
MATH 5525 LECTURE LOG
Lecture 1, 1/23

The exponential function

Covered some material from 1.1. (Here 1.1 refers to Chapter 1, Section 1 in the
textbook.1 Similar convention will be used in what follows.)

Main takeaway from the lecture:

(i) the function x(t) = eat satisfies the differential equation

dx

dt
= ax, (1)

and this includes the case when a is complex (in which case we consider x as a
complex-valued function of the real variable t). For any given number C (real
or complex), the function x(t) = Ceat also satisfies (1).

(ii) equation (1), in spite of its simplicity, describes some important phenomena
(we discussed a couple of examples).

Optional exercise:2 show that limn→∞
(
1 + t

n

)n
= et.

Lecture 2, 2/25

Equations dx
dt = ax+ b and dx

dt = ax+ b(t)

Covered some material from 1.2. We first looked in some detail at the equation

dx

dt
= ax+ b (2)

where a, b are constants,3 and saw that the solution with the initial condition
x(0) = x0 is given by

x(t) = x0e
at +

b

a

(
eat − 1

)
. (3)

This is the same as formula (2.7) in the textbook, if we change a to −a.
Example
Equation (2) arises in the following situation. Assume we borrow from a bank
M0 dollars at interest rate4 r and make payments p (per year). Let us make the

1The section starts on page 3, ends on page 15.
2Additional exercises are in the book. Some of the problems in the book may be parts of

future homework assignments. It is not a formal requirement that the students go through
the exercises other than those in the official homework assignments, but it is of course good
to check how difficult the exercises in the book or optional exercises mentioned in class seem
to be.

3Note that in the textbook this equation is written in the form dx
dt

+ ax = b, so that our a
should be identified with −a in the textbook.

4The definition of the interest rate we use here may not be the same as the one used by
the bank. First, instead of saying that the interest is, say, 4%, we say that it is 0.04, so in
this case we would take r = 0.04. Even when taking this way the interest is expressed into
account, the bank’s numbers might still be slightly different, corresponding perhaps to er − 1,
but the exact definitions by the bank may be more complicated still.
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simplifying assumptions that the bank compounds the interest continuously and
that the payments are also made continuously. Let M = M(t) be the amount
we owe at time t. The equation for M then is

dM

dt
= rM − p , M(0) =M0 , (4)

where the time t is measured in years. Using formula (3), we can solve the
following problem: suppose we wish to borrow the amount M0 at interest rate
r and we wish to pay the loan off in T years. What will be our payment? To
calculate p, we apply (3) with a = r and b = −p to get

M(t) =M(t, r, p,M0) =M0e
rt − p

r

(
ert − 1

)
(5)

and then solve the equation

M(T, r, p,M0) = 0 (6)

for p. We obtain

p =
M0

T

rT

1− e−rT
. (7)

Note that M0

T is exactly what the payments would be if there was no interest.

The factor rT
1−e−rT expresses the influence of the interest. Our total payments

to the bank will be

total payments = p T =M0
rT

1− e−rT
. (8)

Let

f(ξ) =
ξ

1− e−ξ
. (9)

It is a good exercise to investigate the function f in some detail. The formula
might look singular at ξ = 0, but the singularity is not “real”, f is really a
smooth5 function of ξ, with

lim
ξ→0

f(ξ) = 1 . (10)

As an optional exercise, you can calculate the derivative f ′(0).6 Considering
the payment p as a function of T , i. e. p = p(T ), note that limT→∞ p = M0r.
This corresponds to the situation that we only pay the interest and the loan is
never paid off. In that case the solution of (4) is constant, M(t) =M0.

We next discussed how to solve (2) when b = b(t) is not constant. We obtained

x(t) = x0e
at +

∫ t

0

ea(t−s)b(s) ds . (11)

5and, in fact, analytic, i. e. given by a power series which converges for all ξ
6The result is f ′(0) = 1

2
. This corresponds to the fact that when rT is small, the bank will

make approximately 1
2
M0rT on the loan, about half of what they would make for small rT

if they loaned the whole sum M0 for time T , and the loan would be paid off in one payment
after that time.
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This is a special case of formula (2.14) in the textbook (again note that we work
with different signs), which we will discuss next time.

Lecture 3, 1/28
Interpreting the formulae, equations dx

dt = a(t) + b(t), dx
dt = ax(1 − x),

separable equations

An important part of understanding solutions of differential question is the
interpretation of the formulae which we obtain. Let us look at formula (11)
from last lecture in the context of the following electric circuit. The discussion
of this example is optional.

The voltage U = U(t) at the point indicated in the picture satifies

C dU =
V (t)− U

R
dt , (12)

which is the same as
dU

dt
= − U

RC
+
V (t)

RC
. (13)

Letting U0 = U(0) and using (11), we have

U(t) = U0 e
− t

RC +

∫ t

0

1

RC
e

(t−s)
RC V (s) ds . (14)
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From the electric circuit interpretation we expect various properties of the so-
lutions which we would like to confirm from (14). For example, if for a fixed
resistance R the capacity C is getting close to 0, then we should have

U(t) ∼ V (t) . (15)

More precisely given 0 < τ < T and a fixed R > 0, we expect that if V (t) is
continuous, then

U(t) → V (t) uniformly for t ∈ [τ, T ] as C → 0+. (16)

As an optional exercise you can try to prove it. The key point is to consider the
properties of the function

ϕε(t) =
1

ε
e−

t
ε . (17)

Note that ∫ ∞

0

ϕε(t) dt = 1 (18)

and, moreover, for any τ > 0 we have that∫ ∞

τ

ϕε(t) dt→ 0 as ε→ 0+ . (19)

Therefore for small C the main contribution to the right-hand side of (14) will
be coming from ∫ t

t−τ

1

RC
e

(t−s)
RC V (s) ds (20)

for some small τ > 0. As V is continuous, for small τ > 0 it is nearly constant
in (t − τ, t), deviating from V (t) only a little. In view of (18) and (19) we see
that (16) should follow. This concludes the discussion of our optional example.

Another optional exercise is the following: verify directly that x(t) given by (11)
satisfies (2), or, alternatively, that U(t) given by (14) satisfies (13).7

Next we discussed the equation

dx

dt
= a(t)x+ b(t) (22)

and derived the formula

x(t) = x(t0) e
(A(t)−A(t0)) +

∫ t

t0

e(A(t)−A(s)) b(s) ds , (23)

7The following formula for taking derivatives of an integral is useful for this calculation
(and other similar calculations):

d

dt

∫ t

0
f(t, s) ds = f(t, t) +

∫ t

0

∂f

∂t
(t, s) ds . (21)

In the example above one can in fact avoid using it by pulling the term e
t

RC in front of the
integral, but it is still useful to know the formula.
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where the function A(t) is the primitive of a(t), i. e. A =
∫
a or, equivalently,

A′ = a, which is the same as formula (2.14) in the textbook.
The formula was derived in two steps: first, we showed how to solve

dx

dt
= a(t)x (24)

by writing the equation as

dx

x
= a(t) dt (“separation of variables”) (25)

and integrating both sides, see also section 1.3 in the textbook. Once we know
how to solve (24), we seek the solution of (22) as

x(t) = C(t)eA(t) (“variation of constants”) . (26)

Substituting (26) into (22) we obtain

C ′(t) = e−A(t)b(t) (27)

and integration in t now gives (23).

A form of this classical calculation is in the textbook on page 16.

Separation of variables for more general equations

We next discussed the method of separation of variable for more general equa-
tions, see section 1.3 in the textbook. As an example, we considered the equation

dx

dt
= ax(1− x) . (28)

One interpretation of the equation in terms of “spread of a rumor”. We think
of x = x(t) as denoting the fraction of the population who know a rumor. As
people meet and share the rumor, equation (28) seems to be a reasonable model
for how the knowledge of the rumor evolves. In this interpretation one should
have 0 ≤ x ≤ 1, but one can in fact solve the equation also when x takes values
outside of this interval. To solve the equation, we will write it as

dx

x(1− x)
= a dt . (29)

Taking tt < t2 and letting x1 = x(t1), x2 = x(t2), we can write∫ x2

x1

dx

x(1− x)
=

∫ t2

t1

a dt = a(t2 − t1) . (30)

We have∫ x2

x1

dx

x(1− x)
=

∫ x2

x1

[
1

x
+

1

1− x

]
dx = log x− log(1− x) |x=x2

x=x1
. (31)
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Letting t1 = 0 , x1 = x(0) = x0 and t2 = t , x2(t2) = x(t), we obtain after a
simple calculation

x(t) =
x0

x0(1− e−at) + e−at
. (32)

We will look at these solution in more detail next time.

Lecture 4, 1/30

Geometric picture, phase-portraits of 1d equations

Given a differential equation, such as (28), we can try to calculate the general
solution (formula (32) in the case of (28)), and then try to understand the
properties of the solution by looking at the formula. In practice this approach
works only in a limited number of cases; for many situations it is simply not
possible to write the general solution in a closed form using elementary functions.
However, we can often get a good idea about qualitative properties of solutions
of a differential equation just by looking at some simple geometric pictures,
without having to perform difficult calculations. This material is discussed in
the textbook in the context of more difficult problems in chapters 12 and 13
(you can have a look at the nice pictures there). We will discuss some of these
issues in a simple form even at this stage.

Geometric pictures of (28)

(A) The (t, x)-plane picture

The most straightforward way, which is already useful, is to think about (28)
in terms of the (t, x) Cartesian plane and the graphs of the solutions. The
equation tells us that if the solution passes through a point (t, x), the slope k
of its tangent at this point is given by

k = k(t, x) = ax(1− x) . (33)

We can imagine drawing a segment with the corresponding slope at each point
(t, x) in the plane, so that we get a picture like this:
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Our task in solving the equation is to find curves in the (t, x) plane which at
each point follow the direction given by the segment at that point. You can
note various properties of these segments from formula (33). For example

• the slope at (t, x) is independent of t,

• the slope at (t, 0) is zero,

• the slope at (t, 1) is zero,

• for 0 < x < 1 the slope at (t, x) is strictly positive,

• for 1 < x the slope at (t, x) is strictly negative,

• for x < 0 the slope at (t, x) is strictly negative.

Looking at the picture and keeping these properties in mind, we see that

• the functions x(t) = 0 and x(t) = 1 are solutions,

• the solution x(t) passing through any (t0, x0) with 0 < x0 < 1 is increasing
with t with limt→∞ x(t) = 1 and limt→−∞ x(t) = 0; this solution can never
intersect the constant solutions x ≡ 0 or x ≡ 1 (or any other solution
distinct from itself, for that matter).

With similar observations it is not hard to see without really doing any calcu-
lations, that the solutions look something like this:
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The only “qualitative” question which is not clear without calculation is what
the solutions passing through points (t, x) with x < 0 do as t increases. It is clear
they decrease, but how fast? Looking at (32), you can convince yourself that
such solution reach −∞ in finite time. In other words, for each such solution
there is T such x(t) is defined only on (−∞, T ) and limt→T x(t) = −∞.

(B) The 1-dimensional “phase portrait”

While the geometric picture above is natural and helpful, there is an even simpler
picture which makes the properties of the solutions arguably even easier to see.
The key for the viability of this picture is that the expression (33) is independent
of t. We can think about (28) in the following way: it is a rule which tells us
at which speed we should move along the x axis when we are at a point x. The
key point is that the rule does not depend on the time when we are at x, we
always move with the same speed ax(1− x), independently of what the time is.
Therefore we can represent the situation with the following 1d picture:
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We see that there are two points, x = 0 and x = 1 where the prescribed velocity
vanishes. When we are at these points, we do not move. These points divide
the real line R into 3 segments,

I1 = (−∞, 0), I2 = (0, 1), I3 = (1,∞) . (34)

If we are in I1, we move towards −∞; if we are in I2 we move towards 1; if we
are in I3, we also move towards 1 (this time from the other side).

We see that this 1d picture gives us actually a very good idea what the solutions
do. As an exercise you can perform the same analysis for the equation

dx

dt
= sinx , (35)

as we did in class. The method works well for the equations of the form

dx

dt
= f(x) . (36)

We see the prominent role of the point x with f(x) = 0. The solutions starting
at those points are trivial, but they tend to separate regions with different
behavior, and therefore are important. (The situation in higher dimensions
is more complicated, but the “rest points” of the equations still play a very
important role.)

Linearization near the rest points
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Let us consider (36) with a smooth f and assume that x0 ∈ R is such that
f(x0) = 0 and f ′(x0) = a ̸= 0. Let us introduce a new coordinate ξ by x = x0+ξ.
If we look at the phase portrait of (36) near x0 in the coordinate ξ, we see
something like this:

This is very similar to the phase portrait of the equation

dξ

dt
= aξ (37)

we studied in Lecture 1, and we suspect that the solutions which are close to
x0 will mostly behave as solution of (37), which are

ξ(t) = Ceat . (38)

We emphasize again that this is expected to be valid only when Ceat is small.
A simple calculation supports this heuristics: in the coordinate ξ we can write

dξ

dt
= f(x0 + ξ) = f(x0) + f ′(x0)ξ +O(ξ2) = aξ +O(ξ2) , (39)

as f(x0) = 0 and we denoted f ′(x0) = a. So in the approximation up to error
of order ξ2 (which is of course much smaller than ξ when ξ is small) we have

dξ

dt
= aξ . (40)

We see that for equation (36), in the case when f is smooth and has only isolated
zeros x0 with f ′(x0) ̸= 0 the qualitative behavior of the solutions is simple:
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• In any closed interval J = [a, b] which does not contain a rest point, the
solution moves from one end to another at some non-zero speed, exceeding
a certain minimal value.

• Near a rest point x0, the solution is either exponentially attracted (in the
positive time direction) to it (when f ′(x0) < 0) or exponentially repelled
(in the positive time direction) from it (when f ′(x0) > 0).

We see that the qualitative behavior of the solution of (36) is quite transparent
(at least under the assumptions above), even though we may not be able to
describe the solution by some elementary formulae in the general case.

As an optional exercise, you can check by direct inspection of the behavior of
x(t) given by (23) near a rest point (both x = 0 or x = 1) that the solution
behaves exactly as expected from the considerations above.

Lecture 5, 2/1

Systems of Classical Mechanics with 1 degree of freedom

In this lecture we covered material from 5.1, except for the Projectile problem
(page 29). The situation considered here concerns systems of classical mechanics
with 1 degree of freedom. There are several levels of generality at which the
problem can be considered. The simplest one is

1. Particle moving along a straight line under influence of a time-independent
force

Here we think literally about motion of a particle with mass m along a straight
line. The position of the particle is denoted by x, and we assume that the
coordinate x coincides with the length taken along the line (beginning from
some fixed point). We assume that the force acting on the particle at point x
is F (x). Since we are on a line, we can always write

F (x) = −∂V
∂x

(x) . (41)

Since our coordinate x is only one-dimensional, we could also write

F (x) = −dV
dx

(x) = −V ′(x) . (42)

However, we will use notation (41), which is customarily used in this situation.
Fixing some point x0 on the line, we can write

V (x) = −
∫ x

x0

F (x̃) dx̃ , (43)
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and we see that V (x) is minus the work done by the force when the particle
is moved from x0 to x, which is the same as the work we have to do while
moving the particle between x0 and x. In other words, V can be considered as
the potential energy of the particle. The equation of motion (Newton’s 1687
Principia) is

m
d2x

dt2
= F (x) . (44)

Newton’s original notation ẍ is also often used instead of d
2x
dt2 and ẋ for dx

dt .

The kinetic energy of the particle is 1
2mẋ

2, the total energy is

1

2
mẋ2 + V (x) . (45)

This quantity is preserved during the motion:

d

dt

(
1

2
mẋ2 + V (x)

)
= mẋẍ+

∂V

∂x
ẋ = (mẍ− F )ẋ = 0 . (46)

We can write
1

2
mẋ2 + V (x) = E = const. (47)

and this can be considered as an equation for ẋ:

ẋ = ±
√

2(E − V (x))

m
. (48)

We will explain momentarily how we choose the signs. This is an equation of
the form

dx

dt
= f(x) (49)

and can be solved by “separating the variables”, e. i. by writing the equation as

dx

f(x)
= dt (50)

and integrating on both sides. We note that the function f can have zeroes,
and we have to be somewhat careful.

There are several different scenarios for the behavior of the solutions. For ex-
ample, an important situation is as follows.
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In this picture the value of V is plotted against the coordinate x. The total
energy of the motion is E, which means that if at some time t the particle is
in the interval (x1, x2), it can never escape from this interval (if no additional
forces act on it), and keeps moving back and forth between x1 and x2. At those
points V (x1) = V (x2) = E, and therefore if the particle is at either x1 or x2,
its velocity ẋ vanishes. When the particle moves from x1 towards x2, we take
the + sign in (48), when it moves from x2 to x1, we take the minus sign.

In the open interval (x1, x2) equation (48) implies the equation of motion (44),
as one can easily see by simply taking the time derivative.

The situation at the “turning points” x1 and x2 is more subtle. Note that the
function

x(t) ≡ x1 (51)

is a solution of (48), while it is not a solution of Newton’s equation (44). The
“real motion” given by (44) with the initial data x(0) = x1 and ẋ(0) = 0 will
of course start immediately moving towards x2 and we will have x(t) > x1 for
0 < t < T , where T is the time when the “real motion will return to x1. We
expect the motion to be periodically oscillating between x1, x2, and T will be the
period of the oscillation. Therefore (51) represents a “parasitic solution”, which
is unphysical and should not really be considered. Nevertheless the solution is
still interesting, because it demonstrates non-uniqueness of the solutions of (48)
(taken with the + sign) with the initial value x(0) = x1. The non-uniqueness is
possible because the right-hand side of (48) is not smooth at x1. the situation
at x2 is similar.

The “right solution” starting at some time t1 at x1 with ẋ(t1) = 0 can be
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obtained from ∫ x

x1

dx̃√
2(E−V (x̃)

m

=

∫ t

t1

dt̃ = t− t1 , (52)

which works until x(t) reaches x2 for the first time since t1. From this formula
we see that the solution will make the journey from x1 to x2 in time∫ x2

x1

dx√
2(E−V (x))

m

=

∫ x2

x1

dx√
2(V (x1)−V (x))

m

. (53)

Therefore the formula for the period T of the motion is

T = 2

∫ x2

x1

dx√
2(V (x1)−V (x))

m

. (54)

The integrals in these formulae represent various levels of difficulty for various V .
Often they may not be expressible in terms of elementary functions. Note that
the integrant always approaches +∞ as x approaches the endpoints x1, x2, as
the particle is slowing down near those points.

An important special case of V is

V (x) =
1

2
κx2 . (55)

This potential approximates well generic general potentials in a neighborhood
of the point of their minima, see the figure below.
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If V attains minimum at x and we write x = x+ξ, then we can write (assuming
V is smooth)

V (x) = V (x+ ξ) = V (x) + V ′(x)ξ +
1

2
V ′′(x)ξ2 +O(ξ3) . (56)

We know that V ′(x) = 0, as we are at the minimum of V , and we can take
V (x) = 0 without loss of generality. We can then write

V (x+ ξ) =
1

2
κξ2 +O(ξ3), κ = V ′′(x) . (57)

We see that small oscillations around minima of V should be described quite
precisely by potential (55).

The equation of motion given by potential (55) is

mẍ+ κx = 0 . (58)

This is a linear equation with constant coefficients and such equations are un-
derstood very well - we will study them soon. However, it is of interest to apply
the above calculations also to this simple case, even though it can be computed
differently. For example, for the period of the oscillations we obtain

T = 2

∫ x0

−x0

dx√
x20 − x2

. (59)

Letting x = x0s in the last integral, we obtain

T =

√
m

κ
2

∫ 1

−1

ds√
1− s2

= 2π

√
m

κ
, (60)

where we have used ∫ 1

−1

ds√
1− s2

= π . (61)

the integral can be worked out in a number of ways, for example by using the
substitution s = sinφ.8

The following part is optional.

In addition to 1-dimensional pictures such as fig. 4, one can make a plot of the
situation in the (x, v) plane, where v is the velocity. It is customary in mechanics
to use the momentum p = mv = mẋ rather then the velocity.9 Expressed in

8One can also see it from the formula for the area of the circle: we have
∫ a
−a

√
a2 − s2 ds =

1
2
πa2 and taking the derivative of this identity with respect to a at a = 1 we get (61).
9Here we will not discuss the reasons for this. They may not be obvious from what we

have learned so far about the system, but at some point in the study of Mechanics it becomes
clear that p is the more fundamental quantity.
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terms of x, p, the total energy is usually denoted by H = H(x, p) and is called
the Hamiltonian10 of the system. In our situation above the formula is

H(x, p) =
p2

2m
+ V (x) (62)

The (x, p) plane is called the phase space of the system. In the phase space we
can plot the curves

H(x, p) = E (63)

The curve corresponding to the situation on fig. 5 is

The points (x, p) and (x,−p) on the curve tell us that at the point x the particle
can have momentum ±p, which is another way of formulating (48). You can
find similar pictures in the textbook (for slightly different situations) - see figure
5.1 (page 29) and figure 6.2 (page 34).

2. Particle moving along a general curve

In the above considerations we thought of x as a coordinate on a straight line.
This is the setup we usually have in mind when we talk about the Newton
law (44). However, everything works without any change in the formulae (the
only change is in interpretation) if we think about a point mass sliding along
some curve in the n−dimensional space11 and think of x as a length parameter
along the curve. (The means that the distance along the curve between the

10In honor of W. R. Hamilton, 1802 – 1865
11in particular, in the plane or the 3d space

16



points with coordinates x1, x2 is |x1 − x2|, at least when |x2 − x1| is small.)
Note that if the curve twists and turns in the 3d space, one might be tempted
to think three-dimensionally, at least when we think about the force. It turns
out, however, that once we know that the motion is constrained to the curve, we
can completely forget about the 3-dimensionality of the situation, and pretend
that we live in the 1-dimensional space given by the curve. If we take the
coordinate x of the curve as length and express the potential energy V in terms
of this coordinate, we can pretend that we are on the straight line; the laws of
the motion will be the same. This observation is the beginning of the Lagrangian
mechanics, which very elegantly solves the problem of dealing with motion under
constraints. For example, the study rotation of a rigid body about a fixed axis
can be fitted into the above scheme. The important point is that when a rigid
body is tied to a fixed axis, the configuration space of the system is described
by only one parameter – the angle of rotation. This parameter can play the role
of the coordinate x above. Although the situation might at first appear quite
different from a point-mass sliding along a line, the equations remain the same.

You can have a look at Section 1.6 in the book (starting at page 31). There the
above conclusions about the constrained motion (which we only stated but did
not prove) are proved in the context of the pendulum, which can be thought of
as a motion constrained to a circle, in the presence of gravity.

Lecture 6, 2/4

Motion of a planet (Kepler’s problem)
The material covered in this lecture is optional. In the textbook you can find it
in Section 4.6. However, the material from differential equations the discussion
uses in the end concerns only separable equations of the form (49) and therefore
we can discuss it even at this stage. The discussion will use some formulae from
multi-variable calculus, which we recall below. If you have not taken a multi-
variable calculus, you do not need to worry about it at this point, we really only
use the formulae to give a compact appearance to our calculation of the energy
conservation. If you prefer to skip the calculations and accept the conservation
laws discussed below without proof, it is OK at this stage.

We will consider the classical problem of finding the trajectory of a planet in
the gravitational field of the sun. We choose a cartesian coordinate system with
the sun located at the origin, and the motion of the planet in the (x1, x2)-plane,
see fig. 8.
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Strictly speaking, the conclusion that the motion can be constrained to a plane
may not be completely clear a-priori, it comes as a consequence of Newton’s
laws, as we will see.

Some formulae

We will consider functions and curves in the n−dimensional space Rn. You can
think of n = 2 or n = 3 without really losing generality (at least as far as our
discussion goes).

Notation

points in Rn ............ x = (x1, . . . , xn)
curve in Rn (trajectory) ............ x(t) = (x1(t), . . . , xn(t))

euclidean norm in Rn ............ |x| =
√
x21 + · · ·+ x2n

distance to the origin ............ r = r(x) = |x|
scalar product in Rn ............ x · y = xy = x1y1 + · · ·+ xnyn
derivative of a curve x(t) in Rn ............ ẋ = dx

dt = (ẋ1, . . . , ẋn) = (dx1

dt , . . . ,
dxn

dt )

For two curves x = x(t) and y = y(t) we have

d

dt
(x · y) = dx

dt
· y + x · dy

dt
. (64)

In particular,
d

dt
|x|2 = 2x · dx

dt
= 2x · ẋ . (65)

For a smooth function f = f(x) = f(x1, . . . , xn) on Rn and a curve x = x(t)
we have

d

dt
f(x(t)) =

∂f

∂x1
(x)

dx1
dt

+ · · ·+ ∂f

∂xn
(x)

dxn
dt

(66)
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the notation may be shortened in various way, for example, we may just write

d

dt
f(x) =

∑
i

∂f

∂xi
ẋi , (67)

when it is clear from the context that x = x(t) is a curve. Also, the so-called
Einstein summation convention is commonly used: we write, for example,

d

dt
f(x(t)) =

∂f

∂xi
(x)

dxi
dt

, (68)

where it is understood that we sum over the repeated indices, i. e. ∂f
∂xi

(x)dxi

dt

really means
∑n
i=1

∂f
∂xi

(x)dxi

dt . Recalling the definition

r =
√
x21 + · · ·+ x2n , (69)

we have, for x ̸= 0,
∂r

∂xi
=
xi
r
. (70)

Note that x
r represents a unit vector in the direction of x (unless x = 0, when

the expression is not well-defined). Looking at the geometric picture, you can
convince yourself without doing calculations that the gradient of the function
r = |x| (whose graph resembles a funnel) should indeed be given by (70).

Newton’s law of gravity and the gravitational potential

Newton’s law of gravity says that in the situation on fig. 8, the force on the
planet is given by

F (x) = −x
r
f(r) , (71)

with

f(r) =
κmm

r2
. (72)

where m is the mass of the sun, m is the mass of the planet and κ is the
gravitational constant.12 This can be also written as

F (x) = κmm
(
− x

r3

)
. (73)

In general dimension n ≥ 2 the Newton law is

F (x) = κnmm
(
− x

rn

)
, (74)

where κn is the Newton constant in dimension n. (We will not need to speculate
about its precise value, the only fact important for us will be that κn > 0.)

12κ = 6.6739810−11m3kg−1s−2
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A crucial fact for our calculation will be that the force F (x) can be written
as (negative) gradient of a scalar function, the so called gravitational potential,
which we will denote by V . More precisely,

Fi(x) = − ∂V

∂xi
(x), i = 1, . . . n , (75)

where

V (x) = −κmm
|x|

, when n = 3 (76)

and

V (x) = − κnmm

(n− 2)|x|n−2
, n ≥ 3 . (77)

For n = 2 we can take

V (x) = κ2mm log
|x|
r0

(78)

where r0 is the distance where we wish V to vanish. Note that in dimensions
n ≥ 3 the potential V “vanishes at ∞”, i. e. V (x) → 0 as |x| → ∞. Such choice
of potential is not possible for n = 2. The meaning of the potential is as follows:
in dimension n ≥ 3 the value −V (x) represents the (minimal) amount of work
which we will had to do if we wanted to move our planet from x to the spatial
∞, assuming the planet was originally at rest at x. In dimension n = 2 we
always need infinite amount of work to move the planed to ∞, and we can take
replace the infinity in the definition by the circle at distance r0 from the origin.

Instead of (75) we will also write

F (x) = −∇V (x) . (79)

The vector

∇V =

(
∂V

∂x1
, . . . ,

∂V

∂xn

)
(80)

is called the gradient of the function V . In general, not every force field F can
be written in the form (79). It is a special property of the gravitation force that
this is possible.

Newton’s equation of motion

The equation of motion of the planet in the above situation13 is

mẍ = F (x) , (81)

which is a shorthand for

mẍi = Fi(x) , i = 1, . . . n . (82)

13We assume that the sun does not move and no other bodies are present.
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The notation is the same as above:

ẍ =
d2x

dt2
. (83)

Trying to solve (81) without any knowledge of various tricks used in similar
situations would be a very difficult task. In fact, if you write down what the
equation says coordinate-by-coordinate, the problem might look overwhelmingly
difficult. Remarkably, the equations can be integrated and the trajectory can
be calculated explicitly.14

Conservation of energy

The kinetic energy of the motion x(t) is an obvious generalization if the 1s
formula 1

2mẋ
2:

kinetic energy =
1

2
m|ẋ|2 . (84)

The potential energy is

potential energy = V (x). (85)

The total energy is

total energy =
1

2
m|ẋ|2 + V (x) . (86)

Claim: The total energy is a constant of the motion. In other words,

d

dt

(
1

2
m|ẋ|2 + V (x)

)
= 0 . (87)

Proof:

d

dt

(
1

2
m|ẋ|2 + V (x)

)
= mẋ · ẍ+∇V (x) · ẋ = (mẍ+∇V ) · ẋ = 0 , (88)

where we have used (67), (79) and (81).

Polar coordinates

We will assume the motion takes place only on the plane (x1, x2), i. e. the
coordinates x3, . . . xn vanish identically during the motion. This assumption will
be justified later. It turns out it is advantageous to use the polar coordinates
(r, θ) defined by

x1 = r cos θ, x2 = r sin θ , (89)

see fig. 9.

14This was achieved by Newton.
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We have
ẋ1 = ṙ cos θ − r(sin θ) θ̇ , ẋ2 = ṙ sin θ + r(cos θ) θ̇ , (90)

and we see that
1

2
m|ẋ|2 =

1

2
m
(
ṙ2 + r2θ̇2

)
. (91)

Hence

total energy =
1

2
m
(
ṙ2 + r2θ̇2

)
+ V (r) , (92)

where we slightly abuse notation by writing V (r) for V (x) given by (76)– (78)
with |x| = r. We see that the analogue of the 1d formula (48) is

1

2
m(ṙ2 + r2θ̇2) + V (r) = E ≡ cost. . (93)

In the 1d case formula (48) was enough to integrate the equation. In the case
at hand formula (93) is not yet enough, as it contains the term θ̇2. Luckily, this
term can be eliminated by using a second conservation law which we will now
discuss.

Conservation of angular momentum and the second law of Kepler

Kepler’s laws of planetary motion, derived from astronomical observations, were
an important step towards the full theory of Newton. They are as follows:15

1. The orbit of every planet is an ellipse with the Sun at one of the two foci.
2. A line joining a planet and the Sun sweeps out equal areas during equal
intervals of time.

15see http://en.wikipedia.org/wiki/Kepler’s_laws_of_planetary_motion
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3. The square of the orbital period of a planet is directly proportional to the
cube of the semi-major axis of its orbit.

Of interest to us at the moment is the second law. In the polar coordinates, it
can be expressed as

the quantity r2θ̇ is a constant of motion (94)

or, in other words,
d

dt

(
r2θ̇
)
= 0 . (95)

We will now show that this conservation law is a consequence of the equation
of motion (81). We can verify by direct calculation that

r2θ̇ = x1ẋ2 − x2ẋ1 . (96)

Hence

d

dt

(
r2θ̇
)
=

d

dt
(x1ẋ2 − x2ẋ1) = (ẋ1ẋ2 − ẋ2ẋ1) + (x1ẍ2 − x2ẍ1) . (97)

The first bracket on the right-hand side obviously vanishes. Using (81) and (71)
we also see that the second bracket vanishes and the statement is hence proved.16

Let us set
r2θ̇ = L (99)

We can now express θ̇ as

θ̇ =
L

r2
(100)

Substituting into (93), we obtain

1

2
m(ṙ2 +

L2

r2
) + V (r) = E . (101)

Letting

e =
E

m
, µ = κm , (102)

we can write (101) as

1

2
ṙ2 +

1

2

L2

r2
− µ

r
= e . (103)

This is an equation of the form (47) in the last lecture, withm = 1. The problem
has been reduced to the 1d situation. We will analyze the solutions next time.

16The calculation is even more transparent if we use the cross product. Thinking of the
whole situation in 3d, we can write

d

dt
(x× ẋ) = ẋ× ẋ+ x× ẍ = ẋ× ẋ+ x×

F (x)

m
. (98)

As a× a = 0 for any vector a and F (x) is a multiple of x, we see that the expression on the
right-hand side vanishes.
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Lecture 7, 2/6

Motion of a planet (Kepler’s problem), part 2, (continued from the last
lecture)

We will start by analyzing equation (103). Let us set

Ueff(r) =
1

2

L2

r2
− µ

r
. (104)

Equation (103) is exactly of the form (47) and we can draw pictures similar to
fig. 5, with V replaces by Ueff . The graph of Ueff is below17, and we also plot
an energy level e < 0 in the picture.

Denoting 0 < r1 < r2 the two roots of the equation Ueff = e, we see that the
solution of (103) with e < 0 will oscillate between r1 and r2. By calculating the
derivative dUeff

dr we can see that the minimal possible value of Ueff (for a given
L and µ) is attained at

r =
L2

µ
, (105)

and it is equal to

e = −1

2

µ2

r2
. (106)

For a given L, µ, the solution with energy e = e corresponds to the circular
trajectory at distance r.

17and as an exercise you can check that this picture is qualitatively correct
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For e < e < 0 we know that radius of the trajectory r(t) will stay in [r1, r2], so
the planet will be “trapped” between the two circles centered at the origin with
radii r1 and r2, its distance from the sun oscillating between the two radii. At
this stage we do not know yet that the trajectory will be “closed”. Potentially
it could also look as follows

Calculation of the orbit, n = 3.

We will now do the calculation which shows that the orbit is an ellipse (for
e < 0), and hence a closed curve.18 Using (103) we see

dr

dt
= ±

√
2(e− Ueff(r)) (107)

and we also have
dθ

dt
=
L

r2
. (108)

We can now “eliminate t” from these equations by taking their ratio:19

dr

dθ
= ±r

2

L

√
2e+

2µ

r
− L2

r2
. (109)

Setting
1

r
= s (110)

18If one perturbs V a little to a “generic function” close to the original potential −µ
r
, the

trajectories may no longer we closed and the situation on fig. 11 becomes relevant. This is
also the case in dimension n = 2.

19This can be justified rigorously, but even at a heuristic level this step may not be com-
pletely transparent without some thought. We will return to it later when we discuss systems
of equations.
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we can write

ds

dθ
= ∓

√
2e

L2
+

2µ

L2
s− s2 = ∓

√
µ2

L4
+

2e

L2
− (s− µ

L2
)2 . (111)

Letting

σ = s− µ

L2
, A2 =

µ2

L4
+

2e

L2
, (112)

we can write
dσ

dθ
= ∓

√
A2 − σ2 . (113)

Note that A = 0 corresponds to e attaining its minimal value for given µ,L,
given by (106).
Let us take the coordinates so that

r(θ)|θ=0 = r(0) = r2, the maximal distance from the sun . (114)

Let si, σi be the values of these variables corresponding to ri, i = 1, 2. Then

σ1 = −A, σ2 = A . (115)

Moreover, as we increase θ from 0 to some small positive value, we expect that
σ will increase from −A to some value above −A. That means we should take
the + sign in (113), at least until sigma will reach A for the first time. We can
therefore write

dσ√
A2 − σ2

= dθ . (116)

Integrating both sides, we obtain

arcsin(
σ

A
)− arcsin(−1) = θ (117)

and recalling arcsin(−1) = −π
2 , we obtain

σ = A sin(θ − π

2
) = −A cos θ . (118)

Going back to the variable r, we see that

1

r
=

µ

L2
−A cos θ , (119)

which is the same as

r =

L2

µ

1− AL2

µ cos θ
=

L2

µ

1−
√
1 + 2eL2

µ2 cos θ
=

r

1− ε cos θ
, (120)

where r is given by (105) and

ε =

√
1 +

2eL2

µ2
. (121)
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This is an equation of an ellipse, with the origin in one of the foci.20 The
quantity ε turns out to be the eccentricity of the ellipse. (Note that ε = 0
corresponds to e = e.) Note r(π2 ) = r, so that r coincides with the so-called
latus rectum of the ellipse.
Also note that the formula makes sense even for ε ≥ 0, even though our calcu-
lation cannot be taken literally (as (115) is not really well-defined). One can
check directly that (120) gives solution to (109) in this case. For e = 0 the curve
will be a parabola and for e > 0 the curve will be a hyperbola, see fig12.

Stability

In the situation of the elliptical orbit, with L ̸= 0 and ε < 0, if we perturb the
parameters slightly21, the overall situation will not change much. Even with the
new values of L, e, if they are not too far away from the original ones, the orbit
will change only slightly. We can say that the system is stable.22 This can also
bee seen from fig. 10, where a small change in the graph of Ueff will not change
r1, r2 too much.

Coordinates as a function of t and the calculation of the period

Above we expressed r as a function of θ. Equation (107) should give r as a
function of t. If we separate the variables as usual,

20See, for example, http://en.wikipedia.org/wiki/Ellipse.
21Imagine a disturbance due to, say, another celestial body which arrives from deep space,

passing at a relatively large distance, disappearing again, never to return.
22There are many notions of stability and here we will not go into precise definitions, keeping

the discussion at a heuristic level.
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dr√
2(e− Ueff)

= ±dt , (122)

it is possible to obtain t as a function of r (on a given arc of the ellipse between
r2 and r1). However, inverting the relation to obtain r = r(t) cannot be done
in terms of elementary functions. Nevertheless, by integrating (122) between r1
and r2, one can obtain the value of T2 , where T is the period of the orbit (which
is well-defined as the orbit is closed). You can check as an optional exercise that

T =
2πµ√
−2e3

. (123)

What happens in dimensions n ̸= 3?

Looking at the situation for n ̸= 3, we can use formulae (76)– (78). The Kepler
law holds in any dimension, with the same proof. The motion will always
take place in some two-dimensional plane. One way to see it is as follows:
assume the motion takes place in the x1, x2 plane. Then our calculations give
us some trajectories x1(t), x2(t). It is easy to check (and it can be done as an
optional exercise) that the curve (x1(t), x2(t), 0, . . . , 0) is then a solution of the
full n−dimensional problem.

In general, the orbits in dimensions n ̸= 3 behave differently that for n = 3.
Perhaps the biggest surprise is in dimensions n ≥ 4. As we discussed in class, it
is easy to check that in those dimensions there are no stable orbits which stay in
a bounded region. We have of course the circular orbits, but they are unstable;
a generic small perturbation of the parameters L, e will change the orbit so that
the planet will either fall into the sun, or escape to +∞. This can be easily
checked by plotting the potentials Ueff .

In dimension n = 2 the properties of the orbits are closer to the familiar picture
from 3d (and they are stable), but there are still significant differences. First,
the orbits will typically not be closed, so that they look similar to fig. 11.
Second, Ueff(r) → ∞ for r → ∞, and hence we see that every orbit will stay in
a bounded region. No matter how fast the planet/sattelite goes away from the
star, the gravity of the star will eventually turn it back. It can never escape.
There are no analogues of the hyperbolic or parabolic orbits which we can have
in 3d.

Lecture 8, 2/8

Second order linear equations with constant coefficients - the homo-
geneous case

In this lecture we discussed the material in 1.9. The main takeaway from the
lecture is that for equations of the form
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ax′′ + bx′ + cx = 0 (124)

one can find a general solution by the following procedure:23

1. Solve the characteristic equation (obtained from (124) by seeking x in the
form x = eλt)

aλ2 + bλ+ c = 0 (125)

2. If equation (125) has two distinct roots λ1 ̸= λ2 (real or complex), then the
general (complex-valued) solution is

x(t) = C1e
λ1t + C2e

λ2t , (126)

where C1, C2 are arbitrary complex numbers.

3. The case of a double root (λ1 = λ2 = λ) will be discussed in Lecture 9, but
we include the formula here for completeness:

x(t) = C1e
λt + C2te

λt . (127)

Here C1, C2 are again arbitrary complex numbers.

If our task is to find a specific solution of (124), given by, say, the initial condi-
tions

x(0) = x0, x′(0) = x1 , (128)

we choose the constants C1, C2 in the general solution so that the conditions
characterizing the particular solution we seek are satisfied. It can happen that
the equation and the initial data are real, but the roots λ1, λ2 are not real. In
this case the coefficients C1, C2 will have to be complex, so that the end result
can be real.

Lecture 9, 2/11

Second order linear equations with constant coefficients (continued)

We still talked about the homogeneous equation (124) and discussed in some
detail the damped pendulum equation (9.32) in the textbook. We then discussed
the inhomogeneous equation

ẍ+ γẋ+ ω2x = f(t) (129)

for f = eiω
′t, along the lines of 1.10, equation (10.1).

The main points of the lecture: formulae (126) and (127) give the general solu-
tion of (124). To calculate a specific solution, such as the one specified by (128),
we just need to determine C1, C2. This typically leads to a system of two equa-
tions for C1, C2. For example, in case of the conditions (128) the system is

C1 + C2 = x0 ,
λ1C1 + λ2C2 = x1 .

(130)

23Here and below we assume that a, b, c are any numbers (real or complex) with a ̸= 0.
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You can use your favorite method to solve this system. We used Cramer’s rule,24

which is quite practical for 2× 2 systems. We obtained

C1 =
λ2x0 − x1
λ2 − λ1

, C2 =
x1 − λ1x0
λ2 − λ1

. (131)

This gives

x(t) = x0
λ2e

λ1t − λ1e
λ2t

λ2 − λ1
+ x1

eλ2t − eλ1t

λ2 − λ1
. (132)

For λ1 ̸= λ2 the formulae (131) give a 1-1 correspondence between C1, C2 and
x0, x1. This means that (132) is another form of the general solution, where
we now vary x0, x1 instead of C1, C2. The last formula also has a good limit
when λ1, λ2 both approach the same point λ. As an exercise you can do the
calculation we briefly discussed in class: when x is given by (132), we have

lim
λ1,λ2→λ,λ1 ̸=λ2

x(t) = x0(1− λt)eλt + x1te
λt . (133)

This calculation explains Rule 3 from the last lecture.

We next discussed the inhomogeneous equation

ẍ+ γẋ+ ω2x = f(t) (134)

for a special form of f , namely

f(t) = eiω
′t . (135)

This is one of the most important examples in applications. In this case we
proceed by finding a solution in the form

x(t) = Aeiω
′t , (136)

where A is a constant. This leads to

A =
1

−ω′2 + iγω′ + ω2
. (137)

If we consider |A| as a function of ω′, we get the very important resonance curve.
If you search for this term in google images, you will see many pictures of this
curve.

As our equation is linear, once we can find one solution with (135), we can also
find solutions for linear combinations of forces of this form. Alsom, for any force
f(t), once we find one particular solution x̃(t), we know the general solution has
to be of the form

x(t) = x̃(t) + C1e
λ1t + C2e

λ2t , (138)

assuming λ1 ̸= λ2 are the roots of the characteristic polynomial.

24see e. g. http://en.wikipedia.org/wiki/Cramer’s_rule
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Lecture 10, 2/10

2nd order linear equations with constant coefficients and the “varia-
tion of constants”;
types of equations we have learned to solve so far;
change of variables

In this lecture we discussed the material from 1.14, and then briefly the change
of variables from 1.3, pages 23-24.

The main point of the lecture was the following calculation in 1.14.25

We wish to solve
ax′′ + bx′ + cx = f(t) (139)

for a given f(t) and we assume that we know the general solution of the ho-
mogeneous equation. We will write the general solution of the homogeneous
equation in the form

x(t) = C1ϕ1(t) + C2ϕ2(t) , (140)

where ϕ1(t), ϕ2(t) are assumed to be known. For example, if the characteristic
equation (125) has two different roots λ1 ̸= λ2, we can take

ϕ1(t) = eλ1t, ϕ2(t) = eλ2t . (141)

In the expression (140) the coefficient C1 and C2 are constant. To search for
solutions of (139), we will use a trick.26 We will seek the solutions in the form

x(t) = C1(t)ϕ1(t) + C2(t)ϕ2(t) , (142)

where C1(t), C2(t) are now some yet unknown functions of t. The quantities
which were considered as constants in (140) can vary with time in (142), hence
the term “variation of constants”.27 In what follows we will use the shorthand
notation

x = C1ϕ1 + C2ϕ2 , (143)

where we understand that all the quantities may now depend on time. We have

x′ = C ′
1ϕ1 + C ′

2ϕ2 + C1ϕ
′
1 + C1ϕ

′
2 . (144)

Now comes the non-obvious step of the method: impose the condition

C ′
1ϕ1 + C ′

2ϕ2 = 0 . (145)

25See also http://en.wikipedia.org/wiki/Variation_of_constants or use
www.wolframalpha.com to do a search for ax′′ + bx′ + cx = f(t)

26After some more study of the differential equations one starts seeing that it is not really
an artificial “trick”, but a rather natural step. However, this may not be so clear in the
beginning.

27Sometimes the term “variation of parameters” is used instead.
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on the functions C1, C2. The meaning of this step becomes clear in the hindsight.
Because of (145), we have

x′ = C1ϕ
′
1 + C2ϕ

′
2 . (146)

This means that, thanks to (145), the expression for the first derivative is the
same as if C1, C2 were constant. The second derivative of x is

x′′ = C ′
1ϕ

′
1 + C ′

2ϕ
′
2 + C1ϕ

′′
1 + C2ϕ

′′
2 . (147)

Plugging (147), (146) and (143) into equation (139), we obtain

aC ′
1ϕ

′
1 + aC ′

2ϕ
′
2 = f , (148)

as all the other terms drop out due to the fact that ϕ1, ϕ2 satisfy the homoge-
neous equation. We see that we now have a system of two equations for two
unknowns C ′

1, C
′
2:

ϕ1C
′
1 + ϕ2C

′
2 = 0 ,

ϕ′1C
′
1 + ϕ′2C

′
2 = f

a .
(149)

Solving the system for C ′
1, C

′
2 (e. g. by Cramer’s rule), we obtain,

C ′
1 =

− f
a ϕ2

ϕ1ϕ′2 − ϕ′1ϕ2
, C ′

2 =
f
a ϕ1

ϕ1ϕ′2 − ϕ′1ϕ2
. (150)

The function in the denominator is usually called the Wronskian and denoted
by W .28 We can write (149) as

C ′
1 = −fϕ2

aW
, C ′

2 =
fϕ1
aW

. (151)

Therefore

C1 = C0
1 +

∫ t

t1

−f(s)ϕ2(s)
aW (s)

ds , C2 = C0
2 +

∫ t

t1

f(s)ϕ1(s)

aW (s)
ds , (152)

where t1 is some fixed time and C0
1 , C

0
2 are constants (which are really constant).

It turns out that the wronskian cannot vanish (as long as ϕ1, ϕ2 form a basis of
the solutions of the homogeneous equation, which is how we choose them).
In class we used the above method to calculate solutions of

x′′ + ω2x = eiωt . (153)

which can be thought of as an harmonic oscillator forced at exactly the resonant
frequency. In this case everything can be calculated explicitly, and we saw that
the solution is unbounded in t, as one can expect.

28W depends of the choice of the solutions ϕ1, ϕ2, but to a lesser degree that one might
naively expect. In fact W satisfies the equation W ′ + b

a
W = 0, as can be easily checked by

direct calculation.
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The above method also works for equations with variable coefficients, it was not
important that a, b, c were constant.

We summarize which equations we have learned to solve so far:

1. ẋ = a(t)x+ b(t) (linear equation of the first order)

2. ẋ = f(x)a(t) (separable equation)

3. aẍ+ bẋ+ cx = f(t) (second order linear equation, constant coefficients)

There are various classes of equations which can be transformed into these
form by a suitable change of variables. See for example the section on the
homogeneous equations starting on page 23 in the textbook.

Lecture 11, 2/15

Substitutions and changes of variables (optional) ,
Linear equations and linear spaces

Substitutions and changes of variables (optional)29

Let us consider the equation

at2x′′ + btx′ + cx = 0 . (154)

This equation can be transformed into (124) by the change of variables

t = es . (155)

In the beginning of the lecture we discussed issues concerning notation in situ-
ations when we do similar changes of variables. For simplicity we assume that
the unknown function x in (154) is defined for t ∈ I = (0,∞).30 When we say
that we make a substitution t = es (for t ∈ I), we typically mean the following:
instead for searching for the function x(t), we will search for the function

y(s) = x(es) , s ∈ (−∞,∞) . (156)

29This part is a slight extension of comments made in response to a question at the beginning
of class.

30The interval (−∞, 0) can also be considered without any problems. However, in intervals
containing 0, such as (−1, 1) the issues become more subtle, as the leading coefficient at2 of
the equation vanishes at 0. The point 0 is a singular point of the equation. Here we will
not consider here the theory differential equations near such points. Although it a topic of
significant interest, it would lead us in a different direction...
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The function s → es maps (−∞,∞) onto (0,∞) in a one-to-one fashion, the
inverse mapping is t→ log t. We rewrite (154) in terms of y. We have

x(t) = y(log t) , (157)

x′(t) = y′(log t)
d log t

dt
= y′(log t)

1

t
, (158)

x′′(t) = y′′(log t)
1

t2
− y′(log t)

1

t2
. (159)

Substituting into (154), we obtain

ay′′ + (b− a)y′ + cy = 0 , (160)

which is an equation of the form (124).31 We say that the substitution (155)
transforms eqaution (154) into equation (160). The calculation above was based
in the chain rule: if h maps an interval I1 smoothly into an interval J1 , we have
a smooth function f : J1 → R and F = f ◦ h, then F ′(t) = f ′(h(t))h′(t) In the
above example we take h(t) = log t and x = y ◦ h.
In spite of the simplicity of the above calculation, there are some interesting con-
ceptual issues at play here. We presented the situation as if there were two differ-
ent functions here, the function x : (0,∞) → R and the function y : (−∞,∞) →
R. From the “set-theoretic” point of view this is exactly the case: the functions
x and y are quite different objects. Recall that, by the set-theoretical definition,
a function is a subset32 of the set {domain of f} × {range of f}. In this point
of view, it does not matter whether we write x(t) or x(s). It is understood
that the argument of x will always be an element of the domain of x, which
is a part of the definition of x. In particular, the expression x(3.5201), say, is
defined uniquely and the notation for the derivative x′ in unambiguous. Simi-
lar remarks can be applied to y. From the way we defined x, y we know that
they are related, but this may look somewhat secondary from the set-theoretic
point of view, although it is of course the main point of our calculation. The
set-theoretic viewpoint has its advantages, but it also has its downside, which
is mainly in a certain rigidity and lack of flexibility. For example, if we think of
x as some physical quantity depending on, say, time t, we would like to think of
x as the same object, whether we measure t in minutes or in seconds. Even if
we decide to measure the time near t = 0 on the logarithmic scale, it may still
be reasonable to think about x as the same quantity, except it is expressed in a
different way each time.

This brings us to a second and slightly different point of view. We can view x
as a function on some 1-dimensional manifold M of points (representing time,
say). The manifold M can be parametrized in one way by t, but we can choose
to parametrize it in a different way by s, (with t and s being related in a definite
way). When thinking about x in this way, we can think of x either as a function

31The trick of changing (154) into (124) was known already to Euler, who used it for more
general equations of the form a0tmx(m)(t) + a1tm−1x(m−1)(t) + · · ·+ am−1tx′(t) + a0x = 0.

32with some further properties
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of t, or as a function of s. But whether we use s or t for the parametrization of the
domain, we are essentially dealing with the same function x, except we express
it by different means each time.33 This interpretation of dependence between
quantities is presumably closer to the way things were originally viewed. Today
mathematicians use both points of view, but for some reason the first point of
view became dominant in math education.34

When we adopt the second point of view, notation may become somewhat more
ambiguous at times. For example, expression x(3.5201) will no longer be well-
defined unless we specify that 3.5201 refers to the t−variable. We we should
should write x|t=3.5201, or something similar, if it is not clear which variable
is meant. At the same time all of our quantities x, t, s are now considered as
functions on some manifold of points M (which can be parametrized by an
interval) and there is no need to introduce the function y above. What was
y before is just the same function x expressed through the variable s. In this
interpretation the meaning of the expressions such as

dx

dt
,

dx

ds
,

ds

dt
,

dt

ds
(161)

is clear: If we wish to express these quantities at some point P ∈ M we take
points Q→ P, Q ̸= P and, at the point in question P , we have

dx

dt
=
dx

dt
(P ) = lim

Q→P,Q ̸=P

x(Q)− x(P )

t(Q)− t(P )
, (162)

dx

ds
=
dx

ds
(P ) = lim

Q→P,Q ̸=P

x(Q)− x(P )

s(Q)− s(P )
, (163)

ds

dt
=
ds

dt
(P ) = lim

Q→P,Q ̸=P

s(Q)− s(P )

t(Q)− t(P )
, (164)

dt

ds
=
dt

ds
(P ) = lim

Q→P,Q ̸=P

t(Q)− t(P )

s(Q)− s(P )
. (165)

Usually we do not specify the “argument” P , we just write the expression (161),
with the understanding that they are considered as functions on the manifoldM .
They can be expressed by means of the various parameters on M , and different
parameters may be useful in different situations. So all these expressions can
be considered as functions of t, functions of s, and – on intervals where x is a
monotone function of t – functions of x.

With this formalism we can for example write

dt

ds
=

1
ds
dt

, (166)

33This is clearly related to some notion of equivalence between the different functions in the
set-theoretical definition, but we will not try to analyze this in detail, in the hope that the
heuristic description above will be sufficient.

34Physicist typically use the second point of view. For example, it would be practically
impossible to study Thermodynamics while using the first point of view.
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which one can easily recognize as the usual theorem for the derivative of the
inverse function: if f maps and interval I into the interval J in a one-to-one
way, is smooth and f ′ ̸= 0 in I, then the inverse function h = f−1 is smooth
and satisfies

h′(f(t)) =
1

f ′(t)
. (167)

This is exactly (166), with f(t) = s(t).

If we wish to do the transformation between (154) and (124) from this point of
view, we can write

dx

dt
=
dx

ds

ds

dt
, (168)

and then express ds
dt as a function of s, either by a direct calculation or by

ds

dt
=

1
dt
ds

=
1
d es

ds

= e−s . (169)

Alternatively, we can write

dx

dt
=

dx

des
=

dx

es ds
= e−s

dx

ds
. (170)

If we now wish to calculate d2

dt2 we can write

d2x

dt2
= e−s

d

ds
[(e−s

d

ds
)x] , (171)

and one sees that (154) is transformed into

a
d2x

ds2
+ (b− a)

dx

ds
+ cx = 0 , (172)

as before (in a slightly different notation).

In our simple example of equation (154) it does not really matter which way we
think about the calculation, it should be easy with any choice. In more compli-
cated situations the notation with the differentials such as (161) is usually more
efficient. One such example is the optional Problem 8 in Homework Assignment
2.

Note that the integration of
dx

dt
= f(x) (173)

on intervals where f does not vanish is particularly transparent in this notation:
if I is one interval where f does not vanish, then the function x can obviously
be inverted and the equation is equivalent to

dt

dx
=

1

f(x)
, (174)
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which immediately shows us that the derivative of the inverse function t = t(x)
is 1

f(x) .

How can we guess the right substitution? For this it is sometimes good to try
to write the equation in terms of some simple operations. For example, looking
at (154), we see that we can write the whole equation in terms of the operator
t ddt . We note that (

t
d

dt

)2

= t2
d2

dt2
+ t

d

dt
, (175)

and hence (154) can be written as

a

(
t
d

dt

)2

x+ (b− a)

(
t
d

dt

)
x+ cx = 0 . (176)

It is now clear that we should find a substitution t = t(s) such that

t
d

dt
=

d

ds
, (177)

which is the same as
ds

dt
=

1

t
, (178)

which of course leads to (155).

There are of course much more complicated examples of successful changes of
variables than our examples above. In general, finding a good change of variables
is often a key to integrating an equation, and there are no general recipes. On
the other hand, extensive knowledge has been accumulated over the 300+ years
during which these methods have been studied.35

Linear equations and linear spaces

In the main part of the lecture we discussed the set of solution of a linear (ordi-
nary) differential equation from the point of view of Linear Algebra, discussed
in Chapter 2 in the textbook.
Let us consider the differential equation

a0x
(m) + a1x

(m−1) + . . . am−1x
′ + amx = 0 , (179)

where x = x(t) and a0 ̸= 0. We use the notation

x(k) =
dkx

dtk
. (180)

We will assume that the coefficients ak are independent of t, although many
important facts below remain valid also for variable coefficients.

35A book of Erich KamkeDifferentialgleichungen: Gewöhnliche Differentialgleichungen lists
a number of equations and substitutions. For methods concerning the equations of Classical
Mechanics, one can consult the book of V.I.Arnold Classical Mechanics.
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We will consider the equation (179) on some interval I = (tmin, tmax), where we
allow tmin = −∞ or tmax = +∞. We will consider complex-valued solutions. By
definition, a function x : I → C is a solution of (179) if it is a smooth function
which satisfies the equation.36 The set of all solutions of (179) will be denoted
by X.
The basic fact about X is as follows:

Theorem 1. X is a finite-dimensional linear space.

We will recall the notions used in the theorem. First, a linear space over C
(complex numbers) is a set where we can add two elements and multiply each
element by a complex number and, these operations satisfy some natural prop-
erties, see 2.1 in the textbook. In our situation when X is a subset of functions,
these operation are the expected ones: addition of function and multiplication
of a function by a scalar.

The fact that X is a linear space is clear: if x1, x2 ∈ X and c1, c2 ∈ C, it is
obvious that c1x1 + c2x2 ∈ X.

To recall what finite-dimensional means in the theorem we first recall the fol-
lowing notions:

A set B ⊂ X is said to span X (as a linear space) if each x ∈ X can be written
as c1b1 + c2b2 + . . . ckbk for some b1, . . . bk ∈ B. If there is a finite set B ⊂ X
which spans X, we say that X is finite-dimensional.

Assume X is finite dimensional and B is a finite set which spans it. We say that
B is a basis of X, if no proper subset of B spans X.
We now recall the following important result from the theory of linear spaces.

Theorem 2. Every finite-dimensional linear space has a basis. Moreover, any
two bases have the same number of elements.

The number of elements in a basis of a finite-dimensional linear space is called
the dimension of the space. The dimension is the most important parameter
associated with a finite-dimensional linear space.

At this point we will not go into the proofs of the above theorems. However, we
will give some arguments showing that they should be true.

First, it is important to realize that the space of all smooth functions on the
interval I is a linear space, but it is not finite-dimensional. No finite set of
smooth functions can span all other smooth functions by linear combinations.
As an optional exercise, you can try to prove this fact.

36Instead of using smooth functions, we could also work with, say, functions which are
m−times continuously differentiable. This only makes a difference if the coefficients ak depend
on t and are not smooth functions of t.
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We now indicate why X should be finite dimensional (and, in fact, of dimen-
sion m). Let t0 ∈ I. We note that any solution x ∈ X with the property that
x(t0) = 0, x′(t0), . . . , x

(m−1)(t0) = 0 should vanish identically, i. e. x(t) = 0
for each t ∈ I. An argument supporting this although not quite a proof) is
as follows: first, the equation implies that x(m)(t0) = 0. Taking the derivative
of the equation and expressing x(m+1), we see that x(m+1)(t0) = 0. This can
be repeated as many times as necessary, and we see that x(n)(t0) = 0 for each
n = 0, 1, 2, . . . . In other words, the Taylor series of x at t0 vanishes. In general,
if a Taylor series of a function vanishes at a point, the function may not vanish,
but for the solutions of (179) this is indeed the case. While the argument via the
Taylor serious can be made fully rigorous under some natural assumptions, there
is a simpler and also more natural argument based on the so-called Gronwall
inequality.

Assume now we can construct solutions ϕ1, ϕ2, . . . ϕm of our equation such that
ϕ1(t0), ϕ2(t0) , . . . ϕm(t0)
ϕ′1(t0), ϕ′2(t0) , . . . ϕ′m(t0)
ϕ′′1(t0), ϕ′′2(t0) , . . . ϕ′′m(t0)
. . . . . . . . . . . .

ϕ
(m−1)
1 (t0), ϕ

(m−1)
2 (t0) , . . . ϕ

(m−1)
m (t0)

 =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 .

(181)
Given a solution x ∈ X, we can define

x̃ = x(t0)ϕ1 + x′(t0)ϕ2 + . . . x(m−1)(t0)ϕ
(m−1) . (182)

By definition, the derivatives of the function x̃−x of order 0, 1, . . . (m−1) vanish
at t0 and by the uniqueness result above, we see that we have x̃ = x. We see
that the functions ϕ1, . . . , ϕm form a basis of X and hence X should be a finite-
dimensional linear space of dimension m. Of course, we have not proved that
ϕ1, . . . , ϕm exist, and hence the argument is incomplete. On the other hand, we
tied the finite-dimensionality of X to some plausible statements about solutions
of differential equations.

Lecture 12, 2/18

The space of solutions of a linear equation (continued)

We use the same notation as last time: X denotes the space of all solution of
equation (179). As last time, let ϕ1, . . . , ϕm be a basis of X.

The linear structure ofX enables us to solve various problems concerning the so-
lutions (assuming the basis is known). Let us for example consider the following
question: for given

tmin ≤ t1 < t2 · · · < tm ≤ tmax (183)
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can we prescribe values of a solution x of (179)? In other words, given β1, . . . , βm ∈
C, can we find x ∈ X with

x(tj) = βj , j = 1, . . . ,m. (184)

This is easily addressed using the linear structure. Writing

x = c1ϕ1 + · · ·+ cmϕm (185)

we see that the equations (184) reduce to the linear system of equations

ϕ1(t1)c1 + · · ·+ ϕm(t1)cm = β1
. . . . . . . . .

ϕ1(tm)c1 + · · ·+ ϕm(tm)cm = βm

(186)

which we can write as
Ac = β , (187)

where A is the matrix
(ai,j) = (ϕj(ti)) . (188)

The equation (187) will be (uniquely) solvable for each vector β if and only if
the matrix A is non-singular, i. e. detA ̸= 0, see Proposition 5.6 (p. 102) in
the textbook. As an example, we considered this problem for the second-order
equation (154) in the case of two different roots λ1 ̸= λ2 of the characteristic
polynomial. The functions eλ1t, eλ2t then form a basis and the matrix A will be(

eλ1t1 eλ2t1

eλ1t2 eλ2t2

)
(189)

and the condition detA ̸= 0 is easily seen to be equivalent to

λ1t1 + λ2t2 − λ1t2 − λ2t1 = 2πki , k ∈ Z . (190)

which is the same as

(λ2 − λ1)(t2 − t1) = 2πki , k ∈ Z . (191)

We next discussed some natural linear transformations. If we have two bases
ϕ1, . . . , ϕm and ϕ̃1, . . . , ϕ̃m, we can write

ϕj = p1j ϕ̃1 + · · ·+ pmj ϕ̃m , j = 1, . . . ,m . (192)

The matrix P = (pij) is called the transition matrix between the two bases. And
it gives a transformation between the coefficients cj and c̃j in the expressions

x = c1ϕ1 + . . . cmϕm = c̃1ϕ̃1 + · · ·+ c̃mϕ̃m . (193)

Substituting (192) into (193), we see that

c̃ = Pc . (194)
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If P is the transition matrix between ϕ1, . . . , ϕm and ϕ̃1, . . . , ϕ̃m and Q is the
transition matrix between ϕ̃1, . . . , ϕ̃m and ϕ1, . . . , ϕm, then the transition matrix
between ϕ1, . . . , ϕm and ϕ1, . . . , ϕm is QP with the usual matrix multiplication,
see 2.2, pp. 84-85 in the textbook.

For equation (154) with constant coefficients we have natural transformations of
the space of solutions X defined by the shifts x(t) → x(t+ s). Here we assume
that the interval on which the equation is considered is the whole line R. Note
that if a function t→ x(t) belongs to X, then its shift t→ x(t+ s) also belongs
to X. Hence the shift defines a linear transformation A(s) : X → X. Expressed
in a given basis, A(s) can be identified with a matrix. As an exercise, you can
check that the following identity is satisfied:

A(s1 + s2) = A(s1)A(s2) , s1, s2 ∈ R . (195)

Thus the space X comes with an additional structure: the set of linear trans-
formations (identified with matrices) satisfying (195). Note that if the space
X contains non-constant functions, these transformations will be non-trivial,
except perhaps for some special values of s.

Lecture 13, 2/19

Matrices, determinants, eigenvalues, eigenvectors

We discussed some basic results about n×n matrices and determinants. In the
textbook the determinants are introduced in Section 2.5. The main points of
the lecture:

Theorem 3. Let A = (aij)
n
i,j=1 be an n × n matric (real or complex). Then

the following statements are equivalent:
(i) For each vector b the equation

Ax = b (196)

(where x is an vector) has a solution.

(ii) The equation
Ax = 0 (197)

has only the trivial solution x = 0.

(iii) For each vector b the equation (196) has a unique solution.

(iv)
detA ̸= 0 . (198)
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Determinant as volume

For real matrices A the determinant has the following geometric interpretation.
Let us write

A = (a1, a2, . . . , an) , (199)

where a1, a2, . . . , an are column vectors. Consider the set

Oa1,a2,...,an =

{
n∑
i=1

tiai , (t1, t2, . . . , tn) ∈ [0, 1]n

}
. (200)

Then
n−dimensional volume of Oa1,a2,...,an = ± detA . (201)

See fig. 13.

The sign is chosen according to the following rule: first, if the vectors a1, . . . , an
do not form a basis of Rn, then detA = 0 and there is no problem with the
choice of the sign. If a1, . . . , an do form a basis, then we take the + sign, if the
basis has the same orientation as the canonical basis e1, . . . , en. This means that
for s ∈ [0, 1] we can find a continuous family of bases a1(s), . . . , an(s) such that
for s = 0 we have the canonical basis and for s = 1 we have our given basis. It
is the same as saying that the matrix A can be connected to the identity matrix
within the set set of matrices with non-zero determinant. If, on the other hand,
the basis a1, . . . , an can be continuously deformed (within the set of bases) to
the basis −e1, e2, . . . , en, we take the − sign. It can be shown that one of the
possibilities will always occur and the two possibilities are mutually exclusive.
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As an optional exercise, you can convince yourself at least in dimensions n = 2
and n = 3 that (201) is true. 37

Cramer’s rule

If detA ̸= 0, the solution of (196) is given by

xi =
detA(i,b)

detA
, (204)

where the matrix A(i,b) is obtained from A by replacing the i−th column by b.
In other words, if we write

A = (a1, . . . , an) , (205)

then
A(i,b) = (a1, . . . , ai−1, b, ai+1, . . . , an) . (206)

You can derive (204) as an optional exercise. 38

37 The proof can be done in many ways. First, it is easy to see that the formula is true if
the matrix A = (a1, . . . , an) is triangular. Next, one can check that the rules by which A can
be changed without affecting detA do not affect the volumes either. Finally one can use the
fact that A can be brought to a diagonal form by using these rules.
Alternatively, show that det(a1, . . . , an) is independent of the choice of the positively-oriented
orthogonal coordinates in which the vectors ai are expressed. One way this can be done is
as follows: given a1, . . . , an and an orthogonal matrix Q which can be connected to the unit
matrix I in the orthogonal matrices, we have

det(a1, . . . , an) = det(Qa1, . . . , Qan) . (202)

This follows from det(QA) = (detQ)(detA) and detQ = 1. The last identity follows from
taking det of QQt = I (which gives (detQ)2 = 1) and using that Q can be connected to I in
the orthogonal matrices. Once (202) is established, then (201) becomes clear, as we can choose
the basis in which a1, . . . , an are expresses in such a way that the matrix A = (a1, . . . , an) is
triangular.
Formula (202) can also be expressed in the following way. For 1 ≤ i1, . . . , in ≤ n we define
εi1i2,...in to be 0 if ik = il for some k ̸= l, 1 if i1, . . . , in is an even permutation of 1, 2, . . . , n,
and −1 if i1, . . . , in is an odd permutation of 1, 2, . . . , n. The important fact, closely related
to (202), now is that εi1i2...in is a pseudo-tensor, which means that it is invariant up to a
sign under the orthogonal change of coordinates. In other words, if Q = (qij) is an orthogonal
matrix, then

n∑
j1,...,jn=1

εj1j2...jnqj1i1qj1i2 . . . qjnin = ±εi1i2...in , (203)

where the sign depends on whether the transformation Q is orientation-preserving or
orientation-reversing.

The main point here is more general: formulae which have some geometric meaning must
be invariant under changes of coordinates. Formula (202) or formula (203) expresses exactly
that for the determinant. In fact, the determinant is invariant under a bigger group of trans-
formations than orthogonal transformations, but for the purpose of seeing (201) without much
calculation, the invariance under the orthogonal group in the sense above is sufficient.

38Hint: re-write the equation Ax = b as x1a1 + x2a2 + . . . , xnan = b and show that

det(a1, . . . , ai−1, x1a1 + · · ·+ xnan, ai+1, . . . , an) = xi detA (207)

by using det(ã1, . . . , ãn) = 0 whenever any two of the vectors ãi, ãj with i ̸= j coincide.
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Eigenvalues and eigenvectors

We discussed the definitions in Section 2.6 of the textbook.

Lecture 14, 2/22

Eigenvalues and eigenvectors (continued)

Let A be an n× n matrix over the real or complex numbers. Recall that λ ∈ C
is an eigenvalue of A if there exists a non-zero vector x (which can be complex)
such that

Ax = λx . (208)

By Theorem 3 we see that λ ∈ C is an eigenvalue if and only if

det(λI −A) = 0 , (209)

where I is the identity matrix (characterized by Ix = x for each x). The
polynomial

p(λ) = pA(λ) = det(λI −A) (210)

is called the characteristic polynomial of the matrix A. By the fundamental
theorem of algebra, we can write

p(λ) = (λ− λ1)(λ− λ2) . . . (λ− λn) , (211)

where λ1, . . . , λn are the roots of the polynomial p. In general, some of the λj
can coincide (so we can have for example λ1 = λ2). The number of occurrences
of a given root λj among the roots λ1, . . . , λn is called the (algebraic)multiplicity
of the root λj . Renumbering the roots, if necessary, we can also write

p(λ) = (λ− λ1)
k1(λ− λ2)

k2 . . . (λ− λr)
kr , (212)

where now λi ̸= λj for i ̸= j and kj is the multiplicity of λj . Clearly k1 + k2 +
· · ·+ kr = n.

Even if the matrix is real, the roots may be complex, in general.39

We have the following important fact (see Proposition 6.2, p. 108 in the text-
book):

Lemma 1. Let A be an n × n matrix and let λ1, . . . , λr be any subset of its
eigenvalues such that λi ̸= λj for i ̸= j, 1 ≤ i, j ≤ r. Let x(j) be an eigenvector
corresponding to λj.

40 Then the vectors x(1), . . . , x(r) are linearly independent.
In particular, when r = n the vectors form a basis of Cn.

39There is still one conclusion one can make about the roots related to A being real: if A
is real and λ is an eigenvalue, then its complex conjugate λ is also an eigenvalue. In other
words, for real matrices the complex eigenvalues come pairs λ, λ. The proof of this statement
is left to the reader as an easy exercise.

40We recall that, by definition, an eigenvector must be ̸= 0.
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The proof is not hard, you can try to do it as an exercise, or you can check the
proof in the textbook (p. 108).

The important point now is that for real or complex n×n matrices the situation
that the characteristic polynomial has n different roots generically. We will now
explain this notion.

Let us start by a simple example. A quadratic equation

aλ2 + bλ+ c = 0 , a ̸= 0 (213)

has roots

λ1,2 =
−b±

√
b2 − 4ac

2a
. (214)

We have λ1 ̸= λ2 unless b2 − 4ac = 0. When b2 − 4ac = 0, equation (213) has
only one root. Its multiplicity will be 2. We see the coefficients a, b, c of (213)
have to satisfy a non-trivial condition

b2 − 4ac = 0 (215)

to have λ1 = λ2. In the three-parameter space a, b, c the condition (215) repre-
sents a surface. If we choose a, b, c “at random” they will typically not lie on this
surface. From this point of view, the “event” that the polynomial (213) has only
one root (of multiplicity two) is “exceptional”, and very unlikely. If, for a given
set of parameters, some event happens only when the coefficients satisfy some
fixed (algebraic) equation, we say that the complement of that event happens
generically. In the example above, we would say that a quadratic polynomial
with non-vanishing leading term generically has two different roots. That does
not mean that the polynomial always has two different roots. It means that the
polynomial fails to have two different roots only for the set of the parameters
for which some non-trivial (algebraic) relation is satisfied. If we choose the pa-
rameters (a, b, c) “at random” from some open set in R3 (or C3), relation (215)
will almost never be satisfied, which means that under a random choice of the
parameters the polynomial will almost surely have two different roots. This may
not be the case when we choose our parameters randomly from some finite set
of parameters. For example, if we specify that we will be choosing parameters
a, b, c in (213) so that they are integers with values between −10 and 10 and
a ̸= 0, a “random choice” from this finite set will give with non-zero probability
polynomials with a single root of multiplicity two.

The situation with higher-order polynomials is similar. For polynomials of order
n, which we will write as

p(λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an , (216)

there is a non-trivial polynomial D(a1, . . . , an) in the coefficients (called the
discriminant) 41 such that the equation

p(λ) = 0 (217)

41see, for example, http://en.wikipedia.org/wiki/Discriminant
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has n different roots when D(a1, . . . , an) ̸= 0. This means that the coefficients
a1, . . . , an have to fall on some particular “surface” in the space of the coefficients
a1, . . . , an for the polynomial to have multiple roots. If we choose the polynomial
“at random” from some open set of the coefficients, then almost surely the
discriminant D(a1, . . . , an) will not vanish, and the polynomial will have exactly
n different roots. In other words, the situation when we have n different roots
is generic.

When we are dealing with a characteristic polynomial of a matrix A = (aij)
n
i,j=1

the coefficients a1, . . . , an of the characteristic polynomial pA(λ) depend in a
polynomial way on the coefficients aij of the matrix. Therefore the condition
D(a1, . . . , an) = 0 can be written in terms of the coefficients aij as

D(a11, a12, . . . , ann) = 0 , (218)

where D is a polynomial of the n2 coefficients aij . We emphasize that the
polynomial D may be quite complicated and we will not try to determine it
explicitly. For the purposes of our discussion here it is enough to know that
the polynomial is non-trivial, as we only wish to illustrate that the case when
all the eigenvalues are different is typical (generic), while the other case can
be considered as exceptional, al least when we choose matrices from an open
subset of all matrices.42 The matrices for which the characteristic polynomial
does not have exactly n different roots are characterized by (218). We see that
unless (218) is satisfied, the matrix A will have exactly n different eigenvalues.
By Lemma 1, in this case the corresponding eigenvectors x(1), . . . , x(n) will form
a basis of Cn. Note that the linear mapping given by A in the canonical basis,
namely, 

x1
·
·
·
xn

→


a11x1 + · · ·+ a1nxn

·
·
·

an1x1 + · · ·+ annxn

 (219)

will become very simple in the basis x(1), . . . , x(n). Namely, we have

Ax(j) = λjx
(j) , j = 1, 2, . . . , n . (220)

Hence the matrix of the map (219) in the basis x(1), . . . , x(n) will be diagonal:

Λ = diag(λ1, . . . , λn) =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
0 0 λ3 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . λn

 . (221)

42Note that if the set of the matrices from which our matrix is chosen is not open in the set
of all matrices, it may be a subset of the set given by (218).
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We note that the transition matrix P between the basis x(1), . . . , x(n) and the
canonical basis (see lecture 12, (192)) is given by the matrix

P =
(
x(1), . . . , x(n)

)
, (222)

where we write the eigenvectors x(j) as column vectors. Therefore, from the
general facts about transition matrices, the matrix in the basis x(1), . . . , x(n) of
the map expressed in the canonical basis as x→ Ax is

P−1AP . (223)

At the same time, we know from (220) that this matrix must be equal to Λ. We
conclude that

Λ = P−1AP . (224)

This is the same as
Pλ = AP , (225)

which is obvious from the fact that the j−th column of P is x(j). Finally, we
can also write (225) as

A = PΛP−1 . (226)

The important conclusion from the above discussion is that the transforma-
tion (224) from a general matrix A to a diagonal matrix is generically possible.
The matrices for which it may not be possible must satisfy (218) and hence form
a “thin” set in the space of all matrices.43 The situation in this “thin” set is
addressed by the theory of Jordan canonical forms, which we will discuss later.

Let us now illustrate the usefulness of the above notion by a simple example.

Example

Consider two locations, let us call them (1) and (2). We assume that a certain
number of people live in these two locations and each week some of them relocate
between the two locations according the the following rules:

(i) A person in (1) will relocate to (2) with probability p ∈ (0, 1), and stay at (1)
with probability 1− p.

(ii) A person in (2) will relocate to (1) with probability q, and will stay at (2)
with probability 1− q.

We assume
0 < p, q < 1 . (227)

How many people will be in each location after many weeks?

43Even if (218) is satisfied, it may still be possible to diagonalize the matrix, but “generi-
cally” in that set it is not possible. Note that here we restricted the notion of “genericity” to
the set (218), which would strictly speaking need a precise definition, which we omit at this
point.
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To avoid a discussion of notions from the probability theory which are not very
relevant to what we wish to illustrate here, let us assume for simplicity that the
number of people at each location does not have to be a natural number and
that the relocation is governed by the following deterministic rule: each week
100p percent of the people in (1) move to (2) and the rest stays in (1) and,
similarly, 100q percent of the people in (2) move to (1) and the rest stays at (2).

Let us write down what happens during one round of relocation. If x1, x2 give
the number of people at (1) and (2) respectively before a relocation, the numbers
xnew1 , xnew2 after a relocation are given by

xnew1 = (1− p)x1 + qx2, xnew2 = px1 + (1− q)x2 . (228)

Introducing the matrix

M =

(
1− p q
p 1− q

)
(229)

and writing

x =

(
x1
x2

)
(230)

we see that each week the vector x changes from x to Mx. Therefore the
sequence

x, Mx , M2x , M3x , . . . , Mkx , . . . (231)

describes everything we need to know. Note that x1+x2 should remain constant
in our model, and we see from (228) that this is indeed the case.

The powers of the matrix M are not easily calculated from the form (229). On
the other hand, we note that the powers Ak of the matrix A in the form (226) are
easily calculated: ifA = PΛP−1, thenAk = PΛkP−1, and Λk = diag(λk1 , . . . , λ

k
n) .

Let us find the eigenvalues and eigenvectors ofM . The characteristic polynomial
is

det(M − λI) = det

(
1− p− λ q

p 1− q − λ

)
= λ2 − (2− p− q)λ+ 1− p− q .

(232)
The roots are

λ1 = 1, λ2 = 1− p− q . (233)

Note that
λ2 ∈ (−1, 1) . (234)

The corresponding eigenvectors (determined only up to a scalar multiple) can
be taken for example as

x(1) =

(
q
p

)
, x(2) =

(
1

−1

)
. (235)

Note that the eigenvector x(2) forms a basis of the 1-d space {x, x1 + x2 = 0}
which is preserved by the matrix M , and this can be used to identify it without
calculation.
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Let us write
x = ξ1x

(1) + ξ2x
(2) , (236)

so that ξj are coordinates of x in the basis x(1), x(2). In these coordinates the
transformation M is (

ξ1
ξ2

)
→
(
λ1ξ1
λ2ξ2

)
=

(
ξ1
λ2ξ2

)
. (237)

We see that the coordinate ξ1 is preserved. This reflects the preservation of
x1 + x2. Indeed, the transition matrix from the canonical basis to the basis
x(1), x(2) is

P =

(
q 1
p −1

)
. (238)

The transition matrix between the basis x(1), x(2) and the canonical basis is

P−1 =
1

p+ q

(
1 1
p −q

)
. (239)

The relation between the coordinates x and ξ is

x = Pξ, ξ = P−1x . (240)

In particular

ξ1 =
x1 + x2
p+ q

. (241)

The sequence (231) corresponds in the new variables to(
ξ1
ξ2

)
,

(
ξ1

λ2ξ2

)
,

(
ξ1

λ22ξ2

)
, . . . ,

(
ξ1

λk2ξ2

)
, . . . (242)

As we have |λ2| < 1 we see that the sequence converges to(
ξ1
0

)
. (243)

Going back to the variables x, we see that the sequence (231) will converge to
the vector ( q

p+q (x1 + x2)
p
p+q (x1 + x2)

)
. (244)

This vector represents a “dynamical equilibrium” of the system: each week the
same number of people depart from (1) to (2) as is the number of people who
arrive from (2) to (1), so that the number of people at each location remains
the same.

We see that switching to the basis consisting of the eigenvectors makes the
situation completely transparent in this case. We will see that often the same
is true about differential equations.
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Remark (optional)

The above example can be generalized to the situation with n locations, which
is related to the so-called Perron-Frobenius Theorem.44 The matrix M then
becomes

M =


p11 p12 . . . p1n
p21 p22 . . . p2n
. . . . . . . . . . . .
pn1 pn2 . . . pnn

 , (245)

which, despite the use of pij in the notation, should not be confused with some
transition matrix P between bases. The numbers pij are all strictly positive45

and denote the probability that a person will move from location j to location
i. Note that if the system is “closed” (i. e. the people can move only between
the n locations), then

p1i + p2i + · · ·+ pni = 1 . (246)

With these assumptions it can be shown that for a vector x with non-negative
coordinates, the sequence

x,Mx,M2x, . . . ,Mkx, . . . (247)

converges to a vector x satisfying

Mx = x , (248)

which represents a (unique) “dynamical equilibrium”. Clearly x is an eigen-
vector, the corresponding eigenvalue being λ = 1. All the other eigenvalues λj
(which can be complex) satisfy |λj | < 1, so that the situation is quite similar to
the 2d case calculated above. The proofs are now more complicated, though.

Lecture 15, 2/25

The spectrum of a real symmetric matrix

By definition, the spectrum of a matrix (real or complex) is the set of all its
eigenvalues.

In this lecture we discussed real symmetric matrices. Recall that a real n × n
matrix A = (aij)

n
i,j=1 is symmetric if

aij = aji , 1 ≤ i, j ≤ n . (249)

To each symmetric matrix A there corresponds a quadratic form in Rn given
by

x→ 1

2

∑
i,j

aijxjxi =
1

2
(Ax) · x , (250)

44See e. g. http://en.wikipedia.org/wiki/PerronFrobenius_theorem
45In fact, the conclusions below are true to all elements of some power Mk of M are strictly

positive.
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where x · y denotes the scalar product
∑n
i=1 xiyi. Vice versa, each quadratic

form on Rn arises in this way (and determines a symmetric matrix). The main
point of the lecture was the proof of the following important theorem.

Theorem 4. Let A be a real symmetric matrix. Then all its eigenvalues are
real and there is an orthogonal basis of Rn in which A becomes diagonal. In
other words, there are real numbers λ1, . . . , λn (not necessarily all different from
each other) and an orthogonal matrix Q such that

A = QΛQ−1 = QΛQt , (251)

where Qt denotes the transposed matrix to Q and

Λ = diag (λ1, . . . , λn) . (252)

A proof of the theorem can be found in the textbook, Section 2.11 (p. 130).

Later we will discuss also the version of this theorem for Hermitian matrices.

Lecture 16, 2/27

Real symmetric matrices (continued)

1. Ellipses, Ellipsoids, Hyperbolae, Hyperboloids... (optional)

If λ1, . . . , λn > 0, then the equation

λ1x
2
1 + · · ·+ λnx

2
n = c > 0 (253)

describes an ellipsoid with axes parallel to the coordinate axes, of length 1√
λj

, j =

1, 2, . . . ,m. In particular, in dimension n = 2 it is an ellipse. If A is a symmetric
matrix which is positive definite, i. e. (Ax) · x > 0 for x ̸= 0, the equation

(Ax) · x = c > 0 (254)

also describes an ellipsoid, but in general its axes are not parallel to the coor-
dinate axes. The problem of finding the axes of the ellipsoid is practically the
same as the problem of finding the eigenvalues/eigenvectors of A. There are
many ways to see this. Let us consider for example the following. LetM denote
the surface (254). If we suspect that M should be an ellipsoid, it is natural to
try to find its longest/shortes axis by maximizing/minimizing the function

x21 + · · ·+ x2n (255)

over the surface M . This is a typical constraint minimization problem, which
can be solved by the method of Lagrange multipliers. Let

f(x) =
1

2
(Ax) · x , g(x) = x21 + · · ·+ x2n . (256)
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If f attains a maximum/minimum on the surface {g(x) = c} at some point x,
then, recalling the Lagrange multiplier method, we have

∇f(x) = λ∇g(x) (257)

for some λ ∈ R, where we denote by ∇f the gradient
(
∂f
∂x1

, . . . , ∂f∂xn

)
. A

straightforward calculation gives

∇f(x) = Ax, ∇g(x) = x (258)

and we see that (257) is equivalent to

Ax =
1

λ
x . (259)

We see that the eigenvectors correspond to the critical values of the function
g on the surface (254). One can also reverse the role of the function f and g
and consider the extrema of f on the unit sphere {x, |x|2 = 1}, which leads to
equation

Ax = λx . (260)

If the matrix A is non-singular indefinite (the form (Ax)x attains both positive
and negative values), we obtain hyperboloids, rather than ellipsoids.

Example - interacting oscillators (see also Section 3.6 in the textbook)

Assume that we have a mass m on a spring of stiffness κ. For simplicity we will
ignore gravity for the moment, assuming the the only (non-inertial) force on the
particle is due to the spring. Also, we assume that the motion of the mass is
one-dimensional. The equation is

mẍ+ κx = 0 . (261)

We know how to solve this equation - the general solution is

x = c1 cos(ωt) + c2 sin(ωt) , ω =

√
κ

m
. (262)

If we have n of such oscillators with masses m1, . . . ,mn and spring constants
κ1, . . . , κn and the oscillators do not interact with each other, we have an equa-
tion of the form (261) for each of the oscillators, and we can solve the equations
separately - no oscillator influences any other oscillators.

Suppose now we have several oscillators which interact with each other (perhaps
by introducing some extra springs between them). Let us consider the important
case of small oscillations of such a system about its equilibrium.

Assume the system is described by coordinates x1, . . . , xn, with xj describing
the coordinate of the j−th particle. To each configuration x1, . . . , xn of the
system we associate potential energy V (x1, . . . , xn). In the system with springs
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the value of V represents the elastic energy stored in the springs for the given
configuration. The force on the particle i under these assumptions is

fi = − ∂V

∂xi
. (263)

We expect that the configuration (x1, . . . , xn) with a minimal possible energy46

V will be a “rest state” of our system, i. e. in this configuration the system is
at an equilibrium, without any motion. If we perturb slightly our system from
this equilibrium position, it will oscillate around it. Assuming the perturbation
is sufficiently small, we can expect to be able to write

V (x+ y) = V (x) +
∑
i

∂V (x)

∂xi
yi +

1

2

∑
i,j

1

2

∂2V

∂xi∂xj
(x)yiyj +O(|y|3) . (264)

The constant term V (x) does not affect the force (263), and the linear term∑
i
∂V (x)
∂xi

yi vanishes as x is minimizes V . Therefore the dominant term for

small |y| will be 1
2

∑
i,j

1
2

∂2V
∂xi∂xj

(x)yiyj . Letting

aij =
∂2V

∂xi∂xj
(x) . (265)

The equations of motion (expressed in terms of the variables yi) are

miÿi +
∑
j

aijyj = 0. (266)

Let us write √
mi yi = zi , ãij =

aij√
mimj

. (267)

One check easily that under this change of variables (266) becomes

z̈i +
∑
j

ãijzj . (268)

We will write this as
z̈ = Ãz . (269)

The matrix Ã is symmetric, and hence we know that

Ã = Q−1ΛQ , (270)

where Q is an orthogonal matrix and

Λ = diag(λ1, . . . , λn) . (271)

46Here we do not go into the questions under which assumptions such minimizers exist, are
unique, etc.
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Letting
w = Qz , (272)

we see that
ẅ + Λw = 0 , (273)

or
ẅj + λjwj = 0 , j = 1, 2, . . . , n, (274)

which we know how to solve. We see that in the new variables wi we again
have non-interacting harmonic oscillators, at least mathematically. The possibly
complicated linear interaction given by Ã in (269) can be always changed by
a suitable change of variables into the simple situation of the non-interacting
oscillators. We emphasize that this is only possible for the linear systems.

The eigenvalues λj will then give the frequencies at which our system will pro-
duce sound, if it is oscillating in a gas which transmits sound.

The above considerations apply to many mechanical systems oscillating with a
small amplitude about an equilibrium, as long as the forces acting in the system
are given by some potential energy. (Such forces are usually called conservative.)

Lecture 17, 3/1

More on linear equations with constant coefficients

Some general considerations (optional, with the exception of formula (290))

Let us return to the linear equation (179), which we will consider with a0 = 1
(without loss of generality), i. e.

x(m) + a1x
(m−1) + · · ·+ am−1x

′ + amx = 0 . (275)

The coefficients a1, . . . , am are assumed to be constant.47 Later we will also
consider the non-homogeneous equation

x(m) + a1x
(m−1) + · · ·+ am−1x

′ + amx = f(t) . (276)

There are simple algorithms for calculating the solutions of such equations,
which we will discuss soon. We will first discuss the equation from the more
theoretical point of view. This part is optional. What you should really know
is the practical algorithm for solving the equation.

47The case when the coefficient aj depend on t is also important. Although some of the
general properties of the solutions in this case are similar to the constant coefficient case, the
investigation of more detailed properties of the solutions can be quite more subtle.
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Let us consider the homogeneous equation (275) on the real line R. Let X be
the space of the solutions of the equation.48

As we discussed in lecture 11, X is a linear space of dimension m. Let us
consider complex-valued solutions, so the linear space X is considered over the
complex numbers C. The coefficients aj can then also be complex.

Note that the space X comes without some kind of a “canonical basis”. We can
of course choose a basis, and some choices are more natural than others, but
there is more than one good choice.49

In lecture 12 we defined the shift operator A on the space X, see the paragraph
just before (195). Recall that

[A(s)x](t) = x(t+ s) . (279)

Note that this is an example where we defined a linear mapping in another way
than by specifying its matrix in a given basis. The map is defined “intrinsically”.
As we discussed in lecture 11, A satisfies

A(s1 + s2) = A(s1)A(s2). (280)

48Strictly speaking, we should specify what exactly we mean by a solution. A natural
definition is that x is a solution of (275) if it is a function with m continuous derivatives which
satisfies (275). It can be shown (and it is not too hard, you can try to do it as an optional
exercise) that any such solution is in fact infinitely smooth. That means, even though we initial
require only m continuous derivatives, the solution actually has continuous derivatives of any
order. The reason behind this is that the equation expresses the m−th derivative in terms
of the derivatives of order ≤ m − 1. Let us show how to prove that the solution (originally
defined as having m continuous derivatives actually has m + 1 continuous derivatives. We
show the argument for the equation

x′ = ax , (277)

the argument for (275) being essentially the same. Assume x satisfies (277) and has one
continuous derivative. Let us consider Dsx defined by

Dsx(t) =
x(t+ s)− x(t)

s
. (278)

Then clearly Dsx is again a solution of (277) and as s → 0 the functions Dsx converge
locally uniformly to x′. Now from the equation we get that the functions Ds(x′) also converge
locally uniformly to some continuous function. This means that x is twice differentiable and
Ds(x′) → x′′ as s → 0. This step can now be repeated to obtain that x has in fact 3 continuous
derivatives. Then it can again be repeated to show that x has 4 continuous derivatives, etc.,
leading to the conclusion that x is infinitely smooth.

49The situation is somewhat similar to the following example. Let us consider the linear
space Cn. This space does have a “canonical basis”, namely e1 = (1, 0, . . . , 0), . . . , en =
(0, . . . 0, 1). There are of course many other bases, but most people will probably agree that
the canonical basis is the simplest one to choose. Let us now consider the linear (n − 1)−
dimensional subspace Y of Cn given by the equation z1 + · · · + zn = 0. One can of course
choose a basis in Y , for example e1 − en, e2 − en, . . . en−1 − en but this choice is kind of
“arbitrary”, there are many other ways to choose basis which are just as good and perhaps
even more natural. Choosing a basis of the space X of solutions of (275) is somewhat like
choosing a basis in Y . There is not a clear “canonical choice”. In some sense, the choice of
the canonical basis e1, . . . , en in Cn is also somewhat ”arbitrary”, but in some sense the most
“economical”.
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This says that A is a homomorphism from the additive group R into the multi-
plicative group of invertible linear maps of the space X. If we choose a basis, we
can identify A with a matrix, and s → A(s) can be considered as a map from
R into the set of n×n non-singular complex matrices, which is usually denoted
by GL(n,C). The set GL(n,C) is a group under the matrix multiplication,
and (280) again says that s→ A(s) is a group homomorphism.

The property (280) puts strong restrictions and A and, in fact, maps s ∈ R →
A(s) ∈ GL(n,C) which have this property can be completely characterized. We
will return to this point later.

The shift operator x(t) → x(t + s) is closely related to the derivative operator
x→ x′, as we have

x′(t) = lim
s→0

x(t+ s)− x(t)

s
. (281)

Note that x ∈ X implies that x′ ∈ X. Therefore

x→ x′ (282)

can be considered as a linear operator on X. Let us write

x′ = Bx . (283)

Now B is a linear map of the finite-dimensional linear space X into itself, and
therefore can be identified with a matrix. The matrix representation which we
will obtain for B will depend on our choice of a basis. If ϕ1, . . . , ϕn is a basis of
X, then we have

ϕ′j = b1jϕ1 + · · ·+ bnjϕn j = 1, 2, . . . ,m (284)

and the matrix of the map B in this basis is (bij)
m
i,j=1. From general principles

concerning linear maps between finite-dimensional spaces we know that the map
B has a non-trivial eigenvector with eigenvalue λ. This means that there must
be a function x ∈ X such that

x′ = λx . (285)

This means that
x(t) = Ceλt . (286)

If the mapping B has m different eigenvalues λ1, . . . , λm, we know that then
the corresponding eigenvectors, which in this case are functions Cje

λjt form a
basis of X. This is why we should search the solutions of the form eλt. If we
substitute the function eλt into (275), we obtain

λm + a1λ
m−1 + · · ·+ am−1λ+ am = 0 . (287)

The polynomial on the left-hand side is called the characteristic polynomial
of (275). It turns out that the characteristic polynomial of the equation coincides
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with the characteristic polynomial of the linear mapping B.50

If the characteristic polynomial (287) has m different roots λ1, λ2, . . . , λm, then
the functions

eλ1t, eλ2t, . . . , eλmt (289)

form a basis of X and the general solution of the (homogeneous) equation is

C1e
λ1t + C2e

λ2t + · · ·+ Cme
λmt . (290)

In practical terms this can be easily verified directly, without the more abstract
considerations above: clearly the functions (280) solve the equation (this is how
we chose λj) and one only needs to show that the functions (289) are linearly
independent, which is not hard (and it is a good exercise).

What happens in the case of multiple roots? Here we just state the rule, without
analyzing it. Assume that (287) has a root λ of multiplicity k. Then the
functions

eλt, teλt, . . . , tk−1eλt (291)

all solve (275). This can be verified by a direct calculation. It is easy to verify
that there functions are linearly independent. Therefore, for each root λ of
multiplicity k we add to the general solution an expression

C1e
λt + C2te

λt + · · ·+ Ckt
k−1eλt (292)

and this way we again get a space of solution of dimension m.

Higher-order equation as a first-order system (Section 3.3 in the textbook)

One can arrive also arrive at an equation similar to (283) by the following more
“concrete” way. We again consider (275). We set

x = y1 , x
′ = y2 , x

′′ = y3 , . . . , x
(m−1) = ym . (293)

Clearly
y′1 = y2, y

′
2 = y3, . . . y

′
m−1 = ym (294)

50Recall that that polynomial is defined as p(λ) = det(λI − B). We remark that our
definition of determinant was based on a matrix representation of a map. That is, we defined
determinant for a matrix, not for a linear map. We can of course define it for a linear map by
saying that the determinant of a linear map is the determinant of its matrix (in some basis).
One has to check that this definition does not depend on the choice of the basis, which you
can do as an optional exercise.
To see that the characteristic polynomial of B is (287) we note that (275) implies that

Bm + a1B
m−1 + · · ·+ am−1B + am = 0 . (288)

We claim that B cannot satisfy a polynomial relation Bk + ã1Bk−1 + · · ·+ ãk−1B + ãk = 0

for k < m. If this were the case, then any function in X would satisfy x(k) + ã1x(k−1) +
· · · + ãk−1x

′ + ãk = 0, and therefore the dimension of X would have to be ≤ k, a
contradiction. We can now recall the Caley-Hamilton Theorem from linear algebra (see
http://en.wikipedia.org/wiki/Cayley-Hamilton_theorem) to conclude that not only is the
left-hand side of (287) a characteristic polynomial of B, but it is in fact the so called minimal
polynomial of B. We have not defined this notion yet. It is relevant in the case of multiple
roots.
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by definition of y and equation (275) gives

y′m = −a1ym−1 − a2ym−2 · · · − amy1 . (295)

In other words, the vector-valued function y satisfies

y′ = Ay , (296)

where the matrix A is given by

A =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
0 0 0 . . . 1

−am −am−1 −am−2 . . . −a1

 . (297)

As an optional exercise you can calculate the characteristic polynomial of A.
The calculation gives

det(λI −A) = λm + a1λ
m−1 + · · ·+ am−1λ + am , (298)

the same as the characteristic polynomial of the equation.
Assume that the characteristic polynomial has m different roots λ1, . . . , λm and
let b1, . . . , bm be the corresponding eigenvectors of A. By Lemma 3, the eigen-
vectors form a basis of Cn. Let us write

y = z1b1 + . . . zmbm , (299)

i. e. zj are coordinates of the vector y in the basis b1, . . . , bm. In these coordinates
equation (296) becomes

z′1 = λ1z1 ,
z′2 = λ2z2 ,
. . . . . . . . . ,
z′m = λmzm .

(300)

Hence the general solution of (296) is

y = C1e
λ1tb1 + C2e

λ2tb2 + . . . Cme
λmtbm , (301)

which again leads to expression (290) for the general solution of (275).

General linear systems x′ = Ax for vector-values x and constant A.

Let us consider functions x : R → Cn. Let A be an n×n (complex) matrix and
let us consider the equation

x′ = Ax . (302)

The space of solutions of this equation is a linear space of dimension n. As-
sume that ϕ1, . . . , ϕn are (vector-valued) functions which solve (302). If these
functions are linearly independent, then the expression

x = C1ϕ1 + C2ϕ2 + · · ·+ Cnϕn (303)
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is a general solution of (302), in the same sense as we considered for the scalar
equation (275): each solution x of (275) can be expressed in the form (303) for
some set of constants C1, . . . , Cn.

If the matrix A has n different eigenvalues λ1, . . . , λn, then, letting

Λ = diag (λ1, . . . , λn) (304)

we have
A = PΛP−1 , (305)

where P is the matrix with the j−the row being the j−the eigenvector, see
also (222). Setting z = P−1x, we see that the equation (302) is transformed to

z′ = Λz , (306)

which has the same from as (300).

Systems of the form (302) can be used to model many phenomena. We see from
the considerations above that in the “generic case” they can be transformed to
the diagonal systems (306). The diagonal system consists of n equations of the
form zj = λjzj which “do not interact” with each other. Each of those equations
can be solved separately, and we know how to do from lecture 1. In general ,
system (302) can describe complicated interaction between the variables xj (as
long as the interaction remains linear). Mathematicians have know for about
200 years that in the generic case such systems can be “diagonalized”, i. e. all
the non-trivial interactions can be “removed” by a suitable change of variable
and today this is of course well-understood. Nevertheless, it is still remarkable
that such a simplification can be achieved.

Example
Let us start by considering 2 simple equations

ẋ1 = a x1 ,
ẋ2 = b x2 .

(307)

Let us assume a, b > 0, and we can think of two entities owning some money (or
debt), with x1 the balance of the first entity and x2 the balance of the second
entity. Either balance can be positive or negative. The number a > 0 represents
interest rate for entity (1) and b > 0 represents interest rate for entity (2).51 In
the model (307) there is no connection between x1 and x2, the two quantities
do not interact with each other. The solution of (307) is simple:

x1(t) = x1e
at , x2(t) = x2e

bt , (308)

where xj = xj(0) , j = 1, 2. Assume now that entity (2) discovers that it can
extract money from entity (1) and the amount they can extract is proportional

51It is of course an over-simplification of the real situation to assume that the interest rate
remains the same whether the balance is positive or negative, the model can still be useful.
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to x2. (It is easy to imagine that the influence of (2) is proportional to the
capital it owns.) Then the equations become

ẋ1 = a x1 − cx2 ,
ẋ2 = (b+ c̃)x2 ,

(309)

where 0 < c̃ < c. The quantity cx2 is the amount of money extracted by (2)
from (1) per unit of time. We assume that there is some cost of the extraction,
so the money which (2) receives (per unit of time) is not cx2, but rather c̃x2,
with 0 < c̃ < c. Letting

b̃ = b+ c̃ (310)

we will write (309) as
ẋ1 = a x1 − cx2 ,

ẋ2 = b̃ x2 ,
(311)

or
ẋ = Ax , (312)

with

A =

(
a −c
0 b̃

)
. (313)

The solutions of (311) can be calculated easily without diagonalizing the ma-
trix A: we note that the solution of the second equation is

x2(t) = x2e
b̃t , (314)

with x2 = x2(0), and once x2 is known we can calculate x1 by the variation of
constants, which leads to

x1(t) = x1e
at − c

∫ t

0

x2(s)e
a(t−s) ds . (315)

A simple integration now gives

x1(t) =

{(
x1 − cx2

a−b̃

)
eat + cx2

a−b̃e
b̃t , a ̸= b̃

x1e
at − cx2te

at , a = b̃ .
(316)

Note that when 0 < b̃ < a , the quantity x1 can still grow exponentially for
suitable x1, x2, in spite of the fact that some funds are being diverted to entity
(2). The exponential growth at the rate a is sufficient to keep entity (1) in

the positive as long as x2

x1
< a−b̃

c . However, once b̃ ≥ a, entity (1) will always
eventually go into debt as long as x2 > 0.

It is instructive to derive (316) by diagonalizing the matrix A. As we shall see,
this is only possible for a ̸= b̃.

Let us look at the eigenvalues and eigenvectors of A. The vector x(1) = e1 =
(1, 0) is clearly an eigenvector with eigenvalue a. As det(λI−A) = (a−λ)(b̃−λ),
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we see that b̃ is also an eigenvalue. The corresponding eigenvector is easily
determined from (A− b̃I)x = 0, which is the same as

(a− b̃)x1 − cx2 = 0. (317)

If a ̸= b̃, we can take for the second eigenvector the vector

x(2) = (c, a− b̃) . (318)

When a ̸= b̃, the vectors x(1), x(2) form a basis of R2 and the general solution
of (312) can be written as

x(t) = C1x
(1)eαt + C2x

(2)eb̃t . (319)

Note that this coincides with formulae (314), (315) when we choose

C1 = x1 −
cx2

a− b̃
, C2 =

x2

a− b̃
. (320)

In fact, the eigenvectors can be already seen from (314), (315) as the directions
of the maximal resp. minimal growth as t→ ∞ (when a > b̃).

In the case a = b̃ the matrix A does not have two linearly independent eigen-
vectors. It is an example of a “non-generic” situation. We will discuss such
situations more systematically soon.

At some point entity (1) may also discover that it can extract some money from
entity (2), and the situation becomes symmetric. We will end up with equations

ẋ1 = ãx1 − cx2 ,

ẋ2 = −dx1 + b̃x2 ,
(321)

which can again be analyzed completely by finding eigenvalues and eigenvectors.
The model (321) is of course too simple for practical considerations concerning
real-world competing entities,52 but it is already interesting.

Lecture 18, 3/4

Jordan canonical form

We discussed the Jordan canonical form, Section 2.A in the textbook (p. 140).

Lecture 19, 3/6

Jordan canonical form (continued)

Let X1 and X2 be two finite dimensional linear spaces defined over the same
field of scalars. (We will usually consider complex spaces although real spaces
will also be occasionally considered.) We define a new linear space

X = X1 ⊕X2 (322)

52The real-world situation rarely allows for an indefinitely sustained exponential growth,
and therefore more realistic models should be non-linear.
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called the direct sum of the two spaces as follows. As a set, X is the set of all
pairs (x1, x2) with x1 ∈ X1 and x2 ∈ X2. The linear space structure on X is
given by

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) , c(x1, x2) = (cx1, cx2) . (323)

Often we write (perhaps with slight abuse of notation) x1+x2 instead of (x1, x2).
Here the notation x1 + x2 is “abstract” in the sense that originally we do not
assume that x1, x2 belong in the same linear space. However, the direct some
X1 ⊕X2 provides exactly such a space. It is just a way of saying that we will
consider the formal sums x1 + x2 as elements a space which contains both X1

and X2 in such a way that the two spaces X1, X2 do not interact with each
other. The sum x1+x2 cannot be zero if one of the xj is non-zero. If e1, . . . , em
is a basis of X1 and f1, . . . , fn is a basis of X2, then e1, . . . , em, f1, . . . fn is a
basis of X. The elements of X can be expressed as

x1e1 + . . . xmem + y1f1 + . . . ynfn . (324)

The statement that every finite-dimensional space (over C, say) has a basis can
is equivalent to saying that every finite dimensional space X over C is of the
form

X = C⊕C⊕ · · · ⊕C︸ ︷︷ ︸
n = dimX copies

, (325)

where we think of C as a one-dimensional vector space (over itself).

Assume now that a linear spaceX is given and letX1 ⊂ X be its linear subspace.
Assume that X2 is a subspace of X such that the linear span of the set X1∪X2

is X and X1∩X2 = {0}. Then each element x ∈ X has a unique decomposition

x = x1 + x2 x1 ∈ X1, x2 ∈ X2 , (326)

and we can identify X with X1 ⊕X2. In this situation we simply write

X = X1 ⊕X2 (327)

although, strictly speaking, from the set-theoretic point of view, it may be more
isomorphism rather than equality. In practice it is not necessary to dwell on
these distinctions, unless we are really interested in some subtle set-theoretical
issues with the definitions.

When X = X1 ⊕X2, we have natural projections

P1 : X → X1 , P2 : X → X2 (328)

defined by
P1(x1 + x2) = x1 , P2(x1 + x2) = x2 . (329)

Note that
P 2
j = Pj , Pj(X) = Xj , j = 1, 2 . (330)

A simple but important property of linear spaces is as follows:
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Lemma 2. If X is a finite-dimensional linear space and X1 ⊂ X is a subspace,
then there exist a subspace X2 ⊂ X such that X = X1 ⊕X2.

LetA : X → X be a linear map. IfX1 ⊂ X is a linear subspace andA(X1) ⊂ X1,
we say that X1 is invariant under A. The analogue of Lemma 2 is not necessarily
true in the category of spaces invariant under a given map A: if X1 ⊂ X
invariant under A, there may not be a subspace X2 ⊂ X invariant under A such
that X = X1 ⊕X2. (As an optional exercise you can construct an example of
such a situation.)

If X1, X2 are finite-dimensional linear spaces and A1 : X1 → X1 , A2 : X2 → X2

are linear mappings, we define the mapping

A = A1 ⊕A2 : X1 ⊕X2 → X1 ⊕X2 (331)

by
A(x1 + x2) = A1x1 +A2x2 . (332)

Let e1, . . . , em be a basis of X1 and let f1, . . . , fn be a basis of X2. If Ã1 is the
matrix of A1 in the basis e1, . . . , em and Ã2 is the matrix of A2 in the basis
f1, . . . , fn, then the matrix of A1⊕A2 in the basis e1, e2, . . . , em, f1, . . . fn is the
“block-diagonal” matrix (

Ã1 0

0 Ã2

)
. (333)

For λ ∈ C and a natural number k ≥ 1 we consider the k × k matrix

Jk(λ) =


λ 1 0 . . . . . . 0
0 λ 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . 0 λ 1 0
. . . . . . . . . 0 λ 1
0 0 0 . . . 0 λ

 (334)

with the convention that
J1(λ) = (λ) . (335)

Let us say that a linear map is of type Jk(λ) if it can be represented by Jk(λ)
in some basis.

Theorem 5. Let X be a finite-dimensional linear space over C and let A : X →
X be a linear mapping. Then there exists a decomposition X = X1⊕X2⊕· · ·⊕Xr

and maps Aj : Xj → Xj of type Jkj (λj) such that A = A1 ⊕A2 ⊕ · · · ⊕Ar.

Note that the theorem does not exclude the possibility that some of the λj or
kj occur multiple times.

We can interpret the theorem as follows: we have a list of simple objects (maps
of type Jk(λ)) and we have a simple construction which can put these objects
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together (direct sum, in our case here). The theorem above says that any linear
mapping can be obtained in this way.

Another way of stating Theorem 5 is as follows: for every linear map A : Cn →
Cn there is a basis in which the matrix of A is of the “block form”

Jk1(λ1) 0 . . . 0
0 Jk2(λ2) . . . 0
. . . . . . . . . . . .
0 0 . . . Jkr (λr)

 . (336)

Yet another way is as follows: given any matrix A over the complex numbers,
there exists a non-singular (complex) matrix P such that the matrix PAP−1 is
of the form (336). The matrix P can be interpreted as a transition matrix to a
basis in which A has the form (336).

We will now discuss the main points of the proof of the theorem. This part is
optional. A proof based on a slightly different approach can be found in the
textbook, see Sections 2.7 and 2.A.

Let us consider an n × n matrix A. From the fundamental theorem of algebra
we know that the characteristic polynomial has a non-trivial root λ , and hence
the matrix

M = A− λI (337)

is not invertible. In particular its kernel

Ker(M) = {x ∈ Cn , Mx = 0} (338)

is non-trivial, i. e. its dimension is ≥ 1. The range of M is defined by

R(M) = {Mx , x ∈ Cn} . (339)

Both Ker(M) and R(M) are linear subspaces of Cn, and by one of the funda-
mental theorems of Linear Algebra53 we know that

dimKer(M) + dimR(M) = n . (340)

Let us first assume that

Ker(M) ∩R(M) = {0} . (341)

Due to (340), this is the same as saying

Cn = Ker(M)⊕R(M) . (342)

53See the textbook, Proposition 3.6 on page 90

64



We note that from the definitions it is obvious that both Ker(M) and R(M)
are invariant under the mapping M , and therefore also under the mapping A.
As M vanishes on Ker(M), we know that that the restriction of A to Ker(M)
is λIr, where Ir is the r × r identity matrix and r = dimKer(M). Hence we
obtain

A = λIr ⊕A′ , (343)

where A′ is an (n−r)× (n−r) matrix. We can now repeat the whole procedure
with A′ and try to decompose A in several steps as

A = λ1Ir1 ⊕ λ2Ir2 ⊕ · · · ⊕ λlIrl . (344)

This almost works, except that the conditions of the type (341) which we need
at each inductive step may not be always satisfied. Two subspaces of Cn with
the sum of their dimensions equal to n will “generically” intersect only at the
origin, but we would like also to cover the “non-generic” situations when the
intersection is bigger.

Let us then drop the assumption (341) and assume that Ker(M) and R(M) can
intersect in a non-trivial subspace.

The key step in overcoming the difficulties when the intersection Ker(M)∩R(M)
is non-trivial is the following: we consider the subspaces

Lj = Ker(M j), Yj = R(M j) , j = 1, 2, . . . (345)

Note that all these subspaces are invariant under M . Clearly

L1 ⊂ L2 ⊂ L3 ⊂ . . . (346)

and
Y1 ⊃ Y2 ⊃ Y3 ⊃ . . . (347)

As 0 ≤ dimYj ≤ n for each j, there exists a first j such that

Yj = Yj+1 . (348)

Let us denote this first j by j0 in what follows. We note that (348) means that
the restriction of M to Yj is invertible, and therefore of we will have

Yj0 = Yj0+1 = Yj0+2 = . . . (349)

and using
Ker(M j) +R(M j) = n (350)

we see that also
Lj0 = Lj0+1 = Lj0+2 = . . . (351)

The key point is the following:
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Lemma 3.
Cn = Lj0 ⊕ Yj0 . (352)

Proof: Let N =M j0 , L = Lj0 , Y = Yj0 . From the definitions we have Ker(N) =
L and R(N) = Y . We recall that M restricted to Y is invertible, and hence
so is N = M j0 . In particular, if x ∈ Y and Nx = 0, then x = 0. Our goal is
to show that L ∩ Y = {0}. Arguing by contradiction, assume that there exists
a non-zero vector y ∈ L ∩ Y . Then Ny = 0 because y ∈ L but as y ∈ Y the
equation Ny = 0 means that y = 0 as we have seen above. This gives the
required contradiction and the proof is finished.

The space Lj0 is called the generalized eigenspace of the eigenvalue λ. It is the
set of all vectors x ∈ Cn such that

(A− λI)kx = 0 (353)

for some natural number k. As we have seen above, this space coincides with
Ker (A− λI)j0 .

We can now apply the idea mentioned above concerning the inductive decom-
position of Cn into the eigenspaces. For the eigenspaces it did not quite work in
the general situation because condition (341) might fail. However, we see from
Lemma 3 that the idea will work in the general case if we replace the eigenspaces
with generalized eigenspaces.
Hence we reach the following conclusion.

Lemma 4. Let A be a n× n matrix. Let λ1, . . . , λr be the set of eigenvalues of
A. Let Egen(λj) be the generalized eigenspace corresponding to λj. Then

Cn = Egen(λ1)⊕ Egen(λ2)⊕ · · · ⊕ Egen(λr) . (354)

To complete the proof of Theorem 5, we only need to analyze the restriction of
A−λjI to the space Egen(λj). This amounts to analyzing the so-called nilpotent
matrices, i. e. the matrices M with M l = 0 for some l. What we need to show
is that each nilpotent linear mapping is a direct sum of mappings of type Jk(0)
considered above. This is easy to see in the case when dimKer(M) = 1. Indeed,
let M be an m ×m matrix with M l = 0 and dimKer(M) = 1. We note that
the dimension of the subspaces in the sequence

R(M) ⊃ R(M2) ⊃ R(M3), . . . (355)

can drop at most by 1, as dimKer(M) = 1. Hence we have Mk ̸= 0 for k < m.
At the same time, if Mm ̸= 0, the sequence would stabilize before reaching {0}
and the matrix would not be nilpotent. Hence the minimal l with M l = 0 is
l = m (again, in the case Ker(M) is one-dimensional). If we choose a vector x
such that Mm−1x ̸= 0, then the vectors

x,Mx,M2x, . . . ,Mm−1x (356)

are easily seen to form a basis in which the matrix M has the form (334) with
λ = 0.
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The general case is quite similar in spirit, except the proof requires some more
“bookkeeping”. You can consult the textbook, page 141.

Lecture 20, 3/10/2013

The matrix exponential

We discussed etA for matrices, see Section 3.1 in the textbook.

Lecture 21, 3/13/2013

Midterm 1

Lecture 22, 3/15/2013

Hermitian and anti-hermitian matrices, Section 2.11.

Lecture 23, 3/25/2013

General solutions for systems with multiple eigenvalues; convergence
of solutions for t→ ∞.

Let us consider the system
x′ = Ax , (357)

where x = (x1, . . . , xn) and A is a n× n matrix. (Strictly speaking, we should
write x as a column vector,

x =


x1
x2
·
·
·
xn

 , (358)

but we will sometimes slightly abuse notation and write it as a row vector, if
there is no danger of confusion.)54

One way to write the general solution is the following:

x(t) = etAx(0), x(0) ∈ Cn . (359)

This is the same as writing

x(t) = C1e
tAe1 + . . . Cne

tAen , (360)

54In the orthodox notation, the row vectors are really co-vectors, i. e. , linear functionals or
elements of the dual space to the space of the vectors. There are situations where it can be
important to make carefully this distinction, but in our case it is not necessary.
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where e1, . . . , en denotes the canonical basis ofCn, and C1, . . . , Cn are constants.

(Comparing (359) and (360) we see that C1 = x
(0)
1 , C2 = x

(0)
2 , . . . , Cn = x

(0)
n .)

Assume now that we chose our coordinates so that A is already in its Jordan
canonical form, see Theorem 5. Of course, typically the matrix of a system we
deal with is not in the Jordan canonical form, we have to perform a change of
coordinated to bring it to that form. However, we know that such a change
of coordinates always exists, and hence for theoretical considerations we can
assume that A is in such form, keeping in mind that x may not be the original
variable in which the system is given, but a new variable given by x = P−1x̃,
where P is a transition matrix and x̃ is the original variable. We recall that for
one Jordan block

Jk(λ) =


λ 1 0 . . . . . . 0
0 λ 1 0 . . . 0
. . . . . . . . . . . . . . . . . .
. . . . . . 0 λ 1 0
. . . . . . . . . 0 λ 1
0 0 0 . . . 0 λ

 (361)

the exponential is

etJk(λ) =



eλt teλt t2

2! e
λt . . . . . . tk−1

(k−1)!e
λt

0 eλt teλt t2

2! e
λt . . . tk−2

(k−2)!e
λt

. . . . . . . . . . . . . . . . . .

. . . . . . 0 eλt teλt t2

2! e
λt

. . . . . . . . . 0 eλt teλt

0 0 0 . . . 0 eλt


(362)

Assuming that Jk(λ) is the first Jordan block of A in our coordinate system, we
see that the part of the expression (360) corresponding to this block is(

C1e
λt + C2te

λt + C3
t2

2!
eλt + . . . Ck

tk−1

(k − 1)!
eλt
)
e1

+

(
C2e

λt + C3te
λt + C3

t2

2!
eλt + . . . Ck

tk−2

(k − 2)!
eλt
)
e2

+ . . .

+ Cke
λtek . (363)

The contributions from other Jordan blocks will be similar and the general
solution will be a sum of expression of this form, where the constants Cj are
chosen independently for each Jordan block. We emphasize that that, in general,
there can be several Jordan blocks Jk1(λ), . . . , Jkr (λ) corresponding to the same
eigenvalue λ. If we work in coordinates where the matrix A is not in the Jordan

canonical form, we can still write a similar expression, if we replace the vectors
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ej of the canonical basis by suitably chosen vectors in the invariant subspace of
A corresponding to the Jordan block. Namely, we can find linearly independent
vectors x(1), x(2), . . . x(k) so that

(A− λI)x(1) = 0, (A− λI)x(2) = x(1), . . . , (A− λI)x(k) = x(k−1) , (364)

and the expression(
C1e

λt + C2te
λt + C3

t2

2!
eλt + . . . Ck

tk−1

(k − 1)!
eλt
)
x(1)

+

(
C2e

λt + C3te
λt + C3

t2

2!
eλt + . . . Ck

tk−2

(k − 2)!
eλt
)
x(2)

+ . . .

+ Cke
λtx(k) . (365)

is a part of the general solution. The Jordan theorem guarantees that we can
find a basis of Cn consisting of strings of vectors satisfying (364) (for suitable
k and λ depending on the string), and the general solutions can be written as
a sum of expressions similar to (365). Of course, finding the basis consisting of
such strings is equivalent to finding a coordinate system in which the matrix
has the Jordan canonical form.

From these considerations we can deduce the following important theorem. Re-
call that the spectrum σ(A) of a matrix A is simply the set of its eigenvalues.

Theorem 6. Let A be an n× n matrix and consider the system

x′ = Ax . (366)

The following conditions are equivalent:

(i) For each solutions x(t) of the system we have

lim
t→∞

x(t) = 0 . (367)

(ii) The spectrum σ(A) is contained in {z ∈ C,Re z < 0}.
If any of these conditions is satisfied, then the decay is in fact exponential: there
exists ε > 0 such that for each solution x(t) there exists C > 0 such that

|x(t)| ≤ Ce−εt . (368)

The exponent ε can be taken as any number satisfying σ(A) ⊂ {z ∈ C, Re z < −ε} .

The proof of the theorem follows easily from expression (359) for the general
solution and from the fact that

lim
t→∞

tme−εt = 0 (369)

for any m and any ε > 0. If the spectrum σA contains an eigenvalue λ with
Reλ > 0, then the equation has a solution of the form Cyeλt, which grows
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exponentially. For each λ in the spectrum with Reλ = 0 there is a solution of
the form Cyeλt which is either a non-zero constant (when λ = 0 or a non-trivial
periodic solution (when λ = iκ for κ ̸= 0.)

The case of a single equation (275) of orderm discussed in lecture 17 is subsumed
in the above considerations as we can write the equation in the form (357). In
particular, Theorem 6 remains true if we replace σ(A) by the set of roots of
the characteristic polynomial. A useful fact which is sometimes useful to keep
in mind is that the matrix (297) coming from equation (275) cannot have more
than one Jordan block corresponding to each eigenvalue.55

Lecture 24, 3/27/2013

Inhomogeneous equations x′ = Ax+ f(t)

We discussed material in Section 3.4 (pp. 163–165).

The main points:

• The solution of the system

x′(t) = Ax+ f(t) , x(0) = x(0) (370)

is given by the Duhamel’s formula

x(t) = etAx(0) +

∫ t

0

e(t−s)Af(s) ds . (371)

• In some special cases one can seek the solution in some particular form.
For example, if A is real and f(t) = b cosωt for some real vector b, then
we can seek a particular solution of the form Re zeiωt for a suitable vector
z. This leads to

iωz = Az + b (372)

which can be solved if iω is not an eigenvalue of A. In that case we have
z = (iω −A)−1b.

We also discussed in some detail the following example:

ẋ1 = −px1 + q̃x2 + f1(t) ,
ẋ2 = p̃x1 − qx2 + f2(t) ,

(373)

where 0 < p̃ ≤ p < 1 and 0 < q̃ ≤ q < 1. In this model x1 represents can be
thought of as a number of inhabitants of place (1) and x2 can be thought of as
a number of inhabitants of place (2). The inhabitants move between (1) and
(2) according to the following rules: during dt, an infinitesimal time change,
a portion p dt of the inhabitants of leave (1) and p̃ dt of those move to (2),

55As an optional exercise, you can try to prove this statement.
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while the portion (p − p̃) dt leaves our system. Similar consideration apply to
place (2) and q dt, q̃ dt, (q − q̃) dt. The right-hand side f can be thought of as
representing influx of new inhabitants. (In this interpretation we should take
f1, f2 > 0.) When f is independent of time and one of the numbers p− p̃, q − q̃
is strictly positive, the system converges as t → ∞ to the equilibrium solution
given by ẋ = 0. If P is the matrix of the system, the equilibrium solution is
x = −P−1f . 56

Lecture 25, 3/29/2013

Inhomogeneous scalar equations of higher order. Minimal polynomial
of a matrix; Caley-Hamilton theorem

Equation

x(m) + a1x
(m−1) + a2x

(m−2) + · · ·+ am−1x
′ + amx = f(t) (376)

with constant coefficients aj can re-written as a system of equations and the
Duhamel’s formula (371) can be applied to obtain solutions. One can also
generalize the procedure for the second order we considered in lecture 10 (see
also Section 1.14 in the textbook). Let ϕ1, . . . , ϕm be a basis of the space of
solutions of the equation. We will search solutions of (376) in the form

x(t) = C1(t)ϕ1(t) + · · ·+ Cm(t)ϕm(t) . (377)

We will impose the conditions

C ′
1ϕ1+ . . . +C ′

mϕm = 0 ,
C ′

1ϕ
′
1+ . . . +C ′

mϕm = 0 ,
. . . . . . . . . . . . . . .

C ′
1ϕ

(m−2)
1 + . . . +C ′

mϕ
(m−2)
m = 0 ,

(378)

which guarantee

x(k) = C1ϕ
(k)
1 + · · ·+ Cmϕ

(k)
m , k = 0, 1, . . . ,m− 1 . (379)

56 This can be seen directly without applying the Duhamel’s formula. On the other hand,
the limit of x(t) for t → ∞ is also given by the Duhamel’s formula. Comparing the two ways
of expressing the limit, we obtain ∫ ∞

0
etP dt = −P−1 . (374)

More generally, if A is any matrix with spectrum in z,Re z > 0, then∫ ∞

0
e−tA dt = A−1 . (375)

For 1×1 matrices, which can be identified with numbers, we know the formula from elementary
calculus.

71



Equation (376) then gives

C ′
1ϕ

(m−1) + · · ·+ C ′
mϕ

(m−1)
m = f . (380)

Letting

W (t) =


ϕ1 . . . ϕm
ϕ′1 . . . ϕ′m
. . . . . . . . .

ϕ
(m−1)
1 . . . ϕ

(m−1)
m

 (381)

and

C ′ =


C ′

1

C ′
2

. . .
C ′
m

 , F (t) =


0
0
. . .
f(t)

 (382)

we see that
W · C ′ = F . (383)

Hence to obtain C ′, we just invert the matrix W to obtain

C ′ =W−1F . (384)

One then has

C(t) = c+

∫ t

0

C ′(s) ds . (385)

where c is a constant vector. It can be proved that in the situation above the
matrix W =W (t) is invertible,57 and hence (384) is well-defined.

In the second part of the lecture we discussed the minimal polynomial and the
Caley-Hamilton Theorem (Sections 2.7 and 2.8 in the textbook).

Lecture 26, 4/1/2013

More on the minimal polynomial

We continued to discuss the minimal polynomial. The main points of the lecture:

• The minimal polynomial can be easily read off the Jordan canonical form.
Let A is an n× n matrix and {λ1, . . . , λr} be its spectrum (i. e. , the set
of its eigenvalues, with λi ̸= λj for i ̸= j). By Theorem 5 (lecture 19)
we know that in a suitable basis the matrix A consists of Jordan blocks
Jk(λ), where λ ∈ {λ1, . . . , λr} and k is an integer which can change from
one Jordan block to another. We also keep in mind that there can be more
than one Jordan block associated with any given λj . We define kj as the
size of the largest Jordan block associated with λj . (By definition, the

57The proof is not difficult and it is a good optional exercise.
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size of the block Jk(λ) is k.) Then the minimal polynomial of the matrix
A is

pmin,A(λ) = (λ− λ1)
k1(λ− λ2)

k2 . . . (λ− λr)
kr . (386)

Note that this means that the matrix is diagonalizable if and only if its
minimal polynomial is (λ − λ1)(λ − λ2) . . . (λ − λr), or, in other words,
(A− λ1I)(A− λ2I) . . . (A− λrI) = 0.

• The minimal polynomial always divides the characteristic polynomial. For
a generic n×n matrix the two polynomials coincide, i. e. , the coefficients
of the matrices for which the two polynomial do not coincide must satisfy
some non-trivial equations Fj(a11, a12, . . . , ann) = 0.

• Genericity can be considered at various levels. For example, a generic
n× n matrix has n different eigenvalues. The matrices which have multi-
ple eigenvalues are characterized by a single (polynomial) equation
F1(a11, a12, . . . , ann) = 0. Let us denote by Σ the surface determined by
this equation in the space of the n × n matrices. The minimal polyno-
mial of matrices away from Σ clearly coincides with their characteristic
polynomial. However, even on the surface Σ the fact that the minimal
polynomial coincides with the characteristic polynomial is still generic. In
other words, for the minimal polynomial not to coincide with the charac-
teristic polynomial additional relations have to be satisfied.

(Optional) Remark: It is important to note that there are algorithms for the
calculation of the minimal polynomial which are not based on the calculation
of the Jordan form, or the roots of the characteristic polynomial. The minimal
polynomial of a matrix A can be calculated by relatively simple operations
directly on the coefficients of the matrixA.58 One way to see this is the following.
For a fixed matrix A let us consider the (matrix-valued) function R(λ) = R(λ,A)
of the complex variable λ defined by R(λ) = (A − λI)−1. The function R(λ),
called the resolvent of the matrix A, is well defined for λ ∈ C \ {λ1, . . . , λr},
where λ1, . . . , λr are the eigenvalues of A. We have R(λ) = Adj (A−λI)

det(A−λI) , where the

matrix Adj (A−λI) the so-called adjugate matrix59 of the matrix A−λI, whose
entries are (n−1)×(n−1) sub-determinants of A−λI, which are polynomials of
order at most n− 1 in λ. We see that R(λ) is a rational function of λ, i. e. each
entry can be written as a ratio of two polynomial in λ. It is not hard to see60

that the minimal polynomial is the polynomial P (λ) of the minimal possible
degree such that P (λ)R(λ) is a polynomial (for each entry). Therefore finding
the minimal polynomial can be reduced to the following task: given a ratio

of two polynomials F (λ) = Q1(λ)
Q2(λ)

what is the polynomial P (λ) with minimal

possible degree such that P (λ)F (λ) is a polynomial? This is essentially the
same problem as the problem of finding the greatest common divisor of the two

58Programs such as Mathematica or Matlab presumably use exactly such algorithms to
calculate the minimal polynomial.

59see, for example, http://en.wikipedia.org/wiki/Adjugate_matrix
60e.g., by considering the Jordan form of A
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polynomials Q1 and Q2. This can be done by the so-called Euclidean algorithm,
by simple manipulation of the two polynomials, we do not have to calculate the
roots.61 Applying this procedure to each entry of the matrix R(λ), we can in
principle find the minimal polynomial of the matrix A by simple operations on
its coefficients, without the need to find the eigenvalues of A. This may not
be a very efficient algorithm, but it shows that such algorithms exist. For a
deeper account of the algebra behind similar considerations you can consult for
example the textbook Algebra by S. Mac Lane and G. Bikhoff (Chapter X.8),
or, for a less abtract account, the textbook The Theory of Matrices by F. R.
Gantmacher.

As we already mentioned in lecture 25, in our textbook the minimal polynomial
is discussed in Section 2.7, where it is used for a construction of generalized
eigenspaces via a different method than the one we used in lecture 19.

Lecture 27, 4/3/2013

Real matrices with complex eigenvalues/eigenvectors.

Let us consider a real n×n matrix A. Let λ1, . . . , λn be its eigenvalues. For the
rest of the lecture we will assume that all the eigenvalues are different,62 so that
the matrix is diagonalizable when considered as a map Cn → Cn. However,
over the real numbers the matrix may not be diagonalizable, as one can see from
the simple example

J =

(
0 −1
1 0

)
. (387)

We wish to find the simplest from in which the matrix A can be presented (one
a suitable basis) over the real numbers.

Let a = a1 + ia2 ∈ C. The map z → az can be considered as a map of the 1d
complex space C into itself, and in this interpretation it is represented by the
1× 1 matrix (a). Instead of considering C as a 1d vector space over C, we can
consider it as a 2d vector space over R. We can take the basis of this vector
space to be 1 and i, and the usual decomposition z = x1 + ix2 coincides with
the representation of z in this basis. In the real coordinates x1, x2 the mapping
z → az is represented by the real 2× 2 matrix

A =

(
a1 −a2
a2 a1

)
. (388)

Note that the matrix A can be written as

A = a1

(
1 0
0 1

)
+ a2

(
0 −1
1 0

)
= a1I + a2J , (389)

61see, for example, http://en.wikipedia.org/wiki/Euclidean_algorithm
62We recall that this is the “generic case”, see lecture 14
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corresponding to the decomposition a = a1 + ia2. The matrices of this type
form a (real) algebra and the map a → ϕ(a) = a1I + a2J is an isomorphism of
algebras (over the real numbers) .63

Going back to a general real n×n matrix A above (recall that all eigenvalues of
A are assumed to be different) let us now consider a complex eigenvalue λ of A
and the corresponding eigenvector z. We assume that λ is not real, e. i. λ ̸= λ,
where the bar denotes the complex conjugate.64 We have

Az = λz, Az = λz . (390)

The last equation is obtained by simply taking the complex conjugate of the
first and taking into account that A = A, as A is real. This also reflects the fact
that the complex eigenvalues of A come in complex-conjugate pairs λ, λ. Let us
write

z = x+ iy, x, y ∈ Rn . (391)

This is the same as

x =
z + z

2
, y =

z − z

2i
. (392)

As an optional exercise you can show that the vectors x, y ∈ Rn are both non-
zero (assuming, as above, λ ̸= λ) and, moreover, linearly independent over R.
Let us denote by V the two dimensional subspace spanned by x, y (over the
reals), i. e. V = {sx + ty, s, t ∈ R} ⊂ Rn. We claim that the subspace V in
invariant under A, i. e. , A(V ) ⊂ V . To see that, we write λ = Reλ+i Imλ, λj ∈
R, and calculate

Ax =
Az +Az

2
=
λz + λz

2
= Re(λz) = Re(λ)x− Im(λ)y (393)

and, in a similar way,

Ay = Im(Az) = Re(λ)y + Im(λ)x . (394)

This shows that A(V ) ⊂ V . Moreover, the matrix of the map given by A
restricted to V is (

Reλ Imλ
− Imλ Reλ

)
(395)

This means that, in suitable coordinates, the restriction of A to V is nothing
but the real form of the map given by the multiplication by λ, see the discussion
before (388).

Applying the procedure to each complex eigenvalue/eigenvector λj , z(j) of our
matrix A (which – we recall – is assumed to be “generic”), we obtain vectors
x(j), y(j) generating two-dimensional subspaces V(j) which are invariant under A,
with V(j)∩V(k) = {0} for j ̸= k. (As an optional exercise you can verify the last

63This means that ϕ(sa+ tb) = sϕ(a) + tϕ(b) for s, t ∈ R and ϕ(ab) = ϕ(a)ϕ(b).
64If z = x1 + ix2, then z = x1 − ix2.
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condition.) In addition, we may have one-dimensional invariant subspaces Wk

associated with the real eigenvalues. In summary, we obtain a decomposition

Rn = V(1) ⊕ V(2) ⊕ . . . V(r) ⊕W(1) ⊕ . . .W(s) (396)

with dimV(j) = 2 and dimW(k) = 1, the subspaces being invariant under A.
The restriction of A to V(j) is given by matrices of the form (395), with λ
replaced by λj . the restriction of A to W(k) is given by multiplication by the
corresponding real eigenvalue.

To summarize, if λ1, λ1, λ2, λ2, . . . , λr, λr are the complex eigenvalues of A and
λ2r+1, . . . , λn are the real eigenvalues (recall that we assume they are all differ-
ent), then there is a basis in which the matrix can be written as

Reλ1 Imλ1 0 0 . . . . . . 0 0 0 . . . 0
− Imλ1 Reλ1 0 0 . . . . . . 0 0 0 . . . 0

0 0 Reλ2 Imλ2 . . . . . . 0 0 0 . . . 0
0 0 − Imλ2 Reλ2 . . . . . . 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . Reλr Imλr 0 0 . . . 0
0 0 0 . . . . . . − Imλr Reλr 0 0 . . . 0
0 0 0 . . . . . . 0 0 λ2r+1 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . . . . 0 0 0 0 . . . λn


.

(397)
As an example, one can consider an orthogonal 3 × 3 matrix Q with positive
determinant (which then has to be equal to 1, as the matrix preserves the volume
in R3). It is a good exercise to show that such a matrix always has 1 as an
eigenvalue. If x(1) is the corresponding eigenvector, the matrix Q represents a
rotation about axis x(1). If we choose a positively oriented orthogonal coordinate
system so that the x3 axis coincides with the axis of rotation, the matrix Q will
have the form  cosϕ − sinϕ 0

sinϕ cosϕ 0
0 0 1

 , (398)

where ϕ is the angle of rotation by about the axis. In this case the invariant
space V constructed above coincides with the orthogonal complement of the
axis of rotation.

In dimension n = 4 an orthogonal matrix Q with positive determinant can be
represented in a suitable orthogonal positively oriented basis as

cosϕ1 − sinϕ1 0 0
sinϕ1 cosϕ1 0 0

0 0 cosϕ2 − sinϕ2
0 0 sinϕ2 cosϕ2

 . (399)

Matrices withe nontrivial Jordan blocks over C can be considered along analo-
gous lines, with the canonical real forms becoming more complicated.
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Lecture 28, 4/5/2013

Linear equations with variable coefficients

We started discussing systems

x′ = A(t)x , (400)

as in Section 3.8., p. 186 in the textbook. We introduced the map S(t, t0) (see
formula (8.2) in the textbook), discussed the matrix M(t) (formula (8.5)), and
Proposition 8.1.

Lecture 29, 4/8/2013

Linear equations with variable coefficients (continued)

We discussed some of the properties of the systems (400) which are similar to
the case of the constant coefficients. In particular, the set of all solutions forms
a linear space of dimension n (assuming A(t) is n × n matrix). (By contrast
with the constant coefficient case, this time the space of solution is not invariant
under the translations x(t) → x(t− t0).) The Duhamel’s formula remains quite
similar, in a suitable interpretation, and we discussed its version (8.19) in the
textbook.
For typical 2×2 systems with variable coefficients (or second order scalar equa-
tions with variable coefficients) the solutions cannot be expressed in terms of
elementary functions and the equations lead to the so-called special functions.
These functions include for example the Bessel functions, the elliptic integrals,
the Airy function, the hypergeometric functions, the confluent hypergeometric
functions (Kummer’s functions), the parabolic cylinder functions, etc. A Google
search for any of these terms will take you to the corresponding Wikipedia pages,
with a good overview and additional references. In this course we will not dis-
cuss these topics, but it is good to know that this is a very well-studied classical
subject (going back for almost 300 years), with extensive literature. The subject
has also close connections to modern areas, such as group representations.

Lecture 30, 4/11/2013

Linear equations with periodic coefficients; parametric resonance

In this lecture we first discussed some useful general principles and definitions
for linear equations with periodic coefficients, and then we applied them to the
well-known example of a (linear) pendulum with a periodically varying length.

Let us consider linear systems

x′ = A(t)x (401)
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where A(t) is an n×n matrix which is a periodic function of t. This means that
for some T > 0 we have

A(t+ T ) = A(t) (402)

for each t. An important concept in the study of such systems is the mapping at
a period, defined as follows. For a given t0 and a ∈ Cn let us find the solution
of (401) with x(t0) = a and let us set Ba = x(t+ T ). As the equation is linear,
the map B (which is the mapping at period mentioned above) is linear and
hence is given by an n× n matrix, which we will also denote by B. The matrix
B can be identified with the solution operator S(t0, t0 + T ) which we discussed
in previous lectures. Due to the periodicity condition (402) we have (still for
x(t0) = a)

x(t0 + 2T ) = B2a, x(t0 + 3T ) = B3a, . . . x(t0 + kT ) = Bka . (403)

The matrix B is invertible (think of running the equation backwards) with

B−1 = S(t0 + T, t0) . (404)

Therefore
x(t0 + kT ) = Bka, k ∈ Z. (405)

The matrix B can also be obtained in the following way: we find a matrix-valued
solution X(t) of (401), i. e.

X ′(t) = A(t)X(t) , (406)

with X(t0) = I. Then B = X(t0 + T ).
We recall that the trace of a n× n matrix A is given by TrA =

∑
j ajj .

Lemma 5. For any matrix solution X(t) of (406) we have

d

dt
detX = detX TrA(t) , (407)

For a proof of the lemma see exercises 1-3 on page 190 in the textbook. The
key point is the formula

d

dt
detX = Tr [(AdjX)Ẋ] (408)

where AdjX is the so-called adjugate matrix of X, which for an invertible ma-
trix X can be identified with X−1 detX, see for example
http://en.wikipedia.org/wiki/Adjugate_matrix.
Formula (408) (also called Jacobi’s formula) can be derived in many ways.
Given (408), it is easy to establish (407):

d

dt
detX = detX Tr

(
X−1A(t)X

)
= detX TrA(t) , (409)

where we have used that Tr (PAP−1) = TrA for each non-singular matrix P .
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Lemma 5 enables us to express the determinant of the matrix of the mapping
at period as follows:

detB = exp

∫ t0+T

t0

TrA(t) dt . (410)

In particular, when TrA(t) = 0 for each t, then

detB = 1 . (411)

The eigenvalues of the matrix B are often called characteristic multipliers or
Floquet multipliers.

In the class of general systems with coefficients with period T there are no re-
striction on B, except for the condition detB > 0, which follows from Lemma 5.
This can be seen as follows: given B with detB > 0, we can find a smooth curve
X(t) in the set of invertible matrices such that X(t0) = I and X(t0 + T ) = B.
(The verification of this is a good exercise which can be simple or non-trivial,
depending on how much one knows about matrices.) One can also assume that
Ẋ = 0 in some neighborhoods of t0 and t0 + T . Letting A(t) = X(t)−1Ẋ(t) we
see from the definitions that X(t) solves (401). The function A(t) can clearly
be extended periodically to all R and we see that B is the mapping at period
of the resulting system.

Let us look in more detail at the so-called Hill’s equation

q′′ + a(t)q = 0 . (412)

We assume that a > 0 is a periodic function of t with period T . We can think
of a (linear) pendulum with length depending on time. We let

x1(t) = q(t), x2(t) = q′(t) (413)

and rewrite the equation as
x′ = A(t)x , (414)

with

A(t) =

(
0 1

−a(t) 0

)
. (415)

Note that TrA = 0 and therefore the matrix B of the mapping at period will
satisfy

detB = 1 . (416)

The classical case of a pendulum with nearly (but not exactly) constant length
is already interesting. Let us consider

a(t) = ω2
0 + ε cosω1t , (417)
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where ε is close to 0. Let us denote by Bε the matrix of the mapping at period
for a given ϵ. The matrix B0 can be easily calculated explicitly:

B0 =

(
cosω0T

1
ω0

sinω0T

−ω0 sinω0T cosω0T

)
, T =

2π

ω1
. (418)

For small ε the matrix Bε will be close to B0 and, moreover, detBε = 1. The
equation for the eigenvalues of Bε is

λ2 − λTrBε + 1 = 0 . (419)

Writing TrBε = 2bε, we have

λ1,2 = bε ±
√
b2ε − 1 . (420)

For |bε| < 1 this represents two complex conjugate roots lying on the unit circle
|λ| = 1. The powers of a matrix with such eigenvalues will stay bounded and
the value of the solution at times t0 + kT (with k ∈ Z), given by Bkε a (with
a = x(t0), as above) will exhibit an “almost periodic” behavior. We conclude
that a sufficiently small periodic perturbation of the length at frequency ω1 sat-
isfying −1 < cos 2π ω0

ω1
< 1 will not have a dramatic effect on the solution. The

solution will typically not really be periodic any longer, but will stay bounded
and its behavior will be quite regular, in some sense. On the other hand, when
b0 = cos 2π ω0

ω1
= ±1 any small perturbation of b0 = 1 to bε with |bε| > 1 will

completely change the long-time behavior: once |bε| > 1, we will have a real
eigenvalue λ of Bε with |λ| > 1 and another real eigenvalue λ̃ with |λ̃| < 1 and
there will be no bounded solutions in R. The condition b0 = ±1 corresponds to

ω0

ω1
= ±1

2
, ±1, ±3

2
, . . . (421)

If the frequency ω1 of the perturbation is close to the values where one of these
relations is satisfied, we can expect that even a small forcing at frequency ω1 can
drastically change the long-time behavior of the solutions. This is called para-
metric resonance. Everyone who has been on a swing has a practical experience
with it.

Lecture 31, 4/12/2013

Existence theorems

We started to discuss the existence theorem in Section 4.1.

Lecture 32, 4/15/2013

Existence theorems (continued)

We continued to discuss the existence theorem in Section 4.1.
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4/17/2013

Midterm 2

Lecture 33, 4/19/2013

We discussed issues concerning polynomial equations (including those which
appeared in Midterm 2).

Lecture 34, 4/22/2013

Existence Theorem; Nonlinear systems

We finished the proof of Proposition 1.1 (p.226) in the textbook. Proposition
1.2 in the book was also briefly discussed, although we did not go into too much
details.

We started discussing nonlinear systems of the form

x′ = f(x, t) (422)

starting with the autonomous case f(x, t) = f(x). In (422) we the unknown
function x = x(t) is a function from an interval I = (t1, t2) into Rn. Although
f can be formally described as a function f : Rn× I → Rn, it is better to think
of it as a vector field depending on the time t.
Let us first look at the case when f is independent of time, i. e. , f = f(x), with
no dependence on t. Equation (422) then is

x′ = f(x) . (423)

Here we can think of f(x) as an arrow at x which tells us what is the velocity of
a trajectory when it passes through the point x. This is an informal definition of
a vector field. It is useful to note how system (423) changes when we change the
coordinate x. For simplicity we will consider only linear changes of coordinates

x = Py , (424)

where P is a non-singular matrix. Replacing x by Py in (423) we obtain

Py′ = f(Py) , (425)

which is the same as
y′ = P−1f(Py) . (426)

We see that under the change of coordinates (424) the right-hand side of (423)
should be transformed to

g(y) = P−1f(Py) . (427)

Such “transformation rule” under coordinate changes characterizes vector fields.
Note that a natural transformation of a scalar function under (425) is

(x→ ϕ(x)) → (y → ϕ(Py)) (428)
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and it would look the same for an Rn valued function. On the other hand, the
transformation of vector fields, given by (427), is different by the factor P−1.
This factor exactly describes how the coordinates of the “arrow” described by
f(x) change if we use the coordinates y instead of x.

For the autonomous equations (423) one can draw phase portraits which gener-
alize those we were drawing in Lecture 4 (such as fig. 3 and fig. 4 in lecture 4).
You can take a look at the phase portraits on figs. 3.2 – 3.6 in the textbook.

Lecture 35, 4/24/2013

Gradient flows

Systems of the form
x′ = f(x) (429)

in dimension n ≥ 2 can rarely be solved in terms of elementary functions,
or integrals of elementary functions. We saw that the same is true for linear
systems with time-dependent coefficients

x′ = A(t)x (430)

when n ≥ 2. When we were dealing with equations with constant coefficients,
we might have got used to being able to write down solutions in terms of quite
explicit formulae. This is no longer possible (except in some non-typical cases)
when dealing with general systems (429) or (430), and instead of trying to get
explicit formulae for the solutions, it is often best to try to understand the
behavior of the solutions on a qualitative level, without writing down specific
formulae.

In the lecture we discussed a special class of non-linear systems of the form (429),
the so-called gradient flows. These are flows for which the vector field f is given
by

f(x) = −∇ϕ(x) , (431)

where ϕ : Rn → R is a scalar function. At a heuristic level the equation

x′ = −∇ϕ(x) (432)

describes a motion in the direction of the steepest descent of the function ϕ. In
particular, along each non-trivial trajectory the function t→ ϕ(x(t)) is decreas-
ing, as one can see from

d

dt
ϕ(x(t)) = (∇ϕ(x(t)), x′(t)) = −|∇ϕ(x)|2 . (433)

If the function ϕ satisfies
lim

|x|→∞
ϕ(x) = +∞ (434)
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and has exactly one critical point65 x, then it is easy to see that

lim
t→∞

x(t) = x (435)

for every solution of the system

x′ = −∇ϕ(x) . (436)

This statement is heuristically obvious, but it is a good (optional) exercise to
try to prove it rigorously. You may not find it trivial if you are encountering
this type of statement for the first time.66

If ϕ has several critical points, the behavior of the solutions can be more inter-
esting. We discussed the example where

ϕ : R2 → R (437)

was given by

ϕ(x1, x2) =
1

4

(
x21 + x22 − 1

)2
+ x22 . (438)

We note that
lim

|x|→∞
ϕ(x) = ∞ . (439)

Let us calculate the critical points of ϕ. The equation

∇ϕ(x) = 0 (440)

becomes
(x21 + x22 − 1)x1 = 0 , (x21 + x22 − 1)x2 + 2x2 = 0 . (441)

These represent two equations for two unknowns, and it is not hard to find
solutions: they are

x(1) = (−1, 0) , x(2) = (0, 0) , x(3) = (1, 0) . (442)

We have

ϕ(x(1)) = ϕ(x(3)) = 0 , ϕ(x(2)) =
1

4
. (443)

As ϕ ≥ 0 in R2, the functions ϕ attains its minimum at x(1) and x(3). On the
other hand, the point x(2) is a saddle point, neither a local maximum nor a local
minimum of ϕ. This is easily seen from the expansion

ϕ(x(2) + ξ) = ϕ(ξ) =
1

4
− 1

2
ξ21 +

1

2
ξ22 +O(|ξ|4) . (444)

The trajectories of the equation

x′ = −∇ϕ(x) (445)

65recall that a critical point of ϕ is any point x where ∇ϕ(x) = 0.
66Hint: show that d

dt
ϕ(x(t)) < 0 and that for any ε > 0 the trajectory will reach the set

{ϕ(x) < ϕ(x) + ε} in finite time.
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We note the symmetries

ϕ(x1, x2) = ϕ(±x1,±x2) . (446)

From the properties of the function ϕ it is not hard to see that for the solutions
x = x(t) with the initial condition x(0) we can expect

x1(0) < 0 =⇒ lim
t→∞

x(t) = x(1) , (447)

x1(0) = 0 =⇒ lim
t→∞

x(t) = x(2) , (448)

x1(0) > 0 =⇒ lim
t→∞

x(t) = x(3) . (449)

Establishing this completely rigorously requires some work, and the reader is
encouraged to do the proof as an optional exercise.

Lecture 36, 4/26/2013

Linearization at equilibria

In this lecture we discussed the linearization of a general system in Rn

x′ = f(x) (450)

at an equilibrium67 x. (Recall that x is called an equilibrium if f(x) = 0.) In
the textbook this is discussed in Section 4.3, starting on page 247. The key
point that when studying the behavior of solutions which are close to x, one
often obtains a good idea about the behavior of the solutions by linearization
of the field f(x) at x. Writing

x = x+ ξ , (451)

where ξ is assumed to be small we can write

x′ = (x+ ξ)′ = ξ′ = f(x+ ξ) = f(x) + f ′(x) · ξ +O
(
|ξ|2
)
= f ′(x) · ξ +O(|ξ|2) .

(452)
Letting A = f ′(x), we see that for small ξ the leading part of the equation for
ξ is

ξ′ = Aξ , (453)

which is an equation with constant coefficients. This way the equations with
constant coefficients appear in the analysis of non-linear problems. In the lecture
we calculated the matrix A for the gradient system we studied last time. If all
the eigenvalues of A lie in the half-plane

{z ∈ C , Re z < 0} , (454)

then all the solutions of the linearized system approach 0 as t→ ∞, as we have
seen in Theorem 6. Importantly, this conclusion (in its natural modification)

67Also called a critical point or a “rest point”
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is also true for the behavior of the non-linear system: if the real parts of all
the eigenvalues of the matrix f ′(x) are strictly negative, then any solution of
the system starting in a sufficiently small neighborhood of x converges to x as
t → ∞. We will discuss this important result and its generalizations in more
detail next time.

Lecture 37, 4/29/2013

Stability

Let us consider an autonomous system

x′ = f(x) (455)

in Rn, and let x be an equilibrium of the system, i. e. we have

f(x) = 0. (456)

For simplicity we assume that the function f is smooth, although this assump-
tion can be weakened. We will discuss the notion of stability if the equilibrium
x.

We say that x is Lyapunov stable if for each ε > 0 there exists δ > 0 such that
for each |x0−x| < δ the trajectory x(t) with x(0) = x0 will satisfy |x(t)−x0| < ε
for each t > 0.

We say that x is asymptotically stable if there exists δ > 0 such that for each
|x0 − x| < δ the trajectory x(t) with x(0) = x0 satisfies

lim
t→∞

x(t) = x . (457)

We say that x is exponentially stable if there exists δ > 0 , C > 0 and ε > 0
such that for each |x0 − x| < δ we have

|x(t)− x0| ≤ Ce−εt t ≥ 0. (458)

Various variants of these terms may be used. For example, some authors may
use “stable” in place of “Lyapunov stable”, or “exponentially asymptotically
stable” in place of “exponentially stable”.

Example 1
Consider the harmonic oscillator described by

x′ = Ax, A =

(
0 1

−ω2 0

)
, ω > 0 . (459)

The equilibrium x =

(
0
0

)
is Laypunov stable but not asymptotically stable:

once disturbed, the system will not return to the equilibrium, but will oscillate
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around it. The amplitude of these oscillations will be small if the original
disturbance is small.

Example 2
Consider the equation

x′ = −x3 (460)

for a scalar real-valued function x(t). The general solution on (0,∞) is

x(t) = ± 1√
2(t+ t0)

, t0 ≥ 0 . (461)

We see that the the equilibrium x = 0 is asymptotically stable, but not expo-
nentially stable.

Theorem 6 from lecture 23 can be re-formulated in the following way:

Let A be an n × n matrix. The equilibrium x = 0 of the system x′ = Ax is
exponentially stable if and only if all eigenvalues of A have strictly negative real
parts.
There is an important generalization of this theorem to general (not necessarily
linear) autonomous systems:

Theorem 7. (Sufficient condition for exponential stability of equilibria)
Let x be an equilibrium of a general system x′ = f(x) with a smooth68 f . Let
A = f ′(x) be the matrix { ∂fi∂xj

(x)}ni,j=1. The following statements are equivalent.

(i) x is exponentially stable.

(ii) The equilibrium ξ = 0 of the linearized system ξ′ = Aξ is exponentially
stable.

(iii) All eigenvalues of A have strictly negative real parts.

This is one of the most important results covered in this course.

In the remainder of the lecture we started discussing the predator-prey model
found on page 332 in the textbook (the Volterra-Lotka system).

Lecture 38, 5/1/2013

Volterra-Lotka model, Hamiltonian systems
We continued the discussion of the Volterra-Lotka model, p. 332 in the textbook.
We noted that the system can be rewritten in the following way

ẋ = xy
∂H

∂y
, ẏ = −xy∂H

∂x
, (462)

where
H(x, y) = σy + κx− a log y − r log x . (463)

68This condition can be relaxed, but we are not aiming for the most general formulation.
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This is reminiscent of the Hamitonian equations in Classical Mechanics. Re-
call that for a particle moving along a curve parametrized by its length x, we
have kinetic energy Ekin = 1

2m|ẋ|2, where m is the mass of the particle. The
potential energy is assumed to be given by V (x), a smooth function of x. The
(generalized69) momentum then is p = mẋ. The total energy of the system then
is

H(x, p) =
p2

2m
+ V (x) , (464)

the Hamiltonian function, and the equations of motion can be written in the
Hamiltonian form:

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
. (465)

In this form of the equations the conservation of energy

dH

dt
= 0 (466)

is transparent, as the vector

(
ẋ
ṗ

)
is obtained by rotating the vector ∇H in by

π
2 in the clock-wise direction, so that it is tangent to the level sets {H = const}.
The direct evaluation of (466) of course confirms this:

dH

dt
=
∂H

∂x

∂H

∂p
+
∂H

∂p

(
−∂H
∂x

)
= 0 . (467)

Therefore in integral curves of (465) are the level sets of H (as the plane (x, p)
is two-dimensional). The same considerations of course apply to (462) and we
see that the integral lines of the Volterra-Lotka system are level the sets of H.
This can be of course arrived at by many other ways.
We note that if we let ξ = log and η = log y (assuming x, y > 0) then (462)
becomes

ξ̇ =
∂H

∂η
, η̇ = −∂H

∂ξ
, (468)

where
H = σeη + κeξ − aη − rξ . (469)

Next time we will discuss predator-prey models which are no-longer “Hamilto-
nian” but are exhibit some “friction” (in the language of Mechanics), so that
the solutions converge to an equilibrium. In such systems one can often find a
Laypunov function, which is a function on the phase-space of the given system
which is decreasing along the trajectories (somewhat similarly to the energy
decreasing along the solutions of system with friction, although in general the
Laypunov function, if it exists, does not have to have a simple physical inter-
pretation). One such model is given by system (13.24) in the textbook (and it
is analyzed in the book in some detail).

69The curve does not to be a straight line (as long as x is the length parameter). This last
assumptions can be also removed, but then our definition of the generalized momentum needs
to be adjusted.
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Lecture 39, 5/3/2013

Flow maps, Preservation of volume, Poincaré recurrence

Let us consider an autonomous system in Rn given by

ẋ = f(x) , (470)

with a smooth f . Let us assume that for each x ∈ Rn the solution y = y(t) of
ẏ = f(y) with the initial condition y(0) = x exists for all t ∈ R. We define a
family of maps

ϕt : Rn → Rn (471)

by
ϕt(x) = y(t) , y(0) = x . (472)

In other words, ϕt(x) is the point where the solution will be at time t assuming
the solution is at x at time t = 0. The definitions imply that for the special
case of linear systems

ẋ = Ax , (473)

where A is an n× n matrix (independent of time) we have

ϕt(x) = etAx , x ∈ Rn, t ∈ R . (474)

Under our assumptions the maps ϕt are diffeomorphisms of Rn, with(
ϕt
)−1

= ϕ−t . (475)

More generally, it is easy to verify that

ϕt1 ◦ ϕt2 = ϕt1+t2 . (476)

The formula
et1Aet2A = e(t1+t2)A . (477)

can be thought of as a special case of (476) . We say that a diffeomorphism
ϕ : Rn → Rn is volume preserving if for each measurable set E ⊂ Rn we have

|ϕ(E)| = |E| , (478)

|X| denotes the n−dimensional Lebesgue measure of the set X (assuming X is
measurable). We have the following important result:

Lemma 6. Let f and ϕt be as above. The following conditions are equivalent:

1. ϕt is volume-preserving for each t ;

2. det∇ϕt(x) = 1 for each x ∈ Rn and each t ∈ R;

3. div f = ∂f1
∂x1

+ ∂f2
∂x2

+ · · ·+ ∂fn
∂xn

= 0 in Rn.
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If any of these conditions is satisfied, we say that the flow ϕt is volume-preserving.
It is easy to generalize this notion to the case where the measure we consider
is not the Lebesgue masure, but, say, the measure given by the density ρ(x) dx,
where ρ > 0 in Rn is a sufficiently regular function.

Although the proof of the lemma is not difficult, we will not discuss it at this
point. As an exercise you can verify the lemma for linear systems with f(x) =
Ax for some n× n matrix A.

An important fact of Classical Mechanics is that the flows given by Hamiltonian
systems are volume preserving. More precisely, let us consider a system of
Classical Mechanics with n degrees of freedom. We know that such system is
governed by the so-called Hamiltonian equations

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
. (479)

We have the classical Liouville Theorem:

Theorem 8. (Liouville Theorem) The flow generated by (479) is volume-preserving
in the 2n−dimensional phase-space x1, . . . , xn, p1, . . . , pn.

The proof follows easily from Lemma 6 and (479) and is left to the reader as an
exercise.

The preservation of volume by the flow map has important consequences for the
dynamics of the system. For example, one sees easily that a system with volume-
preserving flow cannot have an equilibrium which is asymptotically stable.

One of the best-known results for volume-preserving flows is the following:

Theorem 9. (A version of the Poincaré Recurrence Theorem) Let Ω ⊂ Rn be
an open set of finite volume and let ϕ : Ω → Ω be a volume-preserving diffeo-
morphism. Then for any measurable set O ⊂ Ω the following statement is true:
for almost every x ∈ O the sequence ϕk(x) , k = 1, 2, . . . will return to O, in
the sense that ϕk1(x) ∈ O for some k1 = k1(x) ≥ 1.

Remarks:
1. One can show under the same assumptions that almost every point of O will
in fact return to O infinitely often.
2. To appreciate the unexpected nature of the statement, think of ϕ as describing
the evolution of a complicated mechanical system in some given period of time,
and think of O as a very small neighborhood of a point in the phase-space.

Sketch of proof of the theorem: Let E ⊂ O be a set with |E| > 0 such that
ϕk(E) ∩ O = ∅ for k = 1, 2, . . . . The sets all ϕk(E) have volume |E| > 0, and
are contained in Ω. As |Ω| < +∞, we see that |ϕk1(E) ∩ ϕk2(E)| > 0 for some
1 ≤ k1 < k2, and this easily leads to a contradiction.
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Remark: In some sense, the recurrence theorem can be thought of as a gener-
alization of the following easy fact: Let X be a finite set and let ϕ : X → X be
a bijective mapping. Then there exists an m ∈ N such that ϕm(x) = x for each
x ∈ X.

Lecture 40, 5/6/2013

2d volume-preserving flows; modified Volterra-Lotka

Let f(x) =

(
f1(x1, x2)
f2(x1, x2)

)
be a vector field inR2 generating a volume-preserving

flow. By Lemma 6 from the last lecture this is equivalent to the condition

div f(x) = 0 in R2 . (480)

Such fields can be characterized as follows:

Lemma 7. Let f be a smooth vector field in R2. Then the following conditions
are equivalent:

(i) div f = 0 in R2 ;

(ii) There exists a smooth function ψ on R2 such that

f =

(
∂ψ
∂x2

− ∂ψ
∂x1

)
. (481)

The function ψ is called the stream function of the vector field f .

Proof of the Lemma
The implication (ii) =⇒ (i) is a direct consequence of the identity

∂

∂x1

∂

∂x2
ψ =

∂

∂x2

∂

∂x1
ψ (482)

The implication (i)=⇒ (ii) follows from the following statement which is proved
in multi-dimensional calculus:
A smooth vector field f in Rn is a gradient field, i e. f = ∇ϕ for some function
ϕ : Rn → R if and only if

∂fi
∂xj

=
∂fj
∂xi

, i, j = 1, 2, . . . n . (483)

If div f = 0 the vector field g defined by g1 = −f2 and g2 = f1 satisfies

∂g1
∂x2

=
∂g2
∂x1

(484)

and hence g = ∇ψ for some function ψ. This is exactly (481).
The stream function ψ is determined by the vector field f uniquely up to a
constant.
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If f is a vector field in R2 with div f = 0 and ψ is its steam function and x(t)
is a solution of x′ = f(x), then

d

dt
ψ(x(t)) = 0 . (485)

In other words, the steam function is constant on the solutions of x′ = f(x).
Therefore the level sets {ψ = c} give us the trajectories of the system x′ = f(x).
We conclude that trajectories of 2d autonomous volume-preserving flows must
have a relatively simple structure.

In the second part of the lecture we discussed the modification of the Volterra-
Lotka model presented by (13.24) in the textbook, following the presentation in
the textbook.

Lecture 41, 5/8/2013

Predator Prey models, Long-time behavior of solutions of 2d dynam-
ical systems .

We finished the discussion of the system (13.24) in the textbook. We informally
discussed the long-time behavior of the solutions of the 2d autonomous systems
(Poincaré-Bendixon theorem, etc.), see Section 4.12 in the textbook.

Lecture 42, 5/10/2013

The possibility of “chaos” in 3d non-linear systems; Lorenz system;
Lorenz attractor

We discussed the possible chaotic behavior of 3d systems and one of the famous
examples - the Lorenz system.
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