
Math 5587 Homework Assignment 3 Solutions Fall 2017

1. Let (a, b) be a non-empty bounded open interval of the real line, let α, β be two positive real numbers at least
one of which is not zero, and let f(x) be a function which is smooth on the closed interval [a, b]. Find the differential
equation and the boundary conditions which correspond to the following minimization problem:

Among sufficiently regular functions u : (a, b) → R minimize the functional

J(u) =

∫ b

a

[
1

2
(u′(x))2 − u(x)f(x)

]
dx+

α

2
u(a)2 +

β

2
u(b)2 . (1)

Solution: Assume u is a function at which J attends its minimum. Let us fix a smooth function φ : [a, b] → R. The function t → J(u+ tφ)

obviously attends its minimum at t = 0, therefore d
dt
|t=0J(u+tφ) = 0. This gives 0 =

∫ b
a [u′(x)φ′(x)− f(x)φ(x)] dx+αu(a)φ(a)+βu(b)φ(b).

Integrating by parts, we see that
∫ b
a u′φ′ dx =

∫ b
a −u′′φdx + u′(b)φ(b) − u′(a)φ(a) . Using this in the previous identity, we obtain

0 =
∫ b
a (−u′′ − f)φdx + (−u′(a) + αu(a))φ(a) + (u′(b) + βu(b))φ(b). This has to be true for any function φ as above. By taking all

possible (smooth) functions φ satisfying φ(a) = 0 and φ(b) = 0, we see that u′′ + f = 0. Once we know that u′′ + f = 0, we take φ with

φ(a) = 1 , φ(b) = 0 to get −u′(a) + αu(a) = 0 and another φ with φ(a) = 0 , φ(b) = 1 to get u′(b) + βu(b) = 0. Therefore u satisfies

the equation −u′′ = f in the interval (a, b) and the boundary conditions −u′(a) + αu(a) = 0 and u′(b) + βu(b) and the points a and b,

respectively.

2. Consider the following variant of Problem 1. Let a = −1, b = 1, α = 1, β = 0, f(x) = x2 and let X be the space of
all quadratic functions of the form u(x) = px2 + qx+ r. Find the minimizer of J over the space X in this particular
case.

Solution: When u = px2 + qx+ r and f(x) = x2 we have
∫ 1
−1

[
1
2
(u′(x))2 − u(x)f(x)

]
dx =

∫ 1
−1

[
1
2
(2px+ q)2 − (px2 + qx+ r)x2

]
dx. The

last integral is evaluated by routine calculation as 4
3
p2 + q2 − 2

5
p − 2

3
r. Hence the value of J at u = px2 + qx + r, which we will denote

by f(p, q, r), is given by f(p, q, r) = 4
3
p2 + q2 + 1

2
(p − q + r)2 − 2

5
p − 2

3
r. It is worth noting that the quadratic part of f , the expression

4
3
p2 + q2 + 1

2
(p − q + r)2 is always positive and vanishes only when (p, q, r) = (0, 0, 0). This means that the function f approaches +∞

when (p, q, r) approaches ∞ in R3, and hence it attains a minimum. At the minimum the three partial derivatives of f have to vanish.
This gives the system of equations  11

3
−1 1

−1 3 −1
1 −1 1

 p
q
r

 =

 2
5
0
2
3

 . (2)

Solving this system (either by hand or with the help of Matlab) gives p = − 1
10

, q = 1
3
, r = 11

10
. Hence the minimum of J on the space X

is attained at the function u(x) = − 1
10

x2 + 1
3
x+ 11

10
.

3. Consider still another variant of Problem 1. This time choose a positive integer n (think of n = 100, for example),
set h = (b− a)/n and x0 = a, x1 = a+ h, x2 = a+2h, . . . , xn = b. Let Xn be the space of continuous functions on the
closed interval [a, b] which are of the form pix+ qi on the intervals (xi, xi+1) , i = 0, 1, . . . , n− 1.

(a) Explain why each function u in Xn is uniquely determined by the vector u0 = u(x0), u1 = u(x1), . . . , un = u(xn).

(b) For the case f(x) ≡ 1 calculate the equation for the vector u0, u1, u2, . . . , un one gets from the problem of minimizing
J(u) over Xn.

Hint: Take the derivatives of J is the direction of functions φ in X which are non-zero only at one point of the grid.
Solution: (a) A function of the form pix+ qi on an interval (xi, xi+1) is uniquely determined by its values at xi and xi+1.

(b) Proceeding in the same way as in Lecture 14 (see page 31 of the Lecture Log), we obtain −ui+1−2ui+ui−1

h2 = 1 for i = 1, 2, . . . , n− 1.
This represents n−1 equations. We have n+1 unknowns u1, u1, . . . , un. It remains to determine the two remaining equations. By the same

reasoning as in Problem 1, we know that 0 =
∫ b
a [u′(x)φ′(x)− f(x)φ(x)] dx+ αu(a)φ(a) + βu(b)φ(b) for each φ ∈ Xn. Let us choose this

identity with a φ ∈ Xn satisfying φ(x0) = 1 and φ(xi) = 0 for i = 1, 2, . . . , n. Recalling that f(x) ≡ 1, we obtain −u1−u0
h

− h
2
+ αu0 = 0.

Similarly, using a φ ∈ Xn given by φ(xi) = 0 for i ≤ n − 1 and φ(xn) = 1, we obtain
un−un−1

h
− h

2
+ βun = 0. The resulting system of

equations can be written in matrix form as

1

h2


1 + αh −1 0 . . . 0 0

−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 . . . −1 2 −1
0 0 0 . . . −1 1 + βh




u0

u1

. . .

. . .
un−1

un

 =



1
2
1
. . .
. . .
1
1
2

 (3)
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4. Consider the n× n matrix

S =


0 1 0 0 . . . 0
0 0 1 0 . . . 0
0 0 0 1 . . . 0
. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . 1
1 0 0 0 . . . 0

 . (4)

(a) Show that this matrix is unitary, in the sense that for any two vectors z, z′ ∈ Cn with (complex) coordinates

z1, . . . , zn and z′1, . . . , z
′
n we have ⟨ z , z′ ⟩ = ⟨Sz , Sz′ ⟩, where ⟨ z , z′ ⟩ =

∑n
j=1 zjz

′
j is the standard Hermitian product

in Cn.

(b) Find the adjoint matrix S∗ (defined by ⟨Sz , z′ ⟩ = ⟨ z , S∗z′ ⟩ for each z, z′ ∈ Cn).

(c) Verify that SS∗ = S∗S = I, where I is the identity matrix. In particular, S is normal. (This of course follows
from (a) and general principles, but here the task is to verify this directly.)

(d) As S is normal, the general theory implies that it can be diagonalized (together with S∗) in a basis which is
orthogonal with respect to the Hermitian product Cn. Show that the columns of the Fourier matrix which appeared
in Problem 6 of hw2 provide exactly such a basis, and calculate the eigenvalue corresponding the each eigenvector for
both S and S∗.

(e) Check that the matrix A = S − 2I +S∗ corresponds to a matrix we used for a finite-dimensional approximation of

the operator ∂2

∂x2 . Calculate the eigenvalues of A.

Solution: (a) If a vector z has coordinates (z1, z2, . . . , zn), then Sz has coordinates (z2, z3, . . . , zn, z1). From this it is clear that ⟨z, z′⟩ =
⟨Sz, Sz′⟩.
(b)We have ⟨Sz, z′⟩ = z2z′1 + z3z′2 + . . . znz′n−1 + z1z′n, so the vector S∗z′ has coordinates (z′n, z

′
1, z

′
2, . . . , z

′
n−1). This means that

S∗ =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 0
0 0 0 . . . 1 0


(c) This can be done in many ways, one of them being a direct computation with the above explicit form of the matrices. A more general
reasoning one can possibly use: ⟨S∗Sz, z′⟩ = ⟨Sz, Sz′⟩ = ⟨z, z′⟩ for each z, z′, which means S∗Sz = z for each z.
(d) The equation Sz = λz means that z2 = λz1 , z3 = λz2 , zn = λzn−1, z1 = λzn. Hence zj+1 = λjz1 , j = 1, 2, . . . , n − 1 and λn = 1.
Hence z1 ̸= 0, which means that we can choose z1 = 1. So any eigenvector can be taken as a vector with coordinates 1, λ, λ2, . . . , λn−1, with
λn = 1. These condition exactly characterize the columns of the Fourier matrix. From the calculation it is also clear that the eigenvalue
of S associated with (1, λ, . . . , λn−1) is λ. The eigenvalue of S∗ corresponding to the same vector is easily seen to be λ−1 = λ.
(d) The matrix S − 2I + S∗ is 

−2 1 0 . . . 0 1
1 −2 1 . . . 0 0
0 1 −2 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . −2 1
1 0 0 . . . 1 −2

 ,

which is indeed the matrix coming up in the discretization of ∂2

∂x2 with periodic boundary conditions. Its eigenvalues are of the form

λ − 2 + λ = −2(1 − Reλ) ,where lambda can be any n−th root of unity. The this the same as −2(1 − cos(2πk/n)) , k = 0, 1, . . . , n − 1 .

Note that cos(2πk/n) = cos(2π(n− k)/n), so the eigenvalues other than 1 and possibly −1 (for even n), have multiplicity two.
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5. Solve the following problem for the heat equation

∂u

∂t
=

∂2u

∂x2
+ sinx , x ∈ (0, π) , t ∈ (0,∞) ,

u(0, t) = 0 ,

u(π, t) = 0 ,

u(x, 0) = sin 2x ,

and determine u∞(x) = limt→∞ u(x, t).
Hint: Seek the solution in the form of the sine-Fourier series, and recall how to solve the ODE ẏ = −y + 1.

Solution: We write the solution as a sine-Fourier series u(x, t) =
∑∞

n=1 Bn(t) sinnx . Let f1 = 1 and fn = 0 for n ≥ 2, so that

sinx =
∑

n fn sinnx is the sine-Fourier series of the forcing term sinx. The equations for Bn(t) are Ḃn(t) + n2Bn(t) = fn , n = 1, 2, . . . .
The initial conditions Bn(0) are given by B2(0) = 1 and Bn(0) = 0 when n ̸= 2. Based on the simple equations for Bn(t) and their initial
conditions, we see that B1(t) = 1 − e−t , B2(t) = e−4t , and Bn = 0 for n ≥ 3. Hence u(x, t) = (1 − e−t) sinx + e−4t sin 2x . The limit
limt→∞ u(x, t) is u∞(x) = sinx.

6. Show that for a 2L−periodic solution of the (generalized) wave equation

ρ
∂2u

∂t2
= T

∂2u

∂x2
− γu (5)

where ρ, T, γ are positive constants, with ρ and T being strictly positive, the following quantities are constant in time:

(a) The energy: E(t) =
∫ L

−L

[
ρ
2

(
∂u(x,t)

∂t

)2

+ T
2

(
∂u(x,t)

∂x

)2

+ γ
2u(x, t)

2

]
dx .

(b) The momentum: P (t) =
∫ L

−L

[
∂u(x,t)

∂t
∂u(x,t)

∂x

]
dx .

Hint: Show that the time derivatives of E(t) and P (t) vanish, using integration by parts and the equation.

Solution: We will denote derivatives by sub-indices, so ut means ∂u
∂t

, and similarly utt =
∂2u
∂t2

, or uxt =
∂2u
∂x∂t

, etc. We also recall the following

simples observation: if f is a smooth 2L−periodic function, then
∫ L
−L fx dx = 0. This follows the identity

∫ L

L
fx dx = f(L) − f(−L) = 0,

where the last equality follows from the periodicity of the function.

(a) We calculate d
dt
E(t) =

∫ L
−L[ρututt + Tuxuxt + γuut] dx =

∫ L
−L[ut(Tuxx − γu) + Tuxuxt + γuut] dx =

∫ L
−L[Tutuxx + Tuxuxt] dx =

(using integration by parts on the first term)

∫ L
−L[−Tuxtux + Tuxuxt] dx = 0 .

(b) d
dt
P (t) =

∫ L
−L[uttux+ututx] dx =

∫ L
−L[

T
ρ
uxxux− γ

ρ
uux+utuxt] dx. Now note that all three terms in the last integral can be written as

derivatives: uxuxx = (u2
x/2)x , uux = (u2/2)x , and ututx = (u2

t /2)x. By the remark above about the integral of a derivative of a periodic

function, we see that
∫ L
−L[

T
ρ
uxxux − γ

ρ
uux + utuxt] dx = 0.
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