
Math 5525 Homework Assignment 3 - solutions Spring 2013

1. Let us consider for example A =

(
0 1
0 0

)
and B =

(
0 0
1 0

)
. Then

etA =

(
1 t
0 1

)
, etB =

(
1 0
t 1

)
and etAetB =

(
1 + t2 t

t 1

)
. Let C =

A+B. Then C2 = I and therefore et(A+B) = etC = I + tC + t2

2! I +
t3

3!C + . . . =(
cosh t sinh t
sinh t cosh t

)
. We see that etAetB ̸= et(A+B) for each t ̸= 0.

In the context of this problem one should mention the following classical cal-
culation. Let A,B be any two n × n matrices. Expanding the exponentials,
we obtain etAesB − etA+sB = st

2 (AB − BA) + O(t2 + s2)
3
2 , s, t → 0 . We see

that for small s, t the left-hand side can vanish only when AB − BA = 0, i.
e. the matrices A,B commute. Therefore for any two non-commuting matrices
A,B and sufficiently small s, t ̸= 0 the matrices tA, sB give an example with
the desired property.

2.

Matrix A1

det(A1 − λI) = (2 − λ)λ2. Hence the eigenvalues are λ1 = 2 and λ2 = λ3 = 0.

The equation (A−2I)x = 0 is easily seen to be satisfied by x(1) = e2 =

 0
1
0

.

From general theory we know that in the situation above the eigenspace of λ1

must be one-dimensional, and hence, up to a multiplicative factor, e2 is the only
eigenvector corresponding to λ1 = 1. This is of course seen in many other ways.
The matrix A1−λ2I = A1−0I = A1 has rank two, and hence there is only one-
dimensional eigenspace associated with the double eigenvalue 0. The eigenvector
can be obtained by solving A1x = 0 and is given (up to a multiplicative factor)

by x(2) =

 1
0

−1

 .

Matrix A2

det(A2 − λI) = (1 − λ)2(2 − λ). The eigenvalues therefore are λ1 = 2 and
λ2 = λ3 = 1. The eigenvector corresponding to λ1 is easily seen to be x(1) = e2
and the eigenvector corresponding the λ1 = 1 is easily seen to be x(2) = e1.

Matrix A3

det(A3 − λI) = (1 − λ)3 . Hence we have λ1 = λ2 = λ3 = 1. The eigenspace is

easily seen to be one-dimensional, spanned by x(1) =

 1
0

−1

. The dimension
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of the eigenspace corresponding to an eigenvalue λ is called the geometric mul-
tiplicity of λ.

We recall that the multiplicity of the eigenvalue taken as the multiplicity of the
root of the characteristic polynomial is called the algebraic multiplicity.

3. For each of the matrices above and each of the eigenvalues λ the dimension
of the kernel of A−λI is one. In other words, all eigenspaces of all the matrices
are one-dimensional, or, equivalently, the geometric multiplicity of each of the
eigenvalues is 1. Therefore in the Jordan canonical form of each of the matrices
each Jordan cell is “full”, of the form1 Jk(λ), where k is the algebraic multiplicity
(=the multiplicity of the eigenvalue taken as the multiplicity of the root of
the characteristic polynomial). This means that the minimal polynomials of
A1, A2, A3 coincide with their characteristic polynomials.

We now calculate the generalized eigenspaces.

Matrix A1

We solve (A1 − 0I)x(3) = x(2) (where x(2) was determined above). The general-
ized eigenspace of the double eigenvalue 0 will then be given by the linear span
of x(2) and x(3). (Note that x(3) is determined only up to tx(2), t ∈ C.) One

easily sees that one can take for example x(3) =

 1
2
0
1
2

 .

Matrix A2

The generalized eigenspace of the double eigenvalue 1 will be spanned by x(2)

and a vector x(3) with (A2 − I)x(3) = x(2). One can take for example x(3) = e3.

Matrix A3.
The generalized eigenspace of the triple eigenvalue 1 will be all C3. For the
later use we calculate vectors x(2), x(3) with (A3 − I)x(2) = x(1) and
(A3 − I)x(3) = x(2) . It is easy to check that one can take for example

x(2) =

 0
1
2
0

 and x(3) =

 1
12
0
1
12

.

4. The Jordan forms2 are

 2 0 0
0 0 1
0 0 0

 for A1,

 2 0 0
0 1 1
0 0 1

 for A2, and 1 1 0
0 1 1
0 0 1

 for A3 , each taken with respect to the basis of the generalized

1See p. 63 of the Lecture Log, formula (334).
2We note that, in suitable interpretation, A2 actually already is in a Jordan form so the

manipulations of A2 below are not really necessary. The plane spanned by the x1, x3 axis is
invariant under A2 and the restriction of A2 to that plane is a Jordan block. In addition e2
is an eigenvector of A2.
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eigenvector x(1), x(2), x(3) calculated above for the corresponding matrix. In
other words, we have

A1 =

 0 1 1
2

1 0 0
0 −1 1

2

 2 0 0
0 0 1
0 0 0

 0 1 1
2

1 0 0
0 −1 1

2

−1

,

A2 =

 0 1 0
1 0 0
0 0 1

 2 0 0
0 1 1
0 0 1

 0 1 0
1 0 0
0 0 1

−1

,

A3 =

 1 0 1
12

0 1
2 0

−1 0 1
12

 1 1 0
0 1 1
0 0 1

 1 0 1
12

0 1
2 0

−1 0 1
12

−1

.

5∗. Recalling the formula for etJk(λ) (see, for example, the lecture log, (362),
p. 68), we obtain

etA1 =

 0 1 1
2

1 0 0
0 −1 1

2

 e2t 0 0
0 1 t
0 0 1

 0 1 1
2

1 0 0
0 −1 1

2

−1

,

etA2 =

 0 1 0
1 0 0
0 0 1

 e2t 0 0
0 et tet

0 0 et

 0 1 0
1 0 0
0 0 1

−1

,

etA3 =

 1 0 1
12

0 1
2 0

−1 0 1
12

 et

 1 t t2

2
0 1 t
0 0 1

 1 0 1
12

0 1
2 0

−1 0 1
12

−1

.

We calculate  0 1 1
2

1 0 0
0 −1 1

2

−1

=

 0 1 0
1
2 0 −1

2
1 0 1

 ,

 0 1 0
1 0 0
0 0 1

−1

=

 0 1 0
1 0 0
0 0 1

 ,

 1 0 1
12

0 1
2 0

−1 0 1
12

−1

=

 1
2 0 −1

2
0 2 0
6 0 6

 ,

and obtain

etA1 =

 1 + t 0 t
0 e2t 0

−t 0 1− t

 ,
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etA2 =

 et 0 tet

0 e2t 0
0 0 et

 ,

etA3 = et

 1 + 3t2 2t 3t2

3t 1 3t
−3t2 −2t 1− 3t2

 .

6∗. There are several ways to prove the identity.

Proof 1:
We have d

dt (e
−tA) = −Ae−tA and hence

∫∞
0

−Ae−tA dt =
∫∞
0

d
dt (e

−tA) dt =

etA|t=∞
t=0 = −I, as limt→∞ e−tA = 0. This is the same as

∫∞
0

Ae−tA = I and
multiplying this identity by A−1 we obtain the result.

Proof 2:
Let us consider the equation x′ = −Ax+b for a constant vector b. This equation
has a steady state solution x = A−1b. By Theorem 6 in lecture 23 (see the
lecture log) and our assumptions we know that every solution approaches x as
t → ∞. From the Duhamel’s formula we have

x(t) = e−tAx(0) +

∫ t

0

e−(t−s)Ab ds = e−tAx(0) +

∫ t

0

e−sAb ds . (1)

Taking the limit t → ∞ we see that

A−1b = x =

∫ ∞

0

e−sAb ds . (2)

The validity of (2) for each b ∈ Cn which we just established is clearly equivalent
to the formula in the problem.

Proof 3:
The validity of the formula for A is equivalent to its validity for PAP−1 for any
non-singular matrix P . Hence we can assume without loss of generality that A is
in the Jordan canonical form. We see that it is enough to establish the formula
for one Jordan block Jk(λ) (with λ > 0). Writing Jk(λ) = λI +M (so that M
is the k×k matrix with 1’s just above the diagonal and zeroes everywhere else),

we have e−t(λI+M) = e−λt(I − tM + . . .+ (−1)k−1 tk−1

(k−1)!M
k−1. Integrating be-

tween 0 and ∞ while using
∫∞
0

tle−λt dt = λ−(l+1)l! we obtain
∫∞
0

e−t(λI+M) =

λ−1
(
I − λ−1M + λ−2M2 − . . .+ (−1)k−1λ−(k−1)Mk−1

)
= (λI +M)

−1
, con-

firming the formula.
One can in fact avoid using the Jordan blocks of size > 1 by using genericity:
we note that both sides of the fomula are continuous in A in the set of matrices
with positive eigenvalues. Therefore it is enough to establish the formula only in
the generic case when A is diagonalizable, when the above calculation reduces
to the particularly simple case k = 1.
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