sin2(ηi

k)

]

3.3 Measurement Bias Effects
Range measurement bias is an artifact of some range sensing
methods (e.g., see [12]). Since bias models will strongly de-
pend upon the given range sensing method, it is not possible to
give a complete summary of bias models for common sensing
methods. Instead, we consider the effect of bias on the displace-
ment estimate.

To analyze the bias effect, let εij
k

4
= ε̃ij

k + õij
k . I.e., ε̃ij

k represents
the matching error if one ignores the bias offsets, and õij

k = oi
k−

Rijo
j
k is the total bias offset effect at the kth correspondence.

Incorporating the offsets, the likelihood function takes the form:

L({εij
k }|gij) =

nij∏

k=1

e−
1
2
(εij

k
−õ

ij

k
)T (P ij

k
)−1(εij

k
−õ

ij

k
)

2π
√

det P ij
k

(23)

Following the derivations that lead to Prop. 1, one can show
that the translation estimate in this case is:

p̂ij = Ppp

(
nij∑

k=1

(P ij
k )−1

(

ui
k − qk + õij

k

)
)

(24)

One can interpret this result as follows. If a range sensor does
suffer from bias offset, ignoring the offset will adversely affect
the estimate. However, bias models can be used to compensate
for bias effects in the estimate.

4 Selection of point correspondences

We select point correspondences following a methodology
similar to the one in [9]. Given two scan sets {ui

k} and {uj
k},

the outliers are removed in the first step. These are the points
visible in one scan, but not in the other. After removing the
outliers, we attempt to find correspondences between scan
point pairs in the two poses. For every point in pose i, we
search for a corresponding scan point in pose j that satisfies a
range criterion: the corresponding point must lie within a given
distance: ||ui

k − uj
k|| < d. If no points in pose j satisfy this

criteria, then the point is marked as having no correspondence.
The parameter d is initially set at a value proportional to the
odometry error for the step. As the matching iterations proceed,
d is monotonically reduced to a value of the order of the
maximum point error predicted by our noise model in order to
speed convergence.

5 Estimating the Incidence Angle

The correspondence error model of Section 3.2 assumes knowl-
edge of each scan point’s incidence angle. To estimate this
angle, the neighboring boundaries are approximated by fitting
straight line segments to the range data employing a Hough
transform. In this general line finding technique, each scan
point {xk, yk} is transformed into a discretized curve in the



Hough space. The transformation is based on the parametriza-
tion of a line in polar coordinates with a normal distance to the
origin, dL, and a normal angle, φL.

dL = xk sin(φL) + yk cos(φL) (25)

Values of φL and dL are discretized with φL ∈ {0, π} and
dL ∈ {−D, D} where D is the maximum sensor distance read-
ing. The Hough space is the array of discrete cells, where each
cell corresponds to a single line in the scan point space. For
each scan point, the Hough space cells which correspond to
lines passing through that point are incremented. Peaks in the
Hough space correspond to lines in the scan data set. When the
cells in the Hough space are incremented, we record the scan
point coordinate in the cell, so when a peak is determined, the
set of cells that make up that peak contain the set of points that
contributed to that line. The incidence angles can then be found
for every point contributing to a line. The Hough transform can
be generalized to detect and fit simple curves, but for most in-
door environments the line fitting method is sufficient.

6 Experiments

We implemented our method on a Nomadics 200 mobile robot
equipped with a Sick LMS-200 laser range scanner. For com-
parison, we also implemented an unweighted least squares scan
matching algorithm (analogous to that of Lu and Milios [9], but
with an improved point correspondence algorithm), hereafter
called the “UWLS.” This section summarizes our experimental
findings on our algorithm’s absolute and relative performance.
In our experiments, we used the values β = 0.5o, σl = 5 mm,
σθ = 10−4 radians obtained from the Sick LMS-200 laser spec-
ifications.
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Figure 2: Scan points from two poses.

Fig. 2 shows matched scans taken at two poses inside our labo-
ratory (at randomly selected boundary points, ellipsoids (scaled
by factor of 100) indicate the 99% confidence region of the point
pairing covariances). Fig. 3 shows the line segments fitted to the
pose 1 data.

Fig. 4 graphically depicts the convergence properties of our al-
gorithm and its comparison with the UWLS on the data set of
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Figure 3: Line segments fitted to Fig. 2

Fig. 2. In this experiment, the robot displaced a manually mea-
sured distance of (∆x12, ∆y12, ∆φ12) =(1381 mm, -690 mm,-
2.06 rad). To test the algorithm’s robustness to poor odometry
estimates, and its tightness of convergence, we added random
noise (up to 200 mm in ∆x, ∆y, and 0.1 rad in ∆φ) to the ve-
hicle’s actual odometric displacement estimate to derive 1000
different starting points for the algorithms’ iterations. Conver-
gence was deemed successful if the change in error estimate
between successive iterations remained below 0.05% for three
iterations.
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Figure 4: Convergence comparison of Unweighted (blue crosses) and
our Weighted (red circles) algorithm for 1000 random ini-
tial estimates.

The blue crosses in Fig. 4 show the final estimates of the UWLS
algorithm after its convergence, while the red circles show the
final estimates of our weighted algorithm. Figure 5 shows the
projection of this data onto the (∆x, ∆y) axes. From a wide
range of initial conditions, our algorithm converges to a very
tight cluster of displacement estimates. These visibly better
convergence properties of our algorithm suggest that it is more
robust to errors in initial estimates, such as given by odometry.
Moreover, our algorithm is absolutely more accurate. Its mean
estimate has total translational and angular errors of 6.0 mm and
0.001 rad, while the mean UWLS estimate is in error by 10.7
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Figure 5: Projection of Fig. 4 onto ∆x12 and ∆y12 coordinates. The
solid circle and ellipse are the 99% confidence regions of
the two algorithms’ estimated covariances. The green dot
and dashed circle are the manually measured displacement
and its maximum error.

mm and 0.0013 rad. Some of the UWLS estimates were up to
16 mm in error.

The solid large circle of Fig. 5 is centered at the mean UWLS
(∆x12, ∆y12) estimate, and it circumscribes the 99% confi-
dence region corresponding to the UWLS covariance estimate
(see [14] for the UWLS covariance formula). The lower ellipse
circumscribes the 99% confidence region for our algorithm’s
covariance estimate, as computed in Prop.3. The smaller size of
our covariance estimate shows that in the presence of perfect
point correspondences, our algorithm should potentially pro-
duce tighter displacement estimates, as it properly takes all of
the noise factors into account. In cases where the point cor-
respondences are uncertain, our algorithm may have a larger
covariance than the UWLS algorithm. However, the UWLS co-
variance estimate will be overly optimistic in these cases.
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Figure 6: Number of iterations of Unweighted and our Weighted al-
gorithm.

Fig.s 6 and 7 provide another view of the convergence process.
For the same data set, Fig. 6 shows how many iterations were
respectively required by our algorithm and the UWLS. Our al-
gorithm required roughly 40% fewer iterations on average to
reach the same convergence criteria. Fig. 7 compares the rate
of convergence for one particular initial condition.

Finally, Fig. 8 shows an eight-step robot path superimposed on
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Figure 7: Convergence of Unweighted vs. Weighted algorithm.

the acquired range data. The total path length was 21.8 meters.
The ratio of the final translation error to total path length is .6%
for our weighted algorithm, 2.4% for the UWLS, and 4.5% for
odometry. Fig. 9 shows a detail of the final position estimates
for our algorithm, the UWLS, as well as the actual position.
The ellipses in this figure denote the 99% confidence regions of
the covariance estimates of our algorithm and the UWLS algo-
rithm. Fig. 10 plots the total cumulative position estimation er-
ror for odometry, the UWLS, and our weighted algorithm. Fig.s
9 and 10 show that over this multi-step path, our method pro-
vides significantly greater estimation accuracy. Moreover, the
covariance estimates in Fig. 9 show that the UWLS provides an
extremely optimistic covariance estimate, whereas the covari-
ance estimate of our algorithm includes the actual error within
its confidence region.

−2000 0 2000 4000 6000
−1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

X (mm)

Y
 (

m
m

)

Measured Position
Weighted Estimates
Unweighted Estimates
Odometry Estimates

Figure 8: Multi-step path.

7 Conclusion

This paper investigated the effects of different error and noise
sources on the convergence and accuracy properties of motion
from structure algorithms. Our experiments showed that careful
attention to the details of error modelling can significantly en-
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hance overall displacement and covariance estimation accuracy.
Although the analysis was mainly aimed at laser range sensors,
the methods can likely be extended to other range sensors, such
as stereo cameras, radar, ultrasound, etc. The specifics of our
analysis must be modified to incorporate the appropriate er-
ror/noise models for each particular sensor.
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A Weighted Translation Solution

Recall the log-likelihood formula of Eq. (11). Since Dij is in-
dependent of ∆xij and ∆yij , the necessary condition for an ex-
tremal in the log-likelihood function with respect to these vari-
ables is:

∂M ij

∂∆xij

=
∂M ij

∂∆yij

= 0. (26)

Starting with Eq. (26), and noting that ∂M ij/∂∆x = −[1 0]T

and ∂M ij/∂∆y = −[0 1]T , we get

[
∂Mij

∂∆x
∂Mij

∂∆y

]

= −

nij∑

k=1

[
1 0
0 1

]

(P ij
k )−1εij

k = 0

or
nij∑

k=1

(P ij
k )−1(ui

k − Riju
j
k − pij) = 0

Rearranging this formula results in Eq. (12).

References

[1] S. I. Roumeliotis and J. W. Burdick, “Stochastic cloning: A
generalized framework for processing relative state measurements,” in
Proc. IEEE Int. Conf. on Robotics and Automation, Washington D.C.,
May 11-15 2002, (this issue).

[2] S. Atiya and G.D. Hager, “Real-time vision-based robot local-
ization,” IEEE Trans. on Robotics and Automation, vol. 9, pp. 785–
800, Dec. 1993.

[3] J. Leonard and H. Durrant-Whyte, “Mobile robot localization
by tracking geometry beacons,” IEEE Trans. on Robotics and Automa-
tion, vol. 7, no. 3, pp. 376–382, June 1991.

[4] J. Neira, J.D. Tardós, J. Horn, and G. Schmidt, “Fusing Range
and Intensity Images for Mobile Robot Localization,” IEEE Trans. on
Robotics and Automation, vol. 15, no. 1, pp. 76–84, Feb. 1999.

[5] S.I. Roumeliotis and G.A. Bekey, “Bayesian estimation and
Kalman filtering: A unified framework for Mobile Robot Localiza-
tion,” in Proc. IEEE Int. Conf. on Robotics and Automation, San Fran-
sisco, CA, April 24-28 2000, pp. 2985–2992.

[6] S. Thrun, D. Fox, and W. Burgard, “A Probabilistic Approach
to Concurrent Mapping and Localization for Mobile Robots,” Machine
Learning, vol. 31, pp. 29–53, 1998.

[7] M.C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Ri-
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