
1. The general solution of ku′′ + f = 0 in (0, L) is u(x) = − f
2kx

2 + ax+ b, where a, b are arbitrary constants. For
such a solution we have

u(0) = b , u′(0) = a , u(L) = − f

2k
L2 + aL+ b , u′(L) = −f

k
L+ a . (1)

The boundary conditions are u′(0) = Hu(0) , u′(L) = −Hu(L), and substituting the expressions (1) into the
equations, we get two equations for a , b. Solving the equations, we obtain a = fL

2k and b = fL
2kH , and hence

u(x) = − f

2k
x2 +

fL

2k
x+

fL

2kH
. (2)

A slightly different way of solving the problem: In lecture 2 we calculated that for the boundary condition u(0) =
u(L) = 0 the solution is u(x) = f

2kx(L− x). If the boundary condition is changes to the Newton’s law of cooling,
we can expect that all that happens is that the temperature goes up in the whole rod by a certain constant, so
that the solutions will be of the form u(x) = f

2kx(L− x) + b. We now use the equation u′(0) = Hu(0) to calculate

b, obtaining b = fL
2kH . (To make sure that our Ansatz was correct, we verify that u′(L) = −Hu(L).) Hence

u(x) =
f

2k
x(L− x) +

fL

2kH
(3)

2. Let us denote the solution of Problem 1 for a given H by uH(x). . Formula (1) (or (2)) gives

lim
H→0

uH(x) = +∞, lim
H→∞

uH(x) =
f

2k
x(L− x) . (4)

3. For implicity we can imagine that in the three-dimensional space with coordinates (x1, x2, x3) the outside of the
house is given by x1 < 0 and the inside of the house is given by x1 > L, where L > 0, so that the wall separating
the inside and the outside occupies the region {(x1, x2, x3) , 0 < x1 < L}. If the outside temperature is T1, the
inside temperature is T2 > T1, the temperature in the wall (assuming a steady state) is u(x1) = T1 + (T2 − T1)

x1

L .
The energy which is lost per unit of time per the unit area of the wall is given by the heat flux ϕ(x1), defined on
page 3 of the textbook. A basic assumption in our analysis of the heat equation is (see formula (1.2.8) on page 7
in the textbook)

ϕ = −K0
∂u

∂x1
= −K0

T2 − T1

L
. (5)

To minimize the heat loss (assuming the steady state solution), we should choose the material for which the heat
flux will be minimal possible, which means that K0 will be the most important quantity. There are many other
ways to arrive at the same conclusion.

4. Method (a): Let us denote the values of the relevant quantities in the SI units (meter, second, Kelvin) by x, t, u
and the values of these quantities in the new units (mile, month, Fahrenheit) by X,T, U . Then

x = λX , t = τT, u = αU + β , (6)

where λ, τ, α, β are given by the conversion factors between the units. By our assumptions, in terms of x, t, u the
equation is

∂u

∂t
= kSI

∂2u

∂x2
. (7)

Substituting for x, t, u from (7), we obtain
α∂U

τ∂T
= kSI

α∂2U

λ2∂X2
, (8)

which is the same as
∂U

∂T
= K

∂2U

∂X2
, K =

τ kSI
λ2

. (9)

For our particular choice of units we have λ = 1609.34 and, assuming 30-day months τ = 30× 24× 60× 60. Hence

K =
30× 24× 60× 60

(1609.34)2
kSI ∼ 1.001 kSI. (10)
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Method (b): The physical dimension of k is lenght2

time , so if we increase the unit of length by the factor of λ = 1609.34
and the unit of time by the factor of τ = 30 × 24 × 60 × 60, k will change by the factor of τ

λ2 ∼ 1.001, to
knew ∼ 1.001 kSI.

5. Let us use the notation u1 = ∂u
∂x1

, u12 = ∂2u
∂x1∂x2

, u2 = ∂u
∂x2

, etc., and use the convention that ũ is evaluated at
(x1, x2) and u is evaluated at ((cos θ)x1 + (sin θ)x2,−(sin θ)x1 + (cos θ)x2). Then we can write

∂ũ

∂x1
= u1 cos θ − u2 sin θ (11)

∂2ũ

∂x2
1

= u11 cos
2 θ − 2u12 cos θ sin θ + u22 sin

2 θ (12)

∂2ũ

∂x2
2

= u11 sin
2 θ + 2u12 cos θ sin θ + u22 cos

2 θ (13)

and hence
∂2ũ

∂x2
1

+
∂2ũ

∂x2
2

= u11 + u22 , (14)

from which the statement immediately follows.

6. First, we note that if we set kt = s, the equation becomes du
ds = Au, so it is enough to consider the case k = 1.

If our cooling time is T for k = 1, it will be T/k for a general k > 0.

(a) Since all the eigenvalues of A are strictly negative (as can be determined by a direct calculation or by using
Matlab - see below), any solution converges to zero as t → ∞. This follows for example from the formula for the
general solution below.

(b) It is enough to determine T assuming k = 1. This can be done is several ways.

(i) Probably the most economical approach (if we do not count the work done by computers) is the “brute force”
approach, when we simply calculate the worst-case scenario on a computer. The worst-case scenario for the cooling
is when u1(0) = u2(0) = u3(0) = u4(0) = 1 and we wait until the temperature drops to 0.01. Since we are dealing
with a 4×4 system, we do not have to pay much attention to computational efficiency and can evaluate the solutions
in Matlab simply as u(t) = exp(tA)u(0) (using command expm(t*A)*u0). By plotting the solution we see that our
cooling time is approximately T = 12.47. Remembering that this is for k = 1, we see that for general k the cooling
time will be ∼ 12.47/k.

(ii) A simple “back of the envelope” estimate can be obtained as follows. Let λ1 be the highest eigenvalue of A.
Then the long-time decay of a typical solution should be essentially given by eλ1t. Using the command eig(A) in
Matlab (or doing a calculation by hand - see below), one sees that λ1 ∼ −0.3820. The function eλ1t drops by 99%
in time T = log(0.01)/λ1 ∼ 12.06, and we can take this as a first estimate of our cooling time (for k = 1). This
estimate already happens to be within the 10% range.1

(iii) One can do a calculation without a computer. The characteristic polynomial of the matrix A is P (λ) =
det(A − λI) = (2 + λ)4 − 3(2 + λ)2 + 1. The roots can be calculated explicitly, and the highest one is2 λ1 =

−2 +

√
3+

√
5

2 = −3+
√
5

2 ∼ −0.3820. The second highest is λ2 = −2 +

√
3−

√
5

2 = −5+
√
5

2 ∼ −1.3820. The other two

eigenvalues will be denoted by λ3, λ4. We will denote the eigenvectors of A corresponding to λi by b(i), normalized
to unit length. The general solution of u̇ = Au is u(t) = c1b

(1)eλ1t + c2b
(2)eλ2t + c3b

(3)eλ3t + c4b
(4)eλ4t. It is safe

to assume that for times relevant for our purposes the terms eλjt with j ≥ 2 are negligible. The coefficient c1 is
given by the scalar product (b(1), u(0)), where we again take u(0) = (1, 1, 1, 1). A calculation (which is possible to

do by hand, but one can also use Matlab) shows that maxj c1b
(1)
j ∼ 1.17, so the cooling time (for k = 1) can be

estimated by (log( 1
117 ))/λ1 ∼ 12.47.

1It is worth remarking that the estimate might not be precise enough if some of the values in the problem were different. For the
given values it does get the number within the required range, although it does not provide a complete justification for it. One can
consider it as a good “educated guess”.

2The identify between the expressions with the square roots can be traced back to the special form of the equation: if se set ξ = 2+λ
and η = ξ + 1

ξ
, the equation P (λ) = 0 becomes η2 = 5. In fact, even when A is an n× n matrix of the same form, the eigenvalues and

eigenfunctions can still be computed explicitly. This is probably best seen using the discrete Fourier transformation.
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