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Abstract

We discuss the forward self-similar solutions of the Navier-Stokes equations. It appears these
solutions may provide an interesting window into non-perturbative regimes of the solutions
of the equations.

1. Introduction

We consider the classical Cauchy problem for the incompressible Navier-Stokes equation

ut + u∇u+∇p−∆u = 0
div u = 0

}
in R3 × (0,∞) , (1.1)

u|t=0 = u0 in R3 . (1.2)

We recall that the problem is invariant under the scaling

u(x, t) → uλ(x, t) = λu(λx, λ2t) ,
p(x, t) → pλ(x, t) = λ2p(λx, λ2t) ,
u0(x) → u0λ(x) = λu0(λx) ,

(1.3)

where λ > 0. We say that a solution u is scale-invariant if uλ = u and pλ = p for each λ > 0.
Similarly, we say that an initial condition u0 is scale-invariant, if u0λ = u0 for each λ > 0.
This is of course the same as requiring that u0 be (−1)− homogeneous.

We will discuss the following result, which we recently proved in [6].

Theorem 1.1. Assume u0 is scale-invariant and locally Hölder continuous in R3 \ {0} with
div u0 = 0 in R3. Then the Cauchy problem (1.1), (1.2) has at least one scale-invariant
solution u which is smooth in R3 × (0,∞) and locally Hölder continuous in R3 × [0,∞) \
{(0, 0)}.

Previously this result has been known only under suitable smallness conditions on u0, see
for example [2,10]. For small u0 one can also prove uniqueness (in suitable function classes).
It is quite conceivable that uniqueness may fail for large data. We will discuss this point in
more detail below.

2. Well-posedness and scale invariant initial data

We recall that a function space X of div-free fields on R3 is homogeneous if ||u0λ||X =
λα||u0||X for some α ∈ R. A homogeneous space X is scale invariant (for the Navier-Stokes
scaling) if α = 0, i.e. ||u0λ||X = ||u0||X . Within the class of the homogeneous function
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spaces, the borderline spaces for perturbation theory of (1.1), (1.2) should be scale-invariant.
Perturbation theory for the well-posedness results for the Navier-Stokes equation with initial
data in such spaces was initiated in a well-known paper [8]. Paper [10] can be considered as
a culmination of these developments. In [8] the function space X is taken as X = L3 (where
we slightly abuse notation by using L3 for div-free vector fields which belong to L3). We
note that the function |x|−1 “just misses” L3(R3). In [10] the space X is taken X = BMO−1

(again restricted to div-free fields). We note that the function |x|−1 belongs to BMO−1. The
well-posedness result for X = BMO−1 is slightly more subtle here than with X = L3 in that
the equations are well-posed in BMO−1 only for sufficiently small data, even in the sense of
the local-in-time well-posedness. To get a local-in-time well-posedness for large data, one
must further restrict the function space. As we shall see, for X = BMO−1 this smallness
assumption may in fact be essential. It is conceivable that the equations are not well-posed
(even locally in time) for large initial data in BMO−1.

At a heuristic level it is not hard to see that (−1)−homogeneous vector fields should play
an important role. If u0(x) is such a vector field which is smooth away from the origin and
a > 0, then

|∆(au0)| ∼ a|x|−3, |au0∇(au0)| ∼ a2|x|−3 (2.1)

We see that for a << 1 the linear viscous term dominates, whereas for a >> 1 the non-linear
term dominates. At a ∼ 1 both terms should be of the same order of magnitude (assuming
the quantities u0, ∇u0 are of similar magnitude on the unit sphere).

The solutions obtained by the perturbation theory are often called mild solutions. These
solutions exist on a certain maximal interval of existence [0, T ) and are regular in R3×(0, T ),
see, for example, [3, 4]. For small initial data we can take T = ∞, but for large initial data
then we can conceivably have T < ∞, although it is not known whether this really happens.
We emphasize again that once some div-free vector field with a singularity of the strength
∼ |x|−1 belongs to X, then one needs a smallness assumption even for the proofs of the
local-in-time well-posedness.

In the classic paper [15] many of these ideas are considered in slightly different spaces,
which are not homogeneous.

In addition to the class of mild solutions, we have the class of the weak solutions. The
solutions of this kind were first constructed in [15] and their construction is based on the
energy inequality, weak convergence and compactness. It was realized relatively recently,
see [14], that this technique is applicable even when the energy of the initial data u0 is only
locally finite (u0 ∈ L2

loc), with the additional assumption

lim
x→∞

ˆ
Bx,r

|u0|2 dx = 0 . (2.2)

In particular, there is no problem in constructing weak solutions when the initial datum is
a (−1)−homogeneous field u0 which is locally bounded away from 0. Unlike for the mild
solutions, in the construction of the weak solutions the function |x|−1 does not play any
distinguished role. For example, the scale invariant fields continuous away from the origin
satisfy all the assumptions needed for the construction with good margins. The function
|x|−1 “comes back” when we try to investigate uniqueness of the weak solutions. At present
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the best available results for the uniqueness of the weak solutions are of the same form as
already discussed in [15], and later extended in [18], [14] and other works. The result say,
roughly speaking, that if we have two weak solutions u, v for the same initial datum u0

and one of the solutions has similar regularity as the mild solutions, then the two solutions
coincide. The initial datum of the “good solution” must essentially have the same regularity
as required by the perturbation theory for the mild solutions. Viewed from the perspective
of this proof, the function |x|−1 makes its return, even when we deal only with the weak
solutions.

Is the borderline role of the (−1)−homogeneous functions an artefact of our techniques,
or is there something deeper behind it? We will argue for the latter.

3. Proof of Theorem (1.1)

To prove Theorem 1.1, we seek the solution u(x, t) in the form

u(x, t) =
1√
t
U

(
x√
t

)
. (3.1)

The Navier-Stokes equation for u gives

−∆U − 1

2
U − 1

2
x∇U + U∇U +∇P = 0, divU = 0 , (3.2)

in R3. For a scale-invariant u0 the problem of finding a scale-invariant solution of the
Cauchy problem (1.1), (1.2) is equivalent to the problem of finding a solution of (3.2) with
the asymptotics

|U(x)− u0(x)| = o

(
1

|x|

)
, x → ∞ . (3.3)

The problem (3.2), (3.3) is reminiscent of the classical Leray’s problem of finding steady-
state solution of the Navier-Stokes equation in a bounded domain (which is now replaced
by the whole space R3), with a given boundary conditions (which is now replaced by (3.3)).
Heuristically it is clear that the main difficulty in pursuing this analogy is the potentially
uncontrolled behavior of U for x → ∞. Roughly speaking if we can show that near ∞
the function U and its derivatives have the same decay as |x|−1 and the corresponding
derivatives, then we can conclude that nothing surprising is happening near ∞, and the
situation is indeed analogous to the bounded domain. (One still needs to establish estimates
in the finite region, but these are very similar to the classical case of a bounded domain.)
The main difficulty is in establishing these estimates. Once such estimates are established,
we can essentially follow the classical Leray proof of Leray for the existence of the steady
solutions in bounded domains, see [6] for details.

4. Possible Non-uniqueness

As in the case of the bounded domains, the Leray-Schauder approach gives existence of
the solutions, but not uniqueness. In the case of bounded domains one does not generically
expect uniqueness for large data, and this non-uniqueness is in fact expected to be quite
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typical in the context of the steady Navier-Stokes, once the data is large. Let us for example
consider the problem

−∆u+ u∇u+∇p = 0 in Ω
div u = 0 ′′

u|∂Ω = λg at ∂Ω
(4.1)

where g is a given smooth vector field at the boundary satisfying the compatibility condition´
∂Ω

g = 0 and λ > 0 is a parameter. Eventually we aim to take λ = 1. We know the
equations (4.1) have a unique solution for small λ (by perturbation arguments and energy
inequality, for example), with u|λ=0 = 0. We can try to continue the solution u into λ > 0
as u = u(λ), but the curve of can “turn back” and will not be a graph of a function of
λ. The existence of these turning points signals non-uniqueness. For bounded domain the
existence of such turning points is presumably quite typical, and for generic set-ups we do
expect non-uniqueness once the function λg is “sufficiently large”. (This is true especially
in dimension n = 3. In dimension n = 2 the situation might be in some cases different, see
a related result in [16].)

Could this also be the case for the problem (3.2), (3.3)? This would lead to non-uniqueness
for the Cauchy problem (1.1), (1.2) with scale-invariant u0. We believe it is likely that this
indeed happens, and that the solution of the Cauchy problem (1.1), (1.2) for the scale-
invariant u0 may not be unique for large data. This would mean, for example, that the
initial value problem may not be well-posed in BMO−1 if the initial condition is not small.

The possible non-uniqueness might be detected by following the curve of solutions U =
U(λ) of the problem (3.2) with the “boundary condition” (3.3) replaced by

|U(x)− λu0(x)| = o

(
1

|x|

)
, x → ∞ , (4.2)

starting at λ = 0. For λ small we have a unique solution U(λ) and we can observe the
spectrum of the linearized problem as we increase λ. Let us denote the spectrum by Σ(λ).
One expects that for small λ we will have Σ(λ) ⊂ Π = {z, Re z < 0}. As we increase λ, the
spectrum may leave Π. If is does so through z = 0, we expect a turning point in the curve
of the solution and non-uniqueness as discusses above. What happens when the spectrum
leaves Π through the imaginary axis? It is natural to expect that (under some natural
assumptions) this will correspond to a Hopf bifurcation, with the appearance of periodic
solution to the equation

Us −∆U − 1

2
U − 1

2
x∇U + U∇U +∇P = 0, divU = 0 , (4.3)

with the “boundary condition” at ∞ given by (4.2). By a (standard) change of variables

u(x, t) =
1√
t
U(

x√
t
, log

t

t0
), (4.4)

we see that this would correspond to a solution u of the initial value problem which would
be only “discretely scale-invariant” for the scale invariant initial datum u0. By this we mean
that λu(λx, λ2t) = u(x, t) not for all λ > 0, but only for a discrete subgroup {λk

0, k ∈ Z}
of R+. The existence of such solutions for discretely scale-invariant u0 with λ0 close to
1 is proved in a recent paper [20]. Such solutions would still violate uniqueness for the
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Cauchy problem (1.1), (1.2) for the scale-invariant initial data u0. In this case there would
be a scale-invariant solution guaranteed by Theorem (1.1) and another solution which is not
scale-invariant, but only discretely scale-invariant. We believe that such scenarios are quite
likely.

The above considerations apply to the Cauchy problem with the scale-invariant initial
data. Can such consideration be taken even further, to some solutions with finite energy
obtained by a suitable “truncation at infinity” of the scale-invariant initial data? If this is
the case, then we might not only have non-uniqueness for the scale-invariant initial data,
but also non-uniqueness for finite-energy initial data, and – in particular – for the Leray-
Hopf weak solutions. Moreover, the non-uniqueness would appear right at the borderline
of the classes for which uniqueness can be proved via the weak-strong uniqueness theorems
mentioned earlier. It is interesting to note the opinion of some prominent mathematicians on
the question of the uniqueness of Leray-Hopf weak solutions. In [7] we can find the following
comment (p. 217): “It is hard to believe that the initial value problem for the viscous fluid in
dimension n = 3 could have more than one solution, and more work should be devoted to the
study of the uniqueness question.” On the other hand, it is known that O. A. Ladyzhenskaya
believed in non-uniqueness of the weak solution. The answer to the uniqueness question is
still not known, but our current opinion, based on the discussion above, leans towards the
non-uniqueness.

5. Estimates

An important theme in [6] can be perhaps called local-in-space regularity estimates near
the initial time t = 0. The conection to estimates of solutions of (3.2) near ∞ can be seen
from (3.1): if, say, ∇ku is bounded in {x, 1 ≤ |x| ≤ 2} for times close to 0, it means
∇U(x) = O(|x|−1−k) as |x| → ∞.

The following statement appears to be quite natural

(S) Modulo the usual (and quite mild) non-local influences of the pressure, local regularity
of the initial data propagates for at least a short time.

Results in the direction of (S) can be found already in the classical paper [1]. More recently,
related questions about vorticity propagation have been studied in [19]. Our main result in
this direction, which is behind the necessary a-priori estimates for the solutions of (3.2) is
as follows.

Theorem 5.1. (Local Hölder regularity of Leray solutions)
Let u0 ∈ L2

loc(R
3) with supx0∈R3

´
B1(x0)

|u|2(x)dx ≤ α < ∞. Suppose u0 is in Cγ(B2(0))

with ∥u0∥Cγ(B2(0)) ≤ M < ∞. Then there exists a positive T = T (α, γ,M) > 0, such that
any Leray solution u with the initial datum u0 (which implies u is also a local suitable weak
solution in the sense of [1]), satisfies

u ∈ Cγ
par(B1/4 × [0, T ]), and ∥u∥Cγ

par(B1/4×[0,T ]) ≤ C(M,α, γ). (5.1)

We refer the reader to [6] for the precise definition of Leray solution.
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Our proof of 5.1 in [6] is based on a combination of techniques from [5, 9, 11, 13, 14].
Heuristically, the main point is that one can obtain a sufficient control of the energy flux
into “good regions” from the rest of the space, see Section 3. Once we know that only small
amount of energy can move into the “good region” one can use (a slight modification of)
partial regularity schemes in [11,13] to prove regularity.
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[7] Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4,

(1951), 213–231.
[8] Kato, T. Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions,

Math. Z. 187 (1984), no. 4, 471-480.
[9] Kikuchi, N., Seregin, G., Weak solutions to the Cauchy problem for the Navier-Stokes equations satisfying

the local energy inequality, AMS translations, Series 2, Volume 220, pp. 141-164.
[10] Koch, H., Tataru, D., Well-posedness for the Navier-Stokes equations, Adv. Math. 157 (2001), no. 1,

22-35.
[11] Ladyzhenskaya, O. A., Seregin, G. A., On partial regularity of suitable weak solutions to the three-

dimensional Navier-Stokes equations, J. Math. Fluid Mech. 1 (1999), no. 4, 356-387.
[12] Ladyzhenskaya, O.A, On Uniqueness and smoothness of generalized solutions to the Navier-Stokes equa-

tions, Zapiski Nauchn, Seminar. POMI, 5 (1967), pp. 169-185
[13] Lin, F-H., A new proof of the Caffarelli-Korn-Nirenberg theorem, Com. Pure Appl. Math. 51 (1998),

no. 3, 241-257.
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