
MATH 5587 LECTURE LOG

Lecture 1, 9/5

In the first lecture, the history of the subject was briefly discussed and a few
examples of PDEs were mentioned. One of the important examples is the heat
equation, which, in one dimension, reads

∂u

∂t
= k

∂2u

∂x2
. (1)

We started the derivation of the equation (Section 1.2 of the textbook).

Independently of the derivation of the equation, we did the following calculation,
based on an application of the chain rule: Assume a function u(x, t) satisfies
the heat equation in the domain {(x, t) , x ∈ (a, b) , t ∈ (t1, t2)}, and let λ be a
positive number. Then the function u(xλ ,

t
λ2 )} satisfies the heat equation in the

domain {(x, t) , x ∈ (λa, λb) , t ∈ (λ2t1, λ
2t2)}. This is an important property of

the heat equation, which is very useful to keep in mind for practical applications.
I recommend that you go through this calculation in some detail.

Here is a somewhat more difficult calculation you can do as an optional exercise to practice the
chain rule. Assume u(x, t) satisfies the heat equation (1) in the domain (−∞,∞)×(0,∞). We
will think of u(x, t) as temperature. We now watch the temperature from another coordinate
system (x̃, t̃), which is related to the system (x, t) by

x̃ = x− ct , t̃ = t , (2)

where we can think of c as a velocity. In the new coordinates, the temperature will be described
by

ũ(x̃, t̃) = u(x̃+ ct̃, t̃) . (3)

What is the equation satisfied by ũ, in the coordinates x̃, t̃? If c 6= 0, it will not be the

original heat equation, the motion of the coordinate system will introduce a new term into

the equation. It is instructive to consider also the case k = 0.

Lecture 2, 9/7

We finished the derivation of the heat equation (in dimension 1), and discussed
the role of the boundary conditions (Section 1.3 in the textbook.) We calculated
the steady ( = time-independent) solutions of

∂u

∂t
= k

∂2u

∂x2
+ f (4)

in (0, L) with constant f (i. e. independent of x and t), with the boundary
conditions u(0, t) = u(L, t) = 0 and also the boundary conditions

u(0, t) = 0 ,
∂u

∂x
(L, t) = 0 ,
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(one insulated end). We also discussed the situation when both ends are insu-
lated, i. e.

∂u

∂x
(0, t) =

∂u

∂x
(L, t) = 0

when a steady solution cannot exist for a constant f unless f = 0. (Note that
when f = 0 and the boundary is insulated, then any constant is a steady-state
solution, so the steady state is not unique.)

For solutions on the whole real line (x ∈ (−∞,∞) ) we discussed (as an optional
material which may not be in the textbook) the formal formula

u(x, t) = etk∂
2
xu0(x) =

(
I +

tk∂2x
1!

+
(tk∂2x)2

2!
+

(tk∂2x)3

3!
+ . . .

)
u0(x) . (5)

We noticed that the series on the right-hand side is finite when u0(x) is a
polynomial, and hence in this case the formula gives a polynomial in x and t
which solves the heat equation (1) and satisfies u(x, 0) = u0(x).

A simple but useful exercise concerning the boundary conditions is the following.
If u solves (1) in (0, L) and both ends are insulated, then the quantity

U =
1

L

∫ L

0

u(x, t) dx

is independent of time. As the integral is proportionate to the thermal energy in
the rod and both ends are insulated, this is to be expected, but it is important
to confirm it directly from the equation.

You can also try to show that in the same situation the quantity∫ L

0
(u(x, t)− U)2 dx

is decreasing, which is consistent with the intuitive expectation that u should be approaching

U as t→∞ (when the ends are insulated). This calculation is more difficult, one has to use

integration by parts.

Lecture 3, 9/12

We essentially went through the material in Sections 2.1 – 2.5. in the textbook.

In addition, we compared the heat equation in the interval (0, L) with the bound-
ary conditions u(0, t) = u(L, t) = 0 with the following situation in the theory of
ordinary differential equations.1

1The material below can be at this point considered as optional for this class, but I believe
it is good to understand it, as it is a finite-dimensional version of the (infinite-dimensional)
PDE situation we are dealing with in connection with the heat equation (and it applies to
other equations, too).
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Consider a system of n linear differential equation for variables x1(t), . . . , xn(t)
given by

ẋ1 = a11x1 + a12x2 + · · ·+ a1nxn
ẋ2 = a21x1 + a22x2 + · · ·+ a2nxn

. . .
ẋn = an1x1 + an2x2 + · · ·+ annxn ,

(6)

where the matrix A = (aij)i,j=1,2,...,n is considered as given. We will write (6)
in a compact form as

ẋ = Ax , (7)

where x is considered as a function of variable t with values in Rn. We should
think of x as a column vector, so that Ax is a compact notation for the product

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
an1 an2 . . . ann




x1
x2
. . .
xn

 . (8)

Assume now that the matrix A is symmetric, i. e. aij = aji , i, j = 1, 2, . . . , n.
An important theorem in linear algebra says that there is an orthonormal ba-
sis of Rn in which A is diagonal. Let us denote the vectors of this basis as
b(1), b(2), . . . , b(n). (We think of these as column vectors.) In this basis the
matrix A becomes 

λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . . . . . . .
0 0 0 . . . λn

 , (9)

where λ1, λ2, . . . , λn are real numbers.2 This means that that

Ab(k) = λkb
(k) , k = 1, 2, . . . , n . (10)

We can change variables in equation (7) to y1, y2, . . . , yn by setting

x = y1b
(1) + y2b

(2) + · · ·+ ynb
(n) . (11)

In the new variables yj the equation (7) is3

ẏ1 = λ1y1 ,
ẏ2 = λ2y2 ,

. . .
ẏn = λnyn ,

(12)

2 In many software packages, such as Matlab or Mathematica you have matrix functions
which find both the eigenvectos and the eigenvalues of a given matrix A fairly quickly and
with good precision. For having λ1, . . . , λn real and b(1), . . . b(n) mutually orthogonal, the
assumption that A be symmetric is important.

3This can be seen for example by replacing by substituting the right-hand side of (11) into
equation (7).

3

https://en.wikipedia.org/wiki/Spectral_theorem
https://en.wikipedia.org/wiki/Orthonormal_basis
https://en.wikipedia.org/wiki/Orthonormal_basis


for which one can easily write down the general solution:

y1 = c1e
λ1t ,

y2 = c2e
λ2t ,

. . .
yn = cne

λnt ,

(13)

where c1, c2, . . . , cn are constants. Hence from (11) we see that

x = c1e
λ1tb(1) + c2e

λ2tb(2) + · · ·+ cne
λntb(n) . (14)

This should be compared with expressions of the form

u(x, t) = B1e
λ1tφ(1)(x) +B2e

λ2tφ(2)(x) + . . . (15)

for the solutions of the heat equation discussed for example in subsection 2.3.5
of the textbook (and which we also discussed in class).

There is a finite-dimensional approximation of the heat equation which is of the
form (7). (This is related to numerical methods discussed in the textbook in
Chapter 6.) To consider one of the simplest finite-dimensional approximations
of the heat equation in (0, L) with the zero boundary condition on both ends,
let us choose a natural number N and set

x0 = 0, x1 =
L

N
, x2 =

2L

N
, . . . , xN = L , (16)

and also

U1(t) = u(x1, t), U2(t) = u(x2, t), . . . , UN−1(t) = u(xn−1, t) . (17)

If we approximate the second derivative ∂2u/∂x2 at xj by a difference quotient,
such as4

∂2u(xj , t)

∂x2
∼ Uj+1(t)− 2Uj(t) + Uj−1(t)

h2
, h =

L

N
, (18)

the heat equation
∂u

∂t
=
∂2u

∂x2
(19)

can be approximated as
U̇ = AU , (20)

where A is an (N − 1)× (N − 1) matrix given by

A = h−2


−2 1 0 0 . . . 0

1 −2 1 0 . . . 0
0 1 −2 1 . . . 0

. . . . . . . . . . . . . . .
0 0 0 . . . −2 1
0 0 0 . . . 1 −2

 (21)

4The one we use here is perhaps the simplest one which works, but it is not the only one
which can be used. Higher precision can be achieved by more sophisticated approximations.
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As an optional exercise, you can check with Matlab or Mathematica how the
eigenvectors and eigenvalues of this matrix look for some values of N (such
as N = 100 or N = 200). It turns out that in this example one can also
compute the eigenvectors explicitly, without a computer, they are still given by

U
(m)
j = sin (λ̃mxj) for suitable λ̃m. (This is also discussed in Sections 6.3.5 and

6.3.6 of the textbook, with a slightly different notation.)

In Matlab or Mathematica (and other software packages) one can solve (20) by
using the matrix function etA, although this may not be the best way of doing
it once N becomes very large. But for N ∼ 100 or so (which may be already
adequate for the heat equation in some situations) one does not have to worry
too much about the efficiency, a standard PC is fast enough to allow us to ignore
this issue in that case. Of course, this changes when we are in higher dimensions
or when N is much larger.

Lecture 4, 9/14

We discussed the orthogonality of functions (loosely along the lines of the Ap-
pendix to 2.3 on pages 54 and 56 in the textbook), and then various form of
Fourier series, see the table on page 65 of the textbook.

The textbook uses the convention in which the Fourier series for periodic func-
tions with period 2L is written as

f(x) = a0 + a1 cos
πx

L
+ b1 sin

πx

L
+ a2 cos

2πx

L
+ b2 sin

2πx

L
+ . . .

= a0 +

∞∑
n=1

(
an cos

πnx

L
+ bn sin

πnx

L

)
.

(22)

The sine series, which we used to express solutions of the heat equation in (0, L)
which vanish at the endpoints, can be thought of as a special case if (22), when
f is odd, i. e. f(−x) = −f(x). (In that case, if f is originally defined only
on (0, L), we can first extend it as an odd function to (−L,L) and then as a
2L−periodic function.)
Similarly, the cosine series (used in the textbook to express the solution in a
rod with insulated ends), can be thought of as a special case of (22), when f is
even, i. e. f(x) = f(−x).

An often-used from of the Fourier series (discussed in Section 3.6 of the text-
book) is

f(x) =

∞∑
n=−∞

cne
πinx
L . (23)

Here we again think of f as a 2L−periodic function, and we chose the normal-
ization of the coefficients which matches that of (22). In this representation the
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coefficients cn are obtained from f as

cn =
1

2L

∫ L

−L
f(x)e−

πinx
L dx . (24)

The form (23) is in some sense the most natural form of the Fourier series, at
least in the context of periodic functions. One of its advantages is that is taking
derivatives becomes particularly simple in terms of the Fourier coefficients cn:
The operation

f → ∂f

∂x
(25)

becomes just

cn →
πin

L
cn (26)

on the Fourier side. The relation between (23) and (22) can be seen either by
using the expression

eiθ = cos θ + i sin θ (27)

in (23), or the expressions

cos θ =
eiθ + e−iθ

2
, sin θ =

eiθ − e−iθ

2i
. (28)

in (22). A simple calculation then gives

c0 = a0 , cn =
an − ibn

2
, c−n =

an + ibn
2

, n = 1, 2, 3, . . . , (29)

or
a0 = c0, an = cn + c−n , bn = i(cn − c−n) , n = 1, 2, 3 . . . (30)

Note that f is real-valued if only if c−n = cn (where the bar denotes the complex
conjugation, as usual). The condition that f be odd can be expressed as c−n =
−cn and the condition for f be even can be expressed as c−n = cn.
The form (23) of the Fourier series is also important from the point of view
of the Fast Fourier transform, or FFT, which is used in computing for Fourier
series. It is one of the most important algorithms in computing, discovered in
1964, see the original paper by Cooley and Tuckey. It appears that Gauss was
aware of a similar algorithm already in 1805.

Lecture 5, 9/19

In the beginning of the class we discussed a simple Matlab program for solving
the heat equation. We noted that the method used in the program can be
applied to quite general equations with constant coefficients, if the problem can
be re-formulated in a way suitable for periodic boundary conditions.
As an optional exercise, you can try to apply the program to solve the heat
equation backwards, i. e. try to calculate from the data at t = 0 the solution
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at an earlier time t = −0.1, say. You will see that once the number of active
modes is not very small, the calculation going backward will “blow-up”. This
has to do with the fact that solving the heat equation backward in time is an
ill-posed problem. The trouble comes from the fact that the exponentials in the
formula for the solution can become extremely large if we go to negative times.
We also discussed adaptations of the method used for the heat equation to other
equations, such as the Schrödinger equation

∂u

∂t
= i

∂2u

∂x2
. (31)

As an optional (but very useful) exercise, you can think about how one would
modify the program so that it would solve the following more general equation
for complex-valued functions u:

∂u

∂t
= a

∂u

∂x
+ b

∂3u

∂x3
+ (k + ci)

∂2u

∂x2
, (32)

where a, b, c are real numbers and k > 0.
The program can also be easily modified to solve the wave equation

∂2u

∂t2
=
∂2u

∂x2
, (33)

which is discussed in Chapter 4.4 of the textbook. The change to the wave
equation is somewhat more subtle, as the wave equation is of the second orger
in t. It means the the ODE we have to solve for the Fourier coefficients will
be of the second order, and we need to specify two quantities to determine it.
This reflects the fact that for the wave equation we need to know u(x, 0) and
∂u
∂t (x, 0) to determine the evolution.
The method of separation of variables for the Laplace equation in a rectangle,
discussed in Chapter 2.5.1 of the textbook, can also be put in this framework,
and we briefly discussed this. The main difference for the Laplace equation
is that the corresponding problem we have to solve for the ODE we get for
the Fourier modes is a boundary value problem5, rather then the initial value
problem6 which appears naturally for the wave equation. See for example the
calculation on page 71 in the textbook.
At the end of the lecture we discussed briefly some issues related to the Discrete
Fourier Transformation (DFT). This material is optional.

Lecture 6, 9/21, 2017

In this lecture we discussed the material in 2.5.2 and 2.5.3 in the textbook. For
the problem discussed in 2.5.3 (the flow outside a circular cylinder) we discussed

5A typical ODE boundary value problem is: find a function y on (0, 1) such that y′′ =
4y , y(0) = 1 , y(1) = 10.

6A typical initial-value problem is: find y′′ = −4y, with y(0) = 1, y′(0) = 10 .
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the special case when the circulation vanishes. In this case the result is that the
drag force on a ball moving through an ideal fluid at constant speed vanishes.
This results, known as d’Alembert’s paradox was derived by d’Alembert around
1751, some years before the equations for the motion of the ideal fluid were
derived in a classical paper by Euler published in 1757.
The problem of determining the drag force in real fluids is much more compli-
cated, and there are still many open mathematical problems around it, such as
the regularity problem for the Navier-Stokes equations. Classical experiments
concerning counter-intuitive behavior of the drag force in certain regimes can
be seen in this old video (around 6:55) and also its part 2 (around 3:18). There
are many interesting connections to aerodynamics of sports balls, such as the
tricky behavior of knuckleballs or free kicks.

Lecture 7, 9/26/2017
(Mean value property of harmonic functions; some topics in Discrete Fourier
series)

In the first part of the lecture, we discussed topics from subsection 2.5.4 in the
textbook,“Qualitative Properties of the Laplace equation”. In particular, we
discussed the mean value property of the harmonic functions. In dimension two
the mean value property has a simple proof based on the Fourier representation
of the solutions, see the short proof on page 79 of the textbook.
The mean value property of harmonic functions holds in any dimension and is
closely related to the Shell Theorem in Newtonian gravity (and also electrostat-
ics): If we have a spherical star of a finite radius R > 0 centered at the origin
and the distribution of the mass inside the star is spherically symmetric, then
the gravitational field outside of the star (at distances > R from the origin) is
exactly the same as the gravitational field we would get from concentrating all
the mass of the star to the origin.7

The connection of such statements with the theory of the harmonic functions
in the three-dimensional space comes from the observation of P.-S. Laplace
(made before 1800) that the function u(x) = 1

|x| , where x = (x1, x2, x3) and

|x| =
√
x21 + x22 + x23 satisfies the Laplace equation

∆u = 0 (34)

in R3 \ {0}. In dimension two we have a similar result for the function u(x) =
log |x|, where x = (x1, x2) and |x| =

√
x21 + x22 . These topics are related to

Green’s functions, which we will study later, and are optional for now.
The connection to the mean value theorem is as follows. Consider two thin shells
centered as the origin, with radii 0 < R1 < R2. Assume that the shells have
some small finite thickness ε > 0 (small compared to R1). Let us consider a
smooth distribution ρε1 of a positive electric charge in the shell at distance ∼ R1,

7The statement of the shell theorem is slightly more general, in that it also makes a
statement about the field inside the star, but we will not need this.
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with total charge q (in some units). We think of ρε1 as a smooth function which
depends only on the distance from the origin, and vanishes everywhere outside
the thin shell at ∼ R1. Similarly, we can think of a spherically symmetric
distribution of negative charge at distance ∼ R2 from the origin, with total
change −q, and assume it is described by density −ρε2, which we think about as a
smooth, spherically symmetric functions vanishing outside a small neighborhood
the shell of radius R2.
Let v be the electrostatic potential generated by the distribution of charge given
by ρε1 − ρε2. We can think of v as v = v1 − v2, where v1 is the field generated
by the charge ρε1 and v2 is the field generated by the charge ρε2. There are now
3 main points from which one can see that the mean-value theorem should be
true:

(i) The potential v satisfies

−∆v = κ(ρε1 − ρε2) , (35)

where κ > 0 is a suitable constant depending on the choice of units.

(ii) The potential v vanishes outside of the ball BR2+ε. This is perhaps the
most surprising point, and it follows from the discussion above concerning
the Shell Theorem.

(iii) When f, g are smooth functions in R3 and g vanishes outside of some
bounded set, then∫

R3

f(x)∆g(x) dx =

∫
R3

(∆f(x))g(x) dx. (36)

This is obtained by integration by parts.

If now u is a harmonic function, i. e. ∆u = 0 and v is the potential above, we
obtain from (iii) (which can be applied, because v vanishes outside of BR2+ε)∫

R3

u(x)∆v(x) dx = 0 , (37)

which is the same as∫
R3

u(x)ρε1(x) dx =

∫
R3

u(x)ρε2(x) dx . (38)

Taking ε→ 0+ and then R1 → 0+, we obtain the mean value theorem.
Our point here is not present a precise proof, but the give some idea why the
mean value property of the harmonic functions can be connected to properties
of the gravitational or electrostatic potential which people understood early on.
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Representing functions in a computer

In the second part of the lecture we started discussing the Fourier series, which
are the main topic of Chapter 3 of the textbook. In fact, the topic with which
we started off concerns the Discrete Fourier Transformation, which we discussed
in connection with the Matlab code for the solution of the heat equation. This
is not in the textbook, but it is a topic which is important for Matlab and
other practical purposes, so we will discuss it, even though the material can be
considered as optional.

We will indentify 2π−periodic functions on R with functions on the unit circle
S1 in the complex plane, and will use the notation

z = eiθ . (39)

We consider N points uniformly distributed over the circle as follows. We let
w = e

2π
N and set

zk = wk , k = 0, 1, 2, . . . N − 1 . (40)

When can now represent functions f on the circle S1 in two different ways:8

(i) Represent f by its values its the points z0, z1, . . . zN−1.
Let us use the notation

f0 = f(z0) , f1 = f(z1) , f2 = f(z2) , . . . , fN−1 = f(zN−1) . (41)

This means that we represent f by the vector (f0, f1, f2, . . . , fN−1). We will
write, with some abuse of notation,

f ∼ (f0, f1, f2, . . . , fN−1) . (42)

Of course, from the point of view of Calculus, such a description of a function
is not complete, as we did not say what the values of f are at the points which
are not in our finite set z0, z1, . . . , zN−1.
Nevertheless, in practice the values f0, f1, f2, . . . , fN−1 may be the only “mea-
surements” we have about the function f , and we often represent function in a
computer by such vectors. Note that in this representation we describe f by N
numbers.

(ii) Represent f by a (finite) Fourier series, or, equivalently, as a
polynomial in z.

Let us start with the representation of f as a polynomial in z and show that
it is the same as a finite Fourier series later. Our representation will be of the
form

f(z) = c0 + c1z + c2z
2 + · · ·+ cN−1z

N−1 . (43)

8There are of course many more ways to represent functions than the two discussed here.
Deciding which representations are best in various situations and what the errors are is in fact
a huge topic which has been studied in great depth in Numerical Analysis, Signal Processing
and other areas .
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In this representation f is again represented by N numbers, this time they
are c0, c1, c2, . . . , cN−1. Note that in this representation f looks as a genuine
function from the point of view of Calculus: we have a precise rule which
apparently for any given z gives us the value of f(z). However, in practice
the terms zN−1, zN−2, . . . , zN−l for l up to ∼ N/2 should be interpreted as

z−1, z−2, . . . z−l, because we really have in mind the truncation
∑N/2
−N/2 cke

ikθ

of the Fourier series
∑∞
k=−∞ cke

ikθ. This does not make a difference on our

points z0, z1, z2, . . . zN−1, as zNj = 1, but does make a difference at most other
points. Therefore one has to be somewhat careful with the interpretation of the
polynomial (43) for z outside of the set {z0, z1, . . . , zN−1}.
Transformation between the two representations
How are the two representations of f connected? Given the vector f0, f1, . . . , fN−1,
there are many different functions f on the circle for which f(zk) = fk , k =
0, 1, 2, . . . N−1. However, there is precisely one polynomial of degree less or equal
to (N − 1) which has this property. So if we assume that f is a polynomial of
degree at most N − 1, the vector f0, f1, f2, . . . , fN−1 determines the value f(z)
uniquely at any point z. The transformation between the (f0, . . . , fN−1) repre-
sentation and the (c0, . . . , cN−1) representation of such polynomials is precisely
the Discrete Fourier Transformation.

Recalling (40), we can write

f0 = c0 + c1 + c2 + . . . + cN−1
f1 = c0 + c1w + c2w

2 + . . . + cN−1w
N−1

f2 = c0 + c1w
2 + c2w

4 + . . . + cN−1w
2(N−1)

. . . . . . . . .
fN−1 = c0 + c1w

N−1 + c2w
2(N−1) + . . . + cN−1w

(N−1)(N−1) .
(44)

This is the same as
f0
f1
f2
. . .
fN−1

 =


1 1 1 . . . 1
1 w w2 . . . wN−1

1 w2 w4 . . . w2(N−1)

. . . . . . . . . . . . . . .
1 wN−1 w2(N−1) . . . w(N−1)(N−1)




c0
c1
c2
. . .
cN−1


(45)

Denoting the N×N matrix on the right-hand side by A = A(w,N) and slightly
abusing notation by using f for the vector on the left-hand-side and c for the
vector on the right-hand side, we can abbreviate the last identity as

f = Ac . (46)

This can be thought of as the “discrete Fourier representation” of the vector f ,
and gives a rule for calculating f from c. The matrix A is invertible, with

A−1 =
1

N
A , (47)
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where the bar denotes the complex conjugation.9 (Each entry of A is the com-
plex conjugate of the corresponding entry of A.) Hence c can be calculated from
f by

c = A−1f =
1

N
Af . (48)

As already mentioned in Lecture 4, for N = 2m the matrix multiplications
in (47) and (48) can be done in about N logN steps with the Fast Fourier
Transform algorithm. This has far-reaching consequences in applications. In
Matlab these operations are performed by the fft and ifft commands, al-
though the normalization is a bit different from the one used above: fft(u)

calculates Au and ifft(u) calculates 1
NAu.

Comparison with the classical Fourier series in the textbook

To compare the representation (43) with the representation

f(θ) =

k=∞∑
k=−∞

cke
ikθ (49)

we discussed in Lecture 4, will write z = eiθ and recall that w = e
2πi
N . This

means that wN = 1. Hence if we evaluate f only on θ0 = 0 , θ1 = 2π
N , θ2 =

2·2π
N , θ3 = 3·2π

N , . . . , it is natural to replace the infinite series (49) by a finite
sum of N terms. Moreover, still assuming we only evaluate f at θ0, θ1, . . . , θN−1,
in the expression

f(θ) = c0 + c1e
iθ + c2e

2iθ + · · ·+ cN−1e
(N−1)iθ (50)

we can do the following replacements

cN−1e
(N−1)iθ ∼ c−1e

−iθ , c−1 = cN−1
cN−2e

(N−2)iθ ∼ c−2e
−2iθ , c−2 = cN−2

. . . . . .
cN−le

(N−l)iθ ∼ c−le
−liθ , c−l = cN−l .

(51)

It clearly makes sense to do it up only up to l ∼ N
2 . One should keep this

“conversion table” in mind when using the fft and ifft functions in Matlab.

Lecture 8, 9/28/2017
(More on Fourier series)

We continued to discuss the Fourier series (Section 3 of the textbook). We
focused on the complex form on (−π, π) (or on the unit circle)

f(θ) =

∞∑
k=−∞

cke
ikθ (52)

9This is in fact not difficult to prove, and for the mathematically inclined students this
may be a good exercise.
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discussed in section 3.6, see also Lecture 4. Recall that the coefficient ck can be
calculated from

ck =
1

2π

∫ π

π

f(θ) e−ikθ dθ . (53)

One of the main issues in the study of the Fourier series is their convergence.
The main theorem discussed in the textbook in this direction is the theorem on
page 89 concerning point-wise convergence of the Fourier series of a piece-wise
smooth function.
A simple rule of thumb for the convergence of the series that it converges fast
for smooth functions and not so fast for non-smooth function. For example, if
a function is not continuous as a periodic function, the Fourier series cannot
converge absolutely, in the sense that any discontinuity of the function implies
for its Fourier series that∑

k

|ckeikθ| =
∑
k

|ck| = +∞ , (54)

and therefore the point-wise convergence has to rely on suitable cancellations
in the sum.
An important property of the Fourier series (52) is the identity∫ π

−π
|f(θ)|2 = 2π

∑
|ck|2 , (55)

which follows from the othogonality of the functions eikθ:∫ π

−π
eikθeilθ dθ =

∫ π

−π
eikθe−ilθ dθ =

{
0 when k 6= l ,

2π when k = l .
(56)

Based on this one can prove (and may not be in the textbook) that for any
function f for which the integral

∫ π
−π |f(θ)|2 dθ is well-defined and finite, the

Fourier series satisfies the following:
If we denote

Snf(θ) =

k=n∑
k=−n

cke
ikθ (57)

the partial sum of the series, then∫ π

−π
|f(x)− Snf(x)|2 dθ → 0 for n→∞ . (58)

This is another type of convergence which is different from the point-wise con-
vergence (although still related), and plays an important role in the theory of
Fourier series, and PDEs in general.
We calculated the Fourier coefficients ck of the 2π-periodic function defined by

f(x) = x , x ∈ (−π, π) . (59)

13



and the periodicity condition f(x + 2π) = f(x) for x ∈ (−∞,∞). We did not
specify f(π), as this is not important for finding the Fourier series. Note that
the function is not continuous as a periodic function (no matter how f(π) would
be defined), as it has a discontinuity at x = ±π. We evaluated the integrals

ck =
1

2π

∫ π

−π
f(x)e−ikx dx (60)

by integrating by parts and obtained

ck = (−1)k
i

k
, k 6= 0 , c0 = 0. (61)

Note that we have
∑
k |ck| = +∞, as expected (given that the functions is

discontinuous as a periodic function). On the other hand, the sum
∑
k |ck|2 is

finite, as expected due to the finiteness of
∫ π
−π |f(x)|2 dx. In addition, from (55)

we get the classical identity

∞∑
k=1

1

k2
=

π2

6
. (62)

Lecture 9, 10/3/2017
(More on Fourier series; the wave equation)

In the first part of the lecture, we continued to discuss some of the topics on
Fourier series in Chapter 3.
In addition to the notion of the pointwise convergence, considered in the text-
book, there are other important notions of convergence, which we will not dis-
cuss in detail, but it is still good to known about them. Although a Fourier
series may not converge point-wise, usually it converges if we choose the notion
of convergence appropriately.
Let us illustrate this by a few examples. These are optional.

(i) It was already known to Euler that for a finite sum

f(x) =

n∑
k=−n

cke
ikx , (63)

we have ∫ π

−π
|f(x)|2 dx = 2π

n∑
k=−n

|ck|2 . (64)

This raises the following question: if we have a an infinite sequence {ck}∞k=−∞
with

∞∑
k=−∞

|ck|2 < +∞ (65)
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does the infinite series

f(x) =

∞∑
k=−∞

cke
ikx (66)

define a “genuine function”, the Fourier series of which is given by ck?
This question was only resolved in 1907 by what is now called the Riesz-Fischer
Theorem . It states that the series converges if we use a different kind of
convergence, which we mentioned in the last lecture, see (58). The proof was
made possible by the then new tool of Lebesgue integration, introduced in 1904,
which is at the basis in many advances of modern analysis.
Even after the Riesz-Fisher theorem, it was not clear what can be said about
the point-wise convergence of the Fourier series satisfying (65). This remained
open until 1966, when the question was settled by L. Carleson.

(ii) Let us consider the Fourier series (61) of the function (60) from the last
lecture:

f(x) =
∑
k 6=0

(−1)k
i

k
eikx . (67)

Can this sum be differentiated term-by term? This is discussed in the textbook
in section 3.4, and it is shown there that if we differentiate f “naively”, only as
a function on (−π, π), a term-by-term differentiation would lead to an incorrect
result.
However, there is a way to interpret the differentiation in which the term-by-
term differentiation becomes correct. This is again a topic beyond the scope of
this course, but it is good to mention it briefly. (This is of course optional). The
first important point to realize for the correct interpretation is that although f
is smooth in (−π, π), where we have f(x) = x, the function is not smooth (or
even continuous) as a periodic function in (−∞,∞). There is a discontinuity at
the points x = (2l + 1)π, where l is an integer.
How do we define f ′(x) at those points? This is a non-trivial question, which
was successfully resolved only the 1950 by the theory of distributions.10 In that
theory, the correct formula for the differentiation of f is

f ′(x) = 1− 2πδ(x− π) , (68)

where δ(x) is the so-called Dirac delta function. With these definitions the
series (67) can be differentiated term-by-term, although one still faces another
difficulty: the series which we obtain by differentiation∑

k 6=0

(−1)k+1eikx (69)

is obviously not convergent in a classical sense, so one must re-interpret the
notion of convergence, which is again done by using the theory of distributions
mentioned above.

10The theory formalized in a elegant way many observations which were known for some
time, starting with the work of Riemann, and later Heaviside, Dirac and others.
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So, overall, you see that it is a lot of work to come up with good notions of
differentiation and convergence in which the Fourier series could be differenti-
ated term-by-term, but it is possible, and in many respects the new notions of
convergence and differentiation are the right ones for the theory of PDEs.

In the second part of the lecture we starting discussing the wave equation, along
the lines of the material in Section 4. We emphasized that the behavior of the
solutions of the wave equation is quite different from the behavior of the heat
equation and the Laplace equation. While the solutions of the Laplace equation
and the heat equation in some sense “try to become constant”, the solutions of
the wave equation have a tendency to oscillate, especially in bounded domains.
The solutions do not satisfy the maximum principle, and we do not see the
“smoothing effects” which we observed for the heat and Laplace equations.
Still, at the level of calculation, one can again solve many interesting problems
by separation of variables, and the calculations are in fact quite similar to the
other equations, in some sense we just replace the functions e−λt by eiλt.

Lecture 10, 10/5/2017
(More on the wave equation)

We continued to discuss the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, (70)

which we derived as an equation for oscillations of a string. Recall that c =
√

T
ρ ,

where T is the tension of the string (the force which pulls on it), and ρ is its
density (mass per unit length).
Let us first assume that the string is parameterized by x ∈ (0, L) and that
u(0, t) = u(L, 0) = 0. The general solution of the equation in that case can be
written for example as

u(x, t) =

∞∑
k=1

Ak sin

(
πkx

L

)
sin

(
πkc(t− tk)

L

)
, (71)

where t1, t2, . . . are any numbers11 and A1, A2, A3, . . . are any numbers with for
which the series is convergent in a suitable sense. This condition is of course
somewhat vague, but at this point we do not worry about it.
We note that the time frequencies contained in the solution are

ωk =
πc

L
k , k = 1, 2, 3, . . . (72)

These are the frequencies which we will hear, when listening to the vibrations
of the string. On a guitar or violin the most audible frequency typically is

11Note that due to periodicity of sin the numbers tk can be taken from a bounded interval,
without loss of generality.
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ω1, which is usually described in term of the specific note we perceive when
listening to the vibrations. Note that when we know L and T , we can derive
the density of the string ρ from ω1. In a similar way, we can measure the
tension T by measuring ω1, L and ρ. The “overtones”, given by ω2, ω3, . . . and
their amplitudes A2, A3, . . . determine the “color” of the tone (distinguishing
the guitar from the piano, say). Our ear is not sensitive to the parameters tk,
which determine the phase shifts of the various modes.
We note that such a decompositions of small vibrations near an equilibrium is
quite general, and applies to systems described by

ẍ = Ax , (73)

where, in case of finitely many degrees of freedom, n, say, A is an n×n symmetric
matrix. If we diagonalize this matrix, the system will simplify to a set n non-
interacting oscillators, with the n−th oscillator being governed by

ÿk = −ω2
k yk , (74)

for suitable ω1, . . . , ωn , with y1, . . . , yn denoting the variables in which A is
diagonal. The general solution of (74) can be written for example as yk(t) =
Ak sin(ωk(t− tk)).

Periodic string (in x)

The wave equation can also be considered with the periodic boundary condi-
tions. In that case it is sometimes useful to use the complex form of the Fourier
representation. Let us consider the case of 2π−periodic functions (in x), for
example. In that case the general solution of (70) can be written as for example
as

u(x, t) =

∞∑
k=−∞

eikx
(
c−k e
−ikct + c+k e

ikct
)
. (75)

where c−k , c
+
k are (complex) numbers for which the series converges in a suitable

sense. (We are again a little vague on the type of convergence.) The fact that
the solution is possibly complex valued is not a problem - when we are dealing
with the classical periodic string, the physical meaning can be attached to the
real part of the solution.
Note that (75) can be written as

u(x, t) =
∑
k

c−k e
ik(x−ct) +

∑
k

c+k e
ik(x+ct) = f(x− ct) + g(x+ ct) . (76)

It is easy to verify, independently of the above considerations, that for any
(sufficiently regular) functions f, g defined on the real line, the functions f(x−ct)
and g(x + ct) satisfy the wave equation. Therefore, in the periodic case, the
general solution of (70) can be also written as

u(x, t) = f(x− ct) + g(x+ ct) , (77)
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where f, g are any “reasonable” functions. This is an important fact about the
solutions of the one-dimensional wave equation (70) in the periodic case, and it
also extends to the case of the general solution on the real line (−∞,∞).
Solutions of the form f(x − ct) can be thought of as “travelling waves”, and
represent a disturbance which travels from the left to the right at speed c,
without changing its shape.
The existence of such solution has to do with the fact that the coefficient c
is constant. When c = c(x) (as is the case when the density of the string
changes with x), such “pure” traveling waves no longer exist, as the excitations
can be reflected back at the inhomogeneities. This phenomenon can be used
for measuring many things, and also for imaging methods in medicine (X-rays,
ultrasound, . . . ), geology (inverse imaging via seismic waves), and other areas.

Lecture 11, 10/12/2017
(Equations with variable coefficients, Sturm-Liouville problems, finite-dimensional
analogues)

We started discussing the material in Section 5. The equation for the vibrations
of a string of variable density ρ(x) is

ρ(x)
∂2u

∂t2
= T

∂2u

∂x2
. (78)

The heat equation in a rod with variable heat conduction coefficient K0 =
K0(x), variable density ρ = ρ(x), and variable heat capacity c = c(x) is

c(x)ρ(x)
∂u

∂t
=

∂

∂x

(
K0(x)

∂u

∂x

)
. (79)

The consideration concerning the boundary conditions are the same as in the
case with constant coefficients. Assuming the equations are considered in (0, L),
we will consider the boundary conditions u(0, t) = 0 and u(L, t) = 0 as an
example.
We can still apply the method of separation of variables - the reason why it
still works in the two above examples (and many other examples) is that the
coefficients of the equations do not depend on time.
Let us look at the wave equation (78). Setting

u(x, t) = φ(x)h(t) (80)

we obtain
ρ(x)φ(x)h′′(t) = Tφ′′(x)h(t) , (81)

and “separating the variables”, we arrive at

h′′(t)

h(t)
=

Tφ′′(x)

ρ(x)φ(x)
= −λ , (82)
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where we put the minus sign in front of the λ so that the values of λ for which
we have solutions are positive. (Of course, if we did these problems for the first
time, we would not know that and would write (82) with λ, and then probably
change the sign later.)
This leads to an equation

h′′(t) = −λh(t) (83)

for h which we already know how to solve. The equation for φ is more compli-
cated:

φ′′(x) = −λρ(x)

T
φ(x) , (84)

with the boundry conditions φ(0) = 0 and φ(L) = 0.
This is an example of a Sturm-Liouville problem, and these problems are dis-
cussed in some detail in the textbook, in section 5.3. The main theorem is on
page 157, and we discussed some parts of it in the lecture.
The main takeaway for these problems is that the behavior of solutions is qual-
itatively similar to the case with constant coefficients, but in most cases it is
not possible to express the solutions explicitly in terms of elementary functions.
There are various special functions often introduced for the purpose of express-
ing solutions of such problems.
In the case of a homogeneous string we saw (see (72)) that the frequencies
which we hear in the oscillations are given by the multiples of a certain “base
frequency”. This may no longer be the case in the case of a string with variable
density, and the overtones which we hear in that case may be dissonant with
the base frequency.
There is a finite-dimensional analogy of some of the mathematical issues which
arise in the context of strings with variable density.12 Let A be a n×n symmetric
matrix, let M be a positive definite n × n symmetric matrix, and consider the
equation

Mẍ = Ax . (85)

We know how to approach
ẍ = Ax . (86)

In that case there exists another orthogonal basis in which A is diagonal and
the system splits into n independent simple equations of the form

ÿj = λjyj , j = 1, 2, . . . , n . (87)

Can we do the same for (85)? The answer is yes, and there are several ways of
doing it. For example, let us start by writing

ẍ = M−1Ax = Bx . (88)

The problem of comparing this equation with (86) is that the matrix B is no
longer symmetric. One of the tricks to deal with this is to use a different scalar
product. Instead of working with the usual scalar product

(x, y) = x1y1 + x2y2 + · · ·+ xnyn , (89)

12 This material is optional.
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we work with
(x, y)M = (Mx, y) =

∑
ij

Mijxjyi . (90)

It is easy to check that
(Bx, y)M = (x,By)M (91)

and hence we are back to the familiar situation of (85) (but with a new scalar
product). The basis in which B is diagonal will in general not be orthogonal for
the old scalar product, but it will be orthogonal for the new scalar product.
Another (mathematically equivalent) way to deal with (85) is the following:
First, we can write M as a square of another positive definite symmetric matrix,
which we will denote M

1
2 ,

M = M
1
2M

1
2 . (92)

This is easy to see when M is diagonal, and the general case can be reduced
to the case of a diagonal matrix, if we work in the basis in which our matrix is
diagonal.
Let us now introduce a new variable y in (85) by

M
1
2x = y , (93)

which is the same as
x = M−

1
2 y . (94)

We can then write
M

1
2 ÿ = AM−

1
2 y , (95)

or
ÿ = M−

1
2AM−

1
2 y = Ãy , (96)

where Ã = M−
1
2AM−

1
2 . The main point now is that Ã is a symmetric matrix

(with respect to the canonical scalar product (89)).
In some sense, the change of coordinates (94) enabled us to replace the expres-
sion M−1A in (88) (which may not give a symmetric matrix even when A,M

are symmetric) by the more symmetric expression M−
1
2AM−

1
2 , which does give

a symmetric matrix (under our assumptions).

Lecture 12, 10/17/2017
(Sturm-Liouville problems, finite-dimensional analogues, Rayleigh quotient)

We continued to discuss the Sturm-Liouville problems in Sections 5, and started
discussing the Rayleigh quotient, see also Section 5.6 of the textbook. Our
discussion so far mostly concerned the finite-dimensional situation.

Lecture 13, 10/19/2017
(Sturm-Liouville problems, finite-dimensional analogues, Rayleigh quotient, in-
troduction to numerical methods)
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In the first part of the lecture we continued to discuss the Rayleigh quotient
and constrained minimization of quadratic forms, first in finite dimension. The
basic points are as follows.

To each n × n symmetric matrix A = {aij} we can associate a quadratic form
qA(x) = 1

2 (Ax, x) = 1
2

∑
i,j aijxjxi. We note that q′A(x)y =

∑
i,j aijxjyi and

hence the vector of the partial derivatives {∂qA∂xi (x)}ni=1can be identified with the
vector Ax.
Let M be a strictly positive definite symmetric matrix, with the corresponding
quadratic form qM (x). The sets {x , qM (x) = const.} are ellipsoids (when the
constant is strictly positive).
It is clear that the function qA restricted to the ellipsoid {qM (x) = 1

2} attains
its minimum, assume that this at a point x. At the point x we must have

q′A(x)− λq′M (x) = 0 (97)

for some λ ∈ Rn, due to basic rules for constrained minimization using the
Lagrange multipliers. This is the same as

Ax = λMx . (98)

Minimizing qA over ellipsoids as above is the same as minimizing the function

qA(x)

qM (x)
, (99)

over Rn \ {0}. Expression (99) is sometimes called the Rayleigh quotient, and
we see from (98) (by taking the scalar product with x) that

λ =
qA(x)

qM (x)
(100)

The minimal eigenvalue of A with respect to M is given by the minimal value
of this quotient (and similarly for the maximal eigenvalue and the maximum of
the quotient). This has a number of applications, some of which we discussed.
There are also analogous considerations in the Sturm-Liouville problems, and
these are discussed in the textbook.

We started discissing the numerical methods in Chapter 6 of the textbook.

Lecture 14, 10/24/2017
(Numerical methods - a first look at their accuracy and stability)

Consider the simple (ordinary) differential equation

ẏ = ay , (101)

where y = y(t) is a function of one variable and a is a parameter. Eventually
we might want to allow complex a, but for now we can assume that a is real.
(We use he usual notation ẏ for the time derivative dy

dt .)
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We can solve this equation explicitly, the solution is

yexact(t) = eaty(0) , (102)

so there is no need to use numerical methods in this case. However, we can use
the explicit solution for analyzing numerical methods and checking how they
perform in this simple case. The information which we get from from such
an analysis turns out to be very useful. Some of the main points one has to
keep in mind in connection with numerical calculations already transpire in this
elementary example.

Let us choose a small τ > 0 and approximate (101) by

y(t+ τ)− y(t)

τ
= ay(t) . (103)

This is the same as
y(t+ τ) = (1 + aτ)y(t) , (104)

and by iterating this formula we have

y(nτ) = (1 + aτ)ny(0) . (105)

We can also write it in a different way: for t > 0 we choose τ so that nτ = t
and write

yapprox,n(t) =

(
1 +

at

n

)n
y(0) . (106)

We now wish to compare a precise solution (102) with the approximate solu-
tion (106). Let us calculate

ε(t, n) = log yexact(t)− log yapprox,n(t) (107)

for large n. Note that

yexact(t) = eε(t,n)yapprox,n(t) , (108)

so knowing ε(t, n) is enough to see what the error is. We recall that for |ξ| < 1
we have

log(1 + ξ) = 1 + ξ − 1

2
ξ2 +O(|ξ3|) , (109)

where we use the “O-notation”: O(ξ3) means that the error is below C|ξ3|
when ξ is small, where the exact value of C is not important for our argument.
Using (102)together with (106) and (109), we obtain

ε(t, n) =
1

2

(at)2

n
+O

(
|at|3

n2

)
. (110)

We see that the error approaches zero linearly in 1
n . We say that the method

is of the first order. This is only good enough when we do not need a lot of
precision.
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Assume now that we wish to apply the same method to a system

u̇ = Au , (111)

where u is a vector with r components and A is an r × r matrix. We can do
exactly the same calculation and arrive at

u(nτ) = (I + nτA)nu(0) , (112)

where I is the r × r identity matrix.

There is a hidden danger in this formula. Assume for example that A is obtained
from discretising the Laplace operator. Then it is symmetric, and by a suitable
change of coordinates it can be diagonalized, so that (111) is equivalent to

ẏk = akyk , k = 1, 2, . . . , r . (113)

Now some of the eigenvalues ak may be large negative (as is the case for the
discrete Laplacian when r is large). We have

yk(nτ) = (1 + τak)nyk(0) , (114)

and if (1 + τak) < −1, the iteration (114) will catastrophically diverge, whereas
the real solution yk(t) very quickly decays to zero. We have encountered a
numerical instability (in a severe form). In the scalar equation (101) with a
negative a one would probably never even think about choosing τ with 1+aτ <
−1, but for the system (111) something similar can happen “by accident”, as
things may no longer be as explicit as in the obvious scalar case. Clearly, for
the calculation to be reasonable, the step τ has to be chosen so that τak > −1
for all k. This is a typical stability condition. Stability conditions of one form
or another are necessary for many numerical schemes.

One can try to improve the simple scheme we discussed for example as follows.
The difference quotient in (103) is a more precise expression for the derivative
ẏ at the point t+ τ/2, rather then t. So one could try to consider

y(t+ τ)− y(t)

τ
= ay(t+

1

2
τ) . (115)

However, of our we evalue the solution on at times kτ with k = 0, 1, 2, 3, . . . , we
cannot use τ/2. We can try instead

y(t+ τ)− y(t)

τ
= a

1

2
(y(t) + y(t+ τ)) , (116)

which is the same as

y(t+ τ) =
1 + 1

2τa

1− 1
2τa

y(t) . (117)

This is the (special case of the) Crank-Nicolson scheme. In case of matrices it
amounts to

u(t+ τ) = (I − 1

2
τA)−1(I +

1

2
τA)u(t) . (118)
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As an optional exercise, you can check by a similar calculation as above that
the scheme has a higher precision than (104), the error will be of order O(n−2)
for large n. Also, for symmetric matrices with negative eigenvalues it never
becomes unstable, because ∣∣∣∣1− ξ1 + ξ

∣∣∣∣ < 1 (119)

when ξ ≥ 0.

Lecture 15, 10/26/2017

We continued to discuss stability issues for numerical schemes, and also the prob-
abilistic interpretation of a simple finite difference scheme for the heat equation
in terms of random walk, see Section 6.3.4 of the textbook.

Lecture 16, 10/31/2017
(stability of numerical methods - continuation)

Let us consider a simple transport equation

∂u

∂t
+ a

∂u

∂x
= 0 , (120)

where a ∈ R is a parameter. The solutions of this equation can be easily
characterized: they are functions of the form

u(x, t) = f(x− at) , (121)

where f is any continuously differentiable function. (Larger classes of solutions
may be considered, but this is not our focus here.) The equation can be con-
sidered on (−∞,∞), or on a circle (which is the same as on (−∞,∞) with an
extra condition u(x+ 2L, t) = u(x, t), where 2L is the length of the circle).
Equation (120) is closely related to the wave equation, due to the identity(

∂

∂t
+ a

∂

∂x

)(
∂

∂t
− a ∂

∂x

)
=

∂2

∂t2
− a2 ∂

2

∂x2
. (122)

Why would we do numerical analysis for a simple equation which we can solve
explicitly? The reason is that the equation provides a good test for numerical
methods - we can compare the exact solution (which in this case is available)
and the solution we get from computer. Lessons we learn from this comparison
can be then used for more complicated equations, such as the Navier-Stokes
equation, where more complicated versions of the transport term a∂u∂x come up.
Some of the issues which need to be addressed in the more complicated case are
already present in the simple model (120).
Assume that in the computer the function u(x, t) is represented by its val-
ues as x0 = 0, x1 = h, x2 = 2h, . . . , xn−1 = (n − 1)h, with the understand-
ing that u(xn, t) = u(x0, t). This represents the situation when the point
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x0, x1, x3, . . . xn−1 are uniformly distributed an a circle of length 2L = nh.
In this situation, our information at each time consists of the values of the func-
tion u at the point x0, x1, . . . xn−1. If we are given u(x, 0) only as the vector
u(x0, 0) = f(x0), u(x1, 0) = f(x1), . . . , u(xn−1, 0) = f(xn−1), it is not com-
pletely clear what value for u(x1, τ) we should take for τ = h

2a . The precise

solution is u(x1, τ) = f(x1 − aτ) = f(x1 − h
2 ), but we do not have access to the

value of f at f(x1− h
2 ) as we know f only at our “grid points” xk. We see that

evaluating the solution at time τ at the point xk necessarily involves some kind
of guessing what the value of f should be outside of the grid points.
As a side remark, it is worth noting that when a > 0 and τ = h

a , the exact
solution (121) satisfies

u(x, t+ τ) = u(x− h, t) , (123)

which can also be written as

u(x, t+ τ)− u(x, t)

τ
+ a

u(x− h, t)− u(x, t)

−h
= 0 , τ =

h

a
. (124)

We note that this is slightly different than the “naive” approximation

u(x, t+ τ)− u(x, t)

τ
+ a

u(x+ h, t)− u(x, t)

h
= 0 . (125)

In fact, this last approximation is dangerous, as can be seen from the following.
Evaluating u(x, t+ τ) from (125), we obtain

u(x, t+ τ) = (1 + a
τ

h
)u(x, t)− aτ

h
u(x+ h, t) . (126)

Let us see what this formula gives when u(x, 0) = eikx . Then

u(x, τ) = λku(x, 0) , λk = 1 + a
τ

h

(
1− eikh

)
. (127)

We note that the real part of λk is greater than 1, and when kh ∼ π, then in fact
λk ∼ 1 + 2a τh . This means that when we iterate the formula (126), obtaining

u(x,mτ) = λmk u(x, 0) , (128)

the solution of (126) will quickly grow. We see that the approximation (125)
leads to serious numerical instability, and this formula cannot be used in a
real computation. On the other hand, formula (124) would give reasonable
results. Note, however, that that formula has its own problems, e. g. when a
is negative. We see that the situation is quite subtle, and designing a good
numerical scheme for this problem is non-trivial. A simple stable method which
works is for example a version of the Crank-Nicolson scheme:

u(x, t+ τ)− u(x, t)

τ
+a

u(x+ h, t+ τ) + u(x+ h, t)− u(x− h, t+ τ)− u(x− h, t)
4h

= 0 .

(129)
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A slight disadvantage of this method from the computational point of view is
that in it “implicit”, i. e. computing the vector u(x, t+ τ) involves a solution of
a system of equations. Also, the scheme has some other disadvantages, but they
are not catastrophic. In general, when dealing with the simple equation (120)
in a numerical calculation, one should be careful. Often a reasonable method
to use, at least when we are dealing with periodic boundary conditions and
smooth functions, is related to discrete Fourier transformation (the so called
pseudospectral method).
Taking τ → 0+ in (129) gives

∂u(x, t)

∂t
+ a

u(x+ h, t)− u(x− h, t)
2h

= 0 . (130)

This is an example of a semi-distrete scheme, where we discretize only the spatial
variable: x is considered to be in our discrete set 0, h, 2h, . . . , (n− 1)h. The last
equation can be written as

u̇ = Au , (131)

where u is an time-dependent n−vector u0, u1, . . . , un−1 (with uk(t) = u(xk, t)
and A is the following n× n matrix

A = −a
h


0 1 0 . . . 0 0 −1
−1 0 1 . . . 0 0 0

0 −1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −1 0 1
1 0 0 . . . 0 −1 0

 (132)

One can check that the eigenvalue of this matrix are purely imaginary, so our
semi-discrete scheme is not unstable. It introduces an interesting error re-
lated to dispersion. One way to get an idea of what behavior the semi-discrete
scheme (130) will lead to is to use the following approximation: write

u(x± h, t) = u(x)± h∂u(x, t)

∂x
+
h2

2

∂2u(x, t)

∂x2
± h3

6

∂3u(x, t)

∂x3
+O(h4) , (133)

and substitute this into (130), neglecting the terms coming from O(h4). This
gives

∂u

∂t
+ a

∂u

∂x
+
ah2

6

∂3u

∂x3
= 0 . (134)

We see that the equation which we would like to model gains in this semi-discrete
approximation an additional (unwanted) term with the third derivative. The
term has h2 in front of it, so this influence vanishes as h→ 0.
As an optional exercise, you can analyze stability of the semi-discrete scheme

∂u(x, t)

∂t
+ a

u(x+ h, t)− u(x, t)

h
(135)

by looking at solutions of the form u(x, t) = c(t)eikx. Equation (135) then gives

ċ+ aλkc = 0 , (136)
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with

λk =
eikh − 1

h
, (137)

and we see that for k with eikh some distance away from 1 and a > 0 we will
have instability. This can be also seen by other ways. For example, a calculation
similar to (123) shows that if we neglect the terms of order h3, the scheme should
be have approximately as

∂u

∂t
+ a

∂u

∂x
+
ah2

2

∂2u

∂x2
= 0 , (138)

which is not a good equation to solve for in the direction of positive time when
a > 0. Note that in that case the second derivative comes into the equation
with a sign opposite to what it would be for the heat equation.

Lecture 17, 11/2/2017
(normal matrices and their diagonaization)

When we solve PDEs on a computer, one natural way to represent functions is
as vectors: a functions f(x) is represented by its values on a a set of grid points,
such as x0 = 0, x1 = h, x2 = 2h, x3 = 3h, . . . . A natural vector representing
f is has coordinates f0, f1, f2, . . . , fn−1 when we think of a periodic function
f and assume that f(x + nh) = f(x). (For 2L−periodic functions we would
take h = 2L

n so that nh = 2L.) Linear operations on vectors are usually best
described in terms of matrices.
We will consider n × n matrices, in general with entries which are complex
numbers. Let C denote the set of complex numbers and Cn the set of complex
n−vectors. By abuse of notation, such vectors will be written for example as
as z = (z1, . . . , zn), even though they should be written, strictly speaking, as
column vectors. Notice that we also changed our numbering, and our indices
for the vectors now go from 1 to n.
We define the Hermitian product of two vectors z and w in Cn as

〈z, w〉 = z1w1 + z2w2 + . . . znwn , (139)

where wj means, as usual, the complex conjugate of wj . The real part of the
Hermitian product can be thought of as the usual real scalar product in R2n,
and has the usual meaning that Re 〈 z , w 〉 = |z||w| cos θ , where θ is the angle
between the two vectors and |z|, |w| are respectively their lengths. Given a
n × n matrix A = Akl and a vector z ∈ Cn, the vector Az is defined as usual
by (Az)k =

∑n
l=1Aklzl. The adjoint matrix A∗ is defined by

〈Az , w 〉 = 〈 z , A∗w 〉 . (140)

This is the same as
(A∗)kl = Alk . (141)
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Definition

A matrix A is called normal if AA∗ = A∗A.

It is easy to see that any diagonal matrix is normal. The converse of the state-
ment is of course not correct if we formulate it naively – not every normal matrix
is diagonal. However, it become true if we include a change of coordinates:

Theorem
If a matrix A is normal, then there exists a basis of vectors mutually orthogonal
with respect to the Hermitian product, such that A becomes diagonal when
represented in this basis.

This can be thought of as an extension of the statement which we emphasized
many times - namely that each real symmetric matrix can be diagonalized in
a suitable orthogonal basis. (It is a good exercise to derive this last statement
from the above theorem.)

The theorem is in fact not hard to prove, the interested reader can find proofs
of the statement online (or in any number of textbooks).

A natural class of normal matrices is the set of unitary matrices, which are
matrices U for which U∗ = U−1. An important example of such a matrix is
the matrix of a “shift” (z1, z2, z3 . . . , zn) → (z2, z3, z4, . . . zn, z1) which can be
identified with the matrix

S =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

 . (142)

This matrix is easily seen to be unitary, and its eigenvectors and eigenvalues can
be computed explicitly: the eigenvectors are column vectors with coordinates
1, ζ, ζ2, . . . , ζn−1, where ζ is a complex number with ζn = 1. The matrix S
and and its eigenvectors are important in the analysis of difference quotient
approximations of PDEs with constant coefficients, as such approximation can
typically be expresses in terms of S. For example, the matrix S+S∗− 2I is the
discrete version of the second derivative.
The transformation between the standard canonical basis of Cn and the basis
consisting of eigenvectors of S is essentially the discrete Fourier transform.

Lecture 18, 11/7/2017
(finite elements - an elementary example)

Let us start with a simple observation concerning the elementary equation

ax = b . (143)
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If a > 0, then solving the equation is the same as finding the minimum of the
function

q(x) =
1

2
ax2 − bx . (144)

Note that q is a convex function (recall that we assume a > 0), its graph is
a parabola, q(x) → +∞ when x → ±∞, and hence q attains its minimum at
exactly one point. That point is given by the equation q′(x) = 0, which is the
same as (143).

The same applies to a more complicated equation (or, more precisely, system of
equations)

Ax = b , (145)

where A is a n × n symmetric matrix satisfying (Ax, x) > 0 for each vector
x = (x1, . . . , xn) 6= 0, and b = (b1, . . . , bn) is a given vector. (We again slightly
abuse notation by writing the vectors above as a row vectors, even though they
should really be thought about as column vectors.)

In connection with (145) we define

Q(x) = Q(x1, . . . , xn) =
1

2
(Ax, x)− (b, x) , (146)

and note that under our assumptions Q(x) → ∞ when |x| → ∞ and Q is
(strictly) convex. Hence it attains its minimum at exactly one point. At the
minimum all the partial derivatives of Q have to vanish:

∂Q

∂xi
(x) = 0 , i = 1, 2, . . . , n , (147)

and one can check that these n equations are exactly the same as the n equations
symbolized by the compact notation (145).

The takeaway from the above is that sometimes solving a system of equations
can be equivalent to finding a minimum of a function. The simplest examples
of the method of finite elements are probably best understood in this context
(when the space over which we minimize a function is itself a space of functions),
although the applicability of the method goes beyond such situations.

We will ilustrate the idea of the method on the boundary value problem

− d2

dx2
u(x) = f(x) x ∈ (a, b) , u(a) = 0 , u(b) = 0 . (148)

The analogy with the previous example is the following:

- The unknown x = (x1, . . . , xn) in (146) corresponds to the unknown func-
tion u in (148) .

- The right-hand side b in (146) corresponds to the function f in (148)

- The matrix A in (146) corresponds to the differential operator d2

dx2 in (148).
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- The “space” Rn from which we take the vectors x in (146) corresponds to
the “space of functions u on (a, b) vanishing at the end-points” in (148).

The class of functions described in the last point is not very precisely defined,
we did not say how regular these functions should be, but at this point we can
consider this as a technicality which we can neglect.

The key point now is that there is a function on the space of functions, which
we will denote by J , which is analogous to Q. It can be written as

J(u) =

∫ b

a

(
1

2
(−u′′(x))u(x)− f(x)u(x)

)
dx =

∫ b

a

(
1

2
(u′(x))2 − f(x)u(x)

)
dx .

(149)
The equality between the two integrals in (149) is valid only for functions which
are “sufficiently regular” and vanish at the endpoint of the interval, and for this
class of function one can obtain the equality by integration by parts.

The problem of solving the equation (148) is now equivalent (modulo technical-
ities) to the problem of finding the function u at which J attains its minimum,
among all sufficiently regular functions vanishing at the endpoints of the interval
(a, b).

One can see this by taking a smooth function ϕ which vanishes at the endpoint
of the interval, and calculating

d

dt
|t=0J(u+ tϕ) =

∫ b

a

(u′ϕ′ − ϕf) dx =

∫ b

a

(−u′′ − f)ϕdx , (150)

where we have again used integration by parts. If we are at a “point” (a function)
u where J attains its minimum, the derivative (150) has to vanish for each ϕ as
above, and this means that −u′′ − f = 0, which is the same as (148).

A “function on functions”, such as our J , is usually called a functional. To
solve the full problem (148), we need to minimize J over an infinite-dimensional
space of functions. The idea of the finite element method is to approximate this
problem by minimizing J over some finite-dimensional subspace of functions,
such as functions which are continuous and “piece-wise affine” with respect to
some particular partition of (a, b) into small intervals. For example, for each
positive integer n ≥ 1 we can consider the space of function Xn defined as
follows. Take n + 1 points x0 = a < x1 < · · · < xn−1 < xn = b in (a, b). A
function u is in Xn if it satisfies the following conditions

- u is continuous in [a, b].

- u(a) = u(b) = 0 .

- u is affine (i. e. of the form u(x) = aix+bi) on each interval [xi, xi+1] , i =
0, 1, . . . n− 1

It is easy to see that a function u in Xn is uniquely described by its values at
x1, x2, . . . , xn−1, and hence the space Xn has dimension n − 1. The points xi
are often chosen so that xi+1 − xi = (b− a)/n, but other choices are possible.
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Note that J is well-defined on Xn and is in fact of the form (146) on that space,
no matter how we choose the partition x0, x1, . . . , xn. (The exact form of the
matrix A will of course depend on how exactly we choose these points, but it
will always be a positive definite symmetric matrix.) Therefore the problem
of minimizing J on Xn is equivalent to solving (145) for suitable A, b. The
exact calculation of A and b may need some work, but an attractive feature of
the method is that once we choose Xn, everything lese is uniquely determined,
we do not have to make any guesses. (There are many other choices of the
finite-dimensional space we can use.)

Lecture 19, 11/14/2017
(finite elements - continuation)

Let us return to the space Xn defined at the end of the last lecture. We note
that a function u ∈ Xn is uniquely determined by its values at the points
x1, . . . , xn−1, let us denote them u1, . . . , un−1. The functional J can therefore
be considered as a function on the space of vectors in Rn−1 with coordinates
(u1, . . . , un−1). Let us calculate the equation we get from the condition that the
differential of the functional J attains its minimum on Xn at a vector u ∈ Xn

with coordinates (u1, . . . , un−1).
Note that our notation is somewhat loose: we use u for both the vector (u1, . . . , un−1)
and the function in Xn associated to it. Also, we use J for the original func-
tional, as well we for the function on Rn−1 defined by restricting J to Xn and
expressing in in the coordinates (u1, . . . , un−1) on Xn, so that for u ∈ Xn we
may write J(u) = J(u1, . . . , un−1). Such a notation has an advantage in its
flexibility, but in some situations it may have a disadvantage of being a little
ambiguous, and it works only if the reader has the same objects in mind as the
writer. Hopefully this will be the case in our situation here.
Let us fix an integer k ∈ {1, 2, . . . , n − 1}. We will calculate the equation one
gets from

d

dt
|t=0J(u+ tϕ) = 0 (151)

when we choose ϕ = ϕ(k) ∈ Xn which has values 0 at all points xi with the
exception of xk, where we will assume ϕ(k)(xk) = 1. Then (151) is the same as

∂J(u1, . . . , un−1)

∂uk
= 0 . (152)

We have

u′(x) =
ui+1 − ui

h
, x ∈ [xi, xi+1] , (153)

and

d

dx
ϕ(k)(x) =


0 x 6= (xk−1, xk+1) ,
1
h x ∈ (xk−1, xk) ,

− 1
h x ∈ (xk, xk+1) .

(154)
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We note that
∫ b
a
ϕ(k)(x) dx = h. Let us define

f̃k =
1

h

∫ b

a

f(x)ϕ(k)(x) dx . (155)

Note that f̃k gives a certain average of f at the point xk which approaches f(xk)
when f is continuous and h→ 0.
Using this notation, together with (153) and (154), the equation (151) (which
is the same as (152)) becomes

− uk−1 − 2uk + uk+1

h2
= f̃k . (156)

We recognize the expression on the left as the approximation of the operator

− ∂2

∂x2 which we have seen before.
Other choices of the finite-dimensional space which we use to approximate the
function space lead to different approximations of the operator. Note again that
once we have the functional J , our approximation of the problem is uniquely
determined by the choice of X, all the other details are determined by the
method.

Other boundary conditions

The method is also quite flexible as far as the boundary conditions are concerned.
Let us for example consider the problem of minimizing the function J above over
the space Xreg

a,0 of sufficiently regular functions which vanish only at the point
a, and can attain non-zero values at the point b.
We again use the condition (151), this time for all functions ϕ ∈ Xreg

a,0 . First we
use functions ϕ which vanish at both endpoints to get the equation

− u′′(x) = f(x) x ∈ (a, b) , (157)

exactly in the same way as in the last lecture. Next, we take ϕ which vanishes
at a but not necessarily at b, and integrate by parts:

0 =

∫ b

a

(u′ϕ′ − ϕf) dx = u′(x)ϕ(x)|x=bx=a −
∫ b

a

(−u′′ϕ− fϕ) dx . (158)

As we already know that −u′′ = f in (a, b) and we also assume ϕ(a) = 0, the
last identity amounts to

0 = u′(b)ϕ(b) ϕ ∈ Xreg
a,0 , (159)

which is the same as u′(b) = 0. We see that the choice of Xreg
a,0 as the space over

which we minimize J leads to the boundary condition u′(b) = 0.

The heat equation and finite elements

The finite element method can also be applied to the heat equations. For that
purpose it is instructive to interpret the finite dimensional equation
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ẋ = −Ax , (160)

for n−dimensional vector (x1, x2, . . . , xn) with a positive-definite n× n matrix
A as a “gradient flow”. We let

f(x) =
1

2
(Ax, x) (161)

and note that the vector∇f consiting of the partial derivatives ∂f
∂xi

of f coincides
with the vector Ax. The equation (160) can then be written as

ẋ = −∇f(x) . (162)

One can think of it as the “steepest descent” in the “landscape” defined by
the function f . The vector ∇f(x) is perpendicular to the surfaces defined by
{f = const.}. Note that to draw the picture of ∇f as a vector in the same
space where x “lives”, we need to know what “perpendicular” means, or, in
other words, we are using the scalar product in Rn. (The partial derivatives
∂f
∂xi

are, of course, defined regardless of the scalar product, but without the scalar
product structure they are coordinates of a linear functional on Rn (which is
often denoted f ′(x)), rather then a vector in Rn).

The heat equation can be viewed in the same way, except we work with a
suitable space of functions X, rather than a finite-dimensional space Rn. For
example, when X is the space of all sufficiently regular functions on the interval

(a, b) which vanish at the endpoints, then the heat equation ∂u
∂t = ∂2u

∂x2 + f(x)
for x ∈ (a, b) and t ∈ (0,∞) can be interpreted as the steepest descent defined
by the functional J above (on the space X), if we take the scalar product on X

to be defined as (u, v) =
∫ b
a
u(x)v(x) dx.

Here we do not wish to go into the subtleties of the exact interpretation of this
heuristics. For practical purposes it is enough to know that we can consider the
time derivative as a right-hand side of the corresponding steady-state problem,

and get the right equation from the minimization of
∫ b
a

1
2 (u′(x))2−F (x)u(x)) dx

where we set F (x) = f(x)− ∂u
∂t after the minimization.

A finite dimensional approximation of the heat equation can now be obtained
by choosing a suitable finite-dimensional subspace Xn, and apply the same
consideration with X replaced by Xn.

Lecture 20, 11/16/2017
(equations with a right-hand side, inhomogeneos equations, Green’s functions -
introduction)

Duhamel’s principle for simple ODEs
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We start discussing the material in Chapter 8 in the textbook, although from
a slightly different angle. We start with a simple ODE problem. Assume a > 0
and consider the a simple ODE for functions x = x(t) on time interval (0,∞).

ẋ = −ax , x(0) = x0 . (163)

We know how to to solve this problem: the solution x(t) is defined in (0,∞) as

x(t) = x0e
−at . (164)

From a certain point of view there is not much we can add to this, but one
can also interpret this solution differently. Let us define a function X(t) for
t ∈ (−∞,∞) as follows:

X(t) =

{
0 t < 0 ,

e−at t ≥ 0 .
(165)

The function has a discontinuity at t = 0, its value jumps by 1 as we cross t = 0
when moving on the t−axis from the left to the right.
Let us approximate X(t) by a continuous function Xε defined as

Xε(t) =


0 t < −ε ,
1
ε (t+ ε) t ∈ (−ε, 0) ,

e−at t ≥ 0 .

(166)

The function Xε is quite similar to X, except the “jump” at t = 0 does not
happen at once, but it happens gradually (although still quickly, when ε is
small) over a short interval (−ε, 0). Note that Xε increases linearly from 0 to 1
as t moves through the small time interval (−ε, 0). Let us set

fε(t) = X ′ε(t) + aXε(t) , t ∈ (−∞,∞) . (167)

Note that fε vanishes outside the interval (−ε, 0), and for t ∈ (−ε, 0) we have

fε(t) =
1

ε
+ gε(t) , gε(t) =

a

ε
(t+ ε) , t ∈ (−ε, 0) . (168)

The dominant part of fε in (168) is 1
ε , the function gε(t) is of order a, and its

integral over (−ε, 1) is of order εa, becoming negligible in the limit ε→ 0+. On
the other hand, the integral of 1

ε over (−ε, 0) is 1. Hence

lim
ε→0+

∫ ∞
−∞

fε(t) dt = 1 (169)

and fε(t) vanishes for t outside of the interval (−ε, 0). The limit of functions
fε as ε → 0+ is an object which is not really a function in the traditional
sense. It is called the Dirac function, and usually denoted by δ(x). Formally,
δ(x) vanishes everywhere except at x = 0 and

∫∞
−∞ δ(x) dx = 1. An important
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property of the Dirac function is that for any continuous function φ(t) one has∫∞
−∞ ϕ(s)δ(s) ds = ϕ(0) and, more generally,∫ ∞

−∞
ϕ(s)δ(t− s), ds = ϕ(t) . (170)

In the textbook the Dirac function is discussed in Section 9.3.4 starting at page
384. Additional useful material can be found on the Wikipedia page linked
above.
As the function X given by (166) is the limit of the functions Xε as ε→ 0+, it
is natural to expect that

Ẋ + aX = δ in (−∞,∞) . (171)

One can think about the situation as follows: We consider a system which, in the
absence of any outside disturbances, is described by the equation ẋ + ax = 0.
(For example, we can think of x(t) as a mass of some radioactive substance
in a sample, with the parameter a being related to the half-life time of the
substance.) The function X describes the situation when up to time t = 0
“nothing is going on”, at the time t = 0 the system gets a “kick” (or “impulse”)
normalized to a unit strength, and then is left alone for the rest of the time. The
Dirac function δ symbolizes the impulse. (In the example with the radioactive
material the impulse could represent an injection of a unit amount of a fresh
radioactive material.)
Mathematically there is nothing new in his picture in comparison with our
original viewpoint (163). However, the new interpretation has some advantages,
especially when considering an inhomogeneous equation

ẋ+ ax = f(t) . (172)

Let us first assume

f(t) = f1δ(t− t1) + f2δ(t− t2) + · · ·+ fnδ(t− tn) . (173)

We can think of this f as giving the system a series of impulses at times t1 <
t2 < · · · < tn, with the strength of the impulse of time tk being fk. (In the
context of the model with radioactive decay, we can think of injecting fj units of
the radioactive material at time tj .) The solution of (172) with f given by (173)
and x vanishing for t < t1 is given by

x(t) = f1X(t− t1) + f2X(t− t2) + · · ·+ fnX(t− tn) . (174)

This formula is is a consequence of the linearity of the equation. For example,
the term f1X(t − t1) represents the contribution to x(t) from the “kick” at
time t = t1. The influence of this kick is proportional to its strength f1, and
is not influenced by the other kicks. The solution is then just a sum of the
contributions from the individual kicks. Such behavior of the solutions is a
consequence of the linearity of the equation ẋ + ax = 0. If x1, x2 are two
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solutions and α1, α2 are two real numbers, then x = α1x2 + α2x2 is again a
solution.
Now a general function f(t) can be thought of as composed of a continuous
family of kicks, in the sense

f(t) =

∫ ∞
−∞

f(s)δ(t− s) ds . (175)

This is the same as (170), but the iterpretation is a bit different. We think
of the numbers f(s) as coefficients in he decomposition of the function f into
“elementary impulses” t→ δ(t− s).
The analogy of (174) now is

X(t) =

∫ ∞
−∞

f(s)X(t− s) ds . (176)

This describes the solution of (172) which vanishes in the limit t→ −∞. (Some
assumptions about f are needed in order for the integral be convergent, but
at this point we are neglecting such technicalities.) The same formula can be
obtain in various other ways. In the context of this formula, the function X(t)
might be called the Green’s function of the differential operator x→ ẋ+ ax.
Using the above considerations, we can write the solution of the problem

ẋ+ ax = f(t) , t > 0 , x(0) = x0 (177)

as

x(t) = x0e
−at +

∫ t

0

f(s)e−a(t−s) ds . (178)

The same formula can again be arrived in many other ways, including the stan-
dard “variation of parameters” discussed in the textbook for second order equa-
tions on page 361. The interpretation above is closely related to the Duhamel’s
integral, see also the Duhamel’s formula.

Green’s function for −u′′(x) = f(x) in (a, b) , u(a) = u(b) = 0.

The idea of decomposing a function f(x) into the Dirac functions, calculating the
solution for a single Dirac functions, and then using linearity and superposition
work also for our next example:

− u′′(x) = f(x) , x ∈ (a, b) , u(a) = u(b) = 0 . (179)

We first calculate u when f(x) = δy(x) = δ(x − y) , the Dirac function located
at the point y ∈ (a, b). Note that the solutions of u′′(x) = 0 a given interval are
only linear functions (of the form px + q) on that interval. Hence, given that
u(a) = 0, when f = δy, we must have

u(x) = u(y)
x− a
y − a

, x ∈ (a, y) , (180)
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and

u(x) = u(y)
b− x
b− y

, x ∈ (y, b) . (181)

It remains to calculate u(y). Note that when a < x < y the derivative u′(x) is

given by u(y)
y−a , and when y < x < b the derivative u′(x) is given by −u(y)b−y The

jump in −u′(x) when x crosses y from left to right must be 1, which gives

u(y)

(
1

y − a
+

1

b− y

)
= 1 . (182)

and hence

u(y) =
(y − a)(b− y)

b− a
. (183)

Recall that u(x) is the solution of (179) when f(x) = δy(x) = δ(x− y). Let us
denote this solution G(x, y), to indicate also the dependence on y. From (180)
and (181) we obtain

G(x, y) =

{
(x−a)(b−y)

b−a , a ≤ x ≤ y ,
(y−a)(b−x)

b−a , y ≤ x ≤ b .
(184)

Note that G(x, y) = G(y, x).

The solution of (179) for a general f(x) is now given by

u(x) =

∫ b

a

G(x, y)f(y) dy . (185)

The function G is called the Green’s function of the problem (179). Note that
formula (185) resembles the formula

xi =
∑
j

(A−1)ijbj (186)

for the solution of the system Ax = b, where A is an n×n matrix and A−1 is its
inverse. The only difference is that the indices i, j in (186) run through a finite
set {1, 2, . . . , n}, whereas the “indices” x, y in (185) run through an interval
(a, b). Also, the summation in (186) is replaced by the integration in (185).

The above example illustrates an important point in PDE theory. Namely, the
inverse operators to differential operators (such as the function G(x, y) above)
are sometimes more transparent than the differential operators themselves (such

as the operaor d2

dx2 with the zero boundary conditions at the endpoints a, b in
the example above). In the numerical approximations we have discussed, our
(linear) differential operators were always represented by matrices, although

the operators themselves (such as − ∂2

∂x2 ) at the fist glance may not look like
matrices. On the other hand the inverses of the differential operators, such as
the one given by (185), do look quite similar to matrices (with indices which are
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real numbers, rather than integers, and with summation replaced by integration,
when compared with the usual formulae from linear algebra).

Lecture 21, 11/21/2017
(non-homogeneous problems - continuation)

the non-homogeneous ODE ẍ+ ω2x = f(t)

Let us apply considerations from the last lecture to the equation

ẍ+ ω2x = f(t) . (187)

We have seen in previous lectures how to solve the initial-value (ODE) problem

ẍ+ ω2x = 0 , x(0) = x0 , ẋ(0) = x1 (188)

We can write down the solution explicitly:

x(t) = x0 cosωt+
x1
ω

sinωt . (189)

Going back to (187), let us assume that f vanishes for t ∈ (−∞, t0) for some
t0, and let us search for a solution which also vanishes in (−∞, t0). We can
think of an oscillator which is at rest from the time −∞ to time t0, and after
time t0 forcing f(t) is applied, and the oscillator may be “excited” by f into a
non-trivial motion (once f becomes non-zero). Motivated by the discussion in
the previous lecture, let us imagine that f(t) is a superposition of infinitesimal
“kicks” f(s)δ(t− s) ds, in the sense that

f(t) =

∫ ∞
−∞

f(s)δ(t− s) ds , (190)

where δ(t) is the Dirac function (discussed in the last lecture). Let X be the so-
lution of (187) with f(t) = δ(t) satisfying X(t) = 0 for t < 0. The interpretation
quite similar to what we discussed last time: we think of (187) as describing a
physical system, such as an oscillator. Up to time t = 0 nothing is going on, and
the system is at rest, corresponding to X(t) = 0 for t < 0. At time t = 0 the
system receives a “kick”, or an impulse of force. The kick is normalized so that
the jump in the first derivative Ẋ(t) at t = 0 is 1. In other words, Ẋ(t) → 1
as t→ 0+. The function X itself will be continuous at t = 0 (and at any other
point, of course).
So we wish to solve

Ẍ + ω2X = δ(t) , X(t) = 0 when t < 0 . (191)

Based on our considerations above, it is not hard to see that the solution is

X(t) =

{
0 when t < 0 ,
1
ω sinωt when t ≥ 0 .

(192)
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Note that for t ≥ 0 this coincides with (188) when x0 = 0 and x1 = 1.
The solution of (187) which vanishes as t → −∞ will then be given (assuming
f(t) also vanishes sufficiently quickly as t→ −∞) by

X(t) =

∫ ∞
∞

X(t− s)f(s) ds , (193)

by considerations mirroring those in the last lecture concerning the equation
ẋ+ ax = f(t). If we wish to solve

ẍ+ ω2x = f(t) t ∈ (0,∞) , x(0) = x0 , ẋ(0) = x1 , (194)

we can use the following version of the formula (combined also with formula (189))

x(t) = x0 cosωt+
x1
ω

sinωt+

∫ t

0

f(s)
1

ω
sinω(t− s) ds . (195)

By now we already know how to interpret this: the first two terms represent
the solution we would have for f = 0, which is given by (189), and the integral
represents the superposition of the contributions from the “infinitesimal kicks”
δ(t− s)f(s) ds from which we can imagine f being composed.

In the rest of the lecture we discussed applications of these formulae to non-
homogeneous PDEs for which we can decompose the solution into Fourier modes
(or more general eigenvalue modes), as explained in Chapter 8 of the textbook.
For an example with the heat equation, see Section 8.3. Section 8.5 deals with
the 2d wave equations. We have only done the wave equation in 1d so far, but
the method works in any dimension, and is in fact essentially the same as for
finite-dimensional systems

ẍ+Ax = f(t) (196)

where x is an n−dimensional vector with components x1, . . . xn, the n×n matrix
A is symmetric, positive definite, and the forcing terms f(t) is again an n−vector
with components f1, . . . , fn (which are functions of t).
The main idea is the same as already discussed previously in some of the past
lectures: we can introduce new coordinates y1, . . . , yn in which the matrix A
becomes diagonal, with the entries on the diagonal being strictly positive. Let
us denote them 0 < λ1 ≤ λ2 ≤ · · · ≤ λn. In the new coordinates the equation
becomes

ÿj + λjyj = gj(t) , j = 1, 2, . . . , n , (197)

where g1(t), . . . , gn(t) are the coordinates of the forcing term in the new coordi-
nate system. These equations do not interact with each other, and hence each
of them can be solved independently, using formula (195).
The vibrations of a string or membrane can be approached in the same way. Let
us consider for example and inhomogeneous string of length L (parametrized
by the interval (0, L)), with density ρ(x), tension T and forcing f(x, t), which
is fixed at the endpoints. The equation is

ρ(x)
∂2u

∂t2
= T

∂2u

∂x2
+ f(x, t) , u(0, t) = 0 , u(L, t) = 0 . (198)
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Let φj(x), λj be respectively the eigenfunctions and eigenvalues of the Sturm-
Liouville problem

− Tφ′′ = λρ(x)φ , φ(0) = 0 , φ(L) = 0 . (199)

We write f(x, t) =
∑
j fj(t)ρ(x)φj(x) and search the solution u(x, t) as

u(x, t) =
∑
j

cj(t)φj(x) . (200)

Substituting these expressions into (198), we obtain

c̈k + λkck = fk(t) , k = 1, 2, . . . (201)

Each of these equations can now be solved using (195).

Lecture 22, 11/21/2017
resonance; fundamental solution of the heat equation

Resonance

In practice one often encounters situations when the forcing is periodic. An
important case is described by the following equation:

ẍ+ ω2x = beiκt (202)

Here b can be a complex number, and the solution x can also be complex. The
the physical quantity is then the real part of the solution. Note that when x(t)
is a complex solution, then its real part satisfies the same equation with beiκt

replaced by its real part. One can calculate the solution of (202) by the method
we discussed last time, but one can try to use a shortcut which – as we will see
– works when κ2 6= ω2.
We search a particular solution in the form

x(t) = Aeiκt . (203)

With this Ansatz, the equation gives

− κ2A+ ω2A = b , (204)

which can be solved when κ2 6= ω2:

A =
b

−κ2 + ω2
. (205)

The general solution of the ODE (202) then is

x(t) = C1e
iωt + C2e

−iωt +
b

−κ2 + ω2
eiκt , (206)
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where C1, C2 are any complex numbers.

This formula obvious works only when κ2 6= ω2. It is an interesting excercise to
work with the formula to calculate the limit κ→ ±ω. It will of course give the
same result as we obtain from the calculations we discussed last time.

The main conclusion for us is that when κ2 6= ω2, the solution will stay bounded.

As the equation is linear, there is no difficulty in passing from (202) to the more
general case

ẍ+ ω2x = b1e
iκ1t + b2e

iκ2t + · · ·+ bme
iκmt . (207)

The general solution will be

x(t) = C1e
iωt + C2e

−iωt +
b1

−κ21 + ω2
eiκ1t + · · ·+ bm

−κ2m + ω2
eiκmt , (208)

assuming, of course, that ω2 6= κ2j , j = 1, 2, . . . ,m.

The above can be applied to the wave equation with a right-hand side of the
from f(x, t) = g(x)eiκt.

∂2u

∂t2
= c2

∂2u

∂x2
+ g(x)eiκt (209)

The solutions can again be complex, and for the physical interpretation we
take the real part. Let us consider the equation on (0, L) with the boundary
conditions u(0, t) = 0 , u(L, t) = 0. We write g(x) =

∑
n gn sin πx

L and search
the solution as

u(x, t) =
∑
n

Bn(t) sin
πx

L
. (210)

For each Bn(t) we get an equation of the form (202), with ω2
n = n2 π

2c2

L2 . The
formula (206) will work if κ2 6= ω2

n for all n for which gn 6= 0. Of ω2
n = κ2 for

some n then the mode given by this n is at resonance, will grow unboundedly
if gn 6= 0, and one has to work with a different formula.
In practice the resonance effect are important, and one has to take them very
seriously in various engineering constructions. The computation of the possible
resonant frequencies can be complicated for the real-world systems, and often
has to realy on numerical simulation.

In the second part of the lecture we started discussing the fundamental solution
of the 1d heat equation. The key formulae in the textbook in this context are
10.4.6 and 10.4.7 on page 451 see also the example on page 453.

In class we discussed some important properties of the heat kernel

Γ(x, t) =
1√
4πt

e−
x2

4t . (211)
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The formula defines Γ for x ∈ (−∞,∞) and t > 0, but one can consider it
as a functions defined also for t ∈ (−∞,∞) by setting Γ(x, t) = 0 for t ≤ 0.
Such a function is defined for all (x, t) with the exception of (x, t) = (0, 0),
where it has a singularity. However the singularity is “under control”. Note
that Γ ≥ 0 and in the class we saw in class that

∫∞
−∞ Γ(x, t) dx = 1 when t ≥ 0.

It is also worth noting that the function Γ(x, t) extended in this way is smooth
everywhere except at the origin. 13

The function Γ can be thought of as a response of out system (infinite heat
conducting rod) to the following situation:
Up to time t = 0 the system is at rest (at zero temperature) and nothing is
going on. At time t = 0 we inject into the system a unit amount of the heat
energy, exactly at the origin. (This is of course an idealization, in practice heat
energy cannot be concentrated at a point.) This idea can be mathematically
captured by the equation

∂Γ

∂t
=
∂2Γ

∂x2
+ δ(x, t) , x ∈ (−∞,∞) , t ∈ (−∞,∞) . (212)

where δ(x, t) is a two dimensional Dirac function (which can be thought of
as δ(x, t) = δ(x)δ(t), where the functions on the right-hand-side are the one-
dimensional Dirac functions). If instead injecting the unit amount of the hear
energy at time t = 0 and location x = 0 we do it at time t = s and location
x = y, the equation will be

∂Γ̃

∂t
=
∂2Γ̃

∂x2
+ δ(x− y, t− s) , x ∈ (−∞,∞) , t ∈ (−∞,∞) . (213)

and the solution will be Γ̃(x, t) = Γ(x− y, t− s) .

If one now considers the equation

∂2u

∂t2
− ∂2u

∂x2
= f(x, t) (214)

in all space and for t ∈ (−∞,∞) assuming the system is “undisturbed” at
t ∼ −∞ and f vanishes at t ∼ −∞ one can imagine f as a superposition
“infinitesimal injections” of the heat energy f(y, s) dy ds and the solution is a
superposition of the solutions corresponding to these “infinitesim injections”

u(x, t) =

∫ t

−∞

∫ ∞
−∞

Γ(x− y, t− s)f(y, s) ds . (215)

If instead we solve the initial-value problem

∂2u

∂t2
=
∂2u

∂x2
+ f(x, t) , (x, t) ∈ R× (0,∞) , u(x, 0) = u0(x) , (216)

13However, it cannot be analytic across t = 0, as its Taylor expansion at any point (x, 0), x 6=
0 is trivial.
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where u0 is a given function (describing the temperature at time t = 0), then
the solutions will be

u(x, t) =

∫ ∞
−∞

Γ(x− y, t)u0(y) dy +

∫ t

0

∫ ∞
−∞

Γ(x− y, t− s)f(y, s) dy ds . (217)
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