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Abstract

Decision and estimation theory are closely related topics

in applied probability. In this paper, Bayesian hypothesis

testing is combined with Kalman �ltering to merge two dif-

ferent approaches to map-based mobile robot localization;

namely Markov localization and pose tracking. A robot

carries proprioceptive sensors that monitor its motion and

allow it to estimate its trajectory as it moves away from a

known location. A single Kalman �lter is used for track-

ing the pose displacements of the robot inbetween di�erent

areas. The robot is also equipped with exteroceptive sen-

sors that seek for landmarks in the environment. Simple

feature extraction algorithms process the incoming signals

and suggest potential corresponding locations on the map.

Bayesian hypothesis testing is applied in order to combine

the continuous Kalman �lter displacement estimates with

the discrete landmark pose measurement events. Within

this framework, also known as Multiple Hypothesis Track-

ing, multi-modal probability distribution functions can be

represented and this inherent limitation of the Kalman �l-

ter is overcome.

1 Introduction

Mobile robots are fast becoming probably the most sig-

ni�cant application of robotics. They have moved from

the industry 
oor and are now being sent on missions to

other planets [11], remote areas [26], or dangerous radioac-

tive cites [5]. The potential applications for mobile robots

does not only include special missions. They are also be-

ing used as guides in museums [24] and for entertainment

purposes [10]. In order for a mobile robot to travel from

one location to another it has to know its position and

orientation (pose) at any given time. In most of the cases

today this is achieved by either having a human in the

navigation loop who directs the vehicle remotely or by
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constraining the robot to operate in a certain area, pre-

cisely mapped [7] or suitably engineered; i.e. marked with

beacons [13] or other arti�cial landmarks [16].1 The level

of autonomy depends predominantly on the ability of the

robot to know its exact location using a map that contains

minimal information for the environment represented in a

simple way.

In this paper we present a general localization algorithm,

Multiple Hypothesis Tracking [21], that surpasses most of

the di�culties encountered by todays localization prac-

tices. It can easily adapt to dynamic environments and it

is expandable to the case of unknown territory. The key

contribution of this algorithm is that it uni�es many ex-

isting localization techniques under one schema that pre-

serves the bene�ts of the most commonly used estimation

techniques in this �eld.

The localization problem could be solved if the area that

a robot moves could be marked in a unique separable way.

That means each place should contain information that

will make it recognizable and distinguishable from all the

other places in the area. A �rst approach to the problem

would require each location to have a unique \signature".

This is already available for some areas where the GPS

signals are available. The triangulation of the distances

from the satellites in view assigns a unique pair of num-

bers for each location on the surface of the planet. Lon-

gitude and latitude are the geographical coordinates and

are used for long distance navigation of airplanes, ships

and even cars. This attractive method su�ers from a wide

variety of problems. The �rst and most important one is

the accuracy of the signals. Even the most expensive com-

mercial GPS devices provide an accuracy of a few tens of

centimeters which is more than enough when a car drives

from one side of a city to the other but it is not acceptable

for robots that move in cluttered environments or handle

material located within small distances. Another serious

drawback is that the GPS signals are not available indoors

or in the vicinity of tall buildings, bridges and structures

1From now on the words landmark and feature will be used

interchangeably.



that occlude the view of the necessary number of satel-

lites. Finally, the cost of a GPS receiver is too high for

many robotic applications.

In many scenarios where GPS is not available, the sig-

nature of a location has to be determined based on the

special characteristics of the area itself. In this case the

dissimilarity between signatures of di�erent locations has

to be identi�able by the sensors used for this reason. There

are many attributes of the environment that can be ex-

ploited to gain signature diversity. These can be dynamic

or static. The color and the shape of a location are strong

candidates for discriminating di�erent areas and tend to

remain unchanged over long periods of time. Visual mem-

orization of each place may be su�cient for distinguishing

between them. Although the homing capabilities of many

types of insects [3], [25] and other animals [9], [8] depend

on this type of localization, there are serious implementa-

tion issues that have to be resolved before this technique

can be applied to mobile robot localization. The require-

ments for storing and processing the numerous collected

images are probably the most di�cult to overcome.

Another way to achieve the desired distinguishability of

a location of concern is by preparing a detailed volumet-

ric or grid based map of the area and then matching the

information from exteroceptive sensors with the informa-

tion stored in this map. This approach su�ers from the

following drawbacks: (i) The preparation of the map adds

signi�cant overhead to the process. It has to be full, ex-

haustive, and precise enough to exclude any ambiguities

and avoid misinterpretation, (ii) The exteroceptive sensors

have to be able to supply the robot with the same level

of detail as that imprinted on the map, (iii) The process-

ing requirements to obtain the necessary information and

match it to the corresponding locations on the map call

for a powerful processor on-board the robot if real-time

operation is demanded.

Instead of building elaborate detailed maps of almost

every bit of the environment an alternative would be to

extract the minimal information that makes a location

unique. This could be \What does this location look like"

or \How do I get to this location". If for example a robot

is capable of distinguishing two fairly similar doors just

by looking at them (as humans do by reading a sign on a

door, for example) then the problem is essentially solved.

This is one of the prominent ways that mammals recog-

nize their location. Certain aspects of di�erent locations

are compiled in a compact form of mnemonic representa-

tion. Not all the information is preserved which makes it

sometimes unreliable. Our ability to distinguish between

one place or another is not unlimited. There are certain

case where the memory is not developed enough to sup-

port an unambiguous decision or prevent a mistake. This

problem is even more prevalent in arti�cial machines such

as robots equipped with sensing devices like a camera for

example. The state of the art pattern recognition tech-

niques are far from being able to imitate the perceptual

and processing capabilities of the human eye. The poten-

tial of failing to acquire critical information is such that

this method has yet to be applied in real world robots.

The \What does this location look like" methodology,

approaches the essence of the landmark based localiza-

tion. The additional characteristic of the landmark based

localization is that only certain locations in the area are

marked this way while the rest of the vicinity is marked

as \How do I get to this location". Before going into a

detailed examination of the landmark based localization

it would be useful to examine the \How do I get to this

location" based localization techniques. The main mark-

ing of the area in this case is with respect to some known

world frame and it is the coordinates (x; y; �) of each loca-

tion. The fact that these coordinates are with respect to

some other location makes them actually (�x;�y;��),

i.e. this set of numbers marks the �nal location by its

transition from the initial location there by following a

meaningful prespeci�ed way. In this case it is moved by

�x on the x axis and by �y on the y axis and rotated

by ��. The initial location can be arbitrarily chosen as

well as the coordinate system or the units used. The map-

ping of the area is unique this way. The problem is if the

robot can \read" this marking. \Reading this marking"

means that the robot is capable of repeating the marking

of each location it passes through, i.e. it can determine

the coordinates of this location by processing information

from odometric or inertial sensors that keep track of the

transitions or poses of the robot. A cumulative process

that starts from a known initial location and keeps updat-

ing every time the robot moves. In practice this is usually

done by integrating the wheel encoders' signals for exam-

ple. This method su�ers from the limited capabilities of

the sensors. Noise in the sensor signals, limited precision,

potential failures can easily mislead the robot to believe

that it is in a di�erent location from where it actually is.

The proposed methodology will be presented for the case

of a mobile robot moving into a two dimensional (2 D) of-

�ce environment. Following the same formulation of the

problem, extension to a 3 D environment is straightfor-

ward. The main di�erence is that in the case of an un-

structured environment, the exteroceptive sensors have to

be capable of extracting natural instead of arti�cial (struc-

tural) features.

2 Kidnapped robot, Absolute Localiza-

tion, and Pose Tracking

First, we will study the ideal case of a robot equipped

with exteroceptive sensors capable of distinguishing be-

tween almost identical landmarks. Though this scenario

is �ctional, it will ease the transition to the more realis-

tic case of imperfect landmark recognition and imperfect

odometry.



2.1 Perfect Landmark Recognition, Imper-
fect Odometry

In the absence of any previous knowledge, the initial pose

distribution can be assumed to be uniform and thus the

probability density function (pdf) is:

f0(x) =
1

2�S
; (1)

where S is the surface of the area that the robot is al-

lowed to move in and x = [x ; y ; �]T is the pose of the

robot. In the case of perfect landmark recognition, there

is no ambiguity. The decision is binary for each of the

possibilities encountered: P (zk = Ai) = 1 ; P (zk = Aj) =

0 ; j = 1; :::; N; j 6= i. Every time the robot detects and

identi�es a landmark whose exact pose xAi
is known, the

updated pdf becomes:

f(x=zk) = f(x=zk = Ai) =

1

(2�)
n=2

det(KAi
)1=2

exp[�
1

2
(x � xAi

)TKAi

�1(x� xAi
)] (2)

in the case that the pose of the landmark is known to

follow a Gaussian distribution with mean value xAi
and

covariance2 KAi
= E[(x � xAi

) (x � xAi
)T ]. The Gaus-

sian assumption for the distribution of the pose of the

landmark is often used to compensate for the sensor inac-

curacies. The sensors determined to locate the pose of a

landmark, have limited precision and their signals are in

general noisy. Therefore the calculation of the pose of the

landmark with respect to the current pose of the robot

has its own inaccuracies. A Gaussian model can be used

to describe the uncertainty of the calculated transforma-

tion from the egocentric frame to the landmark centered

frame.

Every time a landmark is left behind, the robot knows its

location precisely. The pdf of its pose is a Gaussian func-

tion of its coordinates in the area. This distribution is

unimodal since we have a 1-to-1 match between encoun-

tered landmarks and locations on the map. From then on

the robot has to rely on its odometry until it encounters

another landmark. In the absence of any external posi-

tioning information the uncertainty of the pose estimate

will increase continuously as the robot moves. The system

is not observable and thus any estimation technique will

eventually fail. The accuracy of the pose estimate based

on the imprecise odometry will decrease and it will become

untrustworthy. The rate of deterioration depends on the

number and type of sensors used as well as their noise char-

acteristics. Any form of absolute orientation measurement

[20] will reduce the uncertainty while low levels of noise

will reduce the rate of increase of the variance of the pose

estimate. Substantial improvement is provided by apply-

ing Kalman �ltering techniques. These techniques have

been used successfully in pose estimation problems such

2For the 2D case KAi
= [�2

xAi
0 0 ; 0 �

2
yAi

0; 0 0 �
2

�Ai
]

as missile tracking and ship navigation for the last four

decades [1] and their �eld of application has been extended

to mobile robots. Relying on a simple kinematic model of

the robot [18] or on sensor modeling [19] a Kalman �l-

ter can be formulated to estimate the displacement of the

robot d�x = [c�x c�y c��]T (3)

and the associated covariance:

Pc�x = E[d�xd�x
T
] (4)

The robot will have to drive towards the pose of another

known landmark in order to reduce its uncertainty. When

it does so the Kalman �lter framework is suitable for fusing

the new landmark information (measurement xBj
) with

the current pose estimate bxrobot = xAi
+d�x) as this

is calculated based on the previous landmark information

xAi
and the processed odometric datad�x. Examples of

treatment of similar cases can be found in the related lit-

erature [13], [2].

Environments with low landmark density are more di�-

cult to navigate in and require that the path planing mod-

ule must consider the locations of the landmarks when

computing a path in order to facilitate the localization

process. It is very possible that a trade o� would occur

between the total length of the path between the two lo-

cations and the required level of accuracy which depends

on the frequency of the landmarks within the path.

2.2 Imperfect Landmark Recognition, Im-
perfect Odometry

This section deals with a more realistic and challenging

scenario. In most of the current approaches where both

sources of information are considered, either the odome-

try (eg [4]) or the landmark recognition module (eg [13]

or [23]) is assumed perfect. Many times the landmark

recognition module is capable of recognizing certain types

of landmarks but it cannot distinguish between members

of the same type. For example it can distinguish a door

from a corner but it is not capable of identifying which

door on the map it is facing now, or which corner it is

about to turn. The inability of the exteroceptive sensing

to determine reliably the identity of a landmark can cost

the robot the ability to globally localize in the environ-

ment represented on a given a map. To make this more

clear, consider the simple case where the pose calculated

using the odometry is accurate to a few meters on each di-

rection of motion and the map contains two similar land-

marks within this area of a few meters. The appearance

of these two landmarks will have no e�ect on the accuracy

of the localization. There is no extra con�dence that the

encountered landmark is one or another. The uncertainty

remains the same as before being able only to categorize

the appeared landmark to be of a certain type. Similar

problems occur when the landmark recognition module is

capable of identifying possible types of landmarks along

with the associated probabilities that portray the level of



con�dence. For example a landmark recognition system

based on vision and looking for circular or square patches

in the environment has a certain hit ratio when catego-

rizing its visual cues. The information provided does not

have to be either \square" or \disk". It can be \square"

with probability 70% and \disk" with probability 30%.

Although a decision about the robots location cannot be

made because the new information is inconclusive, instead

of disregarding it, it is better to \store" it and use it later.

A framework that is capable of incorporating uncertain

features detected by the exteroceptive sensors and noisy

motion measurements recorded by the proprioceptive sen-

sors is presented here. The seemingly un-trustworthy in-

formation from the landmark recognition module is com-

piled in a number of di�erent hypotheses. Each hypothesis

is based on certain assumptions for the current location of

the robot as well as the possible identity of the encoun-

tered landmark and has a level of con�dence associated

with it. The certainty is portrayed as a probability P (Hi)

associated with the particular hypothesis Hi. In the al-

gorithm presented here, both the total pose pdf and the

probabilities for each hypothesis are adjusted continuously

while the robot is in motion.

As mentioned before, a Kalman �lter can be used to fuse

information from a variety of proprioceptive sensors on-

board a robot (odometric and/or INS), estimate the pose

displacement d�x, and provide the level of belief to this

estimate, i.e. the covariance Pc�x. It can also optimally

combine the positioning information (from a possible land-

mark match) with the pose estimate calculated using the

odometric information. The uncertainty in the landmark

recognition is the main reason for introducing the mul-

tiple hypothesis approach. Multiple hypotheses testing

for target tracking was �rst presented in [17] and was ap-

plied to mobile robot localization by [4] for distinguishing

between structural features inside a building. The main

drawback of this application was that a Kalman �lter was

required for every hypothesis encountered. Thus with the

number of hypotheses growing rapidly, this methodology

could not be used in real time. Another major drawback

was that the belief levels for each hypothesis were updated

only when a landmark was encountered. Though it is less

obvious, the absence of a landmark also contains infor-

mation which can eliminate a weak hypothesis and thus

keep the number of them considerably smaller. It is also

worth mentioning that in [4] the authors assume perfect

odometry while our algorithm takes under consideration

the odometric uncertainties.

In the approach presented here, only one Kalman �lter

is used regardless of the number of existing hypotheses.

This �lter calculates the quantities in Equations (3) and

(4) which are the same for each hypothesis and thus re-

duces considerably the computations required. The con-

�dence levels of the hypotheses change when a new land-

mark appears. New hypotheses can appear and old ones

can vanish.3 However, the Kalman �lter is based on a

unimodal distribution and therefore it cannot directly be

applied to the multiple hypothesis case. The Bayesian for-

mulation of the problem dictates the competition between

the possible localization scenarios and allows for amulti-

modal pdf. Hereafter we describe the proposed Multiple

Hypothesis Tracking algorithm (Figures 1 and 2) in more

detail.

Step 1[Kidnapped robot localization] First the robot

�nds itself at an unspeci�ed location somewhere in the

mapped area. This is the \kidnapped robot" localization

problem. The assumption is that the initial pdf is uniform

across the space of motion as in Equation (1). The robot

starts to move and after a while encounters the �rst land-

markAi. The feature extraction module assigns probabili-

ties P (z1 = Ai); i = 1::N to the di�erent choices, where N

is the number of possible matches on the map. Due to the

uncertainty related to the landmark recognition module,

the N hypotheses which assume that di�erent landmarks

have been detected, are not mutually exclusive. Each of

the probabilities associated with a di�erent landmark Ai

receive non zero values. Therefore the new pdf is:

f(x=z1) =
X
i

P (z1 = Ai) f(x=z1 = Ai) (5)

where i = 1::N , x = [x ; y ; �]T , z1 is the �rst feature

sensed by the exteroceptive sensors and P (z1 = Ai) is the

probability that the sensed feature is Ai.
4 Here the pdf's

f(x=z1 = Ai) are the same ones as in Equation (2) that

describe the distribution of the pose for each known land-

mark. Each of the non zero probabilities de�nes a new hy-

pothesis Hi with assigned probabilityP (Hi) = P (z1 = Ai)

that considers the pose of the robot to follow a di�erent

Gaussian distribution: x �N(xAi
;KAi

); i = 1::N . The

weighted average of all the pdf's linked to one of the hy-

potheses is the total pdf given in Equation (5) and re-

peated here for the case of the (k � 1)th landmark:

f(x=zk�1) =
X
i

P (Hi) f(x=Hi) (6)

Step k-1[Kalman �ltering] As the robot leaves the pre-

vious landmark (k � 1), it has to rely on its odometry to

track its pose. Only one Kalman �lter is required to pro-

cess the information from the proprioceptive sensors and

calculate the quantities in Equations (3) and (4).5 The up-

dated pose estimate for the robot at each time t is given

by the following set of equations:

bxrobot(t; i) = xAi
+d�x(t); i = 1::N (7)

3The competition between the hypotheses can continue even

when there is no landmark at sight. The absence of a landmark

carries enough information to terminate some of the hypotheses and

thus strengthen others (the total probability of all the hypotheses

adds up to one at any given time).
4For example, if there exist 7 similar doors in the area then

P (z1 = Ai) = 1=7 for each door location.
5The formulation of the Kalman �lter is omitted due to space

limitations. The interested reader is referred to [15] and [14] for a

detailed description of the propagation and update equations. Some

simple implementations can be found in [12] and [6].



Each equation corresponds to a hypothesis Hi with prob-

ability P (Hi). xAi
is the pose of the last visited landmark

and d�x(t) is the displacement estimated in the Kalman

�lter. The pose covariance related to each hypothesis Hi

is calculated by adding the covariance of the pose of the

corresponding landmark Ai to the covariance of the dis-

placementd�x(t) which is computed at each time step in

the Kalman �lter.

Px̂robot(t; i) = KAi
+Pc�x(t) (8)

As the robot travels in-between landmarks the uncertainty

of its displacement grows. Thus, the pose covariance for

each hypothesis is constantly increasing. The new total

pdf at time t is the weighted average of N pdf's each

described by a Gaussian N(bxrobot(t; i);Px̂robot(t; i)):
f(x=zk�1;d�x(t)) =

X
i

P (Hi) f(x=Hi) =

X
i

P (Hi)
1

(2�)
n=2

det(Px̂robot(t; i))
1=2
�

exp[�
1

2
(x � bxrobot(t; i))TP�1x̂robot(t; i)(x � bxrobot(t; i)) (9)

in accordance with Equation (6).

Step k[Bayesian estimation] After the robot encounters

the kth landmark, the distribution of its pose is described

by the following pdf:

f(x=zk) = f(x=zk�1;d�x; zk) =

MX
j=1

f(x=zk�1;d�x; zk = Bj)P (zk = Bj) =

MX
j=1

P (zk = Bj)

NX
i=1

f(x;Hi=zk�1;
d�x; zk = Bj)�

P (Hi=zk�1;
d�x; zk = Bj) =

MX
j=1

NX
i=1

f(x;Hi=zk�1;
d�x; zk = Bj)�

P (Hi=zk�1;
d�x; zk = Bj)P (zk = Bj) (10)

where N is the number of hypotheses in the previous step

and M is the number of the possible matches on the map

for the kth landmark. P (zk = Bj) is the probability that

the kth landmark is Bj. The �rst quantity in Equation

(10) is the updated pdf for the pose estimate after taking

into consideration the new kth landmark. This quantity

is calculated in the Kalman �lter as the latest estimates

(Equations (7) and (8)) are combined with the new infor-

mation for the pose of the new landmark Bj ; j = 1::M .

Each new hypothesis Hj assumes that the pose of Bj fol-

lows a Gaussian distribution with pdf as in Equation (2).

The fusion of the latest Kalman �lter estimates bxrobot(t; i)
and Px̂robot(t; i) with the pose information xBj , KBj for

each of the possible landmarksBj is a one step process and

it can be implemented in parallel. The resulting f(x=zk)

is a multi-modal Gaussian distribution composed of 1-to-

N �M functionals. The second quantity in Equation (10)

is the result of the Bayesian estimation step (Multiple Hy-

pothesis Testing) and it is calculated for each hypothesis

Hi as follows:

P (Hi=zk�1;
d�x; zk = Bj) =

P (zk = Bj=zk�1;
d�x;Hi)P (Hi=zk�1;

d�x)PN

i=1 P (zk = Bj=zk�1;
d�x;Hi)P (Hi=zk�1;

d�x)
(11)

where P (Hi=zk�1;
d�x) is the a priori probability for each

hypothesis Hi available from the previous step and P (zk =

Bj=zk�1;
d�x;Hi) is the probability to detect landmarkBj

given that the current location of the robot is bxrobot(t; i):
P (zk = Bj=zk�1;

d�x;Hi) =
1

(2�)
n=2

det(Pbxrobot +KBj )
1=2
�

exp[�
1

2
(xBj �bxrobot(t; i))T (Pbxrobot +KBj

)
�1

(xBj �bxrobot(t; i))] (12)

for j = 1::M . Each of the N previously existing hy-

potheses Hi are now tested in light of the new evidence.

The hypotheses whose assumption for the estimated pose

of the robot (given in Equation (7)) is closer to the lo-

cation of any of the new possibly encountered landmarks

Bj ; j = 1::M will be strengthened. The rest will be weak-

ened. The total probability calculated by summing the

probabilities in Equation (11) equals to 1. Due to the

additional constraints imposed from the information asso-

ciated with the pose tracking, a few only hypotheses will

sustain probabilities over a preset threshold and continue

to the next round, i.e. when the next landmark is encoun-

tered.

After a su�cient number of repetitions of Step k-1 and

Step k of this algorithm the robot will be left with one

only choice for possible location. This is demonstrated in

detail in the next section.

3 Experimental Results

In this section we demonstrate the e�ciency of the pre-

sented algorithm in the test case of an o�ce environment

shown in Figure 3a. The position of the robot is marked

with a small triangle.

In order to support dead-reckoning based position esti-

mation, the vehicle carries shaft encoders and a gyroscope.
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Figure 3: a. The environment of the robot, b. The initial pdf for the position of the robot when it senses one door on its

right, c. The pdf after the robot moves for 2 meters, d. The pdf after the robot moves for another 2 meters and before

sensing the second door on its right. Notice that 6 instead of 7 Gaussians are shown in this �gure. The explanation is

that 2 of the 7 hypotheses point to the same location and thus their pdf's are combined to a single Gaussian which is

taller that any of the other 5. The units on these plots are 0.2m/div.

0

20

40

60

80

100

0

20

40

60

80
0

0.1

0.2

0.3

0.4

xy

pd
f

0

20

40

60

80

100

0

20

40

60

80
0

0.1

0.2

0.3

0.4

xy

pd
f

0

20

40

60

80

100

0

20

40

60

80
0

0.1

0.2

0.3

0.4

xy

pd
f

0

20

40

60

80

100

0

20

40

60

80
0

0.2

0.4

0.6

0.8

xy

pd
f

Figure 4: a. The pdf right after the robot has sensed the second door on its right, b. The pdf after the robot moves for

another 2 meters, c. The pdf after the robot moves for another 2 meters and before sensing the third door on its right,

d. The pdf right after the robot has sensed the second door on its right. The units on these plots are 0.2m/div.



These signals are fed to a Kalman �lter implemented for

this set of sensors. The computed position displacement

estimated�x(t) is available to the localization module at

any given time. In addition the robot is equipped with ex-

teroceptive sensors; a laser range �nder. A feature extrac-

tion module capable of detecting doors is fed with these

signals [22]. Although a door can be detected, it can not

be identi�ed. There are seven doors facing this U shaped

corridor. A number is assigned to each of them. The robot

has stored a map of the 
oor containing the positions of

each of the doors in some coordinate frame.

In the beginning, the robot is brought and set at an arbi-

trary location in the corridor. In the absence of any initial

positioning information, the localization module assumes

a uniform position pdf along the corridor and sets the

robot in motion until the �rst landmark is in sight. When

the robot encounters the �rst door on its right, say num-

ber 1, it does not know which door this is. There are in

fact 7 equally likely hypotheses of where it is. These are

depicted in Figure 3a. The pdf's associated with each of

these hypotheses are fairly sharp and are shown in Figure

3b.

As the robot begins to move again following the wall

on its right, Step k-1 is applied. That is, the new in-

formation from the odometric sensors is processed in the

Kalman �lter and an estimate of its position is computed

along with the uncertainty associated with it. After the

robot has covered 2 meters the position uncertainty has

increased and thus each pdf related to each of the 7 hy-

potheses is spread around a larger area as shown in Figure

3c. As the robot covers another 2 meters this phenomenon

becomes more prominent. This can be seen in Figure 3d.

After the robot has covered a total of 4 meters, it detects

another door on its right (number 2). Application of Step

k of the algorithm immediately reduces the number of hy-

potheses to 3. Out of the 7 previous hypotheses only 3 are

possible. These are the ones that assumed that the previ-

ous landmark was door number 1, door number 2, or door

number 5. For these hypotheses there is a new door on

the right side of the robot after the vehicle has moved for

4 meters. In Figure 4a we see again that the precise local-

ization information related to a potential landmark makes

the pdf's for each of the surviving hypotheses sharp again.

The robot has to travel a longer distance before it is able

to determine its position uniquely. Step k-1 [Kalman �l-

tering] is applied again and thus the position estimates re-

lated to the 3 hypotheses deteriorate. As the robot moves

for another 2 + 2 meters, the uncertainty increase is shown

in Figures 4b and 4c. Finally the robot senses a third door

on its right (number 3) and by applying Step k of the

algorithm again, it concludes with the position estimate

described by the pdf of Figure 4d.

4 Conclusions

A new approach to the mobile robot localization prob-

lem was presented in detail in this paper. The two main

methods applied to this problem, namely Bayesian esti-
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mation and Kalman �ltering were combined within this

uni�ed framework. A mobile robot equipped with noisy

odometric sensors is capable of localizing itself very pre-

cisely. A map of the environment with rough details is

used for this reason. The features of the environment rep-

resented on this map can be doors, corners, columns etc.

The robot also carries exteroceptive sensors that help it

sense its surroundings. Simple featuring extraction algo-

rithms process the signals from these sensors and detect

features equivalent to the ones stored in the map. A multi-

ple hypothesis approach allows the localization algorithm

to carry along all the information about the detected but

not uniquely identi�ed landmarks. Combinationof consec-

utive landmark detections along with the odometric infor-

mation processed in a Kalman �lter results �rst in a small

number of hypotheses and �nally in a single location where

the robot is located.
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