
MATH 5588 LECTURE LOG

Lecture 1, 1/16/2018

Laplace equation and gravitational potentials, Poisson equation

We discussed the Laplace equation

∆u = 0 (1)

and the Poisson equation
∆u = f (2)

in the three-dimensional space R3 in the historical context of gravitational po-
tentials. We use the usual notation

∆ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

. (3)

The equation was considered by P. S. Laplace in the three-dimensional spaceR3,
corresponding to n = 3.

We first discuss the situation when the equation is considered in the whole
space R3. (See Section 9.5.6 of the textbook.) This in some sense the simplest
case, simpler than when the equation is considered in a domain with boundaries,
with a boundary condition on the solution.

Having in mind the gravitational force, let us consider a point-mass M lo-
cated at a = (a1, a2, a3) ∈ R3. According to Newton, the force due to this mass
on another mass m located at x is

F = −κMm
x− a

|x− a|3
, (4)

where κ is the gravitational constant.
We can express the force in the following way: let

u(x) = − κM

|x− a|
(5)

be the gravitational potential of the body at a. The function u has a physical
meaning: −u(x) represents the amount of work needed to move a particle of a
unit mass from the point x to x ∼ ∞ (assuming the particle is at rest before
and after we move it, and the mass at a is fixed).

The force (4) can be expressed as

F = −m∇u , (6)

where we denote by ∇u the vector with components ∂u
∂xi

.
The fact that F can be expressed as a gradient of a function is of course very

important in mechanics, and has a number of consequences for the equations of
motion, but this will not be our focus here.
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In the 1780s P. S. Laplace made the following observation:

∆u(x) = 0 in R3 \ {a} . (7)

This is easy to check by a direct calculation. For the calculation we can assume
without loss of generality that a = 0, so we just need to verify(

∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

)
1

|x|
= 0 in R3 \ {0} , (8)

which is left to the reader as an exercise.
All the above can be generalized to the situation when we have several masses

M1,M2, . . . ,Mr and the points a(1), a(2), . . . , a(r), respectively. We set

u(x) =
∑
j

− κMj

|x− a(j)|
, (9)

and the force on a point-mass m located at x due to gravity from the masses
M1, . . . ,Mr is again given by (6). Also, the function u satisfies

∆u(x) = 0 in R3 \ {a(1), a(2), . . . , a(r)} . (10)

All this can also be applied to a continuous distribution of mass. Assume
mass is not concentrated at finitely many points, but distributed with some
density ρ(x). This means that the mass contained in a region O ⊂ R3 is∫
O ρ(x) dx. Let us assume that ρ is a smooth function which vanishes outside a
bounded set.

In this situation we set

u(x) =

∫
R3

−κρ(y)

|x− y|
dy . (11)

The force on a mass m at x due to gravity from the mass described by ρ is
again given by (6).

In any open set where ρ vanishes we again have ∆u = 0.
This can be used to prove the Shell Theorem, that the gravitational force

due to a mass in a ball BR = {x , |x| ≤ R} which is spherically distributed
is in the reagion outside of the ball exactly the same as of all the mass was
concentrated at x = 0. This was already known to Newton (and you can find
Newton’s proof at the Wikipedia page linked above). Let us sketch a proof of
the theorem using the Laplace equation ∆u = 0. Let ρ be the distribution of
the mass, and let u be the potential given by (11). If ρ is spherically symmetric,
then ρ = ρ(r), where r = |x|. One can check easily that then u is also depends
only on r, or u = u(r). Outside of the ball BR we have ∆u = 0, and by direct
calculation we check that for functions depending on r this equation is

u′′ +
2u′

r
= 0 . (12)
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The general solution of this equation is

u(r) =
A

r
+B . (13)

Since u → 0 as x → ∞, we see that for our potential u we must have B = 0.
Far away from the mass, when |x| is large, the integral (11) gives

u(x) = −κM

|x|
+ possible error of order |x|−2 , (14)

where M =
∫
R3 ρ(y) dy is the total mass. A comparison with (13) now shows

that A = −κM and hence

u(x) =
−κM

|x|
, |x| > R , (an exact expression) (15)

This proves the Shell Theorem.

In the early 1800s Poisson has made the following observation. Assume
for simplicity that the density ρ is sufficiently regular and vanishes outside a
bounded set. Then

∆u(x) = 4πκρ(x) , x ∈ R3 . (16)

This has far-reaching consequences. Let us reformulate the result somewhat.
Set

G(x) = − 1

4π|x|
. (17)

For a smooth function f : R3 → R which vanishes outside of a bounded
region set

u(x) =

∫
R3

G(x− y)f(y) dy . (18)

The result of Poisson can be stated as

∆u = f . (19)

One can think about it in the following way: consider the “operator” G (which
maps functions on R3 to functions on R3) given by

f → Gf : x →
∫
R3

G(x− y)f(y) dy . (20)

Then, at least on functions which are smooth and supported in a bounded set,
we have

∆ G = Identity . (21)

This can be interpreted as G being an inverse operator to ∆. (Or, more precisely,
right-inverse. We will see that for functions u which vanish at ∞ one also has
G ∆u = u.)
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The operator f → Gf is a typical integral operator, and the above illustrates
an important general point: inverses to differential operators are often given by
integral operators. The simplest example of this is the fundamental theorem of
calculus - the inverse of differentiation is given by integration.

Lecture 2, 1/18/2018

The discrete Laplacian and its relation to the standard Laplacian

There are similarities between the equation

∆u = f , (22)

we discussed last time, and the equation

Aξ = b , (23)

where A is an n×n matrix b is a given n−vector and ξ is an unknown n−vector,
which you have studied in the linear algebra classes. If the matrix A is invertible,
we can write the solution ξ of (23) as

ξ = A−1b . (24)

In coordinates this is
ξi =

∑
j

(A−1)ijbj . (25)

This can be compared with the formula

u(x) =

∫
R3

G(x− y)f(y) dy , G(x) =
1

4π|x|
, (26)

which we discussed last time. In some sense, the function G(x − y) represents
the inverse operator to ∆, with the variables x, y playing the role of the indices
i, j in (25).

To make this more specific, let us consider the discrete Laplacian. It is
defined for functions on a discrete mesh

X3
discr,h = {x = (x1, x2, x3) , x1 = hk1 , x2 = hk2 , x3 = hk3 , k1, k2, k3 ∈ Z} ,

(27)
where, as usual, Z denotes the integers and h > 0 is a parameter. For a function
u on the mesh X3

discr,h we define

∆discru(x) =

u(x+ he1) + u(x− he1) + u(x+ he2) + u(x− he2) + u(x+ he3) + u(x− he3)− 6u(x)

h2
,

(28)
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where e1 = (1, 0, 0) , e2 = (0, 1, 0) , e3 = (0, 0, 1) . This expression can be ob-
tained from the expression for ∆ if we replace the second partial derivatives by
the corresponding difference quotients.1

In the class we discussed an interpretation of this expression in terms of
electric currents. We can imagine a mesh of wires in the three direction of
the axes x1, x2, x3 passing through the points of X3

discr,h and connected at those

points. If u(x) represents the voltage at x ∈ X3
discr,h, then ∆discru(x) represents

2

the sum of currents emanating from that point.3

The equation ∆discru = f on X3
discr,h has still infinitely many unknowns u(x)

(labeled by x ∈ X3
discr,h), but we can choose some L > 0 (which we can think

as large), restrict it to a finite subset

ΩL
discr,h = {(hk1, hk2, hk3) , |hkj | < L , j = 1, 2, 3} (29)

and impose a “boundary condition” on the “discrete boundary” ∂discrΩ
L
discr,h

of the (finite) set ΩL
discr,h consisting of the points of X3

discr,h which are “just

outside” of ΩL
discr,h.

In this situation the equation

∆discru(x) = f(x) , x ∈ ΩL
discr,h , (30)

taken with the understanding the u(x) = 0 at ∂discrΩ
L
discr,h (which is needed

when calculating ∆discru(x) when x ∈ ΩL
discr,h is next to the boundary) is

just a linear equation of the form (23), with the unknown ξ identified with
{u(x) , x ∈ ΩL

discr,h}. The points x ∈ ΩL
discr,h serve the same purpose as the in-

dices i identifying the coordinates ξi of ξ. In the situation above, the “matrix”
∆discr is invertible. This may not be obvious if you see it for the first time, but
we will begin to see it as we become more familiar with the properties of the
Laplacian.

We can express the solution u(x) of (30) in a way analogous to (25):

u(x) =
∑

y∈ΩL
discr,h

GL
discr(x, y)f(y) , x ∈ ΩL

discr,h (31)

where GL
discr(x, y) (with x, y running through ΩL

discr,h ) representins the inverse

matrix of ∆discr (considered in ΩL
discr,h).

The function GL
discr(x, y) is not described by a simple explicit formula. (An

formula can be written down, but it is not quite simple.) It can be calculated
by a computer as an inverse matrix of ∆discr. (We should note that representing
the matrix given by ∆discr in a computer requires some thought - it is not as
simple as in the case of space dimension one, when the discretization of the
second derivative gives a simple matrix. However, at this point we will not
focus on this detail.)

1On the real line the difference quotient is given by
g(x+h)+g(x−h)−2g(x)

h2 .
2modulo a multiple, given by the resistance of the wires between two points
3If there is no “source” at x, the sum has to vanish by Kirchhoff laws.
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The connection to the function G = 1
4π|x| is the following: if we fix x, y with

|x− y| much larger than h and take L much larger than max(|x|, |y|), then

GL
discr(x, y) ∼ h3G(x− y) ∼ h3

4π|x− y|
. (32)

We will not try to prove this, our purpose here is to explain in which sense the
function G(x− y) is similar to an inverse matrix. We see that, remarkably, in a
suitable limit the function GL

discr(x, y) approaches a simple expression.
Just as the continuous Laplacian ∆ is relevant for many phenomena (gravity,

electricity, heat conduction, random walks, diffusion,...), the discrete Laplacian,
besides being an approximation of the “true Laplacian”, is relevant for many
phenomena on a lattice, some of which we discussed in class.

We can also do all this in dimension two and dimension one. In that case
the function GL

discr(x, y) will approach +∞ as L → +∞, but we can still obtain
a suitable limit considering GL

discr(x, y) − cL, where cl is a suitable constant
(depending on L).

Lecture 3, 1/23/2018

Integration by parts

Integration by parts (in the multi-dimensional case) is discussed in the text-
book under the name Divergence theorem. The theorem is formulated on pages
21-22, and you can check the index of the book for other places where the topic
comes up.

In the class we went through some of the standard formulae, with some
explanations as to why such formulae hold.

The first observation is that for a smooth function f : Rm → R which van-
ishes outside a bounded region we have∫

Rm

∂f

∂xi
(x) dx = 0 , i = 1, . . . ,m . (33)

This is easy to understand by integrating first over x1 and using the Fundamen-
tal Theorem of Calculus.

Let f be any smooth function on Rm and g a smooth function on Rm which
vanishes outside a bounded set. Then we can apply (33) to fg and, applying
the Leibnitz rule, obtaining∫

Rm

∂f

∂xi
(x)g(x) dx =

∫
Rm

−f(x)
∂g

∂xi
(x) dx . (34)

A more subtle formula is necessary when we integrate over a domain. Let
Ω ⊂ Rm be a smooth bounded domain. (You can assume that m ∈ {1, 2, 3},
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although we can work with any m ≥ 1.) The boundary of Ω will be denoted
by ∂Ω, and for x ∈ ∂Ω we will denote by n(x) = (n1, . . . , nm) the outward unit
normal to ∂Ω at x.

Let f : Ω → R be a function in Ω which is smooth up to the boundary. Then
one has ∫

Ω

∂f

∂xi
(x) dx =

∫
∂Ω

f(x)ni(x) dx . (35)

For a vector field u = (u1, . . . , um) in Ω we define

div u(x) =
m∑
i=1

∂ui

∂xi
(x) . (36)

Applying (35) to each component ui and summing over i, we obtain∫
Ω

div u(x) dx =

∫
∂Ω

u(x)n(x) dx , (37)

where

u(x)n(x) =

m∑
i=1

ui(x)ni(x) (38)

is the scalar product of u and n. Formula (37) is known under several names:
Divergence theorem, Gauss theorem, Gauss-Ostrogradsky’s theorem, and oth-
ers.

For a smooth function v : Rm → R we denote the vector field with coordi-
nates ∂v

∂xi
by ∇v. Note that

div∇v = ∆v . (39)

Applying (37) with u = ∇v, we obtain∫
∆v dx =

∫
∂Ω

(∇v)ndx . (40)

The quantity ∇v(x)n(x) is the derivative of v in the direction n(x), and is called
the normal derivative of v.

Applying (35) with f replaced by fg and using the Leibnitz rule, we obtain∫
Ω

∂f

∂xi
g dx =

∫
∂Ω

fgni dx−
∫
Ω

f
∂g

∂xi
dx . (41)

A variant of this formula is that for a vector field u and a scalar function f we
have∫

Ω

f(x) div u(x) dx =

∫
∂Ω

f(x)(u(x)n(x)) dx =

∫
Ω

−u(x)∇f(x) dx . (42)

Taking the special case f = v, u = ∇v, we obtain∫
Ω

v(x)∆v(x) dx =

∫
∂Ω

v(x)∇v(x)n(x) dx−
∫
Ω

|∇v(x)|2 dx . (43)
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The last formula can be used to prove the following statement: If v : Ω → R
satisfies ∆v(x) = 0 in Ω and v is constant at ∂Ω, then v is constant in Ω.

To see this, we note that when ∆v = 0 the integral on the left of (43)
vanishes. If v is constant at ∂Ω and ∆v = 0, then the boundary integral in (43)
also vanishes, due to (40), and hence we are left with∫

Ω

|∇v|2 dx = 0 , (44)

which means that ∇v = 0 in Ω.

Overall, the integration by parts is one of the main tools in the theory of
PDEs, and we will use is quite often.

Lecture 4, 1/25/2018

Convolution

For two functions f, g : Rm → R such that we define the convolution f ∗ g
by the formula

f ∗ g(x) =
∫
Rm

f(x− y)g(y) dy , (45)

assuming the integral is convergent. (Note, for example, that when f ≡ 1 and
g ≡ 1, the integral is not finite.)

We can think about the definition in several ways. One of them is the
following: for f : Rm → R and a fixed y ∈ Rm, the function

x → f(x− y) (46)

is often called the shift of the function f . Its graph is obtained by shifting the
graph of f by the vector y. If we have several vector y(1), . . . , y(r) and coefficients
c1, dots, cr, we can combine the shifts f(x0 − y(j) using the coefficients cj and
form a function

c1f(x− y(1)) + c2f(x− y(2)) + · · ·+ crf(x− y(r)) . (47)

When cj ≥ 0 and
∑

j cj = 1, we can think of (47) as a certain average of the

shifts f(x− y(j)) (with “weights” cj).
The convolution can be thought of as a version of (47), where the sum is

replaced by an integral and the weights cj are replaced by “infinitesimal weights”
g(y) dy. However, this is just one of various ways to think about the convolution.
Note if we set x− y = y′ in (45), we obtain

f ∗ g(x) =
∫

f(y′)g(x− y′) dy′ , (48)
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which is the same as saying that

f ∗ g = g ∗ f . (49)

Hence instead of viewing f ∗ g as a suitable average of the shifts of the function
f with “weights” g(y) dy (which may be a good way to view f ∗ g when, say,
f is bounded and g is localized in a bounded region), we can also view it as a
suitable average of the shifts of g with “weights” f(y) dy.

In the textbook, the operation of convolution of two functions is discussed
for example in section 10.4.3, in connection with Fourier transformation.

Convolution can be used for approximating general functions by smooth
functions. Let ϕ : Rm → R be a smooth function which vanishes outside of a
unit ball in Rm, and satisfies

∫
Rm ϕ(x) dx = 1. (We could also demand that

ϕ ≥ 0, but this is not necessary.) For ε > 0 we set

ϕε(x) =
1

εm
ϕ
(x
ε

)
. (50)

The function ϕε vanishes outside of the ball of radius ε, and still has the property∫
Rm

ϕε(x) dx = 1 . (51)

The functions
fε = f ∗ ϕε (52)

provide a very good approximation of f as ε → 0. Heuristically, for small ε,
the function f ∗ ϕε are combinations of small shifts of f , and a small shift of f
should be close to f .

Under quite general assumption we have

lim
ε→0+

f ∗ ϕε = f . (53)

We did not specify the sense in which the limit is taken. That depends on the
situation. For example, when f is continuous and vanishes outside of a bounded
set, then maxx |f(x)− f ∗ ϕε(x)| → 0 as ε → 0+, but when f is discontinuous,
we have to measure the proximity of f and f ∗ ϕε in a different way. At this
point we do not have to worry about these details.

The functions ϕε can also be viewed as an approximation of the Dirac func-
tion δ, in the sense that

ϕε → δ , ε → 0+ . (54)

In the textbook the Dirac function is introduced at first in dimension m = 1
on pages 384–390, and later discussed also in higher dmensions, see for example
page 500.

In the context of convolution, the Dirac function serves as a unity of the
convolution operation:

f ∗ δ = f . (55)
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When f is continuous, we clearly have∫
Rm

f(x− y)δ(y) dy = f(x) (56)

for each x. For functions which are not continuous (but still can be integrated)
the last formula needs a more careful interpretation, which we do not need to
worry about at the moment.

We will use the formula

∂

∂xi
(f ∗ g) = (

∂

∂xi
f) ∗ g = f ∗ ( ∂

∂xi
g) , (57)

which holds, roughly speaking, when the corresponding expressions are well
defined. The main point is that we can choose whether we put the derivative
on f or on g, depending which is better for the situation under consideration.
For example, in f ∗ ϕε the function ϕε is smooth, so we can use

∂

∂xi
(f ∗ ϕε) = f ∗ ∂

∂xi
ϕε ,

∂2

∂xi∂xj
(f ∗ ϕε) = f ∗ ( ∂2

∂xi∂xj
ϕε) , (58)

and similarly for derivatives of any order, and we see that f ∗ ϕε should be a
smooth function. This is indeed the case, under some minimal assumptions.

When we can take derivatives of both f and g, we can distribute higher
derivatives between f and g. For example,

∆(f ∗ g) =
∑
i

(
∂

∂xi
f

)
∗
(

∂

∂xi
g

)
, (59)

but we of course also have

∆(f ∗ g) = (∆f) ∗ g = f ∗ (∆g) , (60)

if f or g are sufficiently smooth so that we can put both derivatives on them.

Using some of the above formulae, it is easy to verify the observation of
Poisson from the early 1800s that u = G ∗ f (with G given by (17) (from
Lecture 1) satisfies

∆u = f . (61)

To see it, consider any smooth functions K on R3 satisfying

K(x) = − 1

4π|x|
, |x| ≥ 1 . (62)

For ε > 0 we set

Kε(x) =
1

ε
K

(x
ε

)
. (63)

Claim: ∆K is vanishes outside B = {x ∈ R3 , |x| < 1} and∫
Rm

∆K(x) dx = 1 . (64)
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To see this, we recall that outside of the ball B we have K(x) = 1
4π|x| , and hence

∆K = 0 in R3 \B. Thus we have∫
R3

∆K(x) dx =

∫
B

∆K(x) dx =

∫
∂B

∑
i

∂K

∂n
dx (65)

where n = n(x) is the outward unit normal to ∂B and

∂K

∂n
(x) =

∑
i

ni(x)
∂K

∂xi
(x) =

∑
i

xi

|x|
∂K

∂xi
(x) =

1

4π|x|2 . (66)

Now we just have to check that ∫
∂B

1

4π|x|2 dx = 1 . (67)

Once we have the claim, the formula (61) can be easily seen for example as follows.
First, we note that limε→0+ Kε(x) = G(x) for x ̸= 0. Second, we note that

∆Kε =
1

ε3
(∆K)

(x
ε

)
(68)

∆ (G ∗ f) = lim
ε→0+

∆(Kε ∗ f) = lim
ε→0+

(∆Kε) ∗ f . (69)

We see that we can think of the function ∆Kε as playing the role of the function ϕε

in (52): it is of the form 1
ε3
ϕ
(
x
ε

)
with ϕ = ∆K being smooth, vanishing outside of the

unit ball, and having integral 1. Therefore

lim
ε→0+

(∆Kε) ∗ f = f , (70)

under quite general assumptions on f .
Another way to think about it is

∆G = lim
ε→0+

∆Kε = δ (the Dirac function) , (71)

and therefore
∆(G ∗ f) = (∆G) ∗ f = δ ∗ f = f . (72)

Lecture 5, 1/30/2018

Another argument that ∆(G ∗ f) = f

We have

∆(G ∗ f) =
∑
i

(
∂G

∂xi

)
∗
(

∂f

∂xi

)
, (73)

at least when f vanishes outside a bounded set and is continuously differentiable. This
needs some justification, as G is not differentiable at 0. The function ∂G

∂xi
is defined

everywhere except at the origin by the usual differentiation:

∂G

∂xi
(x) =

xi

4π|x|3 . (74)
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The justification of (74) (under our assumptions on f) is not completely obvious. We
briefly sketch it, but it is optional, you can just accept (73) and skip the justification.

To see that (73) should be correct, we first note that we have ∂
∂xi

(G∗f) = G∗ ∂f
∂xi

,

due to our assumptions on f. Next, we note that the integral defining ∂G
∂xi

∗ ∂f
∂xi

(where

we take the derivative of G as in (74) is convergent: we have(
∂G

∂xi
∗ ∂f

∂xi

)
(x) =

∫
R3

xi − yi
4π|x− y|3 fi(y) dy , fi =

∂f

∂xi
. (75)

The function f vanishes outside some ball B, so in the integral we can integrate only
over B. The potentially dangerous contribution to the integral is from the neighbor-
hood of x as the function y → xi−yi

|x−y|3 has a singularity there. The key point now is

that ∣∣∣∣ ∂G∂xi
(x− y)

∣∣∣∣ ≤ 1

4π|x− y|2 (76)

and the integral ∫
{y , |x−y|<1}

1

4π|x− y|2 dy =

∫
{y , |y|<1}

1

4π|y|2 dy (77)

is finite. To see this, we note that the last integral can be expressed as∫ 1

0

1

4πr2
4πr2 dr =

∫ 1

0

dr = 1 . (78)

Note that a similar argument would not work for the second derivatives of G. In that

case we get that
∫
{y ,|y|<1}

∣∣∣ ∂2G
∂xi∂xj

(y)
∣∣∣ dy = +∞.

Finally, to finish our justification of (73), we calculate the derivative of G ∗ fi as
the standard limit of difference quotients Dh

i (G ∗ fi), defined as usual by Dh
i g(x) =

(g(x+hei)−g(x))/h, with the vector ei having 1 in the i−th place and zeroes otherwise.
We have

Dh
i (G ∗ fi) =

(
Dh

i G
)
∗ fi . (79)

We can now take h to zero to obtain (73). The behavior of Dh
i G deteriorates as we

get closer to the origin, but the key point is that this deterioration is not sufficiently
strong so as to prevent passing to the limit in the integral defining the convolution
in (79), by a calculation similar to (78). One can check that, under our assumptions,

the functions (Dh
i G) ∗ fi converge uniformly to

(
∂G
∂xi

)
∗
(

∂f
∂xi

)
as h → 0+.

Ler Bε = {y ∈ R3 , |y| ≤ ε} and Oε = R3 \Bε . Using (73), we can write

∆ (G ∗ f) (x) =
∫
R3

∂f

∂xi
(x− y)

∂G

∂xi
(y) dy

= lim
ε→0+

∫
Oε

∂f

∂xi
(x− y)

∂G

∂xi
(y) dy

= lim
ε→0+

∫
∂Oε

f(x− y)
∂G

∂xi
(y)ni(y) dy −

∫
Oε

f(x− y)∆G(y) dy

= lim
ε→0+

∫
∂Bε

f(x− y)
1

4π|y|2 dy = f(x) ,

(80)

where we have used that ∆G = 0 in Oε and ∂G
∂xi

(y)ni(y) =
1

4π|y|2 for y ̸= 0. Note the

last integral in (80) is the average of f over the ball of radius ε around x, and this
approaches f as ε → 0+ as f is continuous.
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In the above calculation we assumed that f has continuous derivatives, but weaker
assumptions are sufficient. One can ask about the minimal assumptions on f under
which the function G ∗ f is twice differentiable. These are relatively subtle questions
which will not be our focus here.

For most purposes one can assume that u = G ∗ f satisfies ∆u = f in a suitable
(possibly generalized) sense, as long as the convolution G ∗ f is well-defined.

Lecture 6, 2/1/2018

Domains with boundary, the method of images

So far we have thought about the Laplace equation in the three dimensional space
in the context of gravity. However, it arises in many other contexts, such as electro-
statics and heat conduction (steady-state solutions). Gravity cannot be “screened”
and therefore considerations in the whole space are very natural.

In electrostatics, parts of the space can be screened by conduction surfaces, and
this leads to boundary-value problems. A typical example is the following. Let Ω ⊂ R3

be a ball. Imagine that the boundary of Ω is made of of a conducting material and
is “grounded”, e. i. , the electric potential is always kept at 0. (One can think of
connecting the boundary of Ω to the “ground wire”.) If we put an electric change inside
Ω, its potential will satisfy the equation ∆u(x) = f(x) inside Ω, where f describes the
density of charges in suitable units. (If we use the units used in practice one will need
to put some constant in front of f , such as − 1

4πε0
, but we can always choose units in

which the constant is exactly 1.)
At he boundary the value of the potential u will constant (as the boundary is

a conductor), and assuming the potential at the Earth’s surface is set to 0 (we can
choose such a normalization), given that our boundary is grounded, we will have to
have u|∂Ω = 0 (where we denote by u|∂Ω the restriction of u to the boundary of Ω).
So to determine u inside Ω we have to solve the boundary value problem:

∆u(x) = f(x) , x ∈ Ω ,
u(x) = 0 , x ∈ ∂Ω .

(81)

In SI units, which are often used in the physic textbooks, the equation would read

−∆u(x) = 1
4πε0

ρ(x) , x ∈ Ω ,

u(x) = 0 . x ∈ ∂Ω .
(82)

where ρ is the change density and ε0 is the vacuum permittivity. However, for the
purposes of PDE analysis we can work with the normalization (81). An often used
normalization is

−∆u(x) = f(x) , x ∈ Ω ,
u(x) = 0 , x ∈ ∂Ω .

(83)

which has some advantages, but for now we will work with (81) .
We will also introduce the following terminology: a domain is a subset of R3 (or,

more generally, of Rm) which is open and connected. Recall that a set Ω ⊂ Rm is
open if with every x ∈ Ω it also contains some ball of positive radius around x, and is
connected if any two points in Ω can be joined by a smooth curve in Ω.

The problem of analyzing (81) for general domains is fairly difficult. However, one
can solve it (or, more precisely, its approximate version) numerically on a computer
without much theory. Writing some code which solves some suitable approximations

13



of (81) (such as those discussed in Lecture 2) is not too hard. The problem becomes
more challenging (and mathematically interesting), even at the discrete approximation
level, if we wish to find fast algorithms for solving it. That is not easy.

For now we will turn to situations which can be analyzed relatively easily - namely
that of special domains, where symmetries can be used to write down solutions of (81)
in terms of the functions G = − 1

4π|x| introduced in Lecture 1.
We will start with the simplest non-trivial domain with boundary, which arguably

is the half-space
Ω = R3

+ = {x = (x1, x2, x3) ∈ R3 , x3 > 0} . (84)

Its boundary is given by the plane x3 = 0:

∂Ω = {x = (x1, x2, x3) ∈ R3 , x3 = 0} . (85)

For this domain one can write down solutions of (81) using the following trick, which
can also be used in some other (special) situations. Assume a unit charge is located
at y ∈ Ω its whole-space potential x → G(x − y) = − 1

4π|x−y| does not vanish at ∂Ω,

but we can adjust G(x− y) as follows: take y∗ = (y1, y2,−y3) and consider

GΩ(x, y) = − 1

4π|x− y| +
1

4π|x− y∗| . (86)

Note that for x ∈ ∂Ω we have x3 = 0 which implies

|x− y|2 = (x1 − y1)
2 + (x2 − y2)

2 + y2
3 = |x− y∗|2 , (87)

and hence GΩ(x, y) = 0 for x ∈ ∂Ω. In Ω we have

∆xGΩ(x, y) = ∆x

(
− 1

4π|x− y|

)
= δ(x− y) , (Dirac mass) , (88)

as ∆x
1

4π|x−y∗| = 0 in Ω.

The solution of (81) can then be given

u(x) =

∫
Ω

GΩ(x, y)f(y) dy . (89)

Note that the function GΩ(x, y) is not of the form F (x−y) (unlike in the case Ω = R3).
The function GΩ(x, y) can be compared to an inverse matrix for the problem

Aξ = b , (90)

where A = {Aij} is an n × n matrix, ξ = (ξ1, . . . , ξn) is an unknown vector and
b = (b1, . . . , bn) is a given vector. If the matrix A is invertible, with the inverse
B = A−1, with B = {Bij}, we can write

ξi =
∑
j

Bijbj . (91)

This can be compared with formula (89), with f playing the role of b, the variables
x, y playing the role of the indices i, j the function GΩ playing the role of B, and the
integral replacing the summation.

We see that the formulae (89) and (91) are in many respects quite similar.
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Lecture 7, 2/6/2018, by Dallas Albritton4

Introduction to Fourier Transformation, a calculation of the heat kernel

Today, we introduced the Fourier transform and used it to derive the heat kernel.
Most of the calculations may be found in Chapter 10 of Haberman.

To begin, let us obtain the Fourier transform as a suitable limit of Fourier series.
Recall Fourier series for a smooth function f on [−L,L], where L > 0. For the moment,
assume that f ≡ 0 outside [−L/2, L/2]. Then5

f(x) =
1

2L

∑
k∈πZ

L

f̂(k)eikx for all x ∈ [−L,L], (92)

where f̂ is defined for all k ∈ R by

f̂(k) =

∫ L

−L

f(x)e−ikx dx =

∫
R

f(x)e−ikx dx. (93)

Let L → ∞ in (92) to obtain an integral from its Riemann sums:

f(x) = lim
L→∞

1

2π

(π

L

∑
k∈πZ

L

f̂(k)eikx
)
=

1

2π

∫
R

f̂(ξ)eiξx dx (94)

for all x ∈ R. The identity

f(x) =
1

2π

∫
R

f̂(ξ)eiξx dx for all x ∈ R (95)

is known as the Fourier inversion formula, while the complex-valued function f̂ is
known as the Fourier transform. The variable x is known as the spatial (sometimes
temporal) variable, while ξ is the frequency variable.6 The two have inverse units,
so that the quantity ξx in the exponential is dimensionless. For instance, x might
be measured in meters, and ξ might be measured in meters−1. The Fourier inversion
formula states that a function (or signal) f can be written as a superposition of waves
eiξx, where f̂(ξ) represents (up to a constant) the amplitude of the wave eiξx in the
superposition.

There are several different normalizations of the Fourier transform. Here are a few:

1. f̂(ξ) =
∫
R
f(x)e−2πixξ dx, f(x) =

∫
R
f̂(ξ)e2πixξ dξ,

2. f̂(ξ) = 1√
2π

∫
R
f(x)e−iξx dx, f(x) = 1√

2π

∫
R
f̂(ξ)eiξx dξ,

3. f̂(ξ) =
∫
R
f(x)e−iξx dx, f(x) = 1

2π

∫
R
f̂(ξ)eiξx dξ, and

4. f̂(ξ) = 1
2π

∫
R
(x)e−iξx dx , f(x) =

∫
R
f̂(ξ)eiξx dξ .

4Many thanks to Dallas for teaching the class (and preparing the notes) while V.S. was
out of town.

5To make sure you have the right normalization of the Fourier transform, you should 1)
make sure the basis function eikx have the correct period, and 2) make sure that the formula
is correct for a constant function.

6The symbol ξ is often pronounced “ksee,” and one should practice writing it.
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The 2π must go somewhere, and it doesn’t matter too much except that one must keep
track of the constants (for instance, when differentiating). In class I used #3, but
now I will use #2, since I prefer the symmetry. 7 The textbook uses #4. Another
notation for f̂ (resp. f̌) is F (resp. F−1). Note that Haberman’s book also reverses
the role of f̂ and f̌ .

To make sense of the integral in

f̂(ξ) =
1√
2π

∫
R

f(x)e−iξx dx, (96)

a natural condition on the function f : R → R is to be absolutely integrable:∫
R

|f | dx < ∞. (97)

If f is not continuous, the integral needs a suitable interpretation that is more general
than the Riemann integral. That is, one uses the Lebesgue integral. This is roughly
the point of measure theory, which is usually taught in graduate real analysis. Then
(96) makes sense for functions f ∈ L1(R).8 There is also a natural class of functions
on which the Fourier transform is an isomorphism. These are the Schwartz functions,
which we roughly think of as “like Gaussian” in their regularity and decay properties.

From now on, we will assume that all functions are “sufficiently regular” and decay
“sufficiently fast” as |x| → ∞.

Fact #0. Fourier inversion:

f(x) =
1√
2π

∫
R

f̂(ξ)eiξx dx for all x ∈ R, (98)

or (f̂ )̌ = f .
Fact #1. The Fourier transform diagonalizes differentiation:

(f ′)̂ (ξ) = iξf̂(ξ) for all ξ ∈ R. (99)

Fact #2. The Fourier transform turns convolution into multiplication, and vice
versa:

(f ∗ g)̂ (ξ) =
√
2πf̂(ξ)ĝ(ξ), (100)

(fg)̂ (ξ) =
1√
2π

(f̂ ∗ ĝ)(ξ), (101)

for all ξ ∈ R. A good exercise is to find the analogue of this for Fourier series.
Fact #3. The Fourier transform of a Gaussian is a Gaussian: If α > 0 and

g(x) = e−
α|x|2

2 , (102)

then

ĝ(ξ) =
1√
α
e−

|ξ|2
2α . (103)

We proved this using that ĝ satisfies the ODE

dĝ

dξ
(ξ) = − ξ

α
ĝ(ξ) (104)

7In general dimension, this normalization is 1

(2π)
n
2
, and ξx becomes the dot product ξ · x.

8The L is for “Lebesgue.”
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for all ξ ∈ R. To compute ĝ(0) = 1√
2π

∫
R
g(x) dx, we used that

A =

∫
R

e−
|x|2
2 dx =

√
2π. (105)

This last fact is proven by evaluating A2 =
∫
R

∫
R
e−

|x|2+|y|2
2 dx dy in polar coordinates,

see Chapter 10 of Haberman.
Fact #4. The Fourier transform of the Dirac delta function is the constant func-

tion 1/
√
2π. This may be observed, for instance, by taking α → 0+ in the identities

from Fact #3. This fact is one instance of the uncertainty principle, which states that
a function and its Fourier transform cannot both be highly concentrated.

Fact #5. Plancherel theorem/Parseval’s identity :∫
R

fg dx =

∫
R

f̂ ĝ dξ. (106)

Here, the overline denotes complex conjugation. In particular,∫
R

|f |2 dx =

∫
R

|f̂ |2 dξ. (107)

I did not cover this in class today, but it is an important fact nonetheless!
I think it’s a good idea to practice the computations involved in obtaining the

above facts (except for Fact #0).
Heat equation in the whole space Rn.
For n ≥ 1, consider the heat equation

∂tu = ∆u in Rn ×R+ (108)

with initial condition u(x, 0) = u0(x). Here, R+ denotes the half-line (0,∞). We
supplement the problem with a boundary condition at spatial infinity:

|u(x, t)| → 0 as |x| → ∞. (109)

We will now derive a solution formula for (108). Taking the Fourier transform of
(108) in the spatial variables gives

∂tû(ξ, t) = −|ξ|2û(ξ, t) (110)

for all ξ ∈ Rn and t ∈ R+. Here, we have used Fact #1 (Fourier transform diagonalizes
multiplication) and also that

∂tû(ξ, t) = (∂tu)̂ (ξ, t). (111)

Notice that for each ξ ∈ Rn, (110) is an ODE in time for û(ξ, t). Solving the ODE
gives

û(ξ, t) = e−|ξ|2tû0(ξ). (112)

Observe that the high frequencies of u0 are instantly damped after the initial time.
Now apply the inverse Fourier transform on each side of (112). As in Fact #2,

the inverse Fourier transform turns multiplication into convolution (up to a factor
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of (2π)−
n
2 ), so we only need to know the inverse Fourier transform of our Gaussian

e−|ξ|2t. According to Fact #3 with α = 2t,9

e−|ξ|2t F−1

→ (2t)−
n
2 e−

|x|2
4t . (113)

In conclusion, we have obtained the solution formula

u(x, t) = (Γ(·, t) ∗ u0)(x), (114)

where Γ is the heat kernel, defined for all (x, t) ∈ Rn ×R+ by

Γ(x, t) = (4πt)−
n
2 e−

|x|2
4t . (115)

The heat kernel solves the heat equation in Rn ×R+ with inital data a Dirac mass.
Let Rn

+ = {(x1, . . . , xn) ∈ Rn : xn > 0}. A good exercise is to use the method
of images to obtain a solution formula for the heat equation in Rn

+ × R+ with (a)
Dirichlet condition u(x, t) = 0, x ∈ ∂Rn

+, and (b) Neumann condition ∂u
∂xn

(x, t) = 0,
x ∈ ∂Rn

+.

Lecture 8, 2/8/2018

Green’s functions - continuation , Poisson kernel
We saw that for a half-space Ω = R3

+ one can construct the Green function by
adjusting a whole-space Green function with a field of a change outside of the domain:

GΩ(x, y) = − 1

4π|x− y| +
1

4π|x− y∗| , y∗ = (y1, y2,−y3) . (116)

The first term in (116) makes sure that ∆xGΩ(x, y) = δ(x− y). Note that y∗ does not
belong to Ω, and hence the function x → 1

4π|x−y∗| satisfies ∆x
1

4π|x−y∗| = 0 in Ω. The

role of this term is to adjust the “leading term” − 1
4π|x−y| to achieve the boundary

condition
GΩ(x, y) = 0 x ∈ ∂Ω , y ∈ Ω . (117)

One can try to generalize this construction to other domains. For example, when Ω is
the first octant, Ω = {x = (x1, x2, x3) ∈ R3 , xi > 0 , i = 1, 2, 3}, one can check that
the following formula can be used for the Green’s function. For y ∈ R3 let us define

Q1y = (−y1, y2, y3) , Q2y = (y1,−y2, y3) , Q3y = (y1, y2,−y3) , (118)

and, using the notation G(x) = − 1
4π|x| , set

GΩ(x, y) =G(x− y)

−G(x−Q1y)−G(x−Q2y)−G(x−Q3y)

+G(x−Q1Q2y) +G(x−Q2Q3y) +G(x−Q1Q3y)

−G(x−Q1Q2Q3y) .

(119)

9Notice that you can obtain a version of Fact #3 in general dimensions from the version in
one dimension. This is done by writing the integral for the Fourier transform of the Gaussian
in n variables as a product of n integrals.
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In this case we are adding 7 charges outside Ω to fix the boundary condition GΩ(x, y) =
0 for x ∈ Ω. As an exercise, you can check that formula (119) produces the desired
outcome.

An important special case where such constructions work is the case of a ball
BR = {x ∈ R3 , |x| < R}. In this it is enough to place one charge outside of Ω (with
a well-chosen coefficient) as follows: For y ∈ BR let y∗ be defined by

y∗ = y
R2

|y|2 (120)

and set

GBR(x, y) = G(x− y)− R

|y|G(x− y∗) = − 1

4π|x− y| +
R

4π|y||x− y∗| (121)

You can check again as an exercise that this formula works, and GBR(x, y) = 0 for
x ∈ ∂BR , y ∈ BR. (As y∗ /∈ BR, we clearly have ∆xGBR(x, y) = δ(x− y).)

You can also consider the following exercise: By general principles we know that
we should have GBR(x, y) = GBR(y, x). Hence expression (121) should be symmetric
in x, y. The way we have written it, this symmetry is not transparent. Can you write
the expression in a way which would make the symmetry transparent?

Poisson kernel

Once the Green’s function of a domain is known, one can also use it for solving the
following problem: given a (sufficiently regular) function g : ∂Ω → R, find a solution of
∆u = 0 in Ω such that u|∂Ω = g. The functions u satisfying ∆u = 0 are called harmonic
functions and the problem just mentioned is often called the Dirichlet problem. One
can also think about it as the problem of finding an extension of a given function g at
the boundary ∂Ω to a harmonic function u in Ω.

If we know the Green functions of the domain Ω, we can find the solution of the
Dirichlet problem s follows. We recall the formula∫

Ω

(u∆v − (∆u)v) dx =

∫
∂Ω

(
u
∂v

∂n
− ∂u

∂n
v

)
dx , (122)

where ∂u
∂n

denotes the normal derivative at the boundary, given by
∑

i
∂u(x)
∂xi

ni(x).

Assume now that ∆u = 0 and use (122) with v(x) = GΩ(x, y), for some given y ∈ Ω.
Then ∆v(x) = δ(x− y), and v(x) vanishes when x ∈ ∂Ω. Hence we obtain

u(y) =

∫
∂Ω

u(x)
∂G

∂nx
(x, y) dx ,

∂G

∂nx
(x, y) =

∑
i

ni(x)
∂G

∂xi
(x, y) . (123)

Due to the symmetry GΩ(x, y) = GΩ(y, x), this also can be written as

u(x) =

∫
∂Ω

u(y)
∂G

∂ny
(x, y) dy ,

∂G

∂ny
(x, y) =

∑
i

ni(y)
∂G

∂yi
(x, y) . (124)

The function (x, y) → ∂GΩ
∂ny

(x, y) is called the Poisson kernel, and is often denoted by

PΩ(x, y). The solution of the Dirichlet problem can be expressed by it as

u(x) =

∫
∂Ω

PΩ(x, y)u(y) dy =

∫
∂Ω

PΩ(x, y)g(y) dy , (125)
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assuming, of course, ∆u = 0 in Ω and u(y) = g(y) at ∂Ω. For simple domains, such
as the half-space, or the ball, one can calculate PΩ(x, y) explicitly. For example:

PR3
+
(x, y) =

x3

2π|x− y|3 , x ∈ R3
+, y ∈ ∂R3

+ , (126)

PBR(x, y) =
R2 − |x|2

4πR|x− y|3 , x ∈ BR , y ∈ ∂BR . (127)

Lecture 9, 2/13/2018

Green’s function and Poisson kernel , 3d Fourier series

The Green’s function and the Poisson kernel of a domain Ω we discussed last
time have many interesting properties. Let us look at a few of them for the Poisson
kernel, for example. (This part is optional.) One way to think about the Poisson
kernel P (x, y) = PΩ(x, y) (at a heuristic level) is that for a fixed y ∈ ∂Ω the function
x → P (x, y) solves the Dirichlet problem ∆u = 0 in Ω with the boundary condition
u|∂Ω = δy,∂Ω, where δy,∂Ω is the Dirac function at the boundary which is concentrated
at y. (In other words,

∫
∂Ω

φ(x)δy,∂Ω(x) dx = φ(y) for each smooth functions φ on
the boundary ∂Ω.) As we approach the boundary from the inside of the domain, this
Dirac function is approached for example in the following sense. If we let Ωε = {x ∈
Ω , dist (x, ∂Ω > ε}, then limε→0+

∫
∂Ωε

P (x, y)φ(x) dx = φ(y) for any smooth function

φ : R3 → R. You can do this calculation for the half-space R3
+ as an optional exercise.

One can also look at the function y → P (x, y) when x ∈ Ω is fixed. For each
x ∈ Ω the function y → P (x, y) defined for y ∈ ∂Ω is well-defined on ∂Ω. Note that∫
∂Ω

P (x, y) dy = 1 for each x ∈ Ω, because the function u = 1 in Ω solves ∆u = 0
with the boundary condition g(y) = 1, and if we set u = 1 and g = 1 in the formula
u(x) =

∫
∂Ω

P (x, y)g(y) dy, we obtain
∫
∂Ω

P (x, y) dy = 1. If we pick x ∈ ∂Ω and
consider points x ∈ Ω approaching x, the functions y → P (x, y) will approach the
Dirac function δx,∂Ω. This can again be nicely illustrated in the half-space R3

+, where
one can do the calculation explicitly.

Using the Green’s function and the Poisson kernel, one can write express the
solution of the more general Dirichlet problem ∆u = f in Ω and u = g at ∂Ω as
follows:

u(x) =

∫
Ω

GΩ(x, y)f(y) dy +

∫
∂Ω

PΩ(x, y)g(y) dy . (128)

Fourier series in 3d and the equation ∆u = f in rectangular boxes

So far we have been inverting the Laplacian ∆ (i. e. solving the equation ∆u = f ,
with suitable assumptions) using the observation due to Poisson that ∆(G∗f) = f . We
now start discussing a different method, based on Fourier series. Let us recall some
basic formulae for the Fourier series of one variable. In the textbook the following
convention is used. If f is a periodic function with period 2L, then its representation
by the Fourier series is

f(x) =
∑
k∈Z

cke
πki x

L , ck =
1

2L

∫ L

−L

f(x) dx . (129)

where Z denotes the integers. See Section 3.6. We will modify the convention as
follows.
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(i) We will use L (rather than 2L) to denote the period of the function, i. e. we assume
f(x+ L) = f(x) for x ∈ R.

(ii) We will write the series as

f(x) =
1

L

∑
k∈ 2π

L
Z

f̂(k)eikx , f̂(k) =

∫ L

0

f(x)e−ikx dx . (130)

Note that the frequencies k now do not have to be integers, they run through the
set given by the 2π

L
multiples of integers.

Note that when f vanishes outside of [0, b] for some b > 0 and we take L to +∞
in (130), then in the limit k runs through the real numbers R, the definition of f̂(k)
does not change, and the Fourier series for f becomes the Fourier integral

f(x) =
1

2π

∫ ∞

−∞
f̂(k)eikx dk , (131)

because

1

L

∑
k∈ 2π

L
Z

g(k) =
1

2π

2π

L

∑
k∈ 2π

L
Z

g(k) −−−−→
L→∞

1

2π

∫ ∞

−∞
g(k) dk (132)

for any continuous function g which approaches zero sufficiently fast as k → ±∞.
An important point for our considerations will be the formula

̂(
∂f

∂x

)
(k) = ikf̂(k) , (133)

which means that the operation of taking a derivative of f in the physical space is
represented by the operation of multiplying f̂ by ik in the “Fourier space”.

All this generalizes to functions of several variables. For example, for three vari-
ables we have x = (x1, x2, x3) and for a function f : R3 → R which is Lj−periodic in
the variable xj (where j = 1, 2, 3) we can write

f(x) =
1

L1L2L3

∑
(k1,k2,k3)∈ 2π

L1
Z× 2π

L2
Z× 2π

L3
Z

f̂(k1, k2, k3)e
i(k1x1+k2x2+k3x3) , (134)

with

f̂(k1, k2, k3) =

∫ L1

0

∫ L2

0

∫ L3

0

f(x)e−i(k1x1+k2x2+k3x3) dx1dx2dx3 . (135)

We can use a more concise notation

f(x) =
1

|Q|
∑
k

f̂(k)eikx , f̂(k) =

∫
Q

f(x)e−ikx dx , (136)

where Q is the rectangular box [0, L1]× [0, L2]× [0, L3], with |Q| denoting its volume,
and k runs through the set 2π

L1
Z × 2π

L2
Z × 2π

L3
Z. The equation ∆u = f becomes very

simple in the Fourier variables û and f̂ :

− |k|2û(k) = f̂(k) , |k|2 = k2
1 + k2

2 + k2
3 . (137)
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Lecture 10, 2/15/2018

We continued to discuss the method of solving the equation ∆u = f via Fourier
series. Problems where the Fourier series or the Fourier transformation comes up will
not be on Midterm 1.

Lecture 11, 2/20/2018

Using Matlab for solving the Laplace equation in rectangles

Let Q be a rectangular domain (i. e. product of intervals) in Rm. We discussed
the problem of solving

∆u = f in Ω
u = 0 at ∂Ω .

(138)

with a computer, using Matlab. For simplicity we took m = 2, but a very similar the
same algorithm works for m = 3, with only minor changes in the code.

The Matlab code (with fairly detailed comments) of the example discussed in class
can be found here. This function, called solvelap, can be used for example as follows.
Assume we wish to calculate the Green’s function G(x, y) on the unit square, on a grid
128 times 128, with y corresponding to (0.3, 0.4). By commands
clear f (to be sure that a previous use of f does not interfere with our calculation)
f(128,128)=0; (this creates a 128 times 128 field of zeroes)
f(30,40)=127*127; (this is where the Dirac function is concentrated)
we create the discrete approximation of the Dirac mass. Note that the grid divides
the square into 127 times 127 small squares, which is where the number 1272 comes
from (to mimic the condition

∫
Ω
f(x) dx = 1).

Now we solve ∆u = f (or, more precisely, its approximate version on the grid)
with the zero boundary condition by
u=solvelap(f);

We can look at the function using, for example, the commands
[X,Y]=meshgrid(linspace(0,1,128),linspace(0,1,128))

clf (to clear previous pictures)
surf(X,Y,u)

As an exercise, you can re-write the function solvelap so that it solves ∆u = f in
a rectangle with sides L1 and L2.

Lecture 12, 2/27/2018

Eigenfunctions and eigenvalues of the Laplace operator

We have often made comparisons between the Laplace operator and a symmetric
matrix. For example, in Lecture 2 we discussed the discrete Laplacian, which, in fact,
is given by a symmetric matrix. One of the main results for symmetric matrices is
that in a suitable orthonormal basis they are diagonal. More precisely, if A is an n×n
symmetric matrix, then there exists an orthogonal basis b(1), . . . , b(n) of Rn and real
numbers λ1, . . . , λn such that

Ab(k) = λkb
(k) . (139)

This means that in the basis b(1), . . . , b(n) the mapping given by A is represented by
the diagonal matrix diag (λ1, . . . , λn). We can also say (somewhat loosely) that in the
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basis b(1), . . . , b(n) the matrix A is diagonal. If we work in a basis in which A becomes
diagonal, various operations with A become very easy.

We recall some useful formulae related to this. We will use the following notation:
for two vectors a, b ∈ Rn we will denote by a ⊗ b the matrix with entries aibj . Note
that a⊗ a is always a symmetric matrix.

Assume that A is an n×n symmetric matrix, and let b(1), . . . , b(n) be an orthogonal
basis consisting of its eigenvectors, with the corresponding eigenvalues λ1, . . . , λn.

Let us denote by I the identify matrix (defined by Ikl = 1 for k = l and Ikl = 0
for k ̸= l).

We have
b(1) ⊗ b(1) + b(2) ⊗ b(2) + · · ·+ b(n) ⊗ b(n) = I . (140)

This can be seen from the fact that the matrix on the left maps b(j) to b(j) for each
j = 1, 2, . . . , n:

(b(i) ⊗ b(i))b(j) = b(i)(b(i), b(j)) =

{
b(i) i = j ,

0 i ̸= j .
(141)

We also have

λ1b
(1) ⊗ b(1) + λ2b

(2) ⊗ b(2) + · · ·+ λnb
(n) ⊗ b(n) = A , (142)

because

λi(b
(i) ⊗ b(i))b(j) = λib

(i)(b(i), b(j)) =

{
λib

(i) i = j ,

0 i ̸= j .
(143)

When none of the eigenvalues λj vanish, we also have

1

λ1
b(1) ⊗ b(1) +

1

λ2
b(2) ⊗ b(2) + · · ·+ 1

λn
b(n) ⊗ b(n) = A−1 , (144)

as one can easily check by the same reasoning as above.
All this has analogies when we go from a symmetric matrix to the Laplace operator

(and, in fact, more general operators).
Let us consider a bounded smooth domain Ω ⊂ Rm and the Laplacian ∆ acting

on functions vanishing at the boundary. The eigenvalue problem associated with this
situation is

−∆ϕ = λϕ in Ω ,
ϕ = 0 at ∂Ω .

(145)

Here we write the Laplacian with the minus sign (as is the usual convention), so that
the corresponding eigenvalues λ are positive.

The main point is that in this situation one has a result which is fully analogous
to the finite-dimensional situation discussed above, with analogous formulae. There
exists a sequence of functions ϕ1, ϕ2, ϕ3, . . . in Ω which vanish at the boundary, are
mutually orthogonal in the sense that∫

Ω

ϕi(x)ϕj(x) dx = 0 , i ̸= j , (146)

have “unit length” in the sense ∫
Ω

|ϕj(x)|2 dx = 1 , (147)
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together with a sequence of real numbers 0 < λ1 < λ2 ≤ λ3 ≤ λ4 ≤ · · · → ∞ such
that (146) is satisfied with ϕ = ϕj and λ = λj , j = 1, 2, 3, . . . Moreover, the functions
ϕj form a “basis”10 of a suitable space of functions, in the sense that every sufficiently
regular function f : Ω → R can be represented as

f(x) =
∞∑
j=1

cjϕj(x) , cj =

∫
Ω

f(x)ϕj(x) dx , (148)

and, moreover, ∫
Ω

|f(x)|2 dx =
∞∑
j=1

|cj |2 . (149)

If G is the Green’s function of Ω, then (145) implies∫
Ω

G(x, y)ϕ(y) dy = − 1

λ
ϕ(x) . (150)

In other words, ϕ is an eigenfunction of the operator

f → Gf, Gf(x) =

∫
Ω

G(x, y)f(y) dy . (151)

In addition, in analogy with (144) one has

1

λ1
ϕ1(x)ϕ1(y) +

1

λ2
ϕ2(x)ϕ2(y) + · · · = G(x, y) , (152)

if the convergence is taken in an appropriate sense. Similarly, with an appropriately
defined notion of convergence (which is not point-wise convergence), one has (in anal-
ogy with (140))

ϕ1(x)ϕ1(y) + ϕ2(x)ϕ2(y) + · · · = δ(x− y) , x, y ∈ Ω , (153)

where δ is the Dirac function.

Lecture 13, 3/1/2018

Eigenfunctions, eigenvalues, and resonances

For many linear systems (i. e. those governed by linear equations), the eigenvalues
can are related to certain frequencies. A classical example is the eigenvalues of the
Laplacian, which can be “observed” in connection with the wave equation.(This is also
the case for other equations, such as the Schödinger equation).

We consider a smooth bounded domain Ω ⊂ R3 and the problem

utt = ∆u in Ω× (t1, t2),
u|∂Ω = 0 ,

(154)

where we use the notation

utt =
∂2u

∂t2
. (155)

10The technical term is Hilbert basis, it is not an algebraic basis, as we take infinite sums,
not just finite linear combinations.
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This can be viewed as an infinite-dimensional version of the finite-dimensional problem

ξ̈ = −Aξ , (156)

where ξ = (ξ1, . . . ξn) is an n−vector (depending on time) and A is a positive-definite
symmetric matrix (i. e. (Aξ, ξ) > 0 if ξ ̸= 0.) If we know the eigenvectors and eigenval-
ues of A, it is easy to obtain an expression for a general solution of (156): Assuming
the eigenvectors are b(1), . . . , b(n), with the corresponding eigenvalues λ1, . . . , λn, the
general solution can be for example written as

ξ(t) = A1 sin(
√
λ1 (t− t1))b

(1) + · · ·+An sin(
√
λn (t− tn)) b

(n) , (157)

where A1, . . . , An and t1, . . . , tn are parameters. (We have 2n parameters, as we
should, as we are dealing with a system of n ordinary differential equations of the
second order). Often it may be useful to write the solution in the complex form

ξ(t) =

n∑
j=1

(
Aj e

i
√

λj t +Bje
−i
√

λj t
)
b(j) . (158)

We again have 2n parameters, which now can be complex, and the real-valued solutions
are obtained as the real part of the complex-valued solutions. (The relation between
the expressions (158) and (157) can be obtained from the Euler formula eiα = cos(α)+
i sin(α) and the trigonometric formula sin(α+ β) = sinα cosβ + cosα sinβ.)

Let ϕ1, ϕ2, . . . be the eigenfunctions of −∆ (with the zero boundary condition), as
discussed in the last lecture, with the corresponding eigenvalues λ1, λ2, . . . . Then, in
analogy with (158) the “general solution” of (154) can be written as

u(x, t) =
∑
j

(
Aj e

i
√

λj t +Bje
−i
√

λjt
)

ϕj(x) . (159)

We see that the eigenvalues λj are related to the frequencies
√

λj at which the system
can oscillate. The series can be finite or infinite, and in the latter case one must of
course pay attention to the questions of convergence, which we will disregard for the
moment.

To derive the last expression, we simply seek the solution as as

u(x, t) =
∑
j

cj(t)ϕj(x) , (160)

and after substituting this expression into (154), we get the simple ordinary differential
equation

c̈j = −λjcj , (161)

which we know how to solve.
The eigenvalues are important for resonances. To illustrate this notion, let us add

a forcing and also some friction to the wave equation (154), and consider

utt + εut = ∆u+ f(x, t) in Ω× (t1, t2) ,
u|∂Ω = 0 .

(162)

where ε > 0 and f represents the forcing. (One can do the same for our finite-
dimensional system (156) and consider ξ̈+εξ = −Aξ+b(t), where b is a time-dependent
n−vector.) We will write f as

f(x, t) =
∑
j

fj(t)ϕj(x) , (163)
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and again seek u in the form

u(x, t) =
∑
j

cj(t)ϕj(x) . (164)

This gives
c̈j + εċj = −λjcj + fj(t) , j = 1, 2, . . . (165)

This is again a simple ordinary differential equation which can be solved.
Let us consider a special important case and when the forcing term is of the form

f(x, t) = eiωtg(x) , (166)

with
g(x) =

∑
j

gjϕj(x) . (167)

(For the physical interpretation we take the real parts, as usual.) The equation (165)
becomes

c̈j + εċj = −λjcj + eiωtgj . (168)

To simplify notation, we drop the index j and write simply

c̈+ εċ = −λc+ eiωtg . (169)

We can seek a particular solution as

c(t) = Aeiωt . (170)

This gives

A =
g

λ− ω2 + iε
. (171)

When ε > 0 general solution will approach the solution given by (170) as t → ∞,
as can be easily checked. Therefore the particular solution (170) captures to a large
degree what is going on. We see that when ω ∼

√
λ and ε > 0 is small, the amplitude

A of the oscillations will be large, approaching ∞ as ε → 0 and ω =
√
λ. When

ε = 0 and ω =
√
λ there will be no solution of the form (170). Instead, there will

be a solution of the form Ateiωt, which means that the amplitude will be growing
indefinitely.

The above considerations have practical implications - if we force a system with
a force oscillating at a resonant frequency, the amplitude will grow. This can be a
desired effect (e. g. for musical instruments) or an undesirable effect (e. g. for stability
of bridges and other constructions), and eigenvalues often play a prominent role in
these considerations.

Lecture 14, 3/6/2018

The variational nature of the Laplace equation

If A is a positive-definite n× n symmetric matrix, then finding the solution ξ of

Aξ = b (172)

is equivalent to minimizing the function

J(ξ) =
1

2
(Aξ, ξ)− (b, ξ) , (173)
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where we use the usual notation (ξ, η) = ξ1η1+ξ2η2+ · · ·+ξnηn for the scalar product.
As an exercise, you can check that the n equations

∂J

∂ξk
(ξ) = 0 , k = 1, 2, . . . , n (174)

exactly give (172). For the problem

−∆u = f in Ω ,
u|∂Ω = 0 ,

(175)

the situation is similar. The associated function (defined, roughly speaking, on the
space of functions on Ω vanishing at the boundary ∂Ω), which we usually call a func-
tional is

J(u) =

∫
Ω

(
1

2
|∇u(x)|2 − f(x)u(x)

)
dx . (176)

The solution of (175) minimized the functional J(u) on (sufficiently regular) functions
vanishing at ∂Ω. One can see that the minimizer of J (on functions vanishing at ∂Ω)
should give (175) as follows. (The calculation goes back to Euler and Lagrange.) Let
us take a smooth function φ : ∂Ω → R with φ|∂Ω = 0. If u minimizes J (in our class
of functions vanishing at the boundary) then the function of one variable ε defined by
ε → J(u + εφ) should attain its minimum at ε = 0. Note that ε → J(u + εφ) is just
a simple function of one variable (which we denote ε) of the form 1

2
aε2 + bε+ c:

J(u+ εφ) =

∫
Ω

(
1

2
|∇u+ εφ|2 − f(u+ εφ)

)
dx

=ε2
∫
Ω

1

2
|∇φ|2 dx+ ε

∫
Ω

(∇u∇φ− fφ) dx+ J(u) .

(177)

We see that
d

dε
|ε=0 J(u+ εφ) =

∫
Ω

(∇u∇φ− fφ) dx , (178)

which can of course also be arrived at by simply differentiating the expression for J .
So at the minimum u we should have∫

Ω

(∇u∇φ− fφ) dx = 0 (179)

for each smooth φ vanishing at the boundary ∂Ω. To get the equation of u, we now
integrate by parts: ∫

Ω

∇u∇φdx =

∫
∂Ω

∂u

∂n
φdx−

∫
Ω

∆uφdx . (180)

Under our assumptions on φ the boundary integral vanishes, and we see that (179)
can be replaced by ∫

Ω

(−∆u− f)φdx = 0 . (181)

As this should be true for each φ, we must have −∆u− f = 0.
If our class of admissible functions contained functions not vanishing at the bound-

ary, the boundary integral in (180) would have to taken into account and would have
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an effect on the boundary condition. In class we calculated the equation one gets from
the problem of minimizing the functional

Iν(u)

∫
Ω

1

2
ν|∇u|2 + 1

2
|f − u|2 dx (182)

over all (sufficiently regular) functions, regardless of the boundary values. Here ν > 0
is a fixed parameter. We again use the equation

d

dε
|ε=0I(u+ εφ) = 0 , (183)

which this time should hold for any smooth function φ, regardless of its boundary
condition. By a similar calculation as above we obtain that the derivative (183) is
equal to ∫

Ω

(ν∇u∇φ+ uφ− fφ) dx (184)

and this expression has to vanish for each smooth φ (regardless of its boundary values).
Integrating by parts, we see that the last expression is equal to∫

∂Ω

ν
∂u

∂n
φ+

∫
Ω

(−∆u+ u− f)φdx . (185)

Taking first all φ which vanish at ∂Ω, we see that we have to have −∆u+ u− f = 0
in Ω. Then, taking φ not vanishing at ∂Ω, we see that ∂u

∂n
= 0 at ∂Ω. So the PDE

problem associated with the minimization of I is

−ν∆u+ u = f in Ω ,
∂u
∂n

= 0 at ∂Ω.
(186)

So far we have assumed that there is no problem with the minimization procedure
and that the functionals we have considered attain their minimum at some function.
In the two particular cases above this is indeed the case, but it is not automatic. For
example, if we try to minimize ∫

Ω

(
1

2
|∇u|2 − u

)
dx (187)

over all functions u, we see easily that integral can attain arbitrary negative value by
taking u = c for a suitable constant c. This is related to the fact that the corresponding
problem

−∆u = f in Ω
∂u
∂n

= 0 at ∂Ω ,
(188)

only has a solution when
∫
Ω
f = 0. If f = 1, the problem has no solution.

Remarks on solvability of elliptic equations

Ler A be an n× n matrix and consider the equation

Aξ = b , (189)

where b is a given n−vector and ξ is the unknown n−vector (to be calculated). One
of the important results in Linear Algebra concerns the solvability of (300):
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The equation (300) is uniquely solvable for each b if and only if the homogeneous
solution Aξ = 0 only has the trivial solution ξ = 0.

Note that this is the same as saying that (300) is uniquely solvable for each b if
and only if it is uniquely solvable for b = 0.

In addition, the dimension of the space of solutions of the homogeneous equation
Aξ = 0 is the same as the number of conditions b has to satisfy for Aξ = b to be
solvable. In the linear algebra language, the sum of the dimension of A−1(0) and the
dimension of A(Rn) equals n.

Similar results also hold for elliptic problems. We will not formulate the exact the-
orem, as we do not wish to go into technicalities, but the guiding principle which has
a good chance of being true (and can often be proved rigorously under appropriate as-
sumptions) is that a (scalar) non-homogeneous elliptic equation is uniquely solvable in
appropriate classes of functions if and only if the homogeneous homogeneous equation
only has the trivial solution u = 0.

Let us illustrate this by two examples:

Example 1
Let us consider a bounded domain Ω ⊂ Rm and the problem

−∆u = f(x) in Ω ,
u|∂Ω = 0 .

(190)

As an exercise you can derive from the maximum principle or by integration by parts
that the only solution of (190) with f = 0 is u = 0. By the above analogy we would
expect that this means that the problem (190) is always solvable. This turns out to be
the case, in a sense which has to be made precise by specifying the classes of admissible
functions f . For example, if Ω is smooth, than for each smooth f we have a unique
smooth solution u.

Example 2
With Ω as above, let us consider

−∆u = f(x) in Ω ,
∂u
∂n

= 0 at ∂Ω. .
(191)

In this case the homogeneous problem (corresponding to f = 0) has non-trivial so-
lutions u = const. As an exercise (which we did in class) you can show that every
solution of the homogeneous problem is of this form, so the dimension of the space of
solutions is one. Hence we expect that (191) will not be always solvable, and there
will be one linear condition which f has to satisfy to ensure solvability. This is indeed
the case: it can be shown that (191) is solvable (for a smooth f , say) if and only if∫
Ω
f(x) dx = 0.

The above examples are just a “tip of the iceberg” for theorems of this type. There
are several levels of theorems in this direction, with the most well-known among the
advanced ones being the Atiyah-Singer Index Theorem.

Lecture 15, 3/8/2018
More on variational principles and various boundary conditions
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Let us consider a finite-dimensional situation relevant for our variational principles.
Assume we have an electric circuit consisting of n “nodes” connected with resistors.
We denote Rij be the resistance of the resistor directly connecting the nodes i and j.

Given a subset B of the set X of all nodes, we impose the following conditions:
(i) (A “boundary condition”): The voltage uj at j ∈ B is prescribed by to be gj , and
can be kept at that level by connecting the node to an outside source.
(ii) (An analogue of the “right-hand side” for the Laplace equation): The nodes in
Y = X \B are also connected to an outside source of electricity which can be adjusted
so that the current flowing from the source to the node k ∈ X \B is equal to a given
value Ik.

So our data are the values gj , j ∈ B and Ik , k ∈ Y . Our task is to find the
voltages uk for k ∈ Y .

In the context of the boundary value problem

−∆u = f in Ω ,
u|∂Ω = g at ∂Ω ,

(192)

the set B would correspond to ∂Ω and the set Y would correspond to Ω. (Note that
the sets Ω and ∂Ω are disjoint, with Ω ∪ ∂Ω = Ω, the closure of Ω.)

The discrete problem can be solved by the following variational principle: consider

J(u) =
∑

j,k∈X, j<k

(uj − uk)
2

2Rjk
−

∑
k∈Y

Ikuk . (193)

This is an analogy of the functional

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dx (194)

in the continuous problem (192), in which we consider u satisfying u|∂Ω = g, just as
in (193) we only restrict our attention to uj with uj = gj for j ∈ B.

Assuming (193) attains a minimum, the equations for the minimizing uk can be
obtained from

∂J(u)

∂uk
= 0 , k ∈ Y . (195)

Denoting by m the number of elements in Y , we see that we get m equations for m
unknowns. You can check as an exercise that the equations give the Kirchhoff laws
for our electric circuit: the total sum of currents coming to each node in the set Y is
zero (when counted with appropriate signs).

The functional (194) can be considered as a continuum version of (193), and the
first equation in (192) is in some sense the continuum version of the Kirchhoff law. In
fact, various finite-dimensional approximations of (192), such as the one given by (28)
in Lecture 2 can be interpreted in terms of electrical circuits and the energy (193).

Boundary conditions arising from the variational formulation.
Let us consider the following variant of (194)

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dx+

∫
∂Ω

(
1

2
a|u|2 − bu

)
dx , (196)

where a, b are functions. Let us assume that we can minimize over all smooth functions
on Ω, which is the case when a > 0, for example. (We could also minimize it over
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various subclasses of all functions, such as the functions vanishing on a part of the
boundary Γ1 ⊂ ∂Ω. The reader can consider work out such cases as an exercise.)

As usual, we evaluate the derivative d
dε
|ε=0J(u+ εφ) which we will also denote by

J ′(u)φ.

J ′(u)φ =

∫
Ω

(∇u∇φ− fφ) dx+

∫
∂Ω

(auφ− bφ) dx

=

∫
Ω

(−∆u− f)φdx+

∫
∂Ω

(
∂u

∂n
+ au− b

)
φdx .

(197)

If u is a minimizer of J , then J ′(u)φ has to vanish for each φ, leading to

−∆u = f in Ω
∂u
∂n

+ au = b at ∂Ω .
(198)

Lecture 16, 3/20/2018

Lower order terms

Let us consider the equation

ut + b∇u+ cu−∆u = 0 , (199)

in Rm × (t1, t2). For now we will make an assumption that b is a constant vector
(independent of x, t and c is a constant number (also independent of x, t). The notation
b∇u is a shorthand for

∑m
j=1 bj

∂u
∂xj

We can think of this equation as consisting of three processes going on at the same
time, with the first one described by

ut −∆u = 0 , (200)

the second one described by
ut + b∇u = 0 , (201)

and the third one described by
ut + cu = 0 . (202)

We understand (200) in some detail: the solution is given by

u(x, t) =

∫
Rm

Γ(x− y, t)u0(y) dy , (203)

where Γ is the heat kernel and u0(x) = u(x, 0). We can also write this as

u(t) = Γ(t) ∗ u0 . (204)

Equation (201) is also easy to understand: its solution is given by

u(x, t) = u0(x− bt) , (205)

where, again, u0(x) = u(x, 0). It describes a translation of the initial condition u0 at
a uniform speed b.
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Finally, equation (202) is just an ODE, there are no partial x−derivatived in it,
and the solution is simply

u(x, t) = u0(x)e
−ct . (206)

So we understand each part of (199) separately, but how do the three parts act
together? Let us look at an analogy in ordinary differential equations. Consider

ξ̇ = (A+B + C)ξ , (207)

where ξ is an n−vector and A,B,C are n× n matrices. The solution of (207) can be
written as

ξ(t) = e(A+B+C)tξ(0) , (208)

where the matrix exponential is given by the usual formula

eX =

∞∑
k=0

Xk

k!
, (209)

where we use the standard conventions X0 = I (the identity matrix) and 0! = 1.
The solutions of the equations ξ̇ = Aξ, ξ̇ = Bξ, ξ̇ = Cξ are given respectively by
eAtξ(0), eBtξ(0) and eCtξ(0). If A,B,C were just numbers a, b, c, we would have

e(a+b+c)t = eatebtect . (210)

This could be interpreted as solving ξ̇ = (a + b + c)ξ in three stages: we first apply
the evolution induced by c then the evolution induced by b and finally the evolution
induced by a. Note that the order could be permuted in any way, it does not matter
in which order we apply the exponentials.

For general matrices A,B,C is this not the case. For simplicity, let us think of the
case of two matrices A,B and the equation

ξ̇ = (A+B)ξ . (211)

At an infinitesimal level, we can still think about the evolution as a superposition of
the motions given by A and B, and this is expressed in Trotter’s formula:

e(A+B)t = lim
n→∞

(
eAt/neBt/n

)n

. (212)

In general, we cannot take this at a “finite level”, in the sense that typically it is
not true that e(A+B)t = eAteBt. However, the formula is true under the additional
assumption that the matrices commute, i. e. AB = BA. Similarly for three matrices:
if AB = BA,AC = CA,BC = CA, then e(A+B+C)t = eAteBteCt.

Going back to our PDE (199), we can apply the same rules. We let

L1u = ∆u , L2u = −b∇u , L3u = −cu , L = L1 + L2 + L3 (213)

We can write, in analogy with the notation eAt used for matrices

eL1tu0 = Γ(t) ∗ u0 , (eL2tu0)(x) = u0(x− bt) , eL3t = e−ctu0 . (214)

This notation is somewhat “formal”. For example, the formula

u(t) = e∆tu0 = (I +
∆t

1!
+

∆2t2

2!
+

∆3t3

3!
+ . . . )u0 (215)
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does not imply that the series will converge. It is just a way of saying that u(t) is
obtained from u0 by evolving it for time t by the heat equation. In some cases, such
that when u0 is a polynomial, we can take the formula literally (and in this particular
case u(x, t) will be a polynomial which solves the heat equation), but mostly we should
think about such formulae as just indicating the time evolution by the operator at
hand.

We note that all the operators L1, L2, L3 have constant coefficients and hence
L1L2 = L2L1, L1L3 = L3L1, L2L3 = L3L2 and we can write

eLt = e(L1+L2+L3)t = eL1teL2teL3t . (216)

Therefore the solution of (199) can be written for example as

u(x, t) =

∫
Rm

Γ(x− y, t)u0(y − bt)e−ct dy . (217)

All this can be also seen just by a simple change of variables, without the analogies
with the matrices. We simply seek the solution of (199) as

u(x, t) = v(x− bt, t)e−ct , (218)

and substituting this into (199) we obtain

vt −∆v = 0 . (219)

The purpose of the above discussion essentially was that the substitution (218) is not
just an ad hoc trick.

When the lower order terms have variable coefficients, i. e. b = b(x, t) and c =
c(x, t) are functions, then the operators L1, L2, L3 above no longer commute, and (216)
is no longer valid. When b = b(x), c = c(x), we still have the Trotter’s formula

eLt = lim
n→∞

(
eL1t/neL2t/neL3t/n

)n

, (220)

which can be useful when thinking about the equation (199), and also in its numerical
simulation. In fact, the formula can be generalized to the general case b = b(x, t), c =
c(x, t) and it often provides a good heuristics. In the context of the numerical algo-
rithms, it is good to know about Strang splitting, but here we will not discuss it.

Lecture 17, 3/22/2018 ,

The fundamental solution of the solution of the wave equation; more on
the Dirac function

We will consider the wave equation

utt = ∆u (221)

and also its inhomogeneous form

utt = ∆u+ f(x, t) (222)

in space-time Rm × (t1, t2), with m = 1, 2, 3.
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We note that the more general version utt = c2∆u can be reduced to (221) by
changing the time variable t to ct.

One form of the fundamental solution for m = 3 is

G(x, t) =

{
δ(r−t)
4πr

, r = |x| , t ≥ 0

0 , t < 0,
(223)

where δ is the Dirac function.
Before starting calculations with (223), we recall a few formulae concerning the

Dirac function.

Some calculations with the Dirac function

Before starting calculations with (223), we recall a few formulae concerning the
Dirac function.

Let ϕ : R → R be a function which vanishes outside the interval (−1, 1) and∫∞
−∞ ϕ(x) dx = 1. As before, for ε > 0 we set

ϕε(x) =
1

ε
ϕ
(x
ε

)
. (224)

One can also add the assumption that ϕ ≥ 0, but for the most part we will not need
it here.

The Dirac function (which is not really a function in the traditional sense) can be
though of as a limit of the functions ϕε as ε → 0+.

In formula (223) the function δ(r−t) can be interpreted as a function on R3 which
is the limit of the functions ϕε(r − t) for ε → 0+, with r = |x|.

An important property of the Dirac function is∫ ∞

−∞
δ(x)φ(x) dx = φ(0) , (225)

for every smooth function φ. This can be used to calculate the three-dimensional
integral ∫

R3

δ(r − t)φ(x) dx . (226)

One way to see what the integral should be is to consider it as the limit

lim
ε→0

∫
R3

ϕε(x)φ(x) dx (227)

Assume for a moment that ϕ = 1
2
χ(−1,1), where χ(−1,1) is the characteristic function

of the interval (−1, 1). In this special case it is not hard to see that the limit (227) is∫
St

φ(x) dx , where St is the sphere of radius t centered at the origin. The same result
is true for general ϕ as above. One can see it for example by considering the integral
in the polar coordinates

x1 = r sin θ cosα, x2 = r sin θ sinα, x3 = r cos θ. (228)

Then∫
R3

δ(r − t)φ(x) dx =

∫ π

0

∫ 2π

0

∫ ∞

0

δ(r − t)φ(x1, x2, x3) r
2 sin θ dr dα dθ

=

∫ π

0

∫ 2π

0

φ(t sin θ cosα, t sin θ sinα, t cos θ) t2 sin θ dθ dα

=

∫
St

φ(x) dx .

(229)

34



The spherical wave

The fundamental solution δ(r−t)
4πr

is quite singular, so a-priori it is not clear in what
sense it should solve some PDE.

It is useful to look at the approximation ϕε(r−t)
4πr

For times t > ε this is a nice
smooth function supported in an ε−nieghborhood of the sphere {|x| = t}.

Note that for any smooth function f : R → R the function

u(x, t) =
f(r − t)

r
(230)

solves the wave equation utt = ∆u in the region {r ̸= 0}. This calculation can be
done in many ways. In class we did a calculation using the formula for the Laplacian
of radial function (= functions depending on r = |x|):

∆g(r) =
∂

r2∂r
r2

∂

∂r
g . (231)

The wave equation is reversible (we can run it backwards in time), just like the
equation for a single harmonic oscillator ẍ + ω2x = 0. What happens with the solu-
tion (230) if we go backward in time? If f is smooth and vanishes outside of a bounded
set, the solution (230) is smooth for large t, and hence if we go backward it should
stay smooth. (In class we outlines the heuristics behind this non-trivial statement,
based on energy conservation.)

Setting g(s) = f(−s), we can write the spherical wave also as

u(x, t) =
g(t− r)

r
. (232)

Let us now consider

v(x, t) =
g(t− r)− g(t+ r)

r
, r = |x| . (233)

If g is a smooth function, then v(x, t) is also a smooth function, the dangerous-looking
division by r in the formula does not produce a singularity at r = 0, due to suitable
cancellations. For example, one can see that

lim
x→0

v(x, t) = −2g′(t) . (234)

When g vanishes outside of a bounded interval, the contribution of the term g(t+r)
will be zero for large positive times t, as we always have r ≥ 0. In a similar way, the
contribution of the term g(t − r) will vanish for large negative times t. Therefore
the function v given by (233) represents an incoming spherical waves (going towards
the origin) for large negative times, and outgoing spherical waves (going towards the
spacial infinity) for large positive times. When g is a smooth function, the function v
is smooth. At the same time, we see that some “focusing” is possible. For example,
we have seen that v(0, t) = −2g′(t) and by considering a function g which is small, but
whose derivative g′ is large (or even unbounded), we will see large values of v(0, t) for
the times when the wave passes thought the origin, whereas v will remain small most
for large negative or large positive times.
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Let us now express the solution of the problem

utt = ∆u+ f(x, t) in R3 × (0,∞) ,

u(x, 0) = u0(x) , x ∈ R3 ,

ut(x, 0) = u1(x) , x ∈ R3

(235)

in terms of the fundamental solution. As the problem is linear, it is enough to consider
the three cases when only one of the functions f, u0, u1 does not vanish. (When all
functions f, u0, u1 vanish, we expect the solution u to vanish, too. This can be proved
mathematically, and it is not difficult, but the proof is bases on a different idea than
our discussion at the moment.)

Let us consider the case f ̸= 0, with u0 = 0 and u1 = 0. Denoting G(x, t) the

fundamental soluton δ(r−t)
4πr

(with r = |x|), we have

u(x, t) =

∫ t

0

∫
R3

G(y, s)f(x− y, t− s)f(y, s) dy ds

=

∫ t

0

∫
R3

δ(|y| − s)

4π|y| f(x− y, t− s) dy ds

=

∫ t

0

1

4πs

∫
Sx,s

f(y, t− s) dy ds

(236)

The general case can be turned into the case just considered by formally setting

f̃(x, t) = f(x, t) + u0(x)δ
′(t) + u1(x)δ(t) . (237)

(This can be considered as one of the versions of the Duhamel’s principle.) For exam-
ple, when u0(x) = δ(x) and f = 0, u1 = 0, we obtain

u(x, t) =
∂

∂t
G(x, t) =

δ′(t− r)

4πr
. (238)

Lecture 18, 3/27/2009

More on the Duhamel’s principle and the fundametal solution of the
wave equation

Let us start with an ordinary differential equation (ODE) which is related to
the wave equation, in the sense that both the wave equation and the ODE describe
oscillations (except that in the case of the ODE the oscillating system only has one
degree of freedom).

The ODE is
ẍ+ ω2x = 0 , (239)

where x = x(t) is a function of one variable. In the context of various physical system
this equation may describe (such as an oscillator), the function x(t) will typically be
real-valued, but often it is advantageous to consider complex-valued solutions and take
their real part.

The general solution is, of course, x(t) = C1e
iωt+C2e

−iωt, or, alternatively x(t) =
A cosωt+B sinωt.

Let us now consider two problems for this ODE:
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The first one is

ẍ+ ω2x = 0 , t ≥ 0 ,

x(0) = 0 ,

ẋ(0) = 1 .

(240)

The second one is

ẍ+ ω2x = δ(t) t ∈ R ,

x(t) = 0 , t < 0 , ,
(241)

where δ(t) is the Dirac function. The solution of the first problem is, of course,

x(t) =
1

ω
sinωt , t ≥ 0 . (242)

Consider now the function on the whole real line defined by

X(t) =

{
1
ω

sinωt , t ≥ 0 ,

0 t ≤ 0 .
(243)

This turns out to be a solution of (241), as one can easily check. The Duhamel’s
principle for (241) says, roughly speaking, that this is no coincidence and problems of
the type (240) and (241) are equivalent for much more general classes of equations.

The function (243) can be considered as a fundamental solution of for the equation

ẍ+ ω2x = f(t) , (244)

on the real line: if f vanishes for t → −∞, then the solution of (244) which vanishes
for t → −∞ is given by

x(t) =

∫
R

X(t− s)f(s) ds =

∫
R

X(s)f(t− s) ds . (245)

The fundamental solution of the wave equation G(x, t) we discussed in the last
lecture can be thought about in similar terms. One can think of it either as the
solution of

utt −∆u = δ(x, t) , (x, t) ∈ R3 ×R ,

u(x, t) = 0 , t < 0 ,
(246)

or as a solution of the initial-value problem

utt −∆u = 0 , t > 0 ,

u(x, 0) = 0 ,

ut(x, 0) = δ(x) .

(247)

extended by 0 for t < 0.

Going back to (239), how should one think about the initial-value problem

ẍ+ ω2x = 0 , t > 0

x(0) = 1 ,

ẋ(0) = 0 ,

(248)
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in the context of the Duhamel’s principle? The solution can, of course, be written
down explicitly:

x(t) = cosωt , t ≥ 0 . (249)

If we extend this function by 0 to the negative times, still denoting the extended
function by x(t), one has (in R)

ẍ+ ω2x = δ′(t) . (250)

In a similar way, one can think of the solution of the initial value problem

utt −∆u = 0 t > 0

u(x, 0) = u0(x) ,

ut(x, 0) = 0 ,

(251)

extended by zero to the negative times as the solution of

utt −∆u = δ′(t)u0(x) , (252)

which vanishes for negative times.
As an exercise, let us calculate the solution of

utt −∆u = δ(x) , t > 0 ,

u(x, 0) = 0 ,

ut(x, 0) = 0 .

(253)

Note that the function ũ(x) = 1
4π|x| satisfies the first and the third equations of (253),

but does not satisfy the second equation. Denoting by G(x, t) the fundamental solu-
tion (223), we have

u(x, t) =

∫ t

0

∫
R3

G(y, s)δ(x− y) dy ds

=

∫ t

0

G(x, s) ds =

∫ t

0

δ(s− |x|)
4π|x| ds

=

{
0 , t < |x| ,

1
4π|x| , t > |x| .

(254)

Lecture 19, 3/29/2018 Some calculations with the Dirac function; funda-
mental solution of the wave equation in dimensions two and one

For calculations with the fundamental solution (223), it is useful to go deeper into
some properties of the Dirac function. One important expression which often comes
up in calculations with the fundamental solution is δ(ax) where a > 0.

If δ(x) is the Dirac function on the real line, we have

δ(ax) =
1

a
δ(x) . (255)

One way to see it is via the approximation (224):
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δ(x) = lim
ε→0

1

ε
ϕ
(x
ε

)
= lim

ε→0

1

a

a

ε
ϕ
(ax

ε

)
=

1

a
lim
ε′→0

1

ε′
ϕ
( x

ε′

)
=

1

a
δ(x), (256)

where we have set ε′ = ε
a
. The same conclusion can be reached by the following

calculation ∫
R

δ(ax)φ(x) dx =

∫
R

δ(y)φ
(y
a

) dy

a
=

1

a
φ(0) . (257)

For a Dirac function in R3 we will have

δR3(ax) = δ(ax1)δ(ax2)δ(ax3) =
1

a3
δ(x1)δ(x2)δ(x3) =

1

a3
δR3(x) . (258)

One can also just repeat a reasoning similar to (256) directly in R3.

An useful generalization of formula (255) is the following. Let f : R → R be a
function with f ′(x) > 0 and b ∈ range(f). Let xb = f−1(b), i. e. f(xb) = b. Then

δ(f(x)− b) =
1

f ′(xb)
δ(x− xb). (259)

One way to see this is the following∫
R

δ(f(x)− b)φ(x) dx =

∫
rangef

δ(y − b)φ(f−1(y)) d(f−1(y))

= φ(f−1(b))(f−1(y))′|y=b = φ(xb)
1

f ′(xb)
,

(260)

where we have used the formula (f−1(y))′ = 1
f ′(f−1(y))

for the derivative of the inverse

function.

Lecture 20, 3/4/2018
Fundamental solution of the wave equation in spatial dimension two

Let us now calculate the fundamental solution of the two-dimensional wave equa-
tion. We will derive it from the three-dimensional solution, by considering functions
independent of x3. (This method is sometimes called the method of descent.) We will
calculate the solution of

utt −∆u = δ(x1)δ(x2)δ(t) , (x, t) ∈ R3 ×R , (261)

specified by the condition that u vanishes for negative times.
For this calculation we note that∫

R3

φ(x1, x2, x3)δ(x1)δ(x2) dx =

∫ ∞

−∞
φ(0, 0, x3) dx3 . (262)

Let us calculate u given by (261).

u(x, t) =

∫
−∞t

∫
R3

G(x− y, t− s)δ(y1)δ(y2)δ(s) dy1 dy2 dy3 ds

=

∫ ∞

−∞
G(x1, x2, y3, t) dy3 =

∫ ∞

−∞

δ(
√

x2
1 + x2

2 + y2
3 − t)

4π
√

x2
1 + x2

2 + y2
3

dy3

=

∫ ∞

0

δ(
√

x2
1 + x2

2 + y2
3 − t)

2π
√

x2
1 + x2

2 + y2
3

dy3 .

(263)
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We now use formula (260) with f(y3) =
√

x2
1 + x2

2 + y2
3 and b = t. For

√
x2
1 + x2

2 < t
have

(y3)t = f−1(t) =
√

t2 − x2
1 − x2

2 ,

(f−1)′(t) =
t√

t2 − x2
1 − x2

2

,√
x2
1 + x2

2 + (y3)2t = t .

(264)

From (260)and (264) we conclude that for
√

x2
1 + x2

2 < t we have

u(x, t) =
1

2πt

t√
t2 − x2

1 − x2
2

=
1

2π
√

t2 − x2
1 − x2

2

. (265)

For
√

x2
1 + x2

2 > t one sees from (263) that u(x, t) = 0. Hence the fundamental solution
of the wave equation in dimension 2 is

G2(x1, x2, t) =


1

2π
√

t2−x2
1−x2

2

,
√

x2
1 + x2

2 < t ,

0 ,
√

x2
1 + x2

2 > t .
(266)

A similar calculation also gives the fundamental solution of the wave equation is the
spacial dimension one (which can be also obtained in a much simple way):

G1(x1, t) =

{
1
2
, |x1| < t ,

0 |x1| > t .
(267)

It is interesting to compare these solutions with the one in dimension three,

G3(x1, x2, x3, t) = G(x1, x2, x3, t) =

{
δ(r−t)
4πr

, t > 0 ,

0 , t < 0 .
(268)

In dimnesion three the fundamental solution is concentrated on the “light cone”
{t = |x|} , (t > 0), whereas in dimensions two and one the fundamental solution does
not vanish inside the light-cone. This means, for example, that a person speaking
in lower dimension would hear a strong echo (the sound would would “linger on”
in the light cone), and the sound a listener is hearing would be quite fuzzy. The
propagation of waves (governed by the wave equation) in dimension three has the
special property that the signal is propagated without distortion, and the signal leaves
any bounded region in a finite time (assuming there are no obstacles). This is related
to the Huygens’ principle.

Lecture 20, 4/10/2019

Some calculations with fundamental solutions

In this lecture we continued with some calculations with fundamental solutions.
For example, we considered the following problem: For n ∈ {1, 2, 3} consider
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ut −∆u = δ(x) , x ∈ Rn , t > 0 ,

u(x, 0) = 0 , x ∈ Rn ,
(269)

and calculate u∞(x) = limt→∞ u(x, t). Let

Γ(x, t) =
1

(4πt)
n
2
e−

|x|2
4t (270)

be the fundamental solution of the heat equation in Rn. Then u(x, t) is given by

u(x, t) =

∫ t

0

∫
R3

Γ(x− y, t− s)δ(y) dy ds

=

∫ t

0

Γ(x, t− s) ds =

∫ t

0

Γ(x, s) ds .

(271)

We recall that the integral
∫∞
1

s−α ds is infinite for α ≤ 1 and from this it is easy to
see that

u∞(x) = ∞ , n = 1, 2 . (272)

This is related to the fact that the equation −∆u = δ does not have non-negative
solution in dimensions 1 and 2. In dimension n = 3 we have

u∞(x) =

∫ ∞

0

Γ(x, s) ds =

∫ ∞

0

1

(4πs)
3
2

e−
|x|2
4s ds (273)

One way to evaluate this integral is to use the substitution |x|2
4s

= σ . Then s =
|x|2
4σ

, ds = − |x|2
4σ2 dσ , and the integral becomes 1

4(π)
3
2 |x|

∫∞
0

e−σσ− 1
2 dσ . The integral

appearing in the last expression is known to be
√
π from the theory of Euler’s Gamma-

function. Hence we conclude

u∞(x) =
1

4π|x| , n = 3 . (274)

This is the fundamental solution of the Laplace equation, and a solution of the first
equation of (269) when u is independent of t. We see that the solution of (269)
approaches the fundamental solution of the Laplace equation, as one could heuristically
expect.

This can be also seen from the following calculation:

∆x

∫ ∞

0

Γ(x, s) ds = lim
τ→0+

∫ ∞

τ

∆xΓ(x, s) ds = lim
τ→0+

∫ ∞

τ

Γs(x, s) ds

= lim
τ→0+

−Γ(x, τ) = −δ(x) .
(275)

(The reason this calculation does not quite work in dimensions ≤ 2 is that the first
integral is ∞ in those dimensions.)

Lecture 21, 4/12/2019

Symmetries of PDEs, the physical significance of the values of the co-
efficients

41



An important information about the phenomena PDEs are decribing comes from
the symmetries of the equations. Understanding the symmetries can in many cases be
crucial, and can sometimes be more important than calculations of solutions.

The heat equations ut = ∆u offers a good example. It has a symmetry

u(x, t) → uλ(x, t) = u(λx, λ2t) . (276)

More precisely, let us assume assume that u(x, t) solves the hear equation in Ω×(t1, t2),
with the boundary condition u(x, t) = 0 for x ∈ ∂Ω for all t ∈ (t1, t2). Then the
function uλ is defined in the space-time domain λ−1Ω× (λ−2t1, λ

−2t2) and solves the
heat equation with the boundary condition uλ(x, t) = 0 for x ∈ λ−1∂Ω.

From this we see that a 1 : 10 scale model of an object cools down 100 times faster
(if it is dome using the same material), an information which may be more important
than some precise calculation of the solution.

The coefficients appearing in PDE often have an important physical meaning, and
can be often determined by observations of the solutions. For example, the coefficient
c in the wave equation utt = c2∆u determines the velocity with which the waves
described by the equation travel (and this can be sometimes measured directly, such
as when in the case of the speed of sound). At the same time, from the derivation of
the wave equation, the coefficient c2 can be expressed from properties of the material
in which the waves are observed, so measuring c can give us important information
about the material. For example, for the vibration of a string, there is the relation

c =

√
T

ρ
(277)

where T is the tension in the string ( = the force pulling on the string) and ρ is the
(linear) density of the string.

In class we derived the relation

c2 =
dp(ρ)

dρ
(278)

for the speed of sound in the air, where p = p(ρ) is the dependence of the pressure on
the density (assuming adiabatic compressions, i. e. no diffusion of the heat energy).
This derivation can be found in many physic textbooks. See also the Wikipedia article
on the speed of sound.

A well-known example concerns the speed of light. In the 1860s, J. C. Maxwell
showed that his famous equations of electro-magnetism (which he obtained from ear-
lier equations by adding an extra term) imply that the electric and magnetic fields
should satisfy the wave equation in which the speed of propagation c is linked to the
electric permittivity ε0 and magnetic permeability µ0 through the formula c2 = 1

ε0µ0
.

The quantities ε0 and µ0 were known at the time, and the c obtained from the for-
mula was in reasonable agreement with the speed of light (which was also known),
giving strong support to his famous prediction that light should be identified with the
electromagnetic waves.

The study of the symmetries of the Maxwell equations eventually lead to additional
profound conclusions, including the special theory of relativity.

Lecture 22, 4/17/2019 (delivered by Dallas Albritton, who also kindly prepared
the notes)
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d’Alembert’s paradox

Today, we discussed some topics in fluid mechanics. In particular, we considered
the drag force F on a sphere of radius R > 0 moving uniformly with velocity U ∈ R3

in an incompressible fluid of constant mass density ρ > 0. In 1687, Newton concluded
that, if the drag force F depends only on the quantities R, U , and ρ, then we must
have

F = const.× ρR2U2. (279)

Indeed, the dimension of each quantity is

[R] = L

[U ] = L/T

[ρ] = M/L3

[F ] = ML/T 2.

(280)

The dimensionally correct formula for F must contain factors ρ and U2 in order
to accomodate the dimensions M and 1/T 2 in F . Finally, one completes the formula
by filling in the right number of ‘R’s. Newton’s formula works well for small velocities
U , but we will revise it in a couple pages.

In 1752, d’Alembert investigated the drag force on a body B ⊂ R3 moving with
uniform velocity in a potential flow. Let Ω = R3 \B be the region outside the body.11

The motion of the fluid is modeled by the incompressible Euler equations

∂tu+ u · ∇u = −1

ρ
∇p

div u = 0

}
in Ω (281)

u · n = 0 on ∂Ω (282)

with the additional condition

u → −U as |x| → ∞. (283)

We will normalize ρ = 1. In this frame of reference, we view the body B as “stationary”
with the boundary condition (283). A potential flow is a solution of the Euler equations
given by u = ∇h, p = − 1

2
|∇h|2. With this ansatz, the Euler equations become

∆h = 0 in Ω

dh

dn
= 0 on ∂Ω

∇h → −U as |x| → ∞.

Here, n is the outward unit normal of Ω, so n points “into” the body. Since h is
harmonic, it is smooth, and the equations are satisfied in a classical sense.12

We let F denote the drag force on the body B. That is,

F =

∫
∂Ω

pn dx. (284)

Proposition (d’Alembert’s paradox). In the above notation, F = 0.

11B is assumed to be open and bounded with smooth boundary. We also assume 0 ∈ B.
12Here, I introduced the notation ui,j = ∂ui

∂xj
with summation over repeated indices. For

example, (u · ∇u)i = ujui,j .
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Proof. 13

If you let yourself freely integrate by parts, the “proof” is as follows:

Fi =

∫
∂Ω

pni dS =

∫
Ω

p,i dx = −
∫
Ω

ujui,j dx. (285)

By the divergence-free condition, ujui,j = (uiuj),j . This gives

Fi = −
∫
Ω

(uiuj),j dx = −
∫
∂Ω

uiujnj dS = 0, (286)

since ujnj = u · n = 0 on ∂Ω. However, this “proof” neglects the boundary condition
as |x| → ∞! Instead, we define14

Tij = uiuj + pδij , (287)

where δij is the Kronecker delta symbol. The Euler equations may be rewritten as

div T = 0, or Tij,j = 0 for all 1 ≤ i ≤ 3. (288)

For R ≫ 1, we define ΩR = BR \B. This is simply a truncated version of Ω. Then

0 =

∫
ΩR

Tij,j dx =

∫
∂BR

Tijnj dS +

∫
∂Ω

Tijnj dS =

∫
∂BR

Tijnj dS + Fi, (289)

where in the last equality we used that
∫
∂Ω

uiujnj dS = 0. If we can demonstrate that

lim
R→∞

∫
∂ΩR

Tijnj dS = 0, (290)

then we will have F = 0, as desired. Therefore, our new goal is to examine the limit
as R → ∞.

So far, we have not used that u = ∇h is a potential flow. Recall that ∆h = 0 and
∇h → −U as |x| → ∞. We will now use an expansion15 for h when |x| ≫ 1:

h = −U · x+ const. +
a0

|x| + aj
xj

|x|3 +O(R−3). (292)

Here, O(R−3) denotes a term that is bounded by const.×R−3 for R ≫ 1 with constant
independent of R. Taking the gradient gives

u = ∇h = −U − a0
x

|x|3 +O(R−3). (293)

13This proof is a combination of the proof in Landau-Lifschitz and one in Professor S̆verák’s
mathematical fluid mechanics notes.

14the energy-momentum tensor
15The general idea of the expansion is as follows. Recall the fundamental solution

Γ = −
1

4π|x|
, ∆Γ = δ. (291)

Notice that Γ and all its derivatives satisfy Laplace’s equation outside of a small ball Bϵ. One
might hope that such functions form a basis for the harmonic functions away from the origin
which are O(|x|−1) at infinity. Indeed, we are expanding h in terms of Γ and its derivatives
(except for the terms U · x and const., which are also easily seen to be harmonic). By the
Kelvin transformation, this expansion at infinity corresponds to an expansion in terms of
harmonic polynomials for a harmonic function at the origin, and this can be made into a
proof.

One can also use the above expansion to find an exact potential flow when B is a ball.
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In fact, we may obtain a0 = 0 by using that div u = 0 in ΩR and n(x) = x/|x| on
∂BR: ∫

ΩR

div u dx =

∫
∂BR

u · ndS =

=

∫
∂BR

−U · x

|x| dS︸ ︷︷ ︸
=0

+

∫
∂BR

−a0
x

|x|3 · x

|x| dS︸ ︷︷ ︸
=4πa0

+

∫
∂BR

O(R−3) dS︸ ︷︷ ︸
=O(R−1)

. (294)

Taking R → ∞ gives that 4πa0 = 0. Hence, we have shown that

u = ∇h = −U +O(R−3). (295)

To conclude the proof, we must substitute the expansion for u back into (290).
Since the surface area of ∂BR is 4πR2, we will only care about terms which are
O(R−2) in the integrand. For R ≫ 1,∫

∂BR

Tijnj dS =

∫
∂BR

(uiuj −
1

2
|u|2δij)nj dS =

=

∫
∂BR

(UiUj −
1

2
|U |2δij)

xj

|x|dS︸ ︷︷ ︸
=0

+O(R−1). (296)

Let R → ∞ to complete the proof.

D’Alembert’s paradox shows that potential flows are not sufficient to realistically
describe a body moving uniformly with constant velocity. In reality, all fluids16 have
some viscosity, which cannot be ignored. The (kinematic) viscosity ν > 0 has units

[ν] = L2/T. (297)

We define a dimensionless quantity Re = RU/ν, called the Reynolds number, which
enters into the formula for the drag force via the relation

F =
1

2
cd(Re)× ρR2U2. (298)

Here, cd > 0 is the drag coefficient, which depends only on the Reynolds number.
Compare with Newton’s formula from 1687!

Near the end of class, we talked briefly about Stokes’ contribution to the story,
watched some videos of flows around a sphere at various Reynolds numbers, and
discussed some computational hazards associated with stable and unstable fluid flows.

Lecture 23, 4/19/2018

More on symmetries of PDEs

In some cases the solutions of PDEs are almost completely determined by symme-
tries. Let us consider a few examples.

16Not superfluids!
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Example 1: Fundamental solution of the Laplace equation in dimensions n ≥ 3.

Let us consider the (already familiar) problem

−∆u = δ(x) in Rn ,

u(x) → 0 , x → ∞ .
(299)

It is clear that the solution of the problem, if it exists, is unique: if we have two
solutions u1, u2, their difference v = u2 − u1 satisfies −∆v = 0 in Rn with v(x) → 0
as x → ∞. Due to the maximum principle for harmonic functions we see that v = 0
in Rn.

Let now Q be an orthogonal n × n matrix. As the mapping x → Qx is volume
preserving, we have δ(Qx) = δ(x). We also have

∆(u(Qx)) = (∆u)(Qx) . (300)

In other words, if ∆u(x) = f , uQ(x) = u(Qx) and fQ(x) = f(Qx), then ∆uQ(x) =
f(Qx).

If u is a solution of (299) and Q is as above, then, by the above considerations, uQ

is again a solution of (299) and by uniqueness we have uQ = u. Since Q is an arbitrary
orthogonal matrix, we conclude that u depends only on r = |x|. We will write, with a
slight abuse of notation, u = u(r).

There is an additional symmetry which, together with the orthogonal symmetries,
helps to determine the function u up to a constant: For λ > 0 set uλ(x) = λn−2u(λx) .
Then

−∆uλ(x) = λn−2(∆(u(λx))) = λn−2λ2(∆u)(λx) = λnδ(λx) = δ(x) . (301)

By uniqueness we conclude uλ(x) = u(x), or, equivalently u(λx) = λ−n+2u(x). To-
gether with the fact that u = u(r), this implies that

u(x) =
cn

rn−2 ,
n ≥ 3. (302)

The method also shows that there are no solutions of which would satisfy both con-
ditions of (299). We see that the symmetries (and the uniqueness) determine the
solution up to the constant cn. The constant can be determined from the conditon∫
Rn −∆u(x) dx =

∫
Rn δ(x) dx = 1 . Letting BR = {x ∈ Rn , |x| < R}, we have

1 =

∫
BR

−∆u(x) dx =

∫
∂BR

−∂u

∂n
=

∫
∂BR

−∂u(r)

∂r
=

(n− 2)cn||
Rn−1

|∂BR|, (303)

where |∂BR| is the (n− 1)−dimensional area of |BR|. Taking R = 1, we obtain

cn =
1

(n− 2)|∂BR|
. (304)

In particular, when n = 3, we have

u(x) =
1

4π|x| . (305)

When n ≤ 2, the first equation of (299) still has a solution, of course, which for
n = 2 is given for example by u(x) = 1

2π
log( R

|x| ) (where R > 0 is a parameter).
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Example 2: Fundamental solution of the wave equations in space-time dimensions
n+ 1 ≤ 3.

We now apply the same method to the wave equation. Our space-time coordinates
are (t, x1, x2) and we will use the notation x0 = t, so that we can write the coordinates
as x ∼ (x0, x1, x2) in the space-time dimension n + 1 = 3 and x ∼ (x0, x1) in the
space-time dimension n+ 1 = 2. We will use the notation

2 =
∂2

∂x2
0

− ∂2

∂x2
1

− ∂2

∂x2
2

, n+ 1 = 3 , (306)

and similarly in other dimensions.
Let us now consider

2u = δ(x) . (307)

If we do not impose additional conditions, this problem has many solutions, which
might be an issue when we wish to show that the solution has to be symmetric.
However, we can remedy this by demanding that the solution vanishes outside of
the “positive light cone” C+ = {x ∈ Rn+1 , x0 ≥

√
x2
1 + · · ·+ x2

n}. This vanishing
condition together with the equation (307) determine the solution uniquely. We can
now apply practically the same method as we used for the Laplace equation, except
that we have to replace the rotations by another set of transformations, the so-called
Lorentz transformations. These can be defined as follows: Let us consider the quadratic
form

q(x) = x2
0 − x2

1 · · · − x2
n . (308)

Let G be the subset of (n+ 1)× (n+ 1) matrices L which preserve the positive light-
cone C+ (in the sense that L(C+) ⊂ C+) and also the quadratic for q, in the sense
that

q(Lx) = q(x) , x ∈ Rn+1 . (309)

It is instructive to consider the simplest case n = 1. In this case one can check that
the matrices L (which, we recall, are 2× 2 matrices when n = 1) are given by

L =

(
coshα sinhα
sinhα coshα

)
, (310)

where α ∈ R is a parameter. Then

Lx = L

(
x0

x1

)
=

(
x0 coshα+ x1 sinhα
x0 sinhα+ x1 coshα

)
. (311)

Note that for any two vectors x, y ∈ R1+1 which satisfy x2
0 − x2

1 = y2
0 − y2

1 > 0 and
x0, y0 > 0 one can find α such that Lx = y. A similar statement is true in higher
dimensions: if x2

0−x2
1 · · ·−x2

n = y2
0−y2

1 · · ·−y2
n > 0, then there exists L preserving (308)

and the light cone C+ such that Lx = y. The proof of this statement can be reduced
to the case n = 1 by first using suitable rotations in the spatial variables x1, . . . , xn,
and then transformations (310).

A standard application of the chain rule shows that for L as above we have

2(u(Lx)) = (2u)(Lx) , (312)

similarly to (300). Note
δ(Lx) = δ(x) , (313)
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for every L of the form (310), as detL = 1. If u is a solution of (307) which
vanishes outside of C, then u(Lx) = u(x). This implies that u(x) = u(ρ) , where
ρ =

√
x2
0 − x2

1 · · · − x2
n when x ∈ C.

We now set uλ(x) = λn−1u(λx) (where we assume that u solves (307) and u
vanishes outside of the light-cone C). Then, similarly to the case with the Laplacian,
one concludes that uλ(x) = u(x). Together with u(Lx) = u(x), this implies that

u(x) =
cn

ρn−1
, n = 1, 2 . (314)

The constant cn can be determined from the condition∫
Rn

u(x, t) dx = t , t > 0 . (315)

Recalling that t = x0, we see that we should have∫
Bt

cn
ρn−1

dx1 . . . dxn = t . n ≤ 2 . (316)

It is not hard to see that this implies c1 = 1
2
in the case n = 1. The calculation for

n = 2 is can also be done quite easily:∫
Bt

1√
t2 − x2

1 − x2
2

dx1 dx2 =

∫ t

0

2πr√
t2 − r2

dr = 2π

∫ t

0

− ∂

∂r

√
t2 − r2 dr = 2πt ,

(317)
which implies that we should take c2 = 1

2π
. Hence we reproduced the result of the

calculation in Lecture 20 just by using the symmetries of the equation.
One can also calculate by (a modification of) this method the fundamental so-

lution in the space-time dimension 3+1, although that is somewhat less straightfor-
ward. Let us briefly explain what happens in that case, without going to details.
Formula (314) suggests that we for n = 3 should take u(x) = c3

ρ2
, but the difficulty is

that
∫
Bt

1
ρ2

dx1dx2dx3 = +∞. One way to overcome this difficulty is replace c3
ρ2

by
c3−ε

ρ2−ε for a small ε > 0, determine c3−ε from the condition (316), and then take ε → 0+.
This procedure recovers the 3d fundamental solution which we have calculated before.
The calculation is more difficult than the previous examples, but still doable via basic
calculus methods, without any advanced techniques. As an (optional and non-trivial)
exercise you can try to complete that calculation.

Example 3: The heat equation We wish to derive formula for the solution of

ut −∆u = δ(x, t) = δ(x)δ(t) , (318)

(which we derived previously via the Fourier transformation) using symmetries. The
symmetries of the solutions we will use are the following

(i) u(Qx, t) = u(x, t) for each orthogonal matrix Q.

(ii) λnu(λx, λ2t) = u(x, t) .

The condition (i) and (ii) imply that

u(x, t) =
cn

t
n
2
F

(
r√
t

)
. (319)
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In this case the group of symmetries which we have used is not as rich as in the
previous calculations, and our formula (319) still contains an unknown function F (ξ),
although only of one variable, which is, of course, a significant simplification. The
function F can be determined in several ways, the most straightforward one being a
simple substitution of (319) into the heat equation ut = ∆u which has to be satisfied
by u for t > 0. This gives

− n

2
F − 1

2
ξF ′ = F ′′ +

n− 1

ξ
F ′ , (320)

where we think of F as a function of ξ, with ξ = r√
t
, and we use the notation F ′ = dF

dξ
.

We note that (320) can be written as

(F ′ +
ξ

2
F )′ +

n− 1

ξ
(F ′ +

ξ

2
F ) = 0 , (321)

from which we see a solution

F (ξ) = e−
ξ2

4 , (322)

which gives the fundamental solution. Equation (320) is of the second order, and
therefore it must have other solutions than (322). However, the solutions of the heat
equation which the other solutions will generate do not satisfy u(x, t) → δ(x) as
t → 0+. The function F given by (322) give the usual fundamental solution of the hear

equation via (319), after we normalize it to F (ξ) = 1

(4π)
n
2
e−

ξ2

4 , so that
∫
Rn F (ξ) dx =

1.

Lecture 24, 4/24/2018

Dimensional analysis, non-dimensionalisation

Many physical laws expressed as a mathematical equation have a symmetry in it
which is somewhat hidden - namely the independence on units. Consider for example
formula (277) for the speed of propagation of waves in a string. At the first glance the
formula may look somewhat peculiar. Let us change notation and denote the force
pulling on the string F , and keep the notation ρ for the (linear) density of the string.
In this notation the formula is

c =

√
F

ρ
. (323)

Based on our physical intuition we might agree that c should be increasing with F
and decreasing with ρ (although even this may not be an automatic guess if one does
not have some experience in mechanics), but how does the square root appear? The
square root is inevitable from the point of view of dimensional analysis.

The key point is that the formula should be true regardless of a particular system
of units units one uses, as long as the units are used consistently. This may look
obvious, but it actually imposes very strong requirements on the formula, as we now
show.

Let L be a unit of length, M be a unit of mass, and T be a unit of time. (We
emphasize that the force is now denoted by F , not T as in (277), so that using T for
the unit of time is ok.) The units of velocity is than L/T , the units of linear density
is M/L and the unit of force is ML/T 2. Assume that we have

c = ϕ(F, ρ). (324)
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This really means the following: let us assume that in some particular choice of units
the force is given by F units of force, the density is given by ρ units of density, and
the velocity is given by c units of velocity. Then one has the relation (324) between
the numbers c, F, ρ. Assume now that somebody uses a different set of units of length,
time, and mass, let us call them L′, T ′,M ′. In these using the situation is described
by different numbers c′, F ′, ρ′. The assumption now is that the numbers c′, F ′, ρ′ must
satisfy the same formula:

c′ = ϕ(F ′, ρ′) , (325)

where ϕ is the same as in (324). This clearly puts very strong requirements on the
function ϕ. To express these requirements explicitly let us assume L = λL′, M = µM ′

and T = τT ′, where λ, µ, τ are positive numbers. Then c′ = λ
τ
c, F ′ = µλ

τ2 F and
ρ′ = µ

λ
ρ. By (325),

λ

τ
c = ϕ(

µλ

τ2
F,

µ

λ
ρ) (326)

and by (325)
c = ϕ(F, ρ). (327)

Hence
λ

τ
ϕ(F, ρ) = ϕ(

µλ

τ2
F,

µ

λ
ρ) , (328)

which is the same as

ϕ(F, ρ) =
τ

λ
ϕ(

µλ

τ2
F,

µ

λ
ρ) . (329)

This should be true for any λ, µ, τ > 0. This is a very strong requirement on the
function ϕ. In fact, setting µ = 1, λ = ρ, τ2 = ρF , we obtain

ϕ(F, ρ) =

√
F

ρ
ϕ(1, 1) . (330)

We see that the requirement that formula (324) be independent of the units (which
can be thought of as a sort of symmetry requirement) determines ϕ up to a constant,
and the square root in the formula is an inevitable consequence of the formula being
unit-independent. Every formula in physics can (and should) be analysed in this way.

Let us consider a PDE from this point of view. We will use the heat equation as
an example. Assume that a heat equation

ut = κuxx (331)

is to be solved to be on an interval (0, a) and a time interval (0, b). Let us look at how a
change of units will change our equation and the relevant parameters. Set t = Tt′ and
x = Lx′, where we think about x′, t′ as dimension-less numbers, which just give the
number of units of time contained in the time period t, and, similarly, the number of
the units of length L contains in the segment of length x. We can also write u = Uu′,
where U is a unit of temperature and u′ is the number of the units of temperature U
described by the temperature u. We note that

∂

∂t
=

∂

T∂t′
,

∂

∂x
=

∂

L∂x′ . (332)

The equation for u′ in the coordinates x′, t′ becomes

U∂u′

T∂t′
= κ

U∂2u′

L2∂x′2 , (333)
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which is the same as
∂u′

∂t′
= κ

T

L2

∂2u′

∂x′2 . (334)

All quantities with primes are just dimension-less numbers, and hence the quantity
κ T

L2 also must be dimension-less. When we have two situations described by the
heat equation above with parameters L1, T1, κ1 and L2, T2, κ2, respectively, the two
situations can be turned to one another by a simple change of coordinates if κ1

T1

L2
1
=

κ2
T2

L2
2
. This is important when we wish to use measurement on a scale model (possibly

with a different coefficient κ) to make conclusions about the actual situation.

Lecture 25, 4/26/2018

well-posedness, stability

The initial-value problem

Let us consider the initial value problem for the wave equation

utt = uxx

u(x, 0) = u0(x)

ut(x, 0) = u1(x)

(335)

where u(x, t) is a function 1-periodic in x.
Expressing u(x, t) through its Fourier series

u(x, t) =
∑
k

û(k, t)e2πikx , (336)

we get the following ODEs for the coefficients û(k, t):

d2û(k, t)

dt2
+ (2πk)2û(k, t) = 0

û(0) = û0(k)

dû

dt
(0) = û1(k) ,

(337)

where û0(k) and û1(k) are the coefficients for the initial data. We know how to solve
this ODE:

û(k, t) = û0(k) cos 2πkt+ û1(k)
sin 2πkt

2πk
. (338)

This formula determined û(k, t) is a nice way from û0(k) and û1(k). Note that the
functions cos 2πkt and sin 2πkt only take values between −1 and 1, so there are no
“dangerous” large number in the formula (338).

What happens if we try to think about the equation uyy = −uxx in the same way?
Let us write again

u(x, y) =
∑
k

û(k, y)e2πikx. (339)
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This time we obtain the following ODE for the coefficients:

d2û(k, y)

dy2
− (2πk)2û(k, y) = 0

û(k, 0) = û0(k)

dû(k, 0)

dy
= û1(k) .

(340)

The solution can again be written down explicitly

û(k, y) = û0(y) cosh 2πky + û1(y)
sinh 2πky

2πk
. (341)

There is a serious danger in expressions (341): for positive y > 0 the expressions
û(k, y) may grow exponentially in y and the series (339) may fail to converge to any
function for y > 0. Also, even when it converges, the mapping û(k, 0) → û(k, y)
becomes extremely sensitive to the values of û0(k) and û1(k) once k is not small. For
example for k = 3 and y = 10 the value of cosh 2πky is of order 1081, so even very
small errors the coefficients û(k, 0) will be enormously amplified. We can say that the
determination of û(k, y) from û(k, 0) is increasingly unstable as k grows, and at the
level of the whole function u(x, y) the “initial conditions” u(x, 0) and uy(x, 0) may
not even define a u(x, y) as a function. In this situation we can say that the problem
of determining u(x, y) based on the equation uxx = −uyy and the initial conditions
u(x, 0) and uy(x, 0) is ill-posed.

Note that for (338) these difficulties do not arise. The determination of û(k, t)
from û(k) is “stable” and we say that the problem (335) is well-posed.

The boundary-value problem

Let us now change the problem for the Laplace equation uxx = −uyy as follws:
instead for determining u based on u(x, 0) and uy(x, 0), let us try to determine it based
on u(x, 0) and u(x, b) for some b > 0:

uxx + uyy = 0

u(x, 0) = u0(x)

u(x, b) = ub(x) ,

(342)

where u is 1−periodic in x. We apply a similar procedure. We write the general
solution of the ODE in (340) as

û(k, y) = A(k) cosh 2πky +B(k) sinh 2πky , (343)

and determine A(k), B(k) from the condition u(x, 0) = u0(x) and u(x, b) = ub(x).
After some calculation we obtain

û(k, y) = û0(k)
sinh 2πk(b− y)

sinh 2πkb
+ ûb(k)

sinh 2πky

sinh 2πkb
. (344)

We note that the functions sinh 2πk(b−y)
sinh 2πkb

and sinh 2πky
sinh 2πkb

both take values only between 0
and 1 when y ∈ [0, b], and therefore the determination of û(k, y) from û0(k) and ûb(k)
does not involve any dangerous operations which would make it unstable.
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If we replace the Laplace in (342) with the wave equation utt−uyy = 0 and repeat
the procedure proceeding formally with the claculation, we obtain instead of (344) the
formula

û(k, t) = û0(k)
sin 2πk(b− t)

sin 2πkb
+ ûb(k)

sin 2πkt

sin 2πkb
. (345)

This formula has results in serious problem when sin 2πkb is very small, or even van-
ishes. In the latter case our problem simply may not have a solution. Even when
sin 2πkb does not vanish for any k ∈ Z, it can get very small for many k, and the de-
termination of û(k, t) from u0 and ub will be unstable. We conclude that the boundary
condition in (342) are not good for the wave equation, while the boundary conditions
in (335) are not good for the Laplace equation.
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