Math 5587 Homework Assignment 3 Solutions Fall 2017

1. Let (a,b) be a non-empty bounded open interval of the real line, let a, 8 be two positive real numbers at least
one of which is not zero, and let f(z) be a function which is smooth on the closed interval [a, b]. Find the differential
equation and the boundary conditions which correspond to the following minimization problem:

Among sufficiently regular functions u: (a,b) — R minimize the functional
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Solution: Assume u is a function at which J attends its minimum. Let us fix a smooth function ¢: [a,b] — R. The function t — J(u +tp)
obviously attends its minimum at ¢ = 0, therefore % |t=0J (u+tp) = 0. This gives 0 = f(f [ (z)¢' (z) — f(z)p(x)] det+aul(a)p(a)+LBu(b)p(b).
Integrating by parts, we see that f; u'p'dr = ff —u"pdr + u'(b)p(b) — u/(a)p(a). Using this in the previous identity, we obtain
0= f;(fu” — Nedz + (—u/(a) + au(a))p(a) + (u'(b) + Bu(b))e(b). This has to be true for any function ¢ as above. By taking all
possible (smooth) functions ¢ satisfying ¢(a) = 0 and ¢(b) = 0, we see that u’’ + f = 0. Once we know that u”’ + f = 0, we take ¢ with
pla) =1, ¢(b) = 0 to get —u/(a) + au(a) = 0 and another ¢ with p(a) = 0, p(b) = 1 to get u/(b) + Bu(b) = 0. Therefore u satisfies
the equation —u”” = f in the interval (a,b) and the boundary conditions —u’(a) + au(a) = 0 and ' (b) + Bu(b) and the points a and b,
respectively.

2. Consider the following variant of Problem 1. Let a = —1,b=1,a = 1,3 =0, f(x) = 22 and let X be the space of
all quadratic functions of the form u(z) = pa? + gz + r. Find the minimizer of J over the space X in this particular
case.

Solution: When u = px? + gz + r and f(x) = x? we have f—ll [%(u’(x))2 —u(z)f(z)] do = fil [%(2}):): +¢)? — (pz? + gz + r)2?] dx. The
last integral is evaluated by routine calculation as %pQ +q% - %p — %r. Hence the value of J at u = pa? + gz + 7, which we will denote
by f(p,q,r), is given by f(p,q,7) = %pg +q2+ %(p —q+r)? - %p - %r, It is worth noting that the quadratic part of f, the expression
%pz +q2+ %(p — g +7)? is always positive and vanishes only when (p,q,r) = (0,0,0). This means that the function f approaches +oco

when (p, q,r) approaches oo in R2, and hence it attains a minimum. At the minimum the three partial derivatives of f have to vanish.
This gives the system of equations
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Solving this system (either by hand or with the help of Matlab) gives p = — - . Hence the minimum of J on the space X

is attained at the function u(x) = —1—10902 + %CE + %.

3. Consider still another variant of Problem 1. This time choose a positive integer n (think of n = 100, for example),
set h=(b—a)/nand 29 = a,z1 = a+h,xo = a+2h,...,x, =b. Let X,, be the space of continuous functions on the
closed interval [a, b] which are of the form p;x + ¢; on the intervals (z;,z;+1), ¢ =0,1,...,n — 1.

(a) Explain why each function v in X, is uniquely determined by the vector ug = u(xg), u1 = u(z1), ..., un = u(zy).
)

(b) For the case f(x) = 1 calculate the equation for the vector ug, u1, uz, . . ., u, one gets from the problem of minimizing
J(u) over X,,.

Hint: Take the derivatives of J is the direction of functions ¢ in X which are non-zero only at one point of the grid.

Solution: (a) A function of the form p;z + ¢; on an interval (z;,z;11) is uniquely determined by its values at z; and x;41.

(b) Proceeding in the same way as in Lecture 14 (see page 31 of the Lecture Log), we obtain —% =1lfori=1,2,...,n—1.
This represents n — 1 equations. We have n+1 unknowns w1, u1,...,u,. It remains to determine the two remaining equations. By the same
reasoning as in Problem 1, we know that 0 = f: W (z)¢' (z) — f(z)p(x)] dz + aula)p(a) + Bu(b)p(b) for each p € X,,. Let us choose this
identity with a ¢ € X, satisfying ¢(x9) =1 and ¢(z;) =0 for ¢ = 1,2,...,n. Recalling that f(z) = 1, we obtain —% — % + aug = 0.
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Similarly, using a ¢ € X, given by ¢(x;) =0 for i <n — 1 and p(zn) = 1, we obtain — % + Bun = 0. The resulting system of

h
equations can be written in matrix form as
l+ah -1 0 ... 0 0 ug 1
-1 2 -1 0 0 uy 1
1 0 -1 2 -1 ... 0
W2 ORIl B )
0 0o ... -1 2 -1 Up—1 1
0 0 0 ... -1 1+8h Un %



4. Consider the n x n matrix

0 1 0 0 0
0 0 1 0 0
g = 0 0 0 1 ... 0 ' ()
0 0 0 o ... 1
1 0 0 o ... O

(a) Show that this matrix is unitary, in the sense that for any two vectors z,z’ € C™ with (complex) coordinates
21, .,2n and 21, 2, we have (2, 2') = (Sz, §2'), where (2, 2') =37,
in C".

(b) Find the adjoint matrix S* (defined by ( Sz, z’) = (z, §*z’) for each z,2’ € C").

(c) Verify that SS* = S*S = I, where [ is the identity matrix. In particular, S is normal. (This of course follows
from (a) and general principles, but here the task is to verify this directly.)

sz;- is the standard Hermitian product

(d) As S is normal, the general theory implies that it can be diagonalized (together with S*) in a basis which is
orthogonal with respect to the Hermitian product C™. Show that the columns of the Fourier matrix which appeared
in Problem 6 of hw2 provide exactly such a basis, and calculate the eigenvalue corresponding the each eigenvector for
both S and S*.

(e) Check that the matrix A =S — 21 + 5* corresponds to a matrix we used for a finite-dimensional approximation of
the operator 38722' Calculate the eigenvalues of A.

Solution: (a) If a vector z has coordinates (z1, 22, ..., zn), then Sz has coordinates (22,23, ...,2n,21). From this it is clear that (z,2’) =
(Sz,87").
(b)We have (Sz,z’) = z2Z) + 232, + ... 2nZ,,_; + 21Z},, so the vector S*z’ has coordinates (z},, 2], 2}, ..., 2),_;). This means that

0 0 0 - 0 1

1 0 0 - 0 0

o — 0 1 0 - 0 0
0 0 0 - 0 0
0 0 0 ... 1 0

(c) This can be done in many ways, one of them being a direct computation with the above explicit form of the matrices. A more general
reasoning one can possibly use: (S*Sz,z2’) = (Sz,5z') = (z,2’) for each z,2’, which means S*Sz = z for each z.

(d) The equation Sz = Az means that z2 = Az1, 23 = A22, 2n = Azn_1,21 = Azn. Hence z;11 = MNz,j=1,2,...,n—1and A" = 1.
Hence z1 # 0, which means that we can choose z; = 1. So any eigenvector can be taken as a vector with coordinates 1, X\, A2, ..., A"~ with
A™ = 1. These condition exactly characterize the columns of the Fourier matrix. From the calculation it is also clear that the eigenvalue
of S associated with (1, ),..., A" 1) is A. The eigenvalue of S* corresponding to the same vector is easily seen to be A=1 = \.
(d) The matrix S — 21 + S* is
—2 1 0 S 0 1
1 —2 1 e 0 0
0 1 -2 ... 0 0
0 0 o ... -2 1
1 0 0 o 1 —2
which is indeed the matrix coming up in the discretization of % with periodic boundary conditions. Its eigenvalues are of the form

A—2+ X = —2(1 - Re)),where lambda can be any n—th root of unity. The this the same as —2(1 — cos(27k/n)), k = 0,1,...,n — 1.
Note that cos(2mk/n) = cos(2m(n — k)/n), so the eigenvalues other than 1 and possibly —1 (for even n), have multiplicity two.



5. Solve the following problem for the heat equation

ou Pu

rril @—i-bma:, x € (0,7), t € (0,00),
u(0,t) = 0,
u(m,t) = 0,
u(z,0) = sin2x,

and determine uq, (z) = limy_ o u(z, t).

Hint: Seek the solution in the form of the sine-Fourier series, and recall how to solve the ODE y = —y + 1.

Solution: We write the solution as a sine-Fourier series u(z,t) = .77 ; Bp(t)sinnz. Let fi = 1 and f, = 0 for n > 2, so that
sinz = 3 fnsinnz is the sine-Fourier series of the forcing term sinz. The equations for By, (t) are By (t) +n2Bp(t) = fa, n=1,2,....
The initial conditions By (0) are given by B2(0) = 1 and B, (0) = 0 when n # 2. Based on the simple equations for By, (¢) and their initial
conditions, we see that B1(t) = 1 — e~ %, Ba(t) = ¢4t and B, = 0 for n > 3. Hence u(z,t) = (1 — e t)sinz + e 4t sin 2z . The limit
lim¢— 00 u(x, t) is Uso () = sinz.

6. Show that for a 2L—periodic solution of the (generalized) wave equation

0% 9%
P = Tgm — (5)

where p, T,y are positive constants, with p and T" being strictly positive, the following quantities are constant in time:
L p [ Ou(z,t) 2 T [ du(z,t) 2 ~ 2
(a) The energy: E(t) = [, |4 ( b ) +3 (T) + qu(z,t)?| dx.

(b) The momentum: P(t) = ffL [% %] dx

Hint: Show that the time derivatives of E(t) and P(t) vanish, using integration by parts and the equation.
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simples observation: if f is a smooth 2L —periodic function, then ffL fz dx = 0. This follows the identity fLL fedz = f(L) — f(—L) =0,
where the last equality follows from the periodicity of the function.
(a) We calculate %E(t) = ffL [putust + Tuzugt + yuue) dz = ffL [ut(Tuzs — yu) + Tuguzt + yuue] doe = f—LL [Tuttuzs + Tugugt) dz =

2
Solution: We will denote derivatives by sub-indices, so u¢ means %, and similarly uy = , OF Ugt = %, etc. We also recall the following

(using integration by parts on the first term) ffL[fTuztuz + Tugzugzt]dr =0.
(b)%P(t) = f_LL [uttuz + uruiz) doe = f_LL[%umux - %uux + utugt] de. Now note that all three terms in the last integral can be written as
derivatives: uguze = (ui/Z)z s utg = (u?/2)z , and ugury = (uf/Z)z By the remark above about the integral of a derivative of a periodic

. L
function, we see that f_L[%umu,c — %uuw + utugt] dz = 0.



