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Abstract

We propose a method to detect and identify faults

in wheeled mobile robots. The idea behind the method

is to use adaptive estimation to predict the outcome of

several faults, and to learn them collectively as a fail-

ure pattern. Models of the system behavior under each

type of fault are embedded in multiple parallel Kalman

Filter (KF) estimators. Each KF is tuned to a partic-

ular fault and predicts, using its embedded model, the

expected values for the sensor readings. The residual,

the di�erence between the predicted readings (based on

certain assumptions for the system model and the sen-

sor models) and the actual sensor readings, is used as

an indicator of how well each �lter is performing. A

backpropagation Neural Network processes this set of

residuals as a pattern and decides which fault has oc-

curred, that is, which �lter is better tuned to the cor-

rect state of the mobile robot. The technique has been

implemented on a physical robot and results from ex-

periments are discussed.

1 Introduction

Fault detection and identi�cation (FDI) are impor-

tant problems in the development of reliable, robust

mobile robots. In this paper we present an execu-

tion of the technique called Multiple Model Adaptive

Estimation (MMAE) to the case of the FDI problem

in mobile robots, complemented by a neural network

based pattern recognition approach. The aim of this

study is to show that it is possible to detect and iden-

tify both sensor and mechanical failures on a mobile

�
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robot platform by means of analyzing the collective

output of a bank of Kalman Filters.

We have used a bank of Kalman Filters to model

various faults. Kalman �ltering [7] is a well known

technique for state and parameter estimation. It is

a recursive estimation procedure that uses sequential

measurement data sets. Prior knowledge of the state

(expressed by the covariance matrix) is improved at

each step as prior state estimates are used for pre-

diction and new measurement for subsequent state

update. An arti�cial Neural Network, trained with

the well known error backpropagation algorithm[3], is

used for processing the set of �lter residuals given by

the �lters as a pattern and deciding which fault has

occurred, that is, which �lter we should believe in.

2 Problem De�nition and Algorithm

2.1 Task De�nition

Fault tolerant behavior refers to automatic detec-

tion and identi�cation of faults as well as the ability to

continue functioning after a fault has occurred. Our

aim is to detect (on time) when the fault occurs and

identify it among a set of possible failures when the

model of system is available. Detection of a fault is

relatively simple and can be done using only one �l-

ter, the one representing the nominal model of the

system. If the values estimated by the �lter deviate

largely from the measurements, something has gone

wrong. The critical part is to identify what has gone

wrong.

To this end, we used a bank of Kalman �lters. Each

�lter assumes that a di�erent type of failure has oc-

curred and uses the appropriate system and sensor



Figure 1: The Pioneer AT and simulation of Flat Tires

model to predict the behavior of the robot based on

certain assumptions for possible failures. Speci�cally,

we apply the technique to three independent sensor

failures and four mechanical failures. Sensor failures

include 'hard' failures of the gyroscope, left encoders

and right encoders on the robot (see �gure 1). Me-

chanical failures include one at tire on the left, two

at tires on the left, one at tire on the right and two

at tires on the right. The non-failure case �lter pre-

dicts the normal behavior. So in total we have eight

�lters.

The problem at hand is how to decide which �lter

to choose. The naive approach would be to simply

check the corresponding residuals for each �lter and

believe the one with the minimum residual. Yet, real

data is always noisy and this naive approach is not of

much help since it does not contain any information

about the validity of the residual information. The

residual (innovation) covariance is required in order

to be able to compare two residual vectors originat-

ing from two di�erent �lters. Figure 2 shows a typical

set of residuals from the bank of Kalman Filters (Dif-

ferent grey-scales are used to distinguish between the

residuals from multiple Kalman Filters). As expected

the residuals are quite noisy. It is almost impossible

to even visually distinguish the residuals. The ones

from the tuned �lter should obey the zero-mean white

assumption. Possible improvements could be achieved

by using some kind of Bayesian Probability methods

or arti�cial neural network. Maybeck [9] has shown

that one way to achieve fast response to failures is beta

elimination while using Bayesian Probability. Here we

use a backpropagation neural network [3] to identify

failures.

2.2 Algorithm De�nition

The Pioneer AT used for experiments is a four

wheeled robot shown in Figure 1. The wheels on the

same side are mechanically coupled. The encoders re-

turn only two distinct speeds; one for the right pair

of wheels and other for the left pair of wheels. The
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Figure 2: Residuals from the bank of KFs. Di�erent grey-

scales are used to distinguish between the residuals from

multiple Kalman Filters.

kinematics of the Pioneer AT are given in Equations

(1)-(2).

�k+1 = �k + _� dt (1)

_� =
vR � vL

l
vtot =

vR + vL

2
(2)

where l is the vehicle axle length, vL and vR are the

velocities of the left and right wheels respectively. _� is

the yaw rate of the robot in the x-y plane and � is the

angle between the vehicle axle and x axis. For the ex-

periments reported here, the frame of reference is cho-

sen in such a way that the start location of the robot

is the origin facing in the positive y direction. There

are three sensors on-board the Pioneer AT robot, two

encoders which return left and right wheel velocities

and a gyroscope that gives the rate of change of the

angle in x-y plane. The kinematic quantities of inter-

est are shown in Figure 3.

If we expand the �rst part of equation 2 we get

_� =
!R Rr � !L Rl

l
=

!L R̂

l R̂
Rr

�

!R R̂

l R̂
Rl

(3)

where !R and !L are the angular velocities of the right

and left wheels respectively. Rr and Rr are the radii
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Figure 3: The Robot Kinematics

of the left and right wheels respectively. The veloci-

ties returned by the encoders are equivalent to !L R̂

and !R R̂. When a tire goes at we need to estimate

Rl and Rr. This estimation is done o�-line by making

all the tires at and then taking the ratio of distance

traveled in this situation to the distance traveled if no

tire is at. This gives an estimate of the radius of

a at tire. The at tire is simulated by �rst making

the tires thick by wrapping paper towels around them,

and then removing them. The tire after removal of the

towels is assumed to be the at tire (Figure 1).

Sensor failures are simulated by assuming that a

sensor gets stuck at some particular value (hard fail-

ure) and keeps returning that value once the failure

has occurred. A model for each such case is embed-

ded within a Kalman �lter. When the measurements

are received they are fed into these di�erent �lters and

each �lter outputs residuals based on the model encap-

sulated.

In the experiments reported here, the measurement

vector is composed of the two translational velocities

of the left and right wheels and the yaw rate of the

chassis as measured by the gyroscope. x̂ is the state

estimate vector, z is the measurement vector, r is the

residual vector and ẑ is the measurement estimate.

z = [vL vR _�]T ẑ = x̂ = [v̂L v̂R _̂�]T r = z� ẑ (4)

Kalman �ltering is a repetitive process consisting

of two consecutive steps propagation and update.

The equations for the propagation step are:

x̂k+1=k = � x̂k=k (5)

Pk+1=k = � Pk=k �
T + Q (6)

The system matrix � is given by:

� =

2
4

� b c

d � e

�1=l 1=l 0
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Figure 4: Pictorial Representation of the Algorithm

The equations for update are

S = H P HT +R (7)

K = Pk+1=k H
T (S)�1 (8)

x̂k+1=k+1 = x̂k+1=k +K r (9)

Pk+1=k+1 = (I �K H) Pk+1=k (10)

where S is the residual covariance matrix, P is the

state estimate covariance matrix,Q is the system noise

covariance matrix, K is the Kalman gain matrix and

R is the measurement noise covariance matrix. H is

used to convert the estimated state vector into the

format in which the measurements are obtained. �

and � are unity and b; c; d and e are zero for the �lter

with nominal behavior and the �lters modeling sensor

failures while they take di�erent values for the �lters

embedded with mechanical failure model. For exam-

ple, if the left encoder fails the estimation of left wheel

velocity will be done using values returned by right en-

coder and gyroscope and we will get � = 0, b = 1 and

c = -l.

The system noise covariance matrix Q is deter-

mined empirically. Di�erent sets of experimental data

were processed to calculate the system driving noise.

The values of measurement noise matrix R are based

on sensor speci�cations as well as empirical observa-

tions.

Each �lter modeling a sensor failure has a di�erent

R matrix since this is the matrix that represents noise

in sensor readings. If an encoder fails the value corre-

sponding to it in the R matrix rises. The matrixH is

a 3x3 identity matrix.

Figure 4 shows a pictorial representation of the

algorithm. The Mahalanobis distance that forms the



input to the neural network is given by:

Dis = rT S�1r (11)

where r represents the residual vector for vL vR and
_� respectively while S is the covariance matrix associ-

ated with the residual vector.

The algorithm involves following steps:

1. Measurements from encoders and gyroscope are

fed to the bank of �lters.

2. Each �lter produces a residual and covariance ma-

trix associated with it.

3. Calculate the Mahalanobis distance for each �lter

using 11.

4. For each �lter add this distance to the sum of

distances from previous iterations for that �lter.

Store the new sum.

5. Calculate the average summed value for each �l-

ter.

6. Normalize the summed value of each �lter by di-

viding it by the maximum sum. This forms the

input to the Neural Net.

7. The neural network processes the pattern and

produces the con�dence level for each �lter.

8. The �lter with the highest con�dence level is cho-

sen as the best match.

The neural network is trained o�-line using the con-

verged values of the mean of the Mahalanobis distance

aggregated over all the previous values. Nine patterns

were used to train the network using a standard back-

propagation formulation:

(4wji)n = ��joi + (4wji)n�1 (12)

�j = oj(1� oj)(tj � oj) for output unit (13)

�j = oj(1� oj)�k�kwkj otherwise (14)

where 4wji represents the change in the weight of the

link joining jth and ith units, � represents the change

in weights of output and hidden units, and � and 

denote learning rate and momentum respectively. oj
represents the output of the jth unit while tj is its

target output.

3 Experimental Evaluation

3.1 Methodology

The aim of this study is to show that it is possible

to detect and identify both sensor and mechanical fail-

ures on a mobile robot platform by means of analyzing

the collective output of a bank of Kalman �lters. To

this end, we performed a number of experiments on a

real robot, which was programmed to follow straight

(at 300 mm/sec translational, and 0 degrees/sec ro-

tational velocities) and circular (300 mm/sec transla-

tional, and 30 degrees/sec rotational velocities) tra-

jectories. All sensor data (left & right wheel velocities

measured by the encoders and the gyroscope's mea-

surement of the rotational velocity) was collected, to

be analyzed later by simulating the Kalman Filters

o�-line.

In order to de�ne a repeatable and comparable pat-

tern over all Kalman �lters' outputs, we scaled all out-

puts to fall into the interval [0, 1] by simply dividing

them by the largest �lter value computed at that mo-

ment. Our training patterns were taken from the con-

verged values of these outputs, summarized in a table

in �gure 5.

For the gyro failure case, we have had an inter-

esting observation. Nominal case cannot be distin-

guished from the gyro failure case (if the robot is mov-

ing straight), which can be intuitively explained as

follows: If the robot is running along a straight line,

one would expect the gyro to return a mean value of

zero rotational velocity, corrupted by some Gaussian

noise. Yet, if the gyro fails, it will return zero read-

ings no matter what the robots movement is (hard

sensor failure). The assumption is that hard failure

is loss of signal corresponding to a �xed value mea-

surement (which we have assumed to be zero here).

For this reason, it is not possible to identify gyro fail-

ures by executing straight line trajectories. In order to

capture this failure mode, we experimented with two

extra cases (hence, patterns), corresponding to clock-

wise and counter-clockwise turns, as depicted in the

table of Figure 5. That is why we had nine training

patterns in all, two for gyro failure and one each for

the other cases.

A multilayer feed-forward network with a single

hidden layer was used to learn the patterns described

above. At each layer, the number of neurons taken was

eight, which is the number of cases we were trying to

identify (1: Nominal case, 2: Gyro failure, 3-4: Left-

Right encoder failures, 5-6: One-two at tires on the

left, 7-8: One-two at tires on the right) The training

algorithm implemented the error backpropagation rule



Correct
Filter

Nominal
Filter

1 Left
Flat Tire

2 Left 1 Right
Flat Tire

2 Right Gyro
Fails

Left Enc.
Fails

Right Enc
Fails

Nominal
Filter

1 Left 
Flat Tire

2 Left
Flat Tires

Flat Tires Flat Tires

1 Right
Flat Tire

2 Right 
Flat Tires

Gyro Fails
~Clock

Gyro Fails
Clock

Left Enc.
Fails

Right Enc
Fails

0.135        0.3            0.98           0.3             1.0             0.2              0.12               0.09

0.25          0.4            1.0             0.39           0.9             0.38            0.21               0.16

0.3            0.45          1.0             0.41           0.85           0.45            0.22               0.23

0.37            0.49          0.91           0.5             1.0             0.55            0.32               0.23

0.32            0.43          0.8            0.46            1.0             0.47            0.22               0.26

0.23            0.23          0.24           0.38           1.0             0.34            0.04               0.3

0.1              0.28          1.0             0.11           0.13           0.15            0.06               0.1

0.03            0.08         0.24            0.23           1.0             0.04            0.04               0.0

0.02            0.22         1.0              0.07           0.23           0.03            0.0                0.03

Figure 5: The converged mean values of Mahalanobis distances which were used for training.

to adjust the weights of the fully connected neurons,

de�ned as sigmoid threshold units. The learning rate

was chosen as 0.5, and a momentumof 0.75 was added

to the weight-update rule. An output layer neuron was

considered to �re correctly for activation levels higher

than 0.9. In all experiments, 700 epochs of training

were found to be adequate for the proper learning of

all ten patterns.

3.2 Results

In order to assess the performance of the trained

network in recognizing failures, we have collected test

data and observed its output. Since the Kalman �lters

update their outputs at 10 Hz, a typical test run of 20

seconds would generate 200 test patterns. In all we

made sixteen such test runs. As we see in the top left

graph of Figure 6, the output neuron for nominal case

(no failures) �res at a distinctly higher rate starting

from t=5 seconds, well before all the Kalman �lters

had settled into their �nal estimates. As a further

test of the network's capability to handle noise, we

have run the same experiment at a di�erent speed of

the mobile robot, for which no training patterns were

provided. As seen in top right graph of the same �g-

ure, the network was still able to con�dently identify

the correct case, this time with a slight extra delay of

5 seconds, mainly due to the transition period which

dominates �lter outputs at the start.

The middle two graphs depict the network output

for the two right tires at case, at two di�erent speeds.

Unfortunately, the network is unable to di�erentiate

between the one-at tire and two-at tires on the same

side. We have observed the same e�ect for the left side

too, leading us to the conclusion that we can not sep-

arately identify those cases with our current pattern

generation and recognition setup. We can identify the

side which has a at tire but we cannot say how many

(that is, one or two) tires are at. Except for these two

cases we never obtained any misclassi�cation. The re-

sponse time was also very good. In most cases it took

less than 3 seconds to detect the fault.

The last row of Figure 6 shows network perfor-

mance for left encoder failures, as experimented at dif-

ferent velocities. It can be seen that in both cases the

network reliably identi�es the failure within 3 seconds.

3.3 Discussion

First we point out the reason why a neural net-

work (or some recognition algorithm) is required in

order to choose the correct �lter based on the resid-

uals. The naive approach is to select the �lter with

minimal residual. Measurement noise is an argument

against this approach. More importantly, as shown

in the table provided in Figure 5, the �lter with the

least residual is not always the correct one. For exam-

ple, in the �rst row, although the �lter that is tuned

to the current state of the vehicle is the nominal �l-

ter the minimum converged residual value comes from

the �lter that assumes a right encoder failure. This

clearly shows the need for a technique more sophisti-

cated than choosing the �lter with least residual. We

found a neural network to be capable of performing

this task.

We have shown that by using a relatively simple
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Figure 6: Neural Network Performance in various failure modes.



pattern recognition approach, both mechanical and

sensor failures can be reliably detected and identi-

�ed. As already stated, the tires on the same side

of the mobile robot we used are tightly coupled. This

omitted two cases of at tires, as we can not distin-

guish between a front and rear at tire on the same

side. Therefore, we are left with only four possible at

tire combinations, namely one/two at tires on the

left/right. In addition to these mechanical failures,

three sensors lead to a total number of seven failure

cases. Having one normal and seven failure modes, we

built a bank of eight Kalman Filters, each of which

had an appropriate model embedded in it.

Although our initial intention was to identify four

separate cases with regard to at tires (i.e., one/two

at tires on the left/right), our experimental �ndings

have shown the di�culty of this level of distinction.

Instead, we were only able to identify the side on which

the at tire was present. We believe that this result

is due to the extreme similarity between the residual

signatures of cases involving one and two at tires on

the same side.

It should be noted that our training patterns were

recorded at a speci�c velocity. However, this did not

preclude the network from successfully identifying fail-

ures at di�erent vehicle velocities. We believe that

enriching the training set with additional signatures

taken at various velocities would de�nitely improve

the accuracy, and enable the network to di�erentiate

patterns at a �ner granularity. That is, the network

shall be able to distinguish even between very closely

related patterns.

We will also like to point out here that we decided

to keep the number of Kalman �lters and faults the

same. It might be possible to identify larger number

of faults using the same number of �lters as the pat-

terns for the new faults might di�er from the existing

patterns and hence the neural network can reliably

learn them. The objective of this study however is

not just detection and identi�cation of faults but also

to use the information about faults to reliably oper-

ate the robot even when a fault has occurred. In the

future we plan to implement a feedback loop so that

we can use the output from the correct Kalman Filter

to reliably update the current information about the

robot. Since we cannot currently embed more than

one model in a �lter, there is a one-to-one correspon-

dence between faults and �lters.

Currently the neural network we use has eight in-

put units, eight hidden units and eight output units.

We tried varying the number of hidden units. As we

reduced the number of hidden units the performance

deteriorated. It was observed that reducing the num-

ber of hidden units to less than �ve, leads to loss of

generalizability, that is, if test patterns are collected

for di�erent vehicle speeds than the training patterns,

the performance deteriorates considerably. Also there

was a signi�cant uctuation in the performance for the

test patterns collected at the same speed. It was also

observed that the performance was acceptable with

the number of hidden units greater than or equal to

six.

In order to determine the behavior of the FDI mod-

ule in case of unknown failures we experimented with

a fault which was not in our training set. We mod-

eled a fault where all four tires go at during motion

in a straight line. We fed the Mahalanobis distance of

the residuals from eight Kalman �lters to the network.

Since all the four tires were at we expected the same

kind of patterns as would be given by the robot with

no at tire but moving at slower translational velocity

(Translational Velocity = Rotational Velocity * Ra-

dius of Wheel). This is exactly what happened. The

network classi�ed the test data as nominal.

Future research is aimed at a better understand-

ing of transitional failure modes as well as extensions

to other sensor failure applications. Our ongoing re-

search involves utilization of fault tolerant techniques

in mapping and localization. Recovery from failure

by altering the control strategy is also the subject of

future work. The easiest (and least autonomous) so-

lution is to stop, ag a fault and await human help.

Other strategies include making guarded motions and

switching to backup system.

4 Related Work

Using a bank of Kalman �lters was pioneered by

Magill [8] who used a parallel structure of estimators in

order to estimate a sampled stochastic process. Sub-

sequently Athans et al. [1] used a bank of Kalman �l-

ters that provided state estimates to an equal number

of LQG compensators to provide control over di�erent

operating regimes of an aircraft. Each estimator relied

on a set of system equations linearized about a di�er-

ent operating point. Later Maybeck et al. [10] used

Further, in work by Maybeck et al. [11] [9] the mul-

tiple model adaptive estimation (MMAE) technique

was used to reliably detect and identify sensor and ac-

tuator failures for aircraft.

In recent years Kalman �lter based localization has

become common practice [2] [14] [6] in the robotics

literature. Since the MMAE technique relies upon a

bank of Kalman �lters it seems natural to apply it



to fault detection and identi�cation in mobile robot

systems. The important aspect of the method is to

use analytical redundancy in the form of several sys-

tem models (as opposed to say hardware redundancy

which replicates hardware to identify a failure). A

Kalman �lter based framework provides a measure of

the disparity (typically called a residual) between the

measured sensor values and the values predicted by

the model embedded within the �lter. The residual

is used in the �lter to update the estimate and is an

excellent indicator of failure.

A similar approach to ours has been used by [4] [5],

in the context of space shuttle engine diagnostics and

automated vehicle guidance systems. Previous work

using MMAE applied to the case of mechanical fail-

ures (such as at tires) on board mobile robots and

independent sensor failures is due to Roumeliotis et

al[12] [13]. The work done lacks intermingling of sen-

sor failures and mechanical failures. Separate bank

of �lters were used for sensor failures and mechanical

failures. Here, we are using only one bank of �lters.

Also the work di�ers in the technique used to decide

for the tuned �lter. Roumeliotis et al used probabilis-

tic methods while we are using a neural network. The

crux of our work lies in using same bank of �lters for

both kind of failures and then trying to decide which

fault has actually occurred. It is a di�cult task as a

sensor failure and a mechanical failure can return the

residual signatures that are very close to each other.

5 Conclusion

In this paper we have presented a Multiple Model
Adaptive Estimation (MMAE) based technique for
fault detection and identi�cation using a neural net-
work on-board a mobile robot. Experimental evidence
is presented to show that the suggested technique
works well for several di�erent failures. The imple-
mentation described here is able to use measurements
from several sensors. Detection and identi�cation of
faults is done by analyzing the signature of the resid-
ual produced by each �lter.

One of the most important contributions of this
work is the number and variety of faults considered.
We have considered both mechanical and sensor fail-
ures at the same time, which is a di�cult problem
since signatures of residuals for these two di�erent
kinds of faults are very similar. It is shown that a
good learning module, can distinguish closely related
faults. Without using sophisticated techniques to an-
alyze the residuals we are able to do detection of eight
faults and identi�cation of six faults. It should be
noted that the method presented here is generalizable
to more faults and increasingly sophisticated �lters
and residual processing. The method is applied to
a Pioneer AT, a four wheeled robot, and can be eas-
ily extended to other mobile systems since it relies on

simple kinematic descriptions.

Acknowledgments

This research is sponsored in part by contract #959816 from

NASA/JPL and contract #F04701-97-C-0021 and #DAAE07-98-

C-L028 from DARPA.

References

[1] M. Athans, D. Castanon, K.P. Dunn, C.S. Greene, W.H. Lee,

N.R. Sandell Jr., and A.S. Whilsky. The stochastic control

of the f-8c aircraft using a multiple model adaptive control

(mmac) method-part i: Equilibrium ight. IEEE Transactions
on Automatic Control, AC-22(5):768{780, October 1977.

[2] B. Barshan and H. F. Durrant-Whyte. Inertial navigation sys-

tems for mobile robots. IEEE Transactions on Robotics and
Automation, 11(3):328{342, June 1995.

[3] C.M. Bishop. Neural Networks for Pattern Recognintion. Ox-

ford University Press, 1995.

[4] R.K. Douglas, D.P. Malladi, R.H. Chen, D.L. Mingori, and J.L.

Speyer. Fault detection and identi�cation for advanced vehicle

control systems. In Proceedings of the 13th World Congress,
International Federation of Automatic Control, volume Q,

pages 201{206, 1997.

[5] A. Duyar and W. Merrill. Fault diagnosis for the space shuttle

main engine. Journal of Guidance, Control and Dynamics,
15:384{389, March-April 1992.

[6] Puneet Goel, S.I. Roumeliotis, and G.S. Sukhatme. Robust

localization using relative and absolute position estimates. In

Proceedings of the 1999 IEEE/RSJ International Conference

on Intelligent Robots and Systems, October 1999.

[7] R.E. Kalman. A new approach to linear �ltering and prediction

problems. ASME Journal of Basic Engineering, 86:35{45,

1960.

[8] D.T. Magill. Optimal adaptive estimation of sampled stochas-

tic processes. IEEE Transactions on Automatic Control, AC-

10(4):434{439, 1985.

[9] P.S. Maybeck and P.D. Hanlon. Performance enhancement of

a multiple model adaptive estimator. IEEE Transactions on
Aerospace and Electronic Systems, 31(4):1240{1253, October
1995.

[10] P.S. Maybeck and D.L. Pagoda. Multiple model adaptive con-

troller for the stol f-15 with sensor/actuator failures. In Pro-
ceedings of the 20th Conference on Decision and Control,
pages 1566{1572, December 1989.

[11] T.R. Menke and P.S. Maybeck. Sensor/actuator failure detec-

tion in the vista f-16 by mutiple model adaptive estimation.

IEEE Transactions on Aerospace and Electronic Systems.,

31(4):1218{1229, October 1995.

[12] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Fault detec-

tion and identi�cation in a mobile robot using multiple-model

estimation. In Proceedings of the 1998 IEEE International
Conference in Robotics and Automation, May 1998.

[13] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Sensor fault

detection and identi�cation in a mobile robot. In Proceedings
of the 1998 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, 1998.

[14] S.I. Roumeliotis, G.S. Sukhatme, and G.A. Bekey. Smoother

based 3d attitude estimation for mobile robot localization.

Technical report, University of Southern California, August

1998.


