
1. (a) We have ck = 1
2

∫ 1

−1
f(x)e−πikx dx. We can do the integration “by hand” or using Wolfram Alpha.

The expression we get from the computer in the latter case is ck = −2πk cos(πk)+2 sin(πk)
π3k3 . For an integer

k ̸= 0 this gives ck = 2(−1)k+1

π2k2 . For k = 0 we can either calculate directly c0 = 1
2

∫ 1

−1
(1− x2) dx = 2

3 , or
obtain the same result by taking the limit k → 0 in the above expression we got from Wolfram Alpha.

The formula
∫ 1

−1
(1− x2)2 dx = 2

∑
k |ck|2 gives

∑∞
k=1

1
k4 = π4

90 .
(b) One can simply calculate the Fourier series of f ′(x) = −2x on the interval (−1, 1), and check that its
coefficients are πikck.
One can also see it without calculation: the Fourier series computed in (a) defines a 2−periodic function
on fper on (−∞,∞) which is equal to 1 − x2 for x ∈ (−1, 1). The function fper is clearly continuous,
smooth away from the points 1 + 2k where k ∈ Z (the set of integers), and its derivative away from the
points of non-differentiability is a 2−periodic extension of the function f ′(x) = −2x from interval (−1, 1)
to (−∞,∞) \ {1+2k, k ∈ Z}. In particular f ′

per is piece-wise smooth, and therefore its Fourier series can
be differentiated term by term, see for example p. 114 of the textbook.
(c) The extended periodic function fper is given by the expression 1 − (x − 2)2 when x ∈ (1, 3). The
derivatives from the left (resp. right) of the function fper at x = 1 are easily calculated to be −2 and
2, respectively. Since they are different, the periodically extended function cannot be differentiable at
x = 1. The partial sums

∑k=n
k=−n of Fourier series of the function f ′(x) at x = 1 are easily seen to vanish

(note that in this particular example cke
πik + c−ke

−πik = 0 for each k), and hence the Fourier series for
f ′(x) gives 0 when evaluated at x = 1. (Note that 0 is the average of the left and right derivative at
x = 1.)

2. We have cos2 x = 1
2 + 1

2 cos 2x and this is the cosine series of cos2 x. For sin2 x we can similarly

write sin2 x = 1
2 − 1

2 cos 2x, but this clearly is not the sine-Fourier series of sin2 x. If we write sin2 x =∑∞
n=1 Bn sinnx, the sum on the right-hand side will be a 2π− periodic odd function, let us call it fper.

We have fper(x) = − sin2 x for x ∈ (−π, 0) and fper(x) = sin2 x for x ∈ (0, π). The second derivative
f ′′
per(x) is easily seen to have the limit 2 as x → 0 from the right and −2 as x → 0 from the left. Hence
f ′′
per cannot be continuous at 0 and the function fper cannot be a finite sum of functions of the form

Bk sin kx. For the coefficients Bn we have Bn = 2
π

∫ π

0
sin2 sinnx dx = −8

πn(n−2)(n+2) when n is odd, and

Bn = 0 when n is even. As we have seen, the second derivative of fper is discontinuous at kπ for integer
k, and smooth away from those points. Hence the Fourier series of f ′′

per still converges point-wise. On the
other hand the Foureir series of f ′′′

per(x) cannot converge (point-wise), as its n−th term does not approach
zero: differentiation gives (formally) f ′′′

per(x) =
∑∞

n=1 −n3Bn cosnx, and n3Bn does not approach 0 for
n → ∞.

3. Our machine can do the Fourier series only for 2π-periodic functions, so we change of variables as
follows: For x ∈ (0, L) we will write u(x, t) = v(πxL , t), where v = v(y, t) is an odd 2π-peridoc function

on the real line. The function v is defined in three steps: (i) For y ∈ (0, π) we set v(y, t) = u(yLπ , t). (ii)
For y ∈ (−π, 0) we let v(y, t) = −v(−y, t). (iii) we extend v from (−π, π) to (−∞,∞) as a 2π−periodic
function. Substituting the expression into the equation for u the function u(x, t) = v(πxL , t), we obtain
the equation satisfied by v(y, t), namely

∂2v

∂t2
= a2

∂2v

∂y2
− γv , a = c

π

L
. (1)

We note that the boundary condition for v is v(0, t) = v(π, t) = 0, and is satisfied automatically in view
of the requirement that v be odd and 2π−periodic. The functions u0, u1 ate transformed to v0, v1 by
ui(x, t) = vi(

πx
L ) , i = 0, 1. We seek v(y, t) as a Fourier series

v(y, t) =
∑
k

ck(t)e
ikx . (2)

Our task is to determine the coefficients ck(t). Once we have them, the machine can be used to calculate
v(y, t) and then u(x, t) = v(πxL , t). The equation for ck = ck(t) is c̈k = −a2k2ck − γck and its general
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solution is
ck(t) = Ak cosωkt+Bk sinωkt , ωk =

√
a2k2 + γ . (3)

We now determine the values of Ak, Bk for our particular solution from the conditions ck(0) = Ak and
ċk(0) = ωkBk. The values of ck(0) and ċk(0) are known from the initial conditions: the Fourier coefficients
of v0 are ck(0) and the Fourier coefficients of v1 are ċk(0). Our algorithm can be summarized as follows:

1. Set vi(y) = ui(
Ly
π ) , i = 0, 1 , and extend vi as an odd function of (−π, π).

2. Let ck(0) be the Fourier coefficients of v0 and ċk(0) the Fourier coefficients of v1. (Here we use our
machine for the first time, to calculate Fourier coefficients.)

3. Determine Ak, Bk by the formulae above.

4. Sum the Fourier series v(y, t) =
∑

k(Ak cosωkt+Bk sinωkt)e
iky. (Here we use our machine for the

second time, this time to sum a Fourier series.)

5. u(x, t) = v(xπL , t).

4. The general solution of the wave equation in our situation is a sum of terms of the form

Bk sin(
kπx
L ) sin(ωk(t− tk)), where ωk = k cπ

L , with c =
√

T
ρ . See, for example, Chapter 4 in the textbook

(formula 4.4.11). Here we are only interested in the “base frequency” of the string, corresponding to

k = 1. Hence we can work with the formula ω = π
L

√
T
ρ . The answers can be now easily obtained from

the formula. (a) The ratio T
ρ has to remain the same, so we have to change the density to ρ

2 . (b) The

expression π
L

√
T
ρ has to remain the same, so we have to increase T to 4T .

5. (a) From the chain rule we have ∂u
∂t = ∂u

∂t̃
∂t̃
∂t+

∂u
∂x

∂x
∂t̃

= ∂u
∂t̃

−v ∂u
∂x̃ . A similar (but easier) calculation gives

∂u
∂x = ∂u

∂x̃ . (Here we have a convention which is usual in similar situations: when we take ∂
∂t̃

we keep x̃

constant and when we take ∂
∂x̃ we keep t̃ constant, and similarly with the t, x variables. Hence in the new

coordinates the equation becomes ( ∂
∂t̃
−v ∂

∂x̃ )
2u = c2 ∂2u

∂x̃2 , which is the same as ∂2u
∂t̃2

−2v ∂2u
∂t̃∂x̃

= (c2−v2)∂
2u

∂x̃2 .

If we know c and can measure u (including its derivatives) in the coordinate frame (t̃, x̃), we can determine
v.
(b) Consider the motion of the point x̃ = 0 watched from the frame (t, x). Setting x̃ = 0 in transformation
(6) in the hw2 assignment, we obtain t = t̃ cosh θ and x = ct̃ sinh θ, which then gives dx

dt = c sinh θ
cosh θ =

c tanh θ. This is the velocity v of the origin of the frame (t̃, x̃) when observed from the frame (t, x).
(c) Using the formulae cosh2 θ−sinh2 θ = 1 , tanh θ = sinh θ

cosh θ and tanh θ = v
c , one obtains cosh θ = 1√

1− v2

c2

and sinh θ =
v
c√

1− v2

c2

. This gives t = t̃√
1− v2

c2

+
v
c2

x̃√
1− v2

c2

and x = vt̃√
1− v2

c2

+ x̃√
1− v2

c2

, which one can find in

any textbook of special relativity.

6. (a) Let us first show that AA∗ = nI, where I is the identity matrix. We have
(AA∗)kl =

∑n
m=1 Akm(A∗)ml =

∑
m w(k−1)(m−1)w−(m−1)(l−1) =

∑
m w(m−1)(k−l). When k = l, the last

sum is clearly equal to n. For k ̸= l, let us set ξ = wk−l. We note that ξ ̸= 1 but ξn = 1. The last sun
can then be written as 1 + ξ + · · ·+ ξn−1 = ξn−1

ξ−1 = 0.

(b) One can either say that we have shown in (a) that the matrix 1√
n
A is unitary and this implies the

identity 1
n

∑
k |fk|2 =

∑
k |ck|2 in the hw2 assignment. Alternatively, one can show this identity directly,

more or less repeating the calculation in (a): we have
∑

k fkfk =
∑

klm AklclAkmcm. In the tripple sum
we first sum over k, using

∑
k AklAkm = nδml, where δml = 1 for k = l and 0 for m ̸= l, and obtaining∑

k fkfk =
∑

ml nδmlcmcl = n
∑

l clcl .
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