
Lecture 1, 9/8/2010

The Laplace operator in Rn is

∆ =
∂2

∂x21
+ · · ·+ ∂2

∂x2n
(1)

It was introduced by P.-S.Laplace in a 1784 paper in connection with gravita-
tional potentials.
Recall that if we have masses M1, . . . ,Ml at points a1, . . . , an of R3, then the
gravitational potential of the configuration is given by

u(x) = −κ M1

|x− a1|
· · · − κ

Ml

|x− al|
, (2)

where κ is the gravitational constant.
The Newton law of gravity can be reformulated in terms of the potential u:
The force on a point particle of mass m located at x is

force = −m∇u(x).1 (3)

The value of the potential u(x) at a point x ∈ R3 can be interpreted as the
potential energy due to gravity of a particle of unit mass located at x: if we
would like to move this particle to the spatial infinity, we need to act against
the gravitational force, and the total work we do while moving the particle to
the spatial infinity is exactly −u(x) .2

Assume now that instead of point masses we are dealing with a continuous
distribution of mass descrived by a density ρ(x): the mass an an arbitrary
domain O ⊂ R3 is given by

∫
O ρ(x) dx. Often we think of ρ being non-zero

only in some domain Ω (representing a planet or a star, for example). The
gravitational potential due to the mass described by the density ρ is

u(x) =

∫
R3

−κ ρ(y)

|x− y|
dy (4)

If we wish to emphasize that ρ is only non-zero in a domain Ω, we can write

u(x) =

∫
Ω

−κ ρ(y)

|x− y|
dy . (5)

Now Laplace’s observation is that at a point x in a neighborhood of which we
have no masses (i. e. ρ vanishes close to x) the potential u satisfies

∆u = 0 . (6)

This can be easily seen from the following two facts:
1. ∆ ( 1

|x−a| ) = 0 away from x = a, and

1Excercise: Check by direct calculation that (3) indeed gives Newton’s law.
2Excercise: Verify this statement
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2. equation (6) is linear, i. e. a linear combination of solutions is again a solu-
tion.3

One could perhaps think that since we have the explicit representation (5),
we can answer any questions about the gravitational field by calculating the
corresponding integrals. So what is the point of bringing in equation (6)?
Let us illustrate the usefulness of equation (6) on a very simple example. Con-
sider the situation when the total mass M is uniformly distributed over a solid
sphere BR of radius R > 0. So we have ρ =M/(4πR3) in BR and ρ = 0 outside
BR. What is the gravitational potential (5) outside Ω = BR?
First, try to calculate the potential by direct integration. It may look difficult,
but with some effort one can still evaluate the integral explicitly4.
If we use equation (6), we can avoid the explicit calculation of the integrals,
and still get the exact u. We first note that the potential u is rotationally
symmetric: u(x) depends only on r = |x|. 5 With some abuse of notation we
will write u(x) = u(r). For such symmetric functions u in R3 we have

∆u = u′′ +
2u′

r
, (7)

where u′ denotes the derivative of u with respect to r .6

As a simple exercise in solving ordinary differential equations, we can find the
general solution of

u′′ +
2u′

r
= 0 . (8)

It is given by

u(r) =
A

r
+B . (9)

We now determine the value of the constants A and B by looking at the potential
for large x.
We have

u(x) =

∫
BR

−κ ρ(y)

|x− y|
dy

=

∫
BR

−κ ρ(y)
|x|

dy

+

∫
BR

κρ(y)(
−1
|x− y|

+
1

|x|
) dy

= −κM
|x|

+O(
1

|x|2
) as x→∞ ,

3Excercise: Verify all these statements
4Excercise: Do this calculation
5Excercise: Verify that this is indeed the case
6Excercise: Verify the formula
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where we have used the usual “O-notation”, which has the following meaning:
O(1/|x|2) denotes any function whose absolute value for large x is below C/|x|2,
for some (fixed) C > 0.
Combining the last equation with (9), we see that we must have

A = −κM, B = 0 .

We see that

u(x) = −κM
|x|

for |x| > R .

We have shown the classical result (probably going back to Newton) that the
gravitational potential outside the sphere is exactly the same as the potential
of a point change at the origin, with the same mass as the total mass of the
sphere.
Let us replace in the above example the solid sphere be a spherical shell {R1 <
|x| < R2}, with the total massM distributed uniformly over the shell. The same
argument as above shows that outside the shell we again have u(x) = −κM

|x| .

As an exercise, you can show that inside the shell (i. e. for |x| < R1) the
potential u is constant, i. e. u(x) = B for some constant B. This means that
the gravitational force inside the shell vanishes.
All this can be done again by calculating directly the integral (5), but the above
argument is computationally much simpler. 7

In more complicated situations, e. g. in electrostatics of conducting surfaces of
general shape, the direct calculation of the integrals in many cases is no longer
feasible, whereas arguments using the equation ∆u = 0 still work very well8

although we have to study the properties of general solutions (not necessarily
symmetric) in more detail. This will be our program in the next few lectures.

7Excercise: Do the direct calculation of the integral in this case
8In fact, during the 19th century there has been an important shift in thinking about

the basic laws of physics. One can probably say that in the times of Newton, the law of
force exemplified by explicit representation formulae, such as (2) and (3), were considered
as fundamental. However, the importance of partial differential equations satisfied by the
“fields of force” gradually grew, and eventually the equations themselves became viewed as
fundamental. The theory of the electromagnetic field by Faraday and Maxwell (completed in
1865) played an important role in this transformation.
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Lecture 2, 9/10/2010

Last time we looked at the gravitational potential

u(x) =

∫
R3

−κ ρ(y)

|x− y|
dy (10)

in the regions where ρ vanishes, and we saw that in these regions we have
∆u = 0. What happens in the regions where ρ does not vanish? Around 1812,
S. D. Poisson discovered the following fundamental fact:

If ρ is sufficiently regular9, then ∆u = 4πκρ .

This is why the equation ∆u = f is usually called the Poisson equation. Before
going the the proof, we will adjust our notation and recall some definitions.
We set

G(x) = − 1

4π|x|
(11)

and for a sufficiently regular function f (say, continuous, compactly supported)
we set

Gf(x) =
∫
R3

G(x− y)f(y) dy , (12)

which is one of the standard forms of the gravitational potential used in PDE
textbooks10. We can think of G as a linear operator taking functions to func-
tions. Recalling that the convolution of two functions f, g on Rn is defined11

by

f ∗ g(x) =
∫
Rn

f(x− y)g(y) dy =

∫
Rn

g(x− y)f(y) dy , (13)

we can also write
Gf = G ∗ f . (14)

The above notation is somewhat “heavy”. You will soon see that it makes
sense to use G for both the kernel (11) and the linear operator G. If we write
Gf = G∗f instead of G = G∗f , it may look quite ambiguous at first, as Gf can
in principle mean both the pointwise product of the kernel G with the function
f and the result of applying the operator G to the function f . However, in
practice such confusion does not arise, as the intended meaning is usually clear
from the context.

With the above notation, we can now write the Poisson’s result as follows:

∆(Gf) = f . (15)

We will see that the proof also gives12

G(∆u) = u . (16)

9We will specify what this exactly means later.
10The other standard form is the one one gets by changing the sign of the kernel.
11under some assumptions on f, g, e. g. f bounded measurable and compactly supported

and g locally integrable
12under appropriate assumptions
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Therefore we can write, somewhat loosely,

G = (∆)−1 and ∆ = (G)−1 , (17)

i. e. the integral operator G is the inverse of the differential operator ∆, and
vice versa.
This illustrates an important general point that, roughly speaking, the inverses
of differential operators are closely related to integral operators.13 The oldest
example of this is of course the Fundamental Theorem of Calculus: the inverse
of taking derivatives is integration.14

We recall the following rule for differentiating convolutions:

∂

∂xi
(f ∗ g) = (

∂

∂xi
f) ∗ g = f ∗ ( ∂

∂xi
g) . (18)

Of course, one needs some assumptions. For example, if f is locally integrable
and g is continuously differentiable and compactly supported, you can check
as an exercise that with the “classical interpretation” of all the expressions the
part

∂

∂xi
(f ∗ g) = f ∗ ( ∂

∂xi
g) , (19)

is fine, while the expression ( ∂
∂xi

f) ∗ g needs some interpretation, as the term
∂
∂xi

f may not be well-defined by the classical point-wise definitions. We will
deal with issues such as this later, for now we will only use the expressions which
are defined classically.
By repeated application of (18) we see that, under appropriate assumptions, we
have for any differential operator L with constant coefficients

L(f ∗ g) = (Lf) ∗ g = f ∗ (Lg) . (20)

Let ϕ : Rn → R be a smooth function compactly supported in the unit ball with∫
Rn ϕ = 1. For ε > 0 we set

ϕε(x) =
1

εn
ϕ(
x

ε
) . (21)

If f is a locally integrable function, the function f ∗ϕε gives a good approxima-
tion of f by smooth functions. The operation f → f ∗ ϕε is called mollification

13The converse of this statement, which would be that the inverses of integral operators are
closely related to differential operators, is not really true unless we substantially generalize
the notion of a differential operator. You can see this already by looking at integral operators
with kernels 1/|x|α.

14As an exercise, you can check the following formulation of this theorem: Define G : R → R
by G(x) = 0 for x < 0 and G(x) = 1 for x > 0. Let Gf = G ∗ f . Let Du denote the first
derivative of u. Then, under natural assumptions on f and u we have D(Gf) = f and
G(Du) = u. We also have Dk(Gk)f = f for k = 1, 2, . . . . You can calculate the kernel of
the operator Gk as an exercise. You can also check what happens if we change G to, say,
G(x) = sign (x)/2.
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and the function ϕ is called a mollifier. (Often the term mollifier is also used
for the linear operator f → f ∗ ϕε.)
Heuristically, for small ε > 0 the function f ∗ϕε is a convex combination of small
“shifts” of a function f .15 We expect that for a small y the shifted function
x→ f(x− y) will be close to f , and hence f ∗ ϕε should be close to f for small
ε > 0. As an exercise, you can show that for a compactly supported continuous
f the functions f ∗ϕε converge uniformly to f as ε→ 0. Also, you can show that
if p ∈ [1,∞) and f ∈ Lp(Rn), the functions f ∗ ϕε converge to f in Lp(Rn).16

The last tool we need for the proof of Poisson’s result is integration by parts:
if Ω ⊂ Rn is a smooth domain and ν and ν(x) = (ν1(x), . . . , νn(x)) is the outer
unit normal ar x ∈ ∂Ω (the boundary of Ω), then for any sufficiently regular
function v in Ω we have ∫

Ω

∂

∂xi
v dx =

∫
∂Ω

vνi dx . (22)

We can now proceed with the proof of ∆(Gf) = f .
Let us choose any smooth function K : R3 → R satisfying K(x) = G(x) =
−1/(4π|x|) for |x| > 1/2. We note that

1. ∆K is compactly supported in the unit ball B1, and
2.
∫
R3 ∆K = 1 . (Hint: Use (22).)

For ε > 0 we set

Kε(x) =
1

ε
K(

x

ε
). (23)

Note that Kε(x) = G(x) for |x| > ε/2 and that
∫
R3 |G−Kε|p dx→ 0 as ε→ 0

for 1 ≤ p < 3.
In addition, we have

∆Kε =
1

ε3
∆K(

x

ε
) . (24)

In other words, the function ∆Kε can be considered as mollifier, similar to (21).
Assume now that f is compactly supported and has continuous second deriva-
tives.17

Set u = G ∗ f and uε = Kε ∗ f . Let L be any derivative of order ≤ 2. Then
Luε = Kε ∗ (Lf), and this clearly converges uniformly to G ∗ (Lf) = Lu as
ε → 0. Therefore uε converges to u uniformly, together with derivatives up to
order two as ε → 0. On the other hand, we have ∆uε = (∆Kε) ∗ f , showing
that ∆uε is just a mollification of f by the mollifier ∆Kε. Therefore ∆uε → f
uniformly as ε→ 0. We see that ∆u = f , as claimed.

15Recall that a shift of a function f by a vector why is a function x → f(x − y), whose
graph is a copy of the graph of f shifted in by the vector y in the plane of the coordinates
x1, . . . , xn.

16The proof of the first statement is elementary. The precise formulation and the proof of
the second statement requires the theory of the Lebsgue integration.

17We are not aiming for the most general assumptions here. Our goal is to illustrate the
main point.

6



Remark: Some suitably defined convergence of ∆Kε ∗ f to f as ε → 0 is to be
expected for quite general functions f , so we expect that the conclusion ∆u = f
should be true in a much more general situation. The main issue to clarify in
the above proof when f has less regularity is the question of convergence of the
second derivatives of uε.

18 As an exercise, you can try to relax the assumptions
on f in the above proof. For example, it is not hard to see that it is enough to
work with one derivative of f only (as one can put the other derivative on Kε).

18Depending on of what type of convergence we look for, the question can be subtle. For
example, for a general continuous and compactly supported f , it may not be the case that the
second derivatives of uε will be uniformly bounded as ε→ 0. On the other hand, if f is Hölder
continuous, the convergence of the second derivatives will hold. We will eventually see that,
in some sense, many of these subtleties can be bypassed if one works with good definitions.
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Lecture 3, 9/13/2010

We start with a few remarks on the proof of the identity ∆(G ∗ f) = f we did
last time.
The expression u = G ∗ f is well-defined for quite general functions f . For
example, f ∈ L1(R3) is enough.19 There is no problem with the convergence of
the approximations uε = Kε ∗ f to G ∗ f , and the convergence of the Laplacians
∆uε = (∆Kε) ∗ f to f as ε → 0. So the identity ∆u = f should be true for
quite general functions f .
However, we have to deal with some technical issues here. First of all, we
have to say how we define ∆u. If we use the classical point-wise definitions
of the derivatives, we have to worry about the existence of the limits which
appear in these definitions. What do we have to know about f so that we can
conclude that u is twice differentiable in the classical sense? If we say “twice
differentiable”, do we really mean “twice continuously differentiable”, or is it
enough if the limits defining the derivatives exist, without requiring that ∇2u(x)
is continuous as a function of x? You can see that one can get quite quickly into
all kinds of difficult questions. Over time people realized that things become
much easier if the point-wise definition of derivatives are replaced by a more
flexible definition.20 We will get into this topic later. For now, I will mention
only the following:

• In general, if f continuous, compactly supported, then G ∗ f may not be
twice continuously differentiable.21

• If f compactly supported and α-Hölder continuous22, then the second
derivatives of G ∗ f exist classically, and are also α-Hölder continuous.

Let us now turn to the proof of the identity

G ∗ (∆u) = u (25)

mentioned earlier in (16). For now we work with the point-wise definitions of
the derivatives, so we assume that u is twice continuously differentiable. We

19To see this, consider a compactly supported smooth function φ with φ = 1 in a neigh-
borhood of 0, write G1 = φG and G2 = G − G1. Then G ∗ f = G1 ∗ f + G2 ∗ f . Note that
G2 ∗ f is well-defined point-wise, i. e. the integral defining (G2 ∗ f)(x) is well-defined for each
x. (In fact, the function G2 ∗ f is continuous, as you can easily check.) The function G1 ∗ f
is not defined point-wise in general. (Give an example!) However, since G1 is in Lp for each
p < 3 and f ∈ L1, the function G1 ∗ f is defined as an Lp function, so G ∗ f is a sum of an Lp

function and a continuous function. Note that this argument works also when we replace the
function f by a Radon measure.

20There is some analogy here with the convergence of the Fourier series f(x) =
∑

k cke
ikx.

Studying the point-wise convergence of the series to f can be difficult. One the other hand, if
we replace the point-wise convergence by the convergence in L2, things become much easier,
at least from the modern point of view, in which we take the Lebesgue integration for granted.

21The more flexible definition of derivatives we introduce later will render this seemingly
unpleasant fact quite harmless.

22Recall that this means that |f(x)− f(y)| ≤ C|x− y|α for some C > 0.
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also assume it is compactly supported. The proof is very simple:

G ∗ (∆u) = lim
ε→0

Kε ∗∆u = lim
ε→0

(∆Kε) ∗ u = u , (26)

where in the last equality we used that ∆Kε is a mollifier.

Identity (25) can be used to study the solutions of general solutions of the
Laplace equation ∆u = 0.

A function u defined in an open domain Ω ⊂ Rn is called harmonic if ∆u = 0.

At the moment this definition assumes that the derivatives in the definition
are point-wise, so we need to assume that u has two continuous derivatives, say.
This technical condition will be removed later when we introduce a more flexible
notion of derivative.

For a domain Ω ⊂ R3 and a point a ̸= Ω, the function Ga(x) = −(4π|x− a|−1)
is clearly harmonic in Ω. By taking linear combinations of functions of this form
we can generate many harmonic functions. Our aim is to show that, roughly
speaking, every harmonic function in Ω arises in this way.
Let Ω1 ⊂ Ω be open with the closure Ω1 ⊂ Ω. Consider a compactly supported
function φ : Ω→ R such that φ = 1 in a neighborhood of the closure Ω1.
By (25), when x ∈ Ω1, we have

u(x) = φ(x)u(x) =

∫
Ω

G(x− y)∆(φu)(y) dy. (27)

We compute

∆(φu) = ∆φu+ 2∇φ∇u+ φ∆u = ∆φu+ 2∇φ∇u , (28)

where we used ∆u = 0. Letting f = ∆φu+ 2∇φ∇u, we note that the support
of f is contained in Ω \ Ω1. Hence we can write, for x ∈ Ω1,

u(x) = φ(x)u(x) =

∫
Ω

G(x− y)f(y) dy . (29)

Formula (29) says that in Ω1 the function u is a “linear combination” (if we can
use this term for integrals) of functions x→ G(x− y).
Although in many ways (29) is not optimal, we can already draw an impor-
tant conclusion from it: when x ∈ Ω1, the integral on the right-hand side can
be differentiated in x as many times as we wish, and therefore u is infinitely
differentiable in Ω1, although we initially only assumed that it was twice differ-
entiable. In fact, one can conclude from (29) that u is analytic in Ω1.

23

23Exercise: verify this statement.
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Lecture 4, 9/15/2010

Let us return to the situation we considered last time and formula (27). Our
aim is to improve formula (29) by moving the derivatives of u on the left-hand
side to G and φ. This can be done by integration by parts. Let us replace (28)
by the following formula

∆(φu) = 2 div (∇φu)−∆φu . (30)

We can write

φu = G ∗∆(φu) = G ∗ (2 div (∇φu))−G ∗ (∆φu) = 2G,i ∗ (φ,i u)−G ∗ (∆φu) ,
(31)

where G,i, φ,j denote partial derivatives, and we use the summation convention
of summing over repeated indices. Writing out the integrals explicitly, we have
for x ∈ Ω1

u(x) =

∫
supportφ

[2G,i(x− y)φ,i(y)u(y)−G(x− y)∆φ(y)u(y)] dy, x ∈ Ω1 .

(32)
This formula implies some classical results about harmonic functions.

First, we prove the following a-priori estimate:

Let u be a harmonic function in the ball B2R ⊂ R3 of radius 2R. Then, for
k = 0, 1, 2, . . . , we have the following point-wise estimate for the derivatives of
u in the ball BR:

|∇ku(x)| ≤ Ck
R3+k

∫
B2R\BR

|u(y)| dy, x ∈ BR , (33)

where Ck are constants independent of u and R.

We will see later that this estimate can still be improved in various ways. Nev-
ertheless, it is sufficient for many purposes.

The proof of (33) follows easily from (32): differentiate (32) to obtain

∇ku(x) =
∫
supportφ

[
2∇kxG,i(x− y)φ,i(y)u(y)−∇kxG(x− y)∆φ(y)u(y)

]
dy, x ∈ Ω1 .

(34)
Consider a smooth function ψ compactly supported in the ball B2 of radius 2
with ψ = 1 in B 3

2
and set φR(x) = ψ(x/R). Use (34) with φ = φR and note

that for x ∈ BR and y is in the support of ∇φR we have

|∇kxG,i(x− y)| ≤
ck

R2+k
, |∇kxG(x− y)| ≤

ck
R1+k

(35)

and

|∇φR(y)| ≤
c′1
R
, ∆φR(y) ≤

c′2
R2

. (36)
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This immediately gives (33).

A simple consequence of (33) is the following estimate
For a harmonic function u in BR we have

sup
BR

|∇ku| ≤ Ck
Rk

sup
B2R

|u| , (37)

where the constants Ck are independent of R and u.

We can now prove a classical result:

Liouville Theorem.
A bounded harmonic function in R3 is constant.

Proof: We use (37) for k = 1 and R→∞.

One can use the same idea to prove a more general statement:

Liouville Theorem, version 2.
Assume that u is harmonic in R3 and that |u(x)| ≤ C(|x|m−ε + 1) for some
positive integer m, with C > 0 and ε > 0. Then u is a polynomial of order at
most m− 1.

Proof: Use (37) with k = m and R→∞.

Note that the last theorem is more or less optimal, as for each integer m there
are non-trivial harmonic polynomials of degree m.

As there are no derivatives in the right-hand side (32), one expects that the
assumption that u has two derivatives we used in the definition of harmonic
functions is of technical nature, and is not really essential. We will address
general issues related to this later in a systematic way, but perhaps it is worth
making some remarks on this even now.
Let us consider the mollifier ϕε(x) = 1

εnϕ(
x
ε ) we introduced earlier. For a

locally integrable function u defined in a domain Ω ⊂ Rn, the function u ∗ ϕε
is unambiguously well defined in Ωε = {x ∈ Ω, dist(x, ∂Ω) < ε}, as the support
of ϕε is contained in the ball Bε. Assume now that u is a locally integrable
function in Ω and that uε = u ∗ϕε is harmonic in Ωε for small ε. Write (32) for
uε:

uε(x) =

∫
supportφ

[2G,i(x− y)φ,i(y)uε(y)−G(x− y)∆φ(y)uε(y)] dy, x ∈ Ω1 .

(38)
Note that the support of φ is contained in Ωε for small ε. Now as ε → 0, the
functions uε converge to u in L1(support of φ). The right-hand side of (38)
converges to the same expression with uε replaced by u. Therefore uε(x) must
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converge to a limit for each x ∈ Ω1 as ε → 0. (As an exercise, you can check
that the convergence of uε is uniform in Ω1.) At the same time, uε converge
to u in L1(Ω1), by general properties of integrable functions. We conclude that
the representation formula holds true for the function u, i. e. we can remove the
epsilons in (38). Therefore u is smooth in Ω1 and satisfies all the estimates we
obtained above. Since we can take for Ω1 any ball whose closure is in Ω, we see
that u is in fact smooth in Ω.

We could call a locally integrable function u defined in Ω weakly harmonic if
u ∗ ϕε is harmonic in Ωε for each ε > 0. However, such a definition does not
look appealing. For example, is it not immediately clear that it is independent
of the choice the mollifier. A much more elegant definition24 which is in fact
equivalent, 25 is the following:

Definition: A locally integrable function in Ω ⊂ R3 is weakly harmonic if∫
Ω
u∆ϕ = 0 for each smooth, compactly supported function ϕ : Ω→ R.

If u is weakly harmonic in Ω and ϕε is the same mollifier as above, it is immediate
that ∆(u ∗ ϕε) = 0. Hence the above arguments prove the following statement.

Weyl’s Lemma.
A weakly harmonic function u is smooth and harmonic.

Proof: See above.

24a special case of defining derivatives as distributions, as introduced by L. Schwartz
25Exercise: prove the equivalence
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Lecture 5, 9/17/2010

The definition of a weakly harmonic function can be immediately generalized
to Poisson’s equation ∆u = f .

Definition.
Let u and f be locally integrable functions in a domain Ω ⊂ Rn. We say that
the equation ∆u = f is satisfied weakly in

∫
Ω
u∆φ =

∫
Ω
fφ for each smooth,

compactly supported φ : Ω→ R.

This is again a special case of defining derivatives in the theory of distributions,
due to L. Schwartz in 1940s. An equivalent definition is that, ∆(u∗φε) = f ∗φε
in Ωε for every (small) ε > 0, similar to the situation with weakly harmonic
functions mentioned in the last lecture.

The idea of these definitions is that we do not really try to say what point-wise
values of functions such as u or f are. We only consider point-wise values of the
smooth compactly supported functions ϕ, called the test functions. 26

With the definition above, the difficulties we had to deal with when we consid-
ered the point-wise definitions of derivatives are not present. For example, we
have

Theorem.
Assume f ∈ L1(R3) and let u = G ∗ f . 27 Then ∆u = f weakly.

Proof: Using the approximation Kε of G defined in lecture 2, we can write28∫
(G ∗ f)∆φ = lim

ε→0

∫
(Kε ∗ f)∆φ = lim

ε→0

∫
∆(Kε ∗ f)φ

= lim
ε→0

∫
[(∆Kε) ∗ f ]φ =

∫
fφ ,

where we have used that ∆Kε is a mollifier.

Note how the problems which we had to deal with when we used point-wise
definitions of derivatives for ∆u seemingly disappeared. In reality, the problems
about the regularity of u are still there, but the point is that we need not to

26If we think about it, such approach makes a lot of sense from the point of view of measur-
ing physical quantities such as u (the gravitational potential) and f (the density of matter): in
practice, we can never measure u or f at a point. Any measuring device really measures some
kind of average of the measured quantity around the point where we are making the measure-
ment. So instead of measuring u(x), in reality we measure something like

∫
u(x− y)φ(y)dy,

where
∫
φ = 1. The support of the function φ becomes smaller as the measurement becomes

more accurate, but it is never zero. In this picture the test function φ represent some kind of
measuring device.

27We have seen in the beginning of lecture 3 that G ∗ f is well defined, although not point-
wise, in general.

28Exercise: justify this precisely using standard Lebesgue integration theorems.
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answer them and still can proceed. We simply give the equation ∆u = f a new
meaning.
One issue we have to deal with when we weaken the definition of what an
equation says is the issue of uniqueness. We can imagine that we could go too
far with the weakening of the definitions, and that for the weak version of the
equation some unexpected solutions will appear. However, in the example above
this does not happen, as we can see from the following:

Theorem.
If u1, u2 and f are locally integrable in R3, and the equations ∆u1 = f and
∆u2 = f are satisfied weakly, then h = u2 − u1 is a smooth harmonic function.

Proof: Check that u2 − u1 is weakly harmonic and apply Weyl’s lemma from
the previous lecture.

We see than the notion of the weak solution does not bring any new non-
uniqueness. The non-uniqueness is the same as in the case when all quantities
are considered smooth and the equation is satisfied point-wise. It is of course
clear that the equation ∆u = f can determine u at best only up to a smooth
harmonic function. To get uniqueness, we have to impose an additional restric-
tion on u to eliminate the harmonic function. For example, in the case when
f is compactly supported it is natural to require that u(x) → 0 as x → ∞.29

With this or another similar condition at ∞, the equation ∆u = f determines
u uniquely.

The mean value property of harmonic functions.

We will now continue our study of harmonic functions by proving the following
classical result30: If u is harmonic in the ball Bx,R = {y ∈ R3, |y−x| < R} and
continuous in the closure of the ball, then

u(x) =
1

|∂Bx,R|

∫
∂Bx,R

u(y) dy . (39)

Here we denote by ∂Bx,R the boundary of the ball of radius R centered at x
and |∂Bx,R| denotes the area of the boundary.

Another form of the mean value property is

u(x) =
1

|Bx,R|

∫
Bx,R

u(y) dy , (40)

where this time we take average over the solid ball Bx,R. As an exercise, you
can show that (39) for all radii R ∈ (0, R0) implies (40) for all radii R ∈ (0, R0)
and vice versa. 31

29Recall that we are R3.
30going back to Gauss
31Hint: for the first implication, integrate in R; for the second, differentiate in R.
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One way to verify these formulae is to prove them for the special case u(x) =
G(x−a) by direct calculation and then use the fact that every harmonic function
is in some sense a linear combination of function of the form x→ G(x−a). For
the special case of x→ G(x− a), we have to verify

1

|∂Bx,R|

∫
∂Bx,R

G(y − a) dy = G(x− a) . (41)

However, this is exactly the statement we discussed in lecture 1: the gravita-
tional potential at point a of a homogeneous shell of unit mass and radius R
centered at x is exactly the same as the gravitational potential at a of a unit
mass located at x. Thus our statement is proved.
Another way to do the proof is for example as follows. Let us assume without
loss of generality that x = 0. Let f1 and f2 be two radial functions (i. e.
f1 = f1(|x|), f2 = f2(|x|) supported in the ball of radius R, with

∫
f1 =

∫
f2 = 1.

From lecture 1 we know that G ∗ f1 = G ∗ f2 outside the support of f1 and f2.
This means that v = G ∗ f1 −G ∗ f2 is compactly supported in BR. Hence we
have ∫

u(f1 − f2) =
∫
u∆v =

∫
∆u v = 0 . (42)

We can now choose functions f1 = f1ε and f2 = f2ε so that
∫
u f1ε → u(x) and∫

u f2ε → 1
|∂Bx,R|

∫
∂Bx,R

u as ε→ 0. 32

32Exercise: do this in detail.
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Lecture 6, 9/20/2010

Today we will talk about the maximum principle, strong maximum principle,
and the Harnack inequality for harmonic functions. These properties are, in
increasing order of “depth”, important hallmarks of the behavior of harmonic
functions, and are in fact shared by solutions of much more general second
order scalar elliptic and parabolic equations. With the exception of some easy
alternative proofs of the maximum principle, at this stage our proofs will be
based on the mean-value property of the harmonic functions. Such proofs are
not easily adapted to more general classes of equations, for which different
approaches have to be found. Nevertheless, it is useful to see what can be
proved by elementary methods, before starting to use some of the more advanced
techniques.
In what follows we denote by Ω a bounded domain (= connected open set) in
R3.

A simple consequence of the mean value property is the following:

Lemma.
Assume that u is harmonic in a ball Bx,R. If u(x) = supBx,R

u, then u is constant
in Bx,R.

Proof: We know that u(x) = 1
|Bx,R′ |

∫
Bx,R′

u for every R′ < R. Now it is enough

to note that if an averaged quantity is never above its average, it has to be equal
to the average.

Corollary: (The strong maximum principle)
If u : Ω→ R is harmonic and u(x) = supΩ u for some x ∈ Ω, then u is constant
in Ω.

Proof: By the lemma above, u = u(x) in any ballBx,R ⊂ Ω. Take the maximalR
with this property. Now we can replace x by x′ ∈ Bx,R and repeat the argument.
We can get a still larger set where u = u(x). Since Ω is connected, it is easy to
see that the property u = u(x) will “propagate” to all Ω. (To do this argument
in a more formal fashion, you can check that the set {y ∈ Ω, u(y) = u(x)}
is both closed and open in Ω and hence has to coincide with Ω, due to the
assumption that Ω is connected.) 33

33If one uses the fact that the harmonic functions are analytic, one can see that one has the
following stronger statement:
If u : Ω → R is harmonic and for some ball Bx,R ⊂ Ω we have supBx,R

u = u(x), then u is

constant in Ω.
For the proof we only have to note that u is constant in Bx,R by the lemma above and use
analyticity.
We see from the proof that the validity of the statement is a results of two effects: the strong
maximum principle and analyticity. As we mentioned, the strong maximum principle general-
izes to quite general classes (scalar, second order) equations. The generalization of analyticity
in this context is known as “unique continuation”. It does hold for quite general equations,
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Alternative proofs of the maximum principle.

By the maximum principle we usually mean the statements that a harmonic
function u : Ω → R cannot attain its strict maximum over Ω inside Ω. If u is
continuous up to the boundary of Ω, this means that we cannot have u(x) >
sup∂Ω u for some x ∈ Ω. This statement can be proved quite easily in a number
of ways, without using the mean-value property.

We will illustrate this by two different proofs.34

Proof 1: This proof is based on the simple observation that at an interior point
of a local maximum of u the second derivatives of u must be negative. We did
not say “strictly negative”, what we really meant is “not above zero”. This
looks close to having a contradiction with the equation ∆u = 0, but it is still
not a contradiction. However, since the maximum over Ω is strictly bigger
than the maximum over ∂Ω, one has some room to perturb the situation to
a real contradiction: we note that for a sufficiently small ε > 0 the function
uε(y) = u(y)+ ε|y|2 still attains its maximum at an interior point of Ω. We use
the same argument with the second derivatives, and note that ∆uε > 0 (strict
inequality!), so this time we do get a contradiction. This proof can be used for
quite general equations, assuming we have sufficiently regular coefficients to be
able to work with the point-wise values of the second derivatives.

Proof 2: This proof is based on a very important observation, due to Dirichlet
or perhaps Gauss, that a harmonic function minimizes u the integral

∫
Ω
|∇u|2

among all (sufficiently regular) functions having the same boundary value.35

(We assume that all functions are sufficiently regular up to the boundary.) The
proof is quite easy: Let u be harmonic in Ω and smooth up to the boundary,
and v be smooth up to the boundary, with v|∂Ω = 0. Then, trivially∫

Ω

|∇(u+ v)|2 =

∫
Ω

|∇u|2 + 2∇u∇v + |∇v|2 . (43)

The main point now is that the cross term vanishes, as can be seen from inte-
gration by parts: ∫

Ω

2∇u∇v =

∫
Ω

−2(∆u)v = 0 . (44)

Therefore we have ∫
Ω

|∇(u+ v)|2 =

∫
Ω

|∇u|2 +
∫
Ω

|∇v|2 (45)

but not quite as general as the strong maximum principle. For example, for equations of the
form aij(x)uxixj = 0 in dimensions higher than 2 one needs that the coefficients aij(x) are
Lispchitz continuous.

34Neither of these proofs can be easily adapted to give the strong maximum principle, but
they are still quite instructive.

35We will be exploring some of the far-reaching implication of this observation in some detail
later.
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and the claim follows.

Now the maximum principle can be seen easily: if u has a peak inside Ω, it
cannot be minimizing, as we could cut off the peak and save the energy. Note
that this argument does not require much regularity. It can work well in more
general situation, if the equation satisfies an analogue of the Dirichlet principle.

The Harnack inequality
We have seen that if u is harmonic and u(x) = supΩ u for some x ∈ Ω, then u
must be constant. In some sense, the Harnack inequality addresses the question
what happens if we slightly relax the assumption u(x) = supΩ u to u(x) being
close to supΩ u. Will then u(x) be close to supΩ u, at least on a large part of Ω?
In other words, we are asking if the behavior described by the strong maximum
principle is in some sense stable. As we will see, the answer is positive.

The Harnack inequality is traditionally defined in terms of non-negative func-
tions. To relate this formulation to the maximum principle, we should look at
M − u, where M = supΩ u.

Harnack Inequality
For each compact subset K ⊂ Ω there exists a constant C = C(K,Ω) such that
for every non-negative harmonic function u in Ω we have

sup
K
u ≤ C inf

K
u . (46)

Proof: Assuming the statement fails, we can obtain a sequence of harmonic
functions un ≥ 0 in Ω, and two sequences of points xn, yn ∈ K such that:

• un ≤ 1 in K, and un(yn) = 1 ,

• un(xn)→ 0 ,

• xn → x ∈ K, yn → y ∈ K .

Let us now consider an arbitrary point a ∈ K. Choose r so that the closure of
the ball Ba,r is contained in Ω. We have

1

|Ba,r|

∫
Ba,r

un = u(a) ≤ 1 . (47)

By estimate (33) we know that un together with their derivatives up to any
given order are bounded point-wise in Ba,r/2. The bounds may possibly depend
on a, but since K is compact, we can cover it by finitely many balls Ba,r/2 and
get estimates which are uniform inK. In other words, the functions un, together
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with their derivatives up to a given order are bounded in a neighborhood of O
of K. Note that we can assume without loss of generality that O is connected.36

Since we have the uniform bounds on the derivatives up to any given order in
O, we can use the Arzela-Ascoli theorem to choose a suitable subsequence of
the sequence un, n = 1, 2, . . . which converges uniformly with its derivatives
up to a given order to a function u. This subsequence will still be denoted as
un, n = 1, 2, . . . . The function u is harmonic in O, non-negative, with u(x) = 0
and u(y) = 1. This contradicts the strong maximum principle, and the proof is
finished. 37

36Exercise: verify this point.
37Many steps of the proof above work for more general equations. The main difficulty we

have to deal with then is to obtain an estimate in the direction of (47). Note that in this
estimate we obtain information about the behavior of un in a neighborhood of K from its
behavior only on K, and the assumption un ≥ 0.
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Lecture 7/22/2010
Today we start talking about boundary value problems. Historically, these be-
came important in connection with electrostatics.38 The basic objects in elec-
trostatics are electric charges. They satisfy Coulomb’s law, force = −kqQ/r2,
which gives the force between charges q and Q at distance r, where k is a con-
stant depending on the choice of units. We can introduce the electric potential
u, similar to the gravitational potential, in that the force on point-charge q lo-
cated at x is given by −q∇u(x). The difference with gravity is that the charge
can have both positive and negative sign, and that charges of the same sign repel
each other. Therefore we have to change some signs in some formulae we used
for gravity. There is more than one way to do it, but the convention is that the
potential of a positive charge is positive. So the potential of a point-charge Q
located at the origin is kQ/|x|, which is of the opposite sign than our convention
for the gravitational potential. These issues with signs are not important for
the PDE analysis, but it is good to be aware of them when looking at textbooks
of the electromagnetism. 39

Let us now consider an example of a situation where a boundary value problem
naturally arises. Consider a conducting ball B1 centered at a1 with charge Q1.
The electrical potential outside B1 is u1 = kQ1/|x − a1|. Inside the ball the
potential u1 is constant, with the constant determined by the requirement that
u1 is continuous across the boundary of the ball. Imagine we now move into this
field from very far away another charged ball B2 with charge Q2, and position
it so that its center is at a2 (sufficiently far away from a1 so that the balls do
not touch). If B1 were absent, the electric potential of the ball B2 would be be
u2 = kQ2/|x− a2| outside of the ball and constant inside B2.
What is the electric potential when both balls are present? If we were dealing
with gravity and B1, B2 would be solid bodies, the resulting potential would be
u = u1 + u2. The same would be the case if the charges in the balls were each
“attached” to certain points so that they could not move. However, charges in
conductors can move. Ideal conductors are characterized by the property that
the electric potential has to be constant in it. Therefore the resulting potential
will not be u = u1 + u2, even in the case when Q2 = 0.40 So how do we
determine the resulting potential? We can try to figure out what is going on
with the charges and how they should distribute themselves in the balls and get
some equations for the distributions, but it is easier to work the directly with
the potentials. The distribution of charges can be obtained once the potential
is known.
The potential u of the two balls has to satisfy the following conditions:

38In Newtonian gravity the boundary value problems are not really as important, since there
is no known way of manipulating the gravitational potential in the same way the electrical
potential can be manipulated by introducing conductors or dielectrics into the electrical field.

39We also note that there are several systems of units which are used, so the value of k can
be different in different textbooks. You can check
http://en.wikipedia.org/wiki/Centimetre gram second system of units for more details.

40As an exercise, try to answer the following question: if Q2 = 0 and Q1 ̸= 0, i. e. we move
an uncharged ball into the field of a charged ball, will the balls repel each other, attract one
another, or will there be no force between them?
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• u has to be constant in B1, say, u = c1 in B1,

• u has to be constant in B2, say, u = c2 in B2,

• u has to be continuous across the boundaries of the balls,

• u(x)→ 0 as x→∞,

• u has to be harmonic outside the balls, i. e. ∆u = 0 in R3 \ (B1 ∪B2),

• the total charge of B1 is Q1. This translates to
∫
∂B1

∂u
∂ν = −kQ1, where

∂u
∂ν is the derivative in the direction of outer unit normal to B1.

• the total charge of B2 is Q2, so
∫
∂B2

∂u
∂ν = −kQ2 similarly to the previous

point.

The problems of finding a function u satisfying the above conditions is an exam-
ple of a boundary value problem. We seek a function satisfying some equation,
and we know some conditions at the boundaries of the domains where the equa-
tion is satisfied. Our task is to find the function based on these conditions.

As the first example of a boundary-value problem we will try to solve, we choose
a simpler example than the above. Roughly speaking, we will deal with a
situation that we have some given distribution charges which cannot move,
and our goal is to determine its electric potential in a presence of a conductor
connected to ∞. This leads to the following problem. Consider an open set
Ω ⊂ R3. Let f : Ω → R be a given function (“distribution of charge”). The
function is considered as fixed. We wish to find a function u (corresponding to
the electric potential), such that

∆u = f in Ω, and (48)

u = 0 at the boundary ∂Ω . (49)

Note that we have reverted to our old notation, and do not write −∆u = f as
one perhaps should in the context of electrostatics.

We will first solve (48)–(49) in a domain for which the problem is quite easy, the
half-space Ω = R3

+ = {x ∈ R3, x3 > 0}. In this case we can write the solutions

explicitly: extend f to a function f̃ : R3 → R which is odd in x3, and for x ∈ Ω
set u(x) = G ∗ f̃ . We know that u satisfies ∆u = f in Ω and it is easy to see
that u is also odd in x3, and hence u(x1, x2, 0) = 0.

We can think about this solution in the following way: to a charge at y ∈ Ω
we associate a fictitious charge of the opposite sing at y∗ = (y1, y2,−y3). The
potential of those two charges is a function of x. As we are using our old sign
convention, it is natural to take the function as

GΩ(x, y) = −
1

4π|x− y|
+

1

4π|x− y∗|
. (50)
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Modulo the right sign conventions, this is the electric potential we would get
by placing a single charge at y in the “empty” domain Ω whose boundary is
made out of a conductor. The function GΩ is known as Green’s function of the
domain Ω, and plays the same role which the kernel −1/(4π|x− y|) has in the
full space: it inverts the Laplace operator ∆ for the zero boundary conditions.41

Now the solution u can be written as

u(x) =

∫
Ω

GΩ(x, y)f(y) dy . (51)

41For Ω = R3 we also have a “boundary condition” at ∞: we need to assume u(x) → 0
(pehaps in some weak sense), so that our solution is unique.
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Lecture 8, 9/24/2010

We first have a look at our notation. So far we have mostly used G for the
function

G(x) = − 1

4π|x|
. (52)

We have also used Kε for a certain smooth approximation of G, see (23). We
have already seen that it makes sense to write G for Green’d function of R3. In
that case can write

G(x, y) = − 1

4π|x− y|
. (53)

As Kε(x) converges to G(x) as ε→ 0, it also makes sense to write

K0 = − 1

4π|x|
, (54)

so that we have, for example,

G(x, y) = K0(x− y) . (55)

This looks better than

G(x, y) = G(x− y) (56)

which might not be considered as good notation.
We will use GΩ to denote Green’s function of the domain Ω, although later we
will often not insist on writing the index Ω, if the context is clear.
Although the above notation is slightly ambiguous, you will see that in practice
it does not lead to confusion.

We will now continue with exploring simple properties of Green’s functions,
assuming the functions exist. Based on what we have covered so far, their exis-
tence is, strictly speaking, not proven, except in cases where we have constructed
them explicitly. The full existence proof will be given later.
You will also see later that there are approaches to PDEs which do not emphasize
Green’s functions.

Recall that in the context of Green’s function GΩ of the Laplacian in Ω, we can
think about the following analogy: Ω represents “empty space” surrounded by
a conductor, which is connected to∞, so that the value of the electric potential
on ∂Ω is fixed to 0. We put a unit charge42 at location y ∈ Ω and the electric
potential of that charge in Ω, is the function x→ GΩ(x, y). In comparison with
the situation when no conductor is present, the potential in Ω will be modified
by charges in the boundary ∂Ω which will appear due to the presence of the
charge at y. Let us denote the potential produced by those charges by H(y).

42Be aware of our sign conventions.
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Clearly x → H(y)(x) is a harmonic function in Ω (as the charges do not enter
Ω), and we expect

GΩ(x, y) = K0(x− y) +H(y)(x) , G(x, y) = 0 for x ∈ ∂Ω, y ∈ Ω. (57)

Strictly speaking, one should be more precise in what sense the “boundary
condition” GΩ(x, y) = 0 is attained. For now we will require that x→ GΩ(x, y)
is continuous in the closure of Ω except at y, and - as above - that GΩ(x, y) = 0
when x ∈ ∂Ω and y ∈ Ω.
Note that we have not proved the existence of H(y), at this point we only gave
a heuristic argument for its existence. In fact, if the boundary of Ω is suffi-
ciently irregular, the issue in what sense the boundary condition GΩ(x, y) = 0
should be satisfied can become subtle. However, under relatively mild regularity
assumptions on ∂Ω the boundary condition is satisfied in the point-wise sense.
The last condition determines the boundary condition for H(y) and from the
maximum principle we see the following:

Lemma.
GΩ is uniquely determined by the above requirements.

Proof: Apply the maximum principle as indicated above.

The next statement is also a direct consequence of the definition, at least at the
formal level. Assume that f is a “sufficiently regular” function in Ω and let

u(x) =

∫
Ω

GΩ(x, y)f(y) dy . (58)

Lemma: In the notation above, ∆u = f in Ω. Under relatively mild regularity
assumptions on ∂Ω and f the function u is also continuous up to the boundary
∂Ω and u(x) = 0 for x ∈ ∂Ω.
“Proof”: Let us extend f by 0 to R3. We can write u(x) = (K0 ∗ f)(x) +∫
Ω
H(y)(x)f(y) dy. We know that ∆(K0 ∗ f) = f in Ω. The expression∫

Ω

H(y)(x)f(y) dy (59)

can be thought of as a linear combination of functions H(y), each of which is
harmonic in Ω, and therefore it should also be harmonic in Ω. Finally, since
G(x, y) = 0 for each x ∈ ∂Ω and each y ∈ Ω, we clearly have u(x) = 0 for
x ∈ ∂Ω.
As you may have noticed, the above argument is not really a rigorous proof. It
shows why the statements should be true, but to make it into a real proof one
would need to fill in some technical details. For example, we have to justify that
the integral (59) is well-defined and that we can differentiate it in x. Another
problem is that while it is clear that

∫
Ω
GΩ(x, y)f(y) dy = 0 when x ∈ ∂Ω, our

statement claims something stronger: that the same expression is small when x
is close to ∂Ω. That may not look so obvious at first, as GΩ(x, y) is unbounded
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as a function of y near x. It takes some work to clarify these and other issues.
It is not hard, but for now we prefer to proceed with further calculations.

Lemma:
Green’s function GΩ is symmetric in x, y. In other words,

GΩ(x, y) = GΩ(y, x) . (60)

This statement is perhaps more surprising that the previous two lemmas. The
definition of GΩ is not transparently symmetric. The reason why GΩ is sym-
metric is, roughly speaking, that the Laplace operator (augmented with the
zero boundary conditions) is symmetric, and GΩ is the inverse of ∆ (with zero
boundary conditions). The inverse of a symmetric operator is symmetric and
there are many ways to see it. For example, one can use the following argument.
Assume A is a self-adjoint symmetric operator with respect to a given scalar
product x, y → (x, y), which means that (Ax, y) = (x,Ay). Now one can replace
x with A−1x and y with A−1y and we see that A−1 is also symmetric.

Our proof that GΩ(x, y=GΩ(y, x) is similar. The relevant symmetry of the
Laplace operator is

∫
Ω
(∆v1)v2 dx =

∫
Ω
v1∆v2 dx for all (sufficiently regular)

functions v1, v2 vanishing at ∂Ω.
Let us define Gε,Ω by

Gε,Ω(x, y) = Kε(x− y) +H(y)(x) , (61)

where H(y) has the same meaning as above. Clearly Gε,Ω(x, y) = GΩ(x, y) when
|x− y| ≥ ε.
Let us now prove the symmetry ofGΩ. Take y1, y2 in Ω, y1 ̸= y2 . For sufficiently
small ε we have∫

Ω

∆xGε,Ω(x, y1) Gε,Ω(x, y2) dx =

∫
Ω

Gε,Ω(x, y1)∆xGε,Ω(x, y2) dx (62)

by the symmetry of ∆ with the zero boundary-condition. We note that ∆xGε,Ω(x, y1)
is the same as ∆x(Kε(x − y1)) and can be considered as a mollifier located at
y1. Hence the left-hand side of (62) converges to GΩ(y1, y2) as ε→ 0. Similarly,
the right-hand side converges to GΩ(y2, y1) and the symmetry of GΩ follows.

Green’s functions can be used to obtain a better representation formula for
harmonic functions than (32). We recall the following notation. For x ∈ ∂Ω

we denote by ν(x) the outer unit normal to Ω at x. (We assume that ∂Ω is
sufficiently regular.) For a function u defined in the closure of Ω, we denote by

∂u

∂ν
(63)

the normal derivative of u, i.e. the derivative of u in the direction of ν.43

43As an exercise, formulate precisely how ∂u
∂ν

is defined and what regularity one needs for
u to be able to define it.
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Lemma:
Let Ω be bounded and sufficiently regular. Let h : Ω → R be harmonic with a
sufficiently regular extension to the closure of Ω. Then, for each x ∈ Ω we have

h(x) =

∫
∂Ω

∂GΩ(y, x)

∂νy
h(y) dy . (64)

Proof:

h(x) = lim
ε→0

∫
Ω

∆yGε,Ω(y, x)h(y) dy

=

∫
∂Ω

∂GΩ(y, x)

∂νy
h(y) dy + lim

ε→0

∫
∂Ω

∇yGε,Ω(y, x)∇h(y) dy .

Now the first integral in the last line coincides with the integral in (64), while
the second integral transparently vanishes after one more integration by parts.

The function ∂GΩ(y,x)
∂νy

is called the Poisson kernel and is often denoted by

PΩ(x, y), or simply P (x, y), if the dependence on Ω does not need to be empha-
sized. Rewriting the above formula with this notation, we have

h(x) =

∫
∂Ω

PΩ(x, y)h(y) dy . (65)

It should be mentioned again that the above calculations are formal. We have
not proved at this stage that the normal derivatives of GΩ are well-defined, for
example. (Such questions have been studied in some detail, of course.) When
GΩ is known explicitly, we can verify such details directly. For example, last
time we calculated GΩ for the half-space. We can use it to calculate the Poisson
kernel P (x, y) for the half-space. We get

P (x, y) =
1

2π

x3
|x− y|3

. (66)

When we derived formula (65), we assumed that h was harmonic. We can now
look at it slightly differently: for any (integrable) function h at the boundary
∂Ω, the formula gives a harmonic extension of h into Ω. We will look at this in
more detail next time.
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Lecture 9, 9/27/2010
Let us look in more detail at the Poisson kernel

P (x, y) =
1

2π

x3
|x− y|3

(67)

we introduced last time.
Recall that we thought about it as a function on R3

+ × ∂R3
+, with x ∈ R3

+ and
y ∈ ∂R3

+. We will identify ∂R3
+ with R2 in the obvious way: y = (y1, y2, 0) is

identified with (y1, y2), which may also be denoted by y.
Let us first look at P (x, y) as a function of x for a fixed y. To understand this
function, we can assume y = 0, as the function P (x, y) is invariant with respect
to shifts along ∂R3

+: if b ∈ ∂R3
+, then P (x− b, y − b) = P (x, y). We have

P (x, 0) =
1

2π

x3
|x|3

. (68)

We note that this is exactly 2 ∂
∂x3

K0. Sometimes this is called the potential of a
dipole (located at the origin and oriented along the x3-axis). A dipole potential
can be thought of as the potential of two charges of opposite sign which are
close to each other. If we locate a unit charge44 at (0, 0, h) and an opposite
charge at (0, 0,−h), the potential will be

x→ K0(x1, x2, x3 − h)−K0(x1, x2, x3 + h) . (69)

If we want a non-zero limit for this expression as h → 0, we have to make the
magnitude of the charges proportional to 1/h, otherwise the charges will cancel
in the limit h→ 0. So we should look at

K0(x1, x2, x3 − h)−K0(x1, x2, x3 + h)

h
, (70)

which in the limit h→ 0 gives the expression −2 ∂
∂x3

K0. (We get the same sign
as above if we take charges of the opposite sign.) If you go carefully through
our derivation of P (x, y) through Green’s function of R3

+, you will see that all
of the above is in some sense already present its definition.
A dipole has an orientation - it is given by the line on which the two opposite
charges lie. In the case of (68) the orientation is along the x3 axis, so we can
say that the dipole is perpendicular to the boundary ∂R3

+. For x→ P (x, y) the
dipole is located at y.
As x→ ∂R3

+, then P (x, y) approaches 0 except at the point y, where there is a
singularity. This of course makes a lot of sense - the potential of a dipole should
of course vanish on its plane of symmetry.

Now we look at P (x, y) as a function of y for a fixed x. The function y → P (x, y)
can be thought of as a function on R2. To see how it looks, we can only consider

44Keep in mind our sing conventions.
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x = (0, 0, x3), because of the invariance under shifts parallel to ∂R3
+. Let us set

x3 = ε > 0 and look at

y → ϕε(y) = P ((0, 0, ε), y) . (71)

We have

ϕε(y) =
1

2π

ε

(y21 + y22 + ε2)3/2
=

1

ε2
1

2π

1

(|yε |2 + 1)3/2
=

1

ε2
ϕ(
y

ε
) , (72)

where

ϕ(y) =
1

2π

1

(y21 + y22 + 1)3/2
. (73)

Note that this is a nice radially symmetric smooth function in R2, which is
integrable, as the decay for y →∞ is ∼ |y|−3.
As an exercise, you can check that∫

R2

ϕ(y) dy = 1 .45 (74)

So we see that ϕε can be thought of as mollifiers generated by ϕ. The mollifiers
we have encountered before were compactly supported, but for many purposes
that condition is not essential. What is important for us at the moment is that
ϕ ≥ 0 and

∫
ϕ = 1. With those conditions it is clear that (ϕε ∗ f)(y) → f(y)

for each y ∈ R2 as ε → 0 for any bounded continuous function f : R2 → R. In
fact, the convergence will be uniform if f is uniformly continuous, and will be
uniform on compact subsets of R2 for any bounded continuous f . As an exercise,
you should verify these statements in detail. It is easy and it is important to
understand how it works.

Let us not consider a bounded, continuous g : R2 → R and let us set

u(x) =

∫
R2

P (x, y)g(y) dy. (75)

Clearly u is harmonic in R3
+ and we wish to investigate it behavior near ∂R3

+.
Let us write x = (x′, x3), with x

′ = (x1, x2). We will also write x′ for (x1, x2, 0).
We note that, using the notation with ϕ introduced above, we can write

u(x) = u(x′, x3) =

∫
R2

P (x, y)g(y) dy =

∫
R2

P (x−x′, y−x′)g(y) dy = (ϕx3∗g)(x′) ,

(76)
where ∗ denotes convolution in R2. Formula (76) together with the above discus-
sion make it clear that the functions x′ → u(x′, x3) converge locally uniformly
to g as x3 → 0. Another way of stating this is:

45Hint: use polar coordinates. Also, the integral should be equal to one from the def-

inition of P (x, y). We have
∫
∂Ω P (x, y) dy =

∫
∂Ω

∂GΩ(x,y)
∂νy

dy =
∫
∂Ω

∂Gε,Ω(x,y)

∂νy
dy =∫

Ω ∆yGε,Ω(x, y) dy = 1. This is a complete proof for bounded domains, but for unbounded
domains we have to verify that we have the right contribution “from infinity”

28



Theorem:
With the assumptions above, the function u defined by the Poisson integral (75)
is continuous up to the boundary46 and u = g at ∂R3

+.

A suitable form of convergence ϕε ∗ g → g as ε → 0 holds for more general
classes of functions and the theorem can be generalized to those classes, if we
replace the continuity up to the boundary of u by suitable other definitions.

We note that if g is bounded, then u is also bounded, with inf g ≤ u ≤ sup g.

Is u determined uniquely by the boundary conditions and the equation? If u1, u2
are two harmonic functions continuous up to the boundary and u1 = u2 ate the
boundary, then v = u2−u1 is a harmonic function, continuous up to boundary,
which vanishes at the boundary. In general, such function do not have to vanish,
as the example v = x3 shows, However, one can show the following

Liouville Theorem for half-space:
Let v be harmonic in R3

+, continuous up to the boundary47, with v = 0 at the
boundary. Assume that v(x)/|x| → 0 as x→∞, x ∈ R3

+. Then v = 0 in R3
+.

The proof of the theorem can be done as a non-trivial exercise on some of the
material which we have covered so far.48 I recommend that you try to think
about it, to appreciate the theorem. The proof is not straightforward if you
have not seen something similar before.

The Poisson formula can be use to prove a number of other results. For example,
we note that for g ∈ L∞(R2) it gives a bounded harmonic function u in R3

+,
with u(x′, x3)→ g(x′) as x3 → 0 for almost every x′ ∈ R2. Does every bounded
harmonic function in ∂R3

+ arise this way? As an exercise, you can try to show
that this is indeed the case49.

The Poisson extension g → u plays an important role in Harmonic Analysis,
as it provides a very good way to have all the various approximations ϕε ∗ g
encoded in a single and elegant object - the harmonic function u.

46We should really say that u can be continuously extended up to the boundary, as the
formula transparently defines it only in the interior if R3

+.
47This condition can be relaxed, if necessary.
48I will omit it at this point, as it might be - with some hints - good material for our first

homework assignment.
49This needs some knowledge of things from the theory of Lebesgue spaces which are simple

once you know them, but may be not so easy to come up with if you work from scratch.
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Lecture 10, 9/29/2010
Last time we were looking at boundary value problems in Ω = R3

+, and we have
formulae which define the solution of

∆u = f in Ω ,
u|∂Ω = g .

}
(77)

To get uniqueness we also need to impose some decay condition for large x.
For example, we can search for a solution in the class of bounded u, or, more
generally, u with some bounded averages over balls at large distances. The right
condition can be determined by remembering what the obstacle to uniqueness is
– smooth harmonic functions vanishing at ∂Ω, such as u(x) = x3. Our condition
must rule out such functions.
We recall that we can write

u(x) =

∫
∂Ω

GΩ(x, y)f(y) dy +

∫
∂Ω

PΩ(x, y)g(y) dy . (78)

We will now briefly discuss the question in what sense to the functions defined
by (78) satisfy the equations (77). The situation with the equation ∆u = f
inside Ω is the same as in R3, which we discussed in lecture 5. If we want u to
be twice continuously differentiable (say), the assumption that f be continuous
is not sufficient. A good class of functions to work with are for example the
Hölder continuous functions. If we work with more general functions f , we can
again look at the weak form of the equation:∫

Ω

u∆φ =

∫
Ω

fφ (79)

for each smooth, compactly supported φ : Ω→ R, exactly as in lecture 5.

What about the boundary condition? We can look at the point-wise definitions
first. A safe point-wise definition is that u be continuous up to the boundary
and that u|∂Ω = g point-wise, so clearly g must be continuous, if we wish to
use this definition. We have seen in the last lecture that if g is continuous, then
the second integral in (78) defines a function u2 continuous up to the boundary,
with u2|∂Ω = g. So we need also that the first integral define a function u1
continuous up to the boundary, with u1|∂Ω = 0. The situation here is quite
more favorable for the point-wise interpretations, as we do not have to take
derivatives. You can prove as an exercise that, for example, when f is bounded
and compactly supported, then u1 satisfies the conditions above. In fact, any
compactly supported f ∈ Lp with p > 3/2 is good. 50 For more singular f
the point-wise approach is no longer adequate. Can the notion of the weak
solution be generalized to the boundary value problem, including the boundary
condition?

To incorporate the boundary conditions into the definition of weak solutions,
we have to work with test functions with support extending up to the boundary.

50This is still quite elementary - one only needs to use Hölder inequality.
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The right weak formulation is obtained again by integrating by parts, this time
with non-vanishing boundary terms. If we take a function φ : Ω → R which is
smooth up to the boundary and compactly supported in the closure Ω of Ω, we
obtain from (77) by formal integration by parts∫

Ω

u∆φ =

∫
Ω

fφ+

∫
∂Ω

(
∂φ

∂ν
u− ∂u

∂ν
φ

)
. (80)

If we assume that u = g at ∂Ω and φ = 0 at ∂Ω, we have∫
Ω

u∆φ =

∫
Ω

fφ+

∫
∂Ω

∂φ

∂ν
g (81)

for each smooth φ compactly supported in the closure of Ω, and vanishing at ∂Ω.
It is important that the normal derivative ∂φ

∂ν at ∂Ω does not have to vanish.
We can now take this as a definition of a weak solution of (77). We start with
u, f, g for which the integrals in (81) are well-defined, e. g. u, f locally integrable
up to the boundary in Ω 51 and g locally integrable in ∂Ω.

Definition
With u, f, g as above, we say that u is a (very) weak solution of (77) if (81)
is satisfied for each smooth φ compactly supported in the closure of Ω, and
vanishing at ∂Ω.

For now we can say just “week solution” instead “very week solution”, but later
we will introduce another notion of week solution, and we will have to be more
careful with the terminology.

The definition above makes sense for any domain where the normal derivative
of smooth functions can be defined at the boundary. In particular, the normal
to the boundary has to exists, in some sense (which also can be weak). We will
use this definition only for “sufficiently regular” domains.52

One can now check that for Ω = R3
+, under fairly general assumptions, for-

mula (78) defines a weak solution, and – importantly – the weak solution is
unique.53 We will not go into the proofs right now, I just wanted to illustrate
one way in which one can bypass point-wise interpretations of functions also
for boundary-value problems. As is usually the case with weak solutions, veri-
fying that some function is a solution becomes easier with this definition, but
verifying uniqueness becomes harder.

Let us now turn to determining Green’s functions for some other domains. First,
we note that the same idea which works for R3

+ works also for perpendicular
intersections of half-spaces, such as {x2 > 0, x3 > 0} or the first octant {x1 >
0, x2 > 0, x3 > 0}. Let us illustrate the method on Ω = {x2 > 0, x3 > 0}. Let
T3 be the map (y1, y2, y3) → (y1, y2,−y3) and let T2 be the map (y1, y2, y3) →

51This means that u, f are integrable over any compact subset of the closure of Ω.
52Questions about what happens in domains with lower regularity lead very quickly to

advanced topics Geometric Measure Theory.
53Of course, one has to impose some conditions which rule out smooth harmonic functions.
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(y1,−y2, y3). Given a function f : Ω→ R, we can extend it to f̃ : R3 → R, with
f̃(Tjx) = −f̃(x), j = 2, 3. It is easy to see that the inversion of the laplacian

ũ = K0 ∗ f̃ in R3 has the same symmetries and hence vanishes on ∂Ω. Green’s
function can be re-constructed from this procedure. It is

GΩ(x, y) = −
1

4π

(
1

|x− y|
− 1

|x− y∗|
+

1

|x− y∗∗|
− 1

|x− y∗∗∗|

)
, (82)

with y∗ = T3 y, y
∗∗ = T2T3 y and y∗∗∗ = T2 y.

The case of the first octant is similar, with eight terms in the formula.

Let us now look at Green’s function of a ball BR of radius R. At first it is not
obvious that we can use the some similar trick as for the domains above, but
we can make the following observation: Take A,B ∈ (0,∞), a, b ∈ R3, consider
the potential

u(x) =
A

|x− a|
− B

|x− b|
, (83)

and consider the set Z = {x, u(x) = 0} where it vanishes. Note that for Z is
a plane for A = B, and for A ̸= B the set Z is bounded. We can write the
equation for Z as

A2|x− b|2 −B2|x− b|2 = 0 . (84)

which shows that for A ̸= B the set Z must be a sphere. We can calculate the
center of the sphere in terms of A, a,B, b. Then we can use the calculation for
constructing Green’s function for BR = {x , |x| < R} in the following way: for
y ∈ BR find y∗ and c so that the function

x→ − 1

4π|x− y|
+ c

1

4π|x− y∗|
(85)

vanishes at ∂BR. We get

y∗ =
R2

|y|2
y, c =

R

|y|
. (86)

Therefore we conclude that for Ω = BR the Green function is

G(x, y) = GΩ(x, y) = −
1

4π|x− y|
+
R

|y|
1

4π|x− y∗|
. (87)

Remarks:

1. We know that G(x, y) = G(y, x). The expression we obtained is not trans-
parently symmetric. As an exercise, you can try to write it in a way which
makes the symmetry transparent.

2. The map y → R2

|y|2 y which appears in this calculation is quite interesting in

itself. It is called the inversion of BR and it has the remarkable property that
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it is conformal: if two curves intersect at a certain angle, their images by the
inversion intersect at the same angle. In dimensions n ≥ 3 there are not many
such mappings. In fact, modulo compositions with the obvious conformal maps,
the inversion is the only “non-obvious” one. You can also check that it maps
balls to balls or half-spaces.

The local behavior of G near the boundary is similar to the case Ω = R3
+, as

for y close to ∂BR the inversion of y behaves almost as the reflection by the
tangent plane to the sphere at Ry/|y|. In fact, the derivative of the inversion at
y ∈ ∂BR is exactly the reflection by the plane tangent to the sphere at y - this
fact is useful to keep in mind when calculating the Poisson kernel by taking the
normal derivative of G at the boundary.

We can now calculate the Poisson kernel. For x ∈ BR and y ∈ ∂BR we have

P (x, y) =
∂G(x, y)

∂νy
=
yi
R

∂

∂yi
G(x, y) . (88)

Carrying out the differentiation might first look as an unpleasant calculation,
but it is simple if we use that yi

R
∂
∂yi

is just ∂
∂r with r = |y| and that at the

boundary of BR we have ∂y∗

∂r = −y.
The end result is

P (x, y) =
R2 − |x|2

4πR|x− y|3
. (89)

We can now analyze this function in a similar way as we analyzed the Poisson
kernel of the half-space. First we fix y ∈ ∂BR and note that x → P (x, y) is a
harmonic function in BR which vanishes at ∂BR with the exception of the point
y, where it has a singularity. The field generated by the singularity at y has a
dipole component and a point-charge component. This is easily seen by moving
the beginning of the coordinates to y and writing x = y + x̃. Then we have

P (x, y) =
R2 − |y + x̃|2

4πR|x̃|3
= − 2yx̃

4πR|x̃|3
− 1

4πR|x̃|
, (90)

and we can see the dipole potential − 2yx̃
4πR|x̃|3 and the point-charge potential

− 1
4πR|x̃| . The dipole potential is independent of the radius of the ball, and the

point-charge potential approaches 0 as R→∞, so that in the limit R→∞ we
get, in the x̃ coordinates, the Poisson kernel of the half-space, as we should.

We now fix x ∈ BR and look at the function y → P (x, y). This is a function on
the sphere. When x ̸= 0, it attains its maximum at the point x′ = x/R. We
can rotate the coordinates so that x = (0, 0, x3) and x

′ = (0, 0, R). Similarly to
the case of the half-space, we can describe the behavior of y → P (x, y) in terms
of the parameter ε = R− x3 and the function

ϕε(y) = P ((0, 0, R− ε), y) . (91)

We have
∫
∂Ω
ϕε = 1. This time we do not have to check it (unless we are wor-

ried about a mistake in the calculations), because we are in a compact domain
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and the definition of the Poisson kernel implies this property by integration by
parts, as we have seen in the previous lecture. As ε → 0, the functions ϕε
concentrate close to x′, and converge uniformly to zero on any compact subset
of the complement of {x′}.
As in the case of Ω = R3

+, we can see that for Ω = BR and any continuous
g : ∂Ω→ R, the potential

u(x) =

∫
∂Ω

P (x, y) g(y) dy (92)

defines a harmonic function in Ω which is continuous up the the boundary of Ω
(can be continuously extended to the closure of Ω) and agrees with g on ∂Ω.
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Lecture 11, 10/1/2010

So far we have only looked at our objects in dimension n = 3. We now check
what the situation is in other dimensions.
Newton’s law in n dimensions for the attraction of two point-masses m and M
separated by distance r is

force ∼ mM

rn−1
. (93)

Repeating our considerations from lecture 1, we can try to define the potential
u of mass M at a ∈ Rn by the requirement that −u(x) is the work needed to
“free” a particle of unit mass from the gravitational field produced by M , and
move it from position x to ∞. In dimensions n ≥ 3 it is easy to calculate that

u(x) = const.
−M
|x− a|n−2

, (94)

and one can say without any exaggeration that one can repeat everything we
did for n = 3 without any difficulties. 54

One can also approach things from the other end: postulate that the gravita-
tional potential satisfies ∆u = and that the potential of a point-mass is radial,
and calculate the force from there.55

There is one calculation one has to do - we need to evaluate the right constant
cn so that the convolution G ∗ f with G(x) = cn/|x|n−2 inverts the laplacian,
i. e.

∆(G ∗ f) = f. (95)

For this we only need to calculate
∫
∆K(x) dx where K is smooth and K = G

in Rn \B1. We have∫
B1

∆K(x) dx =

∫
∂B1

∂K

∂ν
=

∫
∂B1

− ∂

∂r

cn
rn−2

= cn(n− 2)|Sn−1| , (96)

where |Sn−1| denotes the volume of the (n− 1)-dimensional sphere

54While from the point of the Laplace equation the case n ≥ 4 is very similar to n = 3, the
motion of planets would be very different in these dimensions. One can calculate easily the
circular orbits of a planet around a star, and these are similar as for n = 3. However, when
we look at the stability of these circular orbits for n ≥ 4, we get a surprise. A typical small
perturbation of the motion (coming from an interaction with another planet, say) will result
in a catastrophic change of the orbit. It is a good exercise (although not in PDEs) to verify
this classical observation.

55It may look odd at first that in 1d the force is independent of distance. However, the
following example shows that it is natural: in the 3d space consider a uniform “surface dis-
tribution” of mass in the plane {x3 = 0}. As an exercise, you can show by direct integration
that the force with which a point-mass is attracted to the plane is independent of the distance
from the plane. In fact, the integral which comes up in this calculation is exactly the same
as the one we calculated when proving that

∫
∂Ω P (x, y) dy = 1 for the Poisson kernel of the

half-space in 3d. One can see the independence of the force on x3 from “dimensional analysis”,
without having to evaluate the integral.
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Sn−1 = {x ∈ Rn, |x| = 1}.

We see that

G(x) = − 1

(n− 2)|Sn−1| |x|n−2
. (97)

Formula (23) for general n ≥ 3 is

Kε(x) =
1

εn−2
K(

x

ε
) . (98)

The cases n = 2 and n = 1 are somewhat different. In those cases the integral
expressing the energy needed to move a point-mass from a gravitational field of
a star to spatial infinity is diverges: when n ≤ 2 we have∫ ∞

r0

dr

rn−1
= +∞ . (99)

Therefore the gravitational potential cannot be bounded at ∞.56

The fundamental solution G in 2d is usually taken as

G(x) =
1

2π
log |x| . (100)

The formula (98) can be modified to

Kε(x) = K(
x

ε
) + log ε (101)

where K is a smooth extension of 1
2π log |x| from R2 \B1 to R2.

For n = 1 we can again use (98), with K a smooth extension of |x|/2 from
R \ (−1,−1) to R.

The important thing to remember in dimension n = 2 is that the equation

∆u = f in R2 ,
u(x) → 0 as |x| → ∞ ,

(102)

is not always solvable even when f is smooth and compactly supported. The nec-
essary and sufficient condition for the solvability in this case is that

∫
R2 f = 0. 57

One way to see this is to use the following argument:
a) The solution of the problem is unique in the class of functions with sub-linear
growth at infinity, by the Liouville theorem.
b) The potential u = G ∗ f with the kernel (100) is such a solution.

56This can be interpreted as follows: in the 3d world, if one shoots an object straight up
from a planet at a sufficiently high speed, it will escape the gravity of the planet, and will not
return back to the surface. In the 2d world (or 1d world), the object will always fall back - it
can never escape the gravity of the planet.

57Exercise: what is the necessary and sufficient condition for n = 1 (when f is compactly
supported)?
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c) u→ 0 as |x| → ∞ if and only if
∫
R2 f = 0.

The following example gives a good illustration of the situation. The boundary-
value problem

∆u = f in BR ,
u = 0 at ∂BR ,

(103)

has a unique solution for each R > 0. It can be given for example by the Green’s
function (which one calculates in the same way as in R3).

u(x) =

∫
BR

GBR
(x, y)f(y) dy. (104)

If f is radially symmetric, u will also be radially symmetric, and outside of the
support of f it has to be of the form

u(x) = A log |x|+B , (105)

with A = (
∫
BR

f)/2π. Hence, denoting c =
∫
BR

f and using the boundary
condition at ∂BR, we see that in the radial case we have

u(x) =
c

2π
log(
|x|
R

) outside the support of f . (106)

We now see that for a fixed x and R → ∞ the value u(x) converges to −∞ or
+∞, depending of the sign of c, as R→∞.

The calculations of Green’s functions G(x, y) and the Poisson kernels P (x, y)
we did for n = 3 can be repeated for general dimension n without any difficulty.
For example, for the Poisson kernel we get:

P (x, y) =
2

|Sn−1|
xn

|x− y|n
for the half-space {xn > 0} (107)

and

P (x, y) =
R2 − |x|2

|Sn−1| R|x− y|n
for the ball {|x| < R}. (108)
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Lecture 12, 10/3/2010

Today we will have a look at another explicit solutions of the laplace equation -
harmonic polynomials. A polynomial p in Rn is harmonic if ∆p = 0. Our first
observation is that, locally, any harmonic function is “build up” from harmonic
polynomials. Let u : BR → R be harmonic, and consider its Taylor expansion
at the origin. We will write the expansion as follows:

u(x) = u0 + u1(x) + u2(x) + . . . , (109)

where u0 is a constant (= a zero-homogeneous polynomial), u1 is a 1-homogeneous
polynomial, u2 is a two-homogeneous polynomial, etc. The radius of convergence
of the series is R. This can be seen for example by representing u by the Poisson
kernel.58

We claim that ∆u = 0 implies that ∆uj = 0 for each j = 0, 1, 2, . . . . Let uk
be the first term of (189) with ∆uk ̸= 0. Note that k ≥ 2. As the series is
convergent, we can differentiate it term-by-term. We have ∆uk+1 + ∆uk+2 +
· · · = O(|x|k−1). On the other hand, ∆uk is a non-zero (k − 2)−homogeneous
polynomial and therefore cannot be O(|x|k−1). We see that all ∆uj have to
vanish.

Let us denote by Pm the space of polynomials of degree ≤ m in Rn. We could
also write Pnm if we wanted to emphasize the dependence on the dimension, but
we will think of n as a fixed parameter, so there will be no confusion if we will
not write this extra index. We also denote by Hm the space of all harmonic
polynomials of degree ≤ m.

We denote by Ṗm the space of m−homogeneous polynomials, and by Ḣm the
space of all harmonic m−homogeneous polynomials. We can write

Pm = Ṗm ⊕ Ṗm−1 ⊕ . . . Ṗ0 , (110)

and
Hm = Ḣm ⊕ Ḣm−1 ⊕ . . . Ḣ0 . (111)

We recall that

dim Ṗm =
(m+ n− 1)!

m!(n− 1)!
. (112)

Clearly ∆ maps Ṗm into Ṗm−2.

Lemma.
∆ maps Ṗm onto Ṗm−2 for each m.59

Proof: This is a purely algebraic result, so we should not need any Analysis
for the proof. Let us consider the mapping A : Ṗm → Ṗm defined by A(p) =
∆(|x|2p). As for p ∈ Ṗm we have |x|2p ∈ Ṗm+2, the lemma will be proved if

58For any R1 < R write u(x) =
∫
∂BR1

PBR1
(x, y)u(y) dy, and then write x → PBR1

(x, y)

as a power series. As an exercise, you can verify the details.
59We can define Ṗm = {0} for negative integers m.
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we show that A has trivial kernel. Let us assume ∆(|x|2p) = 0 for some p ̸= 0.
Let us write p = |x|2lq, where q is not divisible by |x|2. We have ∆(|x|2kq) =,
with k = l + 1. Using ∆(rq) = (∆r)q + 2∇r∇q + r∆q (by Leibnitz rule) with
r = |y|2k and x∇p = mp (Euler’s formula), we see that cq = |x|2∆q for some
constant c ̸= 0, a contradiction.60

Corollary:
dim Ḣm = dim Ṗm − dim Ṗm−2 . (113)

The following table gives the dimensions of dimm for low n.61

n = 2 dim Ḣm = 2

n = 3 dim Ḣm = 2m+ 1

n = 4 dim Ḣm = (m+ 1)2
(114)

For general n, the dimension of Ṗm is of order ∼ mn−1 and the dimension of
Ḣm is of order ∼ mn−2.

We will now describe Ḣm in dimensions n = 2 and n = 3.

Dimension n = 2.
Let z = x1 + ix2. Then a basis of Ḣm is formed by

Re zm and Im zm. (115)

If we consider polynomials with complex coefficients, we can take zm and zm as
a basis. We will discuss some of the special features of harmonic functions in
dimension n = 2 in the next lecture.
You can also derive these polynomials by direct calculation. Let us consider
polar coordinates

x1 = r cosφ ,

x2 = r sinφ .

An m−homogeneous polynomial is of the form rmf(φ). As an exercise, you
can write the Laplacian in the polar coordinates62 and check that the equation
∆(rmf(φ) = 0) reduces to f ′′ = −m2f , which can be easily solved, giving the
polynomials above.

Dimension n = 3. In principle, in dimension n = 3 we could again do a direct
calculation: convert the Laplacian to the polar coordinates (r, ϕ, φ), write the
unknown polynomial as rmf(ϕ, φ) and get an equation for f . This can be done,
but if one tries to do it purely “by calculation” without any guidance from

60There are many other ways to prove the lemma.
61The numbers reflect some properties of the orthogonal groups in the corresponding di-

mensions. We will not go into the details.
62You should get ∆ = ∂2

∂r2
+ ∂

r∂r
+ ∂2

r2∂φ2

39



geometry, it is not easy. Also, it is not how the polynomials were discovered
historically.

We recall that the polar coordinates are given by

x1 = r sinϕ cosφ ,
x2 = r sinϕ sin , φ
x3 = r cosϕ .

(116)

Let us set e = (0, 0, 1) and consider the harmonic function

u(x) =
1

|x− e|
=

1√
1− 2r cosϕ+ r2

. (117)

We now expand this function as in (189). We note that each term um in
that expansion is invariant under rotations about the x3− axis, and therefore
um(x) = rmPm(cosϕ), where Pm is a polynomial of order m.63 Hence

1√
1− 2r cosϕ+ r2

= 1 + rP1(cosϕ) + r2P2(cosϕ) + . . . (118)

The polynomials P0 = 1, P1, P2, . . . are called Legendre polynomials (and they
were discovered by Legendre exactly from expansion (118)). They have many
remarkable features, and a lot is known about them. We will not go in the
direction of studying them in more detail at this time, but we mention at least
the following:

• The polynomials are orthogonal to each other in L2(−1, 1). Therefore,
they can be obtained (up to a multiple) by the usual orthogonalization of
the sequence 1, t, t2, . . . .

• (m+ 1)Pm+1(t)− (2m+ 1)Pm(t) +mPm−1(t) = 0 ,

• [(1− t2)P ′
m]′ = −m(m+ 1)Pm, where ′ denotes the derivative d

dt .

The basis of Ḣm in dimension n = 3 can now be given as follows:

rmPm(cosϕ),
rm sinϕ P ′

m(cosϕ)e±iφ,
rm sin2 ϕ P ′′

m(cosϕ)e±2iφ,
. . . ,

rm sinl ϕ P
(l)
m (cosϕ)e±liφ,

. . . ,

rm sinm ϕ P
(m)
m e±miφ .

(119)

We will explain next time why this works.

63Strictly speaking, one needs to justify that the order is exactly m, and not < m. To see
this, note that if the order of Pm was < m, then um(x) would be divisible by r2, and we have
seen above that this cannot happen for a harmonic function.

40



Homework assignment 1, due October 20.

Give a proof of the Liouville Theorem for half-space:
Let v be harmonic in R3

+, continuous up to the boundary, with v = 0 at the
boundary. Assume that v(x)/|x| → 0 as x→∞, x ∈ R3

+. Then v = 0 in R3
+.

Hints:
a) Prove the theorem first in the case when the second derivatives of v are
continuous up to the boundary. One way to do it is to extend v suitably to all
space so that it is harmonic. (When you check that the extended function is
harmonic, be careful what happens near the plane x3 = 0 - that is the key.)

b) Let ϕ : R2 → R be a mollifier, ϕε = ε−2ϕ(x/ε), and
vε(x1, x2, x3) =

∫
R2 v(x1 − y1, x2 − y2, x3)ϕε(y1, y2) dy1dy2 .

Check that it is enough to prove that vε = 0 for each ε > 0.

c) Check that on any compact subset of the closure of the half-space, vε has
bounded derivatives up of any order in the x1 and x2 directions.

d) Use the equation ∆vε = 0 to check that all second derivatives of vε are
continuous up to the boundary.

e) Use a) to show that vε = 0.

Remarks:
1. There are other ways to do the proof, not using the extension to the whole
space. The theorem is essentially equivalent to local regularity of harmonic
functions near the boundary. The disadvantage of the proof above is that it
is not easy to modify it once we replace the half-space by a domain with a
boundary which is not flat.
2. As an optional part of the homework, you can prove the theorem in the
context of the very weak solutions we discussed in lecture 10: instead of v being
continuous up to the boundary, assume that v is bounded in R3

+ and satisfies the
boundary condition v|∂R3

+
= 0 in the very weak sense introduced in lecture 10.
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Lecture 13, 10/6/2010

We will first return briefly to formulae (119). One way to derive that is to express
the laplacian in polar coordinates, and work with suitable the ODEs. This is
not hard in principle, but the calculations are somewhat lengthy and perhaps
not very illuminating if one does not know what is going on “behind the scenes”.
There is some general principles underlying those calculations, and we are not
yet familiar with them. It might be interesting to go in the direction of this
topic, but maybe it would not be the best option at the moment. However,
there is a nice way to derive (119) based on the symmetries of the equation.
That is a calculation which we can do with a reasonable level of understanding,
and it shows some typical features of using symmetries of equations to generate
new solutions from those which we already have. Such topics by themselves
are a large area of research, and we will see only a very tiny and elementary
sample. Nevertheless, I think that the calculation is illuminating, and gives a
good opportunity of seeing symmetries in action.

The group of rotations of Rn acts on functions in Rn is the following way:
given a rotation R (which we identify of an orthogonal matrix) and a function
f : Rn → R, the rotated function Rf is usually defined by

Rf(x) = f(R−1x) . (120)

The definition is chosen in such a way that the action f → Rf rotates the graph
of the function in the natural way: (x, f(x)) goes to (Rx, f(x)).

An important property of the laplacian is that it commutes with the rotations:

∆(Rf) = R(∆f) . (121)

This is an elementary calculation.64 The space of Ṗm of m−homogeneous poly-
nomials is also obviously invariant under rotations, and hence Ḣm is also invari-
ant under rotations.

We now take the polynomial

h(x) = rmPm(cos θ) . (122)

This polynomial in Ḣm is obviously invariant under rotations invariant about
the x3-axis, and it is – up to a multiple – the only such polynomial in Ḣm. 65

One can now generate other polynomials in Ḣm from h by rotations. However,
it may not be immediately clear how to find enough rotations for which Rh can
be easily written down. It is much easier to work with “infinitesimal rotations”.

64It is equivalent to the fact that trace is an invariant of a symmetric matrix.
65The uniqueness can be shown by using the ODE satisfied by the polynomial, or just by

using the fact that the monomials xm3 , x
m−2
3 (x21 + x22), x

m−4
3 (x21 + x22)

2, . . . form a basis of
the m−homogeneous polynomials invariant under the rotations about the x3 axis. A linear
combination of such terms can only be harmonic if it contains xm3 with a non-zero coefficient,
as one can easily check directly from the equation.
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These are defined as follows: Let R1(α) be rotation by α about the x1 axis,
given by  1 0 0

0 cosα − sinα
0 sinα cosα

 . (123)

The function
d

dα
|α=0R1(α)h (124)

is clearly again in Ḣm.
Carrying out the differentiation, we get

d

dα
|α=0R1(α)h = L1h , (125)

where
L1 = x3∂2 − x2∂3 . (126)

Note that L1 can be identified with a vector field in R3, and the vector field is
tangent to the spheres cantered at the origin. We know we must have

∆L1 = L1∆ (127)

by the construction of L1, and it is also easy to check it directly.

In a similar way, using the rotations about the x2−axis we define

L2 = −x3∂2 + x2∂3 . (128)

We can now use L1 and L2 to generate a basis of Ḣm from the single polynomial
h. The formulae come out particularly simple if we work with L = L1 + iL2,
and z = x1 + ix2. Note that L|x| = 0, and therefore it is enough to work with
the restriction of the polynomials to the sphere {x, |x| = 1}. On the sphere we
have

LPm = (iz)P ′
m, L

2Pm = (iz)2P ′′
m, . . . , L

mPm = (iz)mP (m)
m . (129)

We obtain additional polynomials by taking conjugation:

(iz)
k
P (k)
m , k = 1, 2, . . .m . (130)

We have obtained 2m + 1 polynomials in Ḣm. It is easy to see that they
are linearly independent, as they behave differently under rotations about the
x3−axis. We have seen in the last lecture that for n = 3 we have dim Ḣm =
2m+ 1, and hence we have found a basis of Ḣm.

We know that the restriction of any polynomial to the sphere ∂BR can be
extended to a harmonic function in BR. The following argument shows that the
harmonic function is actually a polynomial of the same or lower degree.
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Lemma.66

The map p→ ∆[(|x|2 −R2)p] maps Pm onto Pm.

Proof: A polynomial in the kernel is harmonic and vanishes on ∂BR. Hence it
has to vanish identically by the maximum principle.67

The lemma shows that we have the (algebraical) decomposition

Pm = Hm ⊕ (|x|2 −R2)Pm−2 . (131)

One way to interpret the statement is that every polynomial on the boundary
of the ball can be extended to a harmonic polynomial in the ball.

Harmonic functions and holomorphic functions in dimension n = 2.

There is close connection in dimension n = 2 between harmonic functions and
holomorphic functions. While talking about specific harmonic functions, we
should recall some of the details of this connection.

Let us for now use the classical complex analysis notation. The coordinates in
the plane are x, y, we denote z = x+ iy and z = x− iy. We define

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (132)

Sometimes we will write

∂ =
∂

∂z
, ∂ =

∂

∂z
. (133)

One way to think about these operators is the following: we can identify the
complex numbers C with R2 and vice versa. Then any linear map from R2 to
R2 can be considered as a map from C to C which is linear over R. Such a linear
map can be written as

l(z) = az + bz , (134)

where a, b are complex numbers. Then we have

∂

∂z
l = a,

∂

∂z
l = b . (135)

66See also the book “Lectures on Elliptic and Parabolic Equations in Hölder Spaces” by
N. V. Krylov, p. 24.

67Although the result is purely algebraic, the proof is not algebraic - it uses the maximum
principle. As an exercise, you can try to find a purely algebraic proof. It should work also
when we replace −R2 by R2, in which case the above proof does not work without further
arguments. We remark that the lemma can also be used to determine the dimensions of Ḣm,
as an alternative to the lemma we used in the last lecture.
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Let a = a1 + ia2, b = b1 + ib2. In terms of linear maps R2 → R2 and their
matrices, the map l can be identified with the matrix(

a1 + b1 −a2 + b2
a2 + b2 a1 − b1

)
. (136)

Then ∂
∂z l can be identified with the “a-part” of this matrix (which is the “holo-

morphic part”) and ∂
∂z l can be identified with the “b-part” of this matrix (which

is the “anti-holomorphic part”). We can think of ∂
∂z and ∂

∂z as projections of
the full gradient onto certain two-dimensional subspaces of the space of 2 × 2
matrices. The subspaces are orthogonal to each other (if we use the standard
scalar product in the space of matrices).

We will consider the equation
∂

∂z
u = f (137)

in R2. We claim that the equation can be solved (under some natural assump-
tions) as follows:

u = G ∗ f (138)

where

G(z) =
1

πz
. (139)

We also have

u = G ∗ ( ∂
∂z
u) (140)

for all compactly supported and sufficiently regular functions.
For the proofs we can follow more or less line-by-line the proofs we did for the
laplacian. Let K be any smooth extension of G from R2 \B1 to R2. Set

Kε(z) =
1

ε
K(

z

ε
) . (141)

The key point is that ∫
R2

∂

∂z
K = 1 , (142)

and
∂

∂z
Kε(z) =

1

ε2
K(

z

ε
) (143)

can be considered as a mollifier. We see that the situation is the same as in our
proofs of inverting the laplacian.68

68Later we will see that all this generalizes to much more general situations.
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Lecture 14, 10/8/2010

We recall that

∂ =
∂

∂z
, ∂ =

∂

∂z
. (144)

As is customary, a function satisfying ∂u = 0 will be called holomorphic. Any
holomorphic function is harmonic, as ∆ = 4∂∂.

Let us consider a bounded domain Ω with smooth boundary Γ = ∂Ω, and a
holomorphic function u defined in a neighborhood of the closure of Ω. Let φ be
a cut-off function which is = 1 in Ω and vanishes outside of a small neighborhood
of a closure of Ω. For our purposes here we can take

φε(x) = max (1− dist (x,Ω)

ε
, 0) . (145)

We have
uφε = G ∗ (∂(uφε)) = G ∗ (u∂φε) . (146)

Strictly speaking we should first approximate φε by smooth functions and pass
to the limit to obtain (146) - this step is left as an exercise. When ε → 0 we
have∫

G(x− y)u(y)φε(y) dy →
∫
Γ

G(x− y)u(y)(n1(y) + in2(y))/2 dy . (147)

Here n = (n1, n2) ∼ n1 + in2 denotes the vector field given by the normal to Γ.
As Γ is smooth, the vector field n is well-defined in a small neighborhood of Γ.
We use the notation y = (y1, y2) ∼ y1 + iy2, x ∼ x1 + ix2, etc.
The tangent to Γ can be taken as τ(y) = in(y). We obtain from (146) and (147)
as ε→ 0

u(x) = −1

2

∫
Γ

G(x− y)u(y)n(y) dy =
1

2πi

∫
Γ

u(y)

y − x
τ(y) dy , (148)

which is the Cauchy formula.69

When Ω = R2
+, one gets for Rex > 0 – assuming the formula also works in this

case70 –

u(x) =
1

2πi

∫
R

u(y)

y − x
dy . (149)

69Our notation is that dy denotes the 1−dimensional measure on Γ. It might be more
accurate to write |dy| for this measure, so that one could write τ(y)|dy| = dy, and

∫
Γ . . . dy

would denote the usual curve integral.
70As we derived the formula only for bounded domains, one should check that the “contri-

butions from ∞” vanish, as implicitly assumed by applying the formula. A sufficient condition
is that u(x) = O(|x|−α) for some α > 0 as x→ ∞, for example.
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It is interesting to compare this formula with(65), the Poisson formula for the
laplacian. Both formulae were derived as representation formulae of functions
satisfying certain equation. However, we found that(65) is in some sense even
stronger: we can start with any continuous function g on the boundary, without
knowing it comes from a harmonic function, plug it into the formula, and we
get a continuous extension of g to a harmonic function.71 It is interesting to
see what happens in the case of the Cauchy formula (149) if we start with a
sufficiently regular g : R→ C with some decay at ∞72 and set

u(x) =
1

2πi

∫
R

g(y)

y − x
dy . (150)

Clearly u will be holomorphic in R2 \ Γ, where Γ = {x, x2 = 0}. We would like
to investigate the behavior of u near Γ. Let us assume that g is real-valued.
(The general case can be reduced to this case by writing g = g1 + ig2 with
real-valued g1 and g2.)

Let us first look at the kernel

C(x, y) =
1

2πi

1

x− y
y ∈ Γ , x ̸= y . (151)

As a function of x this is a holomorhic function with a pole at y. When x ∈
Γ, x ̸= y, then ReC(x, y) = 0, but the imaginary part does not vanish – we have
ImC(x, y) = (2π(y − x))−1.

To check the behavior of C as a function of y for a fixed x, it is enough to
consider the case x = iε. The condition y ∈ Γ simply means that y is real.

C(iε, y) =
1

2π

ε

y2 + ε2
+

1

2πi

y

y2 + ε2
. (152)

We know what the first term of the left-hand side is: it is a multiple (by 1/2)
of the Poisson kernel(107) in dimension 2. Hence (keeping in mind that g is
real-valued) we can conclude that

in R2
+ the function Reu is the harmonic extension of g/2. (153)

Similarly,

in R2
− = {x, x2 < 0} the function Reu is the harmonic extension of −g/2.

(154)

Let us now look at

Imu(iε) =

∫
R

1

2π

−y
y2 + ε2

g(y) dy . (155)

71Strictly speaking, so far we only verified it when the domain is a half-space or a ball.
72You can assume g is compactly supported at this stage.
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As ε→ 0, formally we should get

Imu(0) =

∫
R

1

2π

1

−y
g(y) dy . (156)

The last integral needs to be interpreted with some care, as the integrant is not
in L1(R), at least when g(0) ̸= 0. However, note that there is no problem when
g(0) = 0 (as we assume that g is regular). Also, if g(0) ̸= 0, but g is constant
on some interval (−δ, δ), we can ignore the contribution to the integral from
(−δ, δ), due to the cancelation of the positive part and the negative part, and
the integral is again well-defined (although not as the Lebesgue integral). The
general case is a combination of these to cases: g can always be written as a
sum of a function vanishing at 0 and a function which is constant near 0. So we
see that the integral can be well-defined for any regular g (with some decay at
∞). More formally, one can define∫

R

1

2π

1

−y
g(y) dy = lim

δ→0

∫
R\(−δ,δ)

1

2π

1

−y
g(y) dy. (157)

To indicate that this particular interpretation has been invoked, often the no-
tation p.v. (standing for “principal value”) is used. In this notation we write

p.v.

∫
R

1

2π

1

−y
g(y) dy = lim

δ→0

∫
R\(−δ,δ)

1

2π

1

−y
g(y) dy (158)

and, returning to the situation above,

Imu(0) = p.v.

∫
R

1

2π

1

−y
g(y) dy . (159)

In fact, taking the limit ε→ 0 in (155) is another way to “regularize” the diver-
gent integral defining Imu(0). It is not hard to check that these two different
regularizations lead to the same result (for sufficiently regular g):

lim
ε→0

Imu(iε) = Imu(0) , (160)

or

lim
ε→0

∫
R

1

2π

−y
y2 + ε2

g(y) dy = p.v.

∫
R

1

2π

1

−y
g(y) dy . (161)

As the principal value is defined by (158), the last identity has to be proved.
We leave the proof to the reader as an exercise.

Above we worked at x = 0. For other points x ∈ R we get

Imu(x) = lim
ε→0

Imu(x+ iε) = p.v.

∫
R

1

2π

g(y)

x− y
dy . (162)

Definition.
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Given a sufficienly regular g : R → R, the Hilbert transform Hg of g is defined
by

Hg(x) = p.v.

∫
R

1

π

g(y)

x− y
dy . (163)

Summarizing the above, we see that for a sufficiently regular g : R → R the
function u defined by the Cauchy integral (149) satisfies

lim
ε→0+

u(x+ iε) =
1

2
g(x) +

i

2
Hg(x) , x ∈ R . (164)

In a similar way one shows that

lim
ε→0+

u(x− iε) = −1

2
g(x) +

i

2
Hg(x) , x ∈ R . (165)

We see that the “jump” of u across Γ, given by limε→0(u(x+ iε)− u(x− iε)) is
exactly g(x). So we can write

g(x) = u+(x)− u−(x) , (166)

where u+ has a holomorphic extension to the upper half-plane and u− has a
holomorphic extension to the lower half-plane.

One can now use these identities to derive a number of properties of the Hilbert
transformH. We will not need them in the immediate future. However, they are
useful for the study of some deeper estimates for PDEs. The Hilbert transform
is studied in depth in Harmonic Analysis. In what follows we only sketch the
arguments, without giving the detailed proofs. However, we encourage the
reader to fill in the details as an exercise.

Although we have assumed so far that g is real-valued, it is easy to see that (164)
and (165) are also true for a complex-valued g.73 In particular, if u is a restric-
tion of a holomorphic function in the upper half-plane to the real axis and u
has some decay at ∞, we have

u =
1

2
u+

i

2
Hu , (167)

or

Hu = −iu . (168)

Similarly, if u is a restriction of a holomorphic function in the lower half-plane
to the real axis (and u has some decay at ∞), we have

Hu = iu . (169)

73For example, write g = g1 + ig2, and use that the formulae are true for u1 given by g1
and u2 given by g2.
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In terms of the real and imaginary part, we have for the restriction to R of a
holomorphic function u = u1 + iu2 (with real u1, u2) in the upper half-plane
(with some decay at ∞ and regular up to the boundary),

Hu1 = u2 ,
Hu2 = −u1 .

(170)

and hence
H2u1 = −u1 ,
H2u2 = −u2 .

(171)

It is not hard to check that the function obtained as u1 and u2 above form a dense
subspace of L2(R).74 We also note that for sufficiently regular f, g ∈ L2(R), for
which the above definition of Hf and Hg work, we have

(Hf, g)L2 = −(f,Hg)L2 , (172)

where (f, g)L2 =
∫
R f(x)g(x) dx is the canonical scalar product on L2(R). Hence

(Hf,Hg) = (−H2f, g) = (f, g) (173)

and we see that H can be considered as an isometry (or a unitary operator) on
L2(R), with H−1 = H∗ = −H. (Once we know that the above identities are
true for a dense subspace of L2(R), we can extend H to all L2(R) by continuity.)

Note also thatH commutes with translations and derivatives. Defining Taf(x) =
f(x− a), we have HTa = TaH and, taking derivatives, we have H d

dx = d
dxH.

We know that every holomorphic function is harmonic. If we have a real har-
monic function u1 in the upper half-plane given by the Poisson integral, we can
use the Cauchy integral to obtain a harmonic u2 in the upper half-plane, so
that u = u1 + iu2 is holomorphic. This is possible in general simply connected
domains: if u1 is a real-valued harmonic function in a simply connected domain
Ω, we can find a harmonic u2 such that u = u1 + iu2 is holomorphic. The
equation ∂u = 0 gives the Cauchy-Riemann conditions:

u2,x1 = −u1,x2 ,
u2,x2 = u1,x1 .

(174)

Note that any function u2 satisfying these conditions will be harmonic, by the
commutativity of the mixed derivatives. In a simple connected domain, the
existence of u2 is equivalent the vanishing of the curl of the vector field on the
right-hand side. Let us denote the field by b = (b1, b2). We have to check

b2,x1 − b1,x2 = 0 . (175)

This is exactly the equation ∆u1 = 0, and our statement is proved.

74It is good exercise to prove this.
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In a simply connected domain, every harmonic function is a real part of a
holomorphic function.

In the Complex Analysis course you have probably learned the Riemann map-
ping theorem that every simply connected domain in the plain (the complement
of which is larger than just one point) is an image of the unit disc by a conformal
mapping. There is a relatively rich list of domains for which such mappings can
be written down fairly explicitly, and this can be used when solving the Laplace
equation.

Let ϕ : Ω1 → Ω2 be a conformal mapping and let h2 : Ω2 → C be a function. let
h1 = h2 ◦ ϕ. As an exercise, show that

∆h1 = (∆h2 ◦ ϕ) |ϕ′|2 . (176)

In particular, when h2 is harmonic then h1 is also harmonic. (This is related to
the fact that a composition of holomorphic functions is holomorphic and that –
locally – any harmonic function is a real part of a holomorphic function, as we
have seen.)
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Lecture 15, 10/13/2010

Today we start discussing methods which are used for solving the boundary
value problem

∆u = 0 in Ω, and (177)

u = g at the boundary ∂Ω . (178)

At this stage we will assume that Ω is a bounded smooth domain in Rn and g is
a continuous function defined on the boundary ∂Ω. The solution u is required
to be continuous up to the boundary. We can think of it as a continuous
function on the closure Ω which extends harmonically the function g into Ω. By
the maximum principle we know that such an extension is unique, if it exists.
Once we know how to solve the problem above, we also know how to solve
the inhomogeneous problem in which (177) is replaced by ∆u = f (with some
assumptions on f). This is because the potential ũ = K0 ∗ f gives a solution
of the equation, and we only need to find a harmonic function to adjust the
boundary condition.

There are several methods for approaching the problem. I will mention four of
them.

1. The method of boundary potentials and integral equations at the boundary.

This traditional method, going back to the second half of the 19th century,
is based on the fact that all harmonic function inside Ω can be generated by
means of fundamental solutions with poles outside of Ω, see lecture 4. We can
try to distribute the poles75 at the boundary in such a way that they generate
our solution. The densities giving the right distribution of the poles will satisfy
some integral equations at the boundary. These equations can be solved by
applying classical Fredholm theorems.

The method has some attractive features: it is quite straightforward, and does
not require a lot of theory, beyond the Fredholm theorems. On the other hand,
we have to do some calculations with the potentials, which can seem somewhat
lengthy, if we wish to cover all the details. The equations we get are on a
manifold of dimension n− 1. (This lowering of the dimension is relevant when
solving the equation numerically, although we do have to pay a price for it in
that the equations are more complicated.) The method is easily generalized to
systems of equations, the maximum principle is not important. Some of today’s
fast numerical algorithms are based on the method. One disadvantage of the
method is that it is not easy to generalize to equations with variable coefficients.

2. The “Direct Method”, sometimes also called the Variational Method.

This method is based on the minimization property of the harmonic function
which we mentioned in lecture 6: the solution u minimizes the integral

75These can include dipoles.
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∫
Ω

|∇v|2 (179)

among all (“sufficiently regular”) functions with the boundary condition g. This
method is very flexible, can be generalized to a large class of equations, includ-
ing systems (as it does not rely on the maximum principle) and equations with
variable coefficients. It requires some elementary theory of Sobolev spaces.76

However, the parts of this theory which are needed can nowadays be covered
quite easily. Also, the method is ideally suited for formulating numerical ap-
proximations.

3. The method of a-priori estimates and building up the global solution from
local solutions.

We know how to construct solutions in all space and half space. We can try to
localize to that situation, build local solutions, and somehow coordinate these
local solutions into a global one. This can be done and the method works very
well for large classes of equations and systems of equations. It does not need
the maximum principle.

4. The method of approaching the solution via super-solutions or sub-solutions.

This is another classical method going back to Poincaré (around 1890). It is
also known as “Perron’s method”. It provides a relatively quick way of proving
the existence result for our problem above, and works well for quite general
classes of scalar second-order equations. It does not generalize to systems of
equations nor to higher order equations, as it relies on the maximum principle
in an essential way.

Our exposition will start with the integral equation method. For this method we
do not really need any significantly new ideas to what we have already covered.77

So far we have relied quite a bit on the use of potentials, and some exposition
of the boundary integral equations approach to boundary value problems seems
to be a natural part of such an approach. In the study of PDE one eventually
does not want to rely on the potentials too much, for many reasons. However,
there are also good reasons to learn how to work with the potentials before
abandoning them in favor of other approaches.

The key to the success of the boundary potentials method is to take a good
“first guess” at how the solution should look like, and then adjust the guess by
solving some equation. We have seen in lecture 9 that we can solve the Dirichlet
problem in the half space by means of the explicit representation formula with
the Poisson kernel, see (75). One interpretation of the Poisson formula is that we

76If one had to start from scratch, this would be no easy task - it took several decades of
research (most of which took place between 1900 and 1960), before the probably more or less
optimal ways we use today have been found.

77At least if we take the Fredholm Theorems for granted.
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put on the boundary a field of dipoles oriented perpendicularly to the boundary,
with density g (= the desired boundary value) We can try to do the same in a
general domain. The precise analogy to the Poisson kernel for a half-space in
the case of the general bounded domain Ω is formula (64), which uses Green’s
function GΩ. However, this function is not accessible to us, as its existence is
more or less equivalent to what we are trying to prove. We will therefore follow
the recipe of the Poisson formula in the half-space, and put dipoles oriented
along the normal along the boundary, with some given density, which we will
denote by ρ. (For the half-space we took ρ = g, but it is easy to see that
this choice will typically not give us the precise solution in case of a bounded
domain.)

The potential of a unit dipole located at y ∈ ∂Ω and oriented along the normal
ν(y) is

udipole at y(x) = −2∂K0

∂νy
(x− y) = 2

|Sn−1|
(y − x, ν(y))
|y − x|n

= K(x, y) . (180)

The kernel K(x, y), viewed as a function of x, vanishes at the tangent plane to
∂Ω through y. However, it does not vanish on ∂Ω. If we watch it as a function
of y ∈ ∂Ω for x ∈ Ω approaching some x ∈ ∂Ω, we see that the local behavior
of y → K(x, y) near x is similar to what we have seen for the Poisson kernel
in half-space. There is a mollifier-like component in the function y → K(x, y)
concentrating near x as x ∈ Ω approaches x ∈ ∂Ω. By contrast with the half
space, there is also another component: the function y → K(x, y). For the
half-space this function vanishes identically, but for bounded domains it cannot
vanish.
The scalar product (y−x, ν(y)) is of order O(|y−x|2) and hence y → K(x, y) is
bounded in dimension n = 2 and has a singularity of order at mostO(|y − x|−(n−2) )
when n ≥ 3. In fact, in dimension n = 2 the function (x, y) → K(x, y) is con-
tinuous on ∂Ω× ∂Ω, if ∂Ω is of class C2.

Our “dipole potential” with density ρ (sometimes also called the “double layer
potential”) is

u(x) =

∫
∂Ω

K(x, y)ρ(y) dy, x ∈ Ω. (181)

We will show that for x ∈ ∂Ω we have

lim
x→ x
x ∈ Ω

u(x) = ρ(x) +

∫
∂Ω

K(x, y) dy . (182)

Denoting by Kρ the function given by the integral on the right-hand side, we
see that for u|∂Ω = g we need

g = ρ+Kρ . (183)

This is an integral equation of the Fredholm type. We would like to show that
for each continuous g there exist a continuous solution ρ of (263). For this we
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invoke the Fredholm Theorem: equation (263) is uniquely solvable in continuous
functions for each continuous g if and only if the homogeneous equation

ρ+Kρ = 0 (184)

has only the trivial solution ρ ≡ 0.
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Lecture 16, 10/15/2010

We will look in more detail at the kernel K(x, y) introduced in (180). To
investigate the properties of the kernel when x is near ∂Ω, we can without
loss of generality restrict our attention to the following situation: Assume that
the boundary passes through the origin of the coordinates, and at the origin is
tangent to the plane {xn = 0}. Near the origin the boundary is described by

yn = g(y1, . . . , yn−1) (185)

for some C2-function g. Assume the interior of the domain near the origin is
given by {g > 0}. The unit outer normal to the domain at a point y ∈ ∂Ω near
the origin is

ν(y) =
(g,1, . . . , g,n−1,−1)√

1 + |∇g|2
, (186)

where we use the shorthand notation g,i for gxi .
We will investigate K(x, y) for x = (0, . . . , 0, ε) for small ε > 0. The situation
at any point sufficiently close to the boundary can be brought to this form by a
suitable choice of coordinates. If we wish to get estimates which depend only on
the distance of x to the boundary, then the function g should not be considered
as fixed, and the estimates we obtain should depend only on the parameters
of g which are controlled uniformly for the various local coordinate charts we
use along the boundary. Since we assume that the boundary is regular, this
is not a problem. As always in similar situations, the main point is that each
point x ∈ Ω in a sufficiently small neighborhood of ∂Ω has a uniquely defined
projection x ∈ ∂Ω, characterized as the unique point of ∂Ω which minimizes
the distance to x. The line xx is perpendicular to ∂Ω at x, and its direction is
given by the normal ν(x). For any given x ∈ Ω we can choose x as the origin of
the coordinate system in which we are observing the boundary, with n− 1 axes
tangent to ∂Ω and the remaining axis perpendicular to ∂Ω. That is exactly the
situation described above with the help of the function g. As we move x, the
function g can change, of course. However, if we assume that ∂Ω is of class C2,
say, then we have uniform control of the parameters of g on which our estimates
depend.
Let us first look at the values of the kernel K(x, y) when x = x. We denote
y′ = (y1, . . . , yn−1). We have

K(x, y) ∼ (y − x, ν(y))
|y − x|n

=
(y, ν(y))

|y|n
=
y1g,1 + · · ·+ yn−1g,n−1 − g(y′)

|y|n
, (187)

where ∼ is used to indicate that we have not included the normalization constant
in the formulae. Note that the expression

g(y′)− y1g,1(y′)− · · · − yn−1g,n−1(y
′) (188)

is exactly the first two terms of the Taylor series at y′ for evaluating g(0). We
know that g(0) = 0. We can use the following form of Taylor’s formula

g(y′ + z) = g(y′) + g′(y′)z +

∫ 1

0

(1− t)g′′(y′ + tz)z2 dt . (189)
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In higher dimensions the notation has to be interpreted appropriately, of course.
Applying (189) with z = −y′ and using g(0) = 0, we obtain

y1g,1(y
′) + · · ·+ yn−1g,n−1(y

′)− g(y′) =
∫ 1

0

(1− t)g′′((1− t)y′)(y′)2 dt . (190)

It is now easy to see that in dimension n = 2 the expression (187) converges to
g′′(0)/2 as y → 0, and the convergence is uniform for the functions g having the
same modulus of continuity of the second derivative. We conclude that when
n = 2, the kernel K is continuous on ∂Ω× ∂Ω.
In dimensions n ≥ 3 we get from (187) and (190) that

K(x, y) ≤ C

|x− y|n−2
, x, y ∈ ∂Ω . (191)

The kernel is singular, at the diagonal, but from the point of view of integral
equations the singularity is weak. There is no problem with the Fredholm theory
for kernels with such singularities78.
Let us now consider K(x, y) for x ∈ Ω. We continue to use the notation above,
with x = (0, . . . , 0, ε) and y ∈ ∂Ω, close to x. We have

|y − x|2 = |y′|2 + ε2 + 2g(y′)ε+ g(y′)2 . (192)

We note that

g(y′) = O(|y′|2), and g(y′)ε = O(|y′|)(|y′|2 + ε2). (193)

Using (192) and (193) is is easy to check that

K(x, y) =
2

|Sn−1|
ε+O(|y′|2)

(|y′|2 + ε2)
n
2 (1 +O(|y′|))

. (194)

We see that as y′ → 0 the kernel K(x, y) looks (in the y′-coordinates) increas-
ingly as the Poisson kernel of the tangent half-space.
We also note that dy =

√
1 + |∇g|2dy′. When evaluating the integral for∫

∂Ω

K(x, y)ρ(y) dy (195)

for small ε, we write it as∫
∂Ω

· · · =
∫
∂Ω∩Bx,r

· · ·+
∫
∂Ω\Bx,r

· · · = I + II (196)

There is no problem in passing to the limit ε→ 0 in II, as there is no singularity
in the domain of integration. For the integral I we get, using its similarity with
the Poisson kernel

ρ(x)− o(r) ≤ lim inf
ε→0+

I ≤ lim sup
ε→0+

I ≤ ρ(x) + o(r). (197)

78Sometimes the terminology “weakly singular kernels” is used in this context
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The key point here is that for x = (0, ..., 0, ε) the expression K(x, y) and P (x, y′)
differ only by a function with uniformly bounded integral over y′ as ε→ 0, and
that ρ is bounded79. As o(r)→ 0 when r → 0, we see that

lim
ε→0+

∫
∂Ω

K((0, . . . , 0, ε), y)ρ(y) dy = ρ(x) +

∫
∂Ω

K(x, y)ρ(y) dy . (198)

Moreover, it is easy to see that the above estimates are uniform in the class of
the functions g with continuous second derivatives and a common modulus of
continuity of the second derivatives. Therefore we conclude that the function

u(x) =

∫
∂Ω

K(x, y)ρ(y) dy (199)

defined in Ω can be continuously extended to the boundary ∂Ω, and that

lim
x→ x
x ∈ Ω

u(x) = ρ(x) +

∫
∂Ω

K(x, y)ρ(y) dy . (200)

We see that to solve the Dirichlet problem, it is enough to solve the integral
equation

g = ρ+Kρ .80 (201)

The formula (200) can be also explained from the geometrical meaning of
K(x, y). Let us first consider the case n = 2. For a fixed x ∈ Ω, let us consider
the quantity K(x, y)dy as y moves along the boundary. If y and y + dy are
two “infinitesimally close” points at ∂Ω, the quantity πK(x, y)dy is exactly the
(infinitesimal) angle dα = dα(x, y) under which we see the segment [y, y + dy]
when we watch it from the point x. Heuristically is is clear that we should have∫

∂Ω

dα(x, y) dy = 2π , (202)

independently of x ∈ Ω.
When x is very close to some point x ∈ ∂Ω, we note that about half of the
contribution the the integral (202) comes from an immediate neighborhood of
x. When x reaches x, this contribution will disappear, and we will have∫

∂Ω

dα(x, y) dy = π . (203)

So we have a jump in the integral as we reach the boundary, because when we
are at the boundary, we lose half of the total angle under which the boundary

79This rough estimate would have to be refined if we were dealing with unbounded den-
sities ρ. This issue comes up for example when we try to solve the Dirichlet problem with
g ∈ Lp(∂Ω). Then the natural space for ρ is also Lp(∂Ω), and one must be more careful with
the estimates.

80The g in this formula is the boundary condition, and not the function used to parametrize
the boundary, of course. Our notation is not optimal here, but hopefully there is no danger
of confusing the two meanings of g used above.
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is seen. When we integrate
∫
∂Ω
ρ(y)dα(x, y), the loss will be πρ(x), as all the

points from nearby x contribute about ρ(x)dα to that part of the integral, due
to the continuity of ρ.
In higher dimension the situation is similar if replace the angle by the “solid
angle”.
Using this heuristics, we can see that we should have

2 when x ∈ Ω ,∫
∂Ω
K(x, y)dy = 1 when x ∈ ∂Ω ,

0 when x /∈ Ω .
(204)

The first and the last identity can be easily proved rigorously by integration by
parts. As an exercise, you can try to find a simple proof of the middle identity.
These identities provide another heuristic explanation for (200) (which can be
turned into a proof, with some work).
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Lecture 17, 10/18/2010

Last time we reduced the Dirichlet boundary-value problem

∆u = 0 in Ω
u = g at ∂Ω

(205)

to an integral equation of the form

g = ρ+Kρ , (206)

at the boundary, where K is an integral operator with a weakly singular kernel.
When n = 2 the kernel is in fact continuous (when the domain is of class C2). We
wish to find a continuous solution ρ of this equation. The function g is assumed
to be continuous. Let us denote by X the space of continuous functions at ∂Ω,
with the norm ||f || = sup∂Ω |f |. (We could also work with other spaces, but the
choice X = C(∂Ω) is probably the most straightforward choice.)
The Fredholm theory says that the range of the operator I + K has finite
codimension, which is equal to the dimension of the kernel of I +K. We can
see from this that our “guess” to seek the solution as a dipole potential with
density ρ was quite good: even without doing anything else we now know that
we can solve our problem if we impose finitely many linear conditions on g.
Such result is not obvious from the original formulation (205). Another way to
look at the situation is the following: we know from the abstract spectral theory
of compact operators that we can write X = X1 ⊕X2

81 with X1, X2 invariant
under K and X1 finite-dimensional, so that that some power Km is small on
X2.

82 For g ∈ X2 we can invert I +K by the usual power series:

ρ = (I +K)−1g = (I −K +K2 −K3 + . . . )g (207)

This is another illustration that our “guess” to seek the solution as dipole poten-
tial was good. In some sense, it solves the problem modulo finite-dimensional ad-
justments. The difficulties with solving equations in infinite-dimensional spaces
disappeared.83

By Fredholm theory we will know that the equation (206) is solvable in contin-
uous functions for each continuous g if and only if if the homogeneous equations

ρ+Kρ = 0 (208)

has only the trivial solution ρ = 0 in continuous functions.

81Here ⊕ means “direct sum, algebraically and topologically”, not orthogonality, in general
82For self-adjoint operators on a Hilbert space we can take m = 1. In our special case it is

very likely that we still can take m = 1, even though K is is not self-adjoint. This should be
in the literature, with high probability.

83This is of course one of the main points of the Fredholm theory. However, note that before
we got to the stage when the Fredholm theory can be applied, we had to find the right set-up
and make some good choices which were not obvious. This is quite typical.
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At first this might looks as an easy consequence of the uniqueness we have for
the Dirichlet problem: ρ + Kρ = 0 means that the potential u defined by ρ
approaches 0 as we approach ∂Ω from Ω. As u is harmonic in Ω, we now that
u ≡ 0 is Ω. However, we need to show that ρ = 0, not only u inside Ω. In fact
the formula

u(x) =

∫
∂Ω

K(x, y)ρ(y) dy (209)

defines u also outside ∂Ω. Let us denote Ωext the open set Rn \ Ω. If ρ = 0 we
not only have u = 0 in Ω, but we also have u = 0 in Ωext. The calculation of
the limit

lim
x→ x ∈ ∂Ω

x ∈ Ω

u(x) = ρ(x) +Kρ(x) (210)

we have done last time can be also applied to calculate the limit from Ωext. One
gets, exactly by the same method,

lim
x→ x ∈ ∂Ω
x ∈ Ωext

u(x) = −ρ(x) +Kρ(x) . (211)

By subtracting (261) from (260) we see that ρ = 0 is equivalent to the condition
that the jump of u across the boundary is zero.
In our situation when ρ +Kρ = 0, to verify that ρ = 0, we need to show that
the exterior limit (261) vanishes.
However, we have a small complication. The jump is not always zero, and the
kernel is not always trivial. For 0 < R1 < R2 consider the domain

Ω = {x, |x| < R2} \ {x, |x| ≤ R1}. (212)

We have
∂Ω = Γ1 ∪ Γ2 , (213)

with Γ1 = {x, |x| = R1} and Γ2 = {x, |x| = R2} .
Take ρ0 = 0 on Γ2 and ρ = 1 on Γ1.
We can use formula (204) to see that the dipole potential u of ρ0 will vanish in
Ω, and

ρ0 +Kρ0 = 0 . (214)

One can show84 that in this case we have

Ker(I +K) = Rρ0 (215)

i. e. the kernel of I +K is one dimensional, consisting of multiples of ρ0.
Since the kernel is non-trivial, the range of (I + K) cannot be all space of
continuous functions, and the integral equation ρ+Kρ = g is not always solvable.
This does not mean that the original Dirichlet problem (205) is not solvable.

84This will follow from our further considerations
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It only means that it is not solvable by dipole potentials. In this respect our
initial guess was not perfect - there is a small defect here. It can be easily
corrected85, but for now we will focus on domains where the complication does
not arise. The complication is related to the fact that in the example Ωext was
not connected.

Note that at this point we are essentially stuck. We know that in some cases
the kernel can be non-trivial. We are guessing that it might be related to the
topology of the domain, but it is not clear how to proceed. We need a new
idea. One way to proceed86 is based on the following trick: look at the normal
derivative

∂u

∂ν
(x) as x→ ∂Ω, x ∈ Ωext. (216)

Here we use the fact that the normal ν can be though of as a vector field defined
in a neighborhood of the boundary. if d(x) is the signed distance of x to ∂Ω
(with the convention that d(x) < 0 inside Ω), then in a small neighborhood of
∂Ω we have ν(x) = ∇d(x).
At first the idea of looking at the normal derivative at the boundary might not
look very promising: for general continuous ρ the potential u may not be C1 up
to the boundary, and it is not even clear that the normal derivative of u at ∂Ω
is well-defined.
The trick is that rather then looking at ∂u

∂ν (x) we will compare the values of the
normal derivatives on the two sides of the boundary. To be precise, let us define
for each point x ∈ Ωext which is close to the boundary its “reflection by the
boundary”, denoted by x∗. To define it, we denote by x the projection of x to
∂Ω, i. e. the point of ∂Ω which is the closest to x,87 and set x∗ = x− 2(x− x).
We will now investigate the function

b(x) =
∂u

∂ν
(x)− ∂u

∂ν
(x∗) . (217)

Our goal is to show that

lim
x→ x ∈ ∂Ω
x ∈ Ωext

b(x) = 0. (218)

Note that in case when ρ is in the kernel of I +K, the function u vanishes in
Ω, hence b(x) = ∂u

∂ν (x), and (218) will imply that the normal derivative of u in
Ωext is continuous up to the boundary and vanishes at ∂Ω.
Once we know this, we will be able to conclude that u has to be constant on each
connected component of Ωext, and has to vanish on the connected components

85In fact, dealing with this defect is a very good exercise in Fredholm theory, as the theory
also gives us necessary and sufficient conditions for solvability in terms of the kernel of the
adjoint operator.

86We will later mention an alternative way, using the adjoint operator I +K∗.
87Recall that x is well-defined and unique when x is close to ∂Ω.
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of Ωext containing∞. If Ωext has only one connected component, this will show
that u vanishes in Ωext, and hence by (260) and (261) ρ = 0 on ∂Ω.

Checking (218) requires some calculation. We have

b(x) =

∫
∂Ω

(
∂K

∂νx
(x, y)− ∂K

∂νx
(x∗, y)

)
ρ(y) dy . (219)

Taken individually, each term of the integral looks quite dangerous, for example

∂K

∂νx
∼ 1

|x− y|n
, (220)

which not bounded in L1 (as a function of y) when x→ ∂Ω. However, there is
a lot of cancelation between the two terms.
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Lecture 18, 10/20/2010

We continue with the calculation of function b given by (219). We use the same
set-up as in lecture 16, see (185) and (186). In the coordinate system set up
that way, the points x and x∗ will have coordinates

x = (0, . . . , 0,−ε) , x∗ = (0, . . . , 0, ε) . (221)

On the line xx∗ the normal direction is parallel to the xn-axis. So the normal
derivatives coming into (219) are

− ∂

∂xn

(y − x, ν(y))
|y − x|n

, − ∂

∂xn

(y − x∗, ν(y))
|y − x∗|n

. (222)

Carrying out the differentiation, the first expression is

− 1√
1 + |∇g|2

|y − x|2 + n(y − x, ν(y))(yn − xn)
|y − x|n+2

. (223)

with
ν = (g1, . . . , gn−1,−1) . (224)

Writing gi rather than g,i or gxi , we have

(y − x, ν(y)) = (y1g1 + · · ·+ yn−1gn−1 − g(y′) + xn) . (225)

Using that
y1g1 + · · ·+ yn−1gn−1 − g(y′) = O(|y′|2) , (226)

and xn = −ε we obtain

|y − x|2 + n(y − x, ν(y))(yn − xn) = ε2 +O(|y′|2) + 2εO(|y′|2) . (227)

Using the same calculation with x replaced by x∗ and letting

d = |x− y| d∗ = |x∗ − y| , (228)

we see that∫
∂Ω

∣∣∣∣− ∂

∂xn

(y − x, ν(y))
|y − x|n

+
∂

∂xn

(y − x∗, ν(y))
|y − x∗|n

∣∣∣∣ |ρ(y)| dy. (229)

can be estimated by∫
∂Ω

(
(ε2 +O(|y′|2))( 1

dn+2
− 1

(d∗)n+2
) + 2εO(|y′|2)( 1

dn+2
+

1

(d∗)n+2
)

)
|ρ(y)| dy .

(230)
We have

d2 = |y′|2 + (yn − ε)2 ,
(d∗)2 = |y′|2 + (yn + ε)2 ,

d2 − (d∗)2 = −4εyn = 4εO(|y′|2) .
(231)
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We see from (233) that for small |y′| we have

d2

(d∗)2
= 1 +

4εO(|y′|2)
(d∗)2

= 1 +O(|y′|) ε|y′|
(d∗)2

= 1 +O(|y′|) . (232)

It is important that the implied constants in the O expressions above are inde-
pendent of ε.
We have

1

dn+2
− 1

(d∗)n+2
=

(d∗)n+2 − dn+2

dn+2(d∗)n+2
(233)

and using

(d∗)n+2 − dn+2 = (d− d∗)((d∗)n+1 + (d∗)nd+ · · ·+ dn+1) (234)

together with (233) and (234) we see that

| 1

dn+2
− 1

(d∗)n+2
| <∼ |d

∗ − d|
dn+3

<∼ ε|y′|2

dn+4
, (235)

where we use the usual notation
<∼ to imply that the inequlity is true up to

some unimportant multiplicative factor.
From (233)–(235) we see by some elementary estimates that to estimate (230),
we need to bound, for some R > 0, the integral

I =

∫
BR

ε|y′|2

(|y′|2 + ε2)
n+2
2

dy1dy2 . . . dyn−1 , (236)

where BR denotes a ball of radius R in (n− 1)-dimensional space.
Let us now make substitution

y′ = εz . (237)

In the new variables the integral becomes

I =

∫
BR

ε

|z|2

(|z|2 + 1)
n+2
2

dz1 . . . dzn−1 ≤
∫
Rn−1

|z|2

(|z|2 + 1)
n+2
2

dz =M < +∞ .

(238)
Given that ρ is bounded, we see that we estimated the expression (229) by a
constant independent of ε. However, this is not enough, we need to show that
it approaches 0 as ε→ 0. To obtain such an estimate, we can use the fact that
for ρ = ρ0 = const.∫

∂Ω

∂

∂νx
K(x, y)ρ0 dy =

∂

∂νx

∫
∂Ω

K(x, y)ρ0 dy = 0 , (239)

for x /∈ ∂Ω by (204). This saves the day, as we can freely change ρ by any
constant. When we calculate the limit (218) at x ∈ ∂Ω, we can change ρ(y)
to ρ(y)− ρ(x), and since ρ is continuous, in (230) we can assume that for each
δ > 0 there exists r > 0 such that |ρ(y)| ≤ δ in Bx,2r.
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We now write the integral (229) as∫
∂Ω

· · · =
∫
∂Ω∩Bx,r

· · ·+
∫
∂Ω\Bx,r

· · · = I1 + I2 . (240)

The integral I2 converges to 0 as x → x, as we stay away from the singularity.
The integral I1 will be bounded by ∼Mδ. We see that by choosing r sufficiently
small, the values of I1 will stay close to 0 uniformly as x → x. Repeating the
argument in (197), we see that we have proved (218).88

Let us summarize the situation. We wish to show that the kernel of I +K is
trivial. We assumes that for some continuous ρ we have ρ+Kρ = 0 This means
that the potential (209) vanishes in Ω and we have just shown that when we
approach ∂Ω from Ωext, the normal derivative ∂u

∂ν of u appraoches 0.

Claim: In the situation above, u vanishes in the connected component of Ωext

containing (a neighborhood of) ∞.

Proof: When we know more about the Neumann problem, we will see that there
are many reasons for this statement to be true, but for now we will do what
might first seem like an ad hoc proof by a trick.
We do the following formal calculation∫

Ωext

|∇u|2 =

∫
∂Ωext

u
∂u

∂νext
−
∫
Ωext

u∆u , (241)

where νext = −ν. As both terms on the right-hand side clearly vanish, we see
that u must be constant.
Since Ωext is unbounded, the formal calculation needs to be justified. However,
this is quite easy: We replace Ωext by OR = Ωext ∩BR for some large radius R,
and integrate by parts on OR. In comparison with (241) we get an extra term∫

∂BR

u
∂u

∂ν
. (242)

We know that u is a dipole potential, and therefore

u = O(
1

|x|n−1
),

∂u

∂ν
= O(

1

|x|n
) , |x| → ∞ , (243)

which is more than enough to show that (242) approaches 0 as R→∞. In fact,
one should also be somewhat careful with the calculation at ∂Ω, and we did
not really show that u is C1 in Ωext up to the boundary. However, we showed
that the normal derivative is continuous up to the boundary, with the boundary
value being 0. As u is smooth in Ωext, we can do the fully rigorous calculation

88As an exercise you can check that the limit is uniform for all x ∈ ∂Ω. Note that we need
∂Ω to be of class C2 for the above proof.
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by approaching ∂Ω from Ωext by some smooth surface. The details are left to
the reader as an exercise.
So we see that u is constant in each connected component of Ωext. Since in the
unbounded component u approaches 0 as x→∞, the claim is proved.

Now if Ωext has only one component, that u must vanish in Ωext, and we have
seen that this means, together with the fact that u = 0 in Ω, that the density ρ
generating the potential vanishes. Therefore we have shown that the kernel of
the operator I +K vanishes if Ωext is connected.

89

As you have seen, the direct proof we have just finished that for a connected
Ωext the kernel of I +K is trivial is quite laborious. There is one non-obvious
idea in it, namely that we should look at the normal derivatives, but the rest is
just calculation. In this sense the proof is simple, even though we cannot really
say that it is short.

By the Fredholm theorem, the dimension of the kernel of I +K is the same as
the dimension of the kernel of the adjoint operator I +K∗. As we will see, the
calculation of the kernel of I + K∗ is easier, once we know how the operator
I+K∗ should be interpreted, so working with I+K∗ is probably a more efficient
way to calculate the dimension of the kernels. Nevertheless, the direct way of
dealing with I +K also has some value.

89We recall that we have indicated before that if Ωext is not connected when the kernel
does not vanish. You can show as an exercise that the dimension of the kernel is equal to the
number of bounded connected compoents of Ωext.
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Lecture 19, 10/22/2010

Let us look in more detail at the boundary value problem

∆u = 0 in Ω, and (244)

∂u

∂ν
= g at the boundary ∂Ω , (245)

where ν is the outward unit normal to ∂Ω. We assume that Ω is a bounded
smooth domain. This is usually called the interior Neumann problem.90 Note
that the solution is determined only up to a constant: the homogeneous problem
(with g = 0) has a non-zero solution u = const. This suggests that the non-
homogeneous problem will not be always solvable91, and one can indeed easily
identify a non-trivial necessary condition for the solvability of the problem. We
note that for a solution we must have∫

∂Ω

g =

∫
∂Ω

∂u

∂ν
=

∫
Ω

∆u = 0 . (246)

One can also consider the exterior Neumann problem

∆u = 0 in Ωext, and (247)

∂u

∂ν
= g at the boundary ∂Ω , (248)

u(x) = O(
1

|x|n−2
) when |x| → ∞ and n ≥ 3. (249)

u(x) = c1 log |x|+O(
1

|x|
) when x→∞ and n = 2. (250)

where Ωext=Rn \ Ω. The normal ν is (248) is taken to be the same as in (245)
– it is the outward unit normal of Ω. We do not change the orientation of the
normal when we go from (245) to (248). There are other ways to formulate the
boundary conditions (249) and (250). For example, (249) can be replaced by
u→ 0 as |x| → ∞ and (250) can be replaced by u = c1 log |x|+ o(1). 92

The main issue in choosing the right conditions at ∞ is that we get as close
to both solvability and uniqueness for our problem as possible. You can check
by the integration by parts that we used in the last lecture for proving that u
vanishes in Ωext that our condition (249) in dimensions n ≥ 3 gives uniqueness
when Ωext is connected. Condition (250) also gives uniqueness. When c1 ̸= 0,

90Various interpretations of the boundary condition ∂u
∂ν

= g will be discussed later.
91By analogy with linear algebra, which is usually safe to use with elliptic equations – we

will formulate this more precisely later.
92All this is easy to understand if we know what the asymptotic behavior of harmonic

functions in Rn \ BR with some growth conditions at ∞ is. We have not done this in detail,
but we have all the necessary tools to investigate it. This might be a good topic for the next
homework assignment.
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the total “flux to infinity” given by
∫
∂BR

∂u
∂ν as R → ∞ is 2πc1, which is not

compatible with g = 0 (by integration by parts, using ∆u = 0). So we see that
for g = 0 we must have c1 = 0. For c1 = 0 one can again use the integration by
parts, and obtain uniqueness when Ωext is connected.

An important point in our calculations will be that the normal is well-defined
not just at the boundary, but also in a small neighborhood of it. In particular,
when u is defined inside Ω, the normal derivative ∂u

∂ν (x) is well defined for x
sufficiently close to ∂Ω, and similarly for Ωext.

We will try to solve both the interior and the exterior Neumann problems by
suitable potentials. It turns out that in this case the right potential to consider
is the Newton potential of a density ρ at ∂Ω,

u(x) =

∫
∂Ω

2K0(x− y)ρ(y) dy , x ∈ Rn \ ∂Ω . (251)

We then have

∂u

∂ν
(x) =

∫
∂Ω

2
∂

∂νx
K0(x− y)ρ(y) dy , x close to ∂Ω, x ̸= ∂Ω. (252)

The key is again to calculate the limits of ∂u∂ν (x) as x approaches the boundary.

By similar calculation as those we have done for the Dirichlet problem, it is
possible to show that for continuous ρ the normal derivative (252) has limits as
x approaches the boundary from Ω or from Ωext. The limits can be expresses in
terms of ρ and the kernel K(x, y) defined earlier in connection with the Dirichlet
problem, see (180). Recall that

K(x, y) = −2∂K0

∂νy
(x− y) = 2

|Sn−1|
(y − x, ν(y))
|y − x|n

. (253)

This should be compared with the expression

2
∂

∂νx
K0(x− y) (254)

in (252). We have

2
∂

∂νx
K0(x− y) = −2

∂K0

∂νy
(x− y) , (255)

and hence

2
∂

∂νx
K0(x− y) = K(y, x) , x, y ∈ ∂Ω, x ̸= y . (256)

We introduce
K∗(x, y) = K(y, x) . (257)
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We will denote by K∗ the operator defined on functions ρ : ∂Ω by

K∗ρ(x) =

∫
∂Ω

K∗(x, y)ρ(y) dy. (258)

We note that K∗ is the L2-adjoint of the operator K, which means that∫
∂Ω

(Kρ1)(y)ρ2(y) dy =

∫
∂Ω

ρ1(y)(K
∗ρ2)(y) dy . (259)

With this notation, the limits of ∂u
∂ν (x) (given by (252)) as x approaches the

boundary can be calculated as follows.

lim
x→ x ∈ ∂Ω

x ∈ Ω

∂u

∂ν
(x) = −ρ(x) +K∗ρ(x) , (260)

and

lim
x→ x ∈ ∂Ω
x ∈ Ωext

∂u

∂ν
(x) = ρ(x) +K∗ρ(x) . (261)

The proofs are similar to the calculations we have done in connection with the
Dirichlet problem, see (200), and we will not go into details.
Let us now summarize the integral equation we get in connection with the
interior and exterior Neumann problems, as well as the interior and exterior
Dirichlet problems.

Strictly speaking, we have not talked much about the exterior Dirichlet problem,
but it is exactly what one would expect: find a harmonic u is Ωext with u = g
at ∂Ω and suitable decay at ∞. If we seek the solution of the exterior Dirichlet
problem in terms of the same dipole potential (181), we get integral equation

g = −ρ+Kρ . (262)

So we have four problems, the exterior/interior Dirichlet/Neumann problems,
and four integral equations at ∂Ω associated with them. All four equations can
be formulated in terms of just one integral operator, the operator K introduced
in connection with the interior Dirichlet problem.
The situation can be summarized in the following table.

interior exterior

Dirichlet (I +K)ρ = g (−I +K)ρ = g
Neumann (−I +K∗)ρ = g (I +K∗)ρ = g

LetX be the space of all continuous functions and ∂Ω. From Fredholm theorems
we know

dim Ker (±I +K) = dim Ker (±I +K∗) ,
(±I +K )(X) = [Ker(±I +K∗)]⊥ ,
(±I +K∗)(X) = [Ker(±I +K )]⊥ ,

(263)
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where in each line we always take the same signs, and

Y ⊥ = {ρ ∈ X ,

∫
∂Ω

ρη = 0 for each η ∈ Y }. (264)

We have seen in the last lecture that

dim Ker(I +K) = # of bounded connected components of Ωext (265)

and that, denoting by Ω0
ext the unbounded component of Ωext,

Ker(I +K) = {ρ ∈ X , ρ is locally constant at ∂Ω and ρ|∂Ω0
ext

= 0} . (266)

Repeating the same arguments for −I +K, one gets

dim Ker(−I +K) = # of connected components of Ωext (267)

and
Ker(−I +K) = {ρ ∈ X , ρ is locally constant at ∂Ω} . (268)

This shows for example (together with (263) and (246) that if Ωext is connected,
then the Neumann problem is solvable if and only if

∫
∂Ω
g = 0.93

We can also use (263) to an alternative way of finding the dimension of the
kernels. Let us look for example at Ker (I +K∗). If

ρ+K∗ρ = 0 (269)

then the normal derivative ∂u
∂ν of the potential (251) vanishes at ∂Ω as we

approach ∂Ω from Ωext. This means that u is constant in each connected com-
ponent of Ωext. We note that u is continuous across ∂Ω, 94 and that u(x) → 0
as x→∞, i. e. u vanishes in the unbounded component of Ωext. Hence if Ωext

is connected, then u has to vanish and Ker (I + K∗) = {0}. We see that the
proof that the kernels of I +K and I +K∗ are trivial in the case when Ωext is
connected is quite simpler if we work with I +K∗.
If Ωext has bounded connected components Ω1

ext, . . . ,Ω
m
ext, we we expect that

we can choose the value of the constant cj for which u = cj in Ωjext, so the
dimension of the kernel will be m. However, the corresponding densities ρ
which will give such potentials are non-trivial. So while the argument gives
easily that dim Ker(I +K∗) ≤ m, establishing that the dimension is exactly m
would probably not be simpler than the proof using I + K, as for I + K the
densities in the kernel are locally constant, and hence exlicit.

In the case when Ωext is not connected, we can see that the method of bound-
ary integral equations has a certain defect: the integral equations do not always

93This is also the case when Ωext is not simply connected, but one needs to work some more
to prove it.

94This statement is much easier to see than the continuity of the normal derivative across
∂Ω in the case of the dipole potential.
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have a solution, even when we expect that the original problem will be solv-
able. This is due to the fact that the solutions of the original interior Dirichlet
problem (say), cannot be given by the dipole potential. One can work around
this by using (263) in the following way. Let us consider the example of the in-
terior Dirichlet problem, and assume Ωext has bounded connected components
Ω1

ext, . . . ,Ω
m
ext. Let us choose aj ∈ Ωjext, and set hj = K0(x − aj). These func-

tions are harmonic in Ω. It is clear that if we can solve the exterior Dirichlet
problem with g replaced by g −

∑m
j=1 cjhj for some constants cj , then we can

also solve the original problem with g. We can now try to find suitable constants
c1, . . . , cm so that the function g̃ = g −

∑m
j=1 cjhj will be perpendicular to the

kernel of I +K∗, and hence the interior Dirichlet problem will be solvable by
a dipole potential when g is replaced by g̃. This is possible, but you can see
that the method is becoming a little unwieldy. We will not go further into the
details, but it is a very good exercise to work them out.
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Lecture 20, 10/25/2010

Today we start with the Direct Method for solving elliptic problems. We first
illustrate the main idea of the method in a finite-dimensional situation. Let
us consider an electrical circuit consisting of resistors. We could also call it a
network of resistors. The circuit has n nodes. We fix some numbering of the
nodes and will call each node by its number. We assume that

• the voltage at node i is Ui

• the resistor between modes i and j has resistance Rij . We allow Rij =
+∞, which is equivalent to saying that there is no resistor between i and j.

• The current flowing from from node i to j through the resistor Rij is Iij .
We have Iij = −Iji.

• Ohm’s law: IijRij = Ui − Uj . (No summation implied by the repeated
indices.)

• The nodes are divided into two groups: “interior nodes”, which are not
connected to any outside device, and “boundary nodes” which are con-
nected to an outside device.

• Kirchhoff’s law: For any “interior node” i we have
∑n
j=1 Iij = 0.

• “Boundary conditions” are given at the boundary nodes. For a boundary
node i the boundary condition can be either Ui = given voltage Vi, (we can
imagine that the node is connected to some device which keeps the voltage
constant), or

∑n
j=1 Iij = Ij , which means that the node is connected to

a device which keeps the current coming to that node from the device
constant.95 The set of the boundary nodes where the voltage is given
will be denoted by D, the set of the boundary nodes where the current is
given will be called N , and the set of the interior nodes will be called F .
Note that we do not really have to distinguish between N and F if we set
Ii = 0, i ∈ F .

Given any “boundary conditions”,we would like to find the voltages Ui for all i.

There is more than one way to solve this problem. For example, one can write
down the system of equations which we get from the Kirchhoff’s law and the
Ohm’s law and show that it can be solved, under some natural assumptions.
This is doable, but it is not the most appealing way to deal with the problem.
A more elegant method is the following.
Let us introduce a quantity

P =
1

2

n∑
i,j=1

(Ui − Uj)2

Rij
−
∑
i∈N

UiIi . (270)

95One can also consider more general boundary conditions, such as “mixed boundary condi-
tions”, but for simplicity we will restrict our considerations to the two type of nodes described
above.
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The first term in P is related to the power consumed by the resistors, the second
term is related to the power drawn from the outside devices connected to the
N nodes. (Some power might also be drawn from the devices connected to the
D nodes, but this part does not explicitly appear in P .)
Let us now consider the problem

Minimize P over all possible voltages at the nodes in N ∪F , with the voltages
at the nodes in D being fixed to the given values Vi, i ∈ D:

min {P (U1, . . . , Un); Ui = Vi for i ∈ D, Ui arbitrary for i ∈ N ∪ F} . (271)

If P attains its minimum at (U1, . . . , Un), we will have

∂P

∂Ui
= 0 , i ∈ F ∪N , (272)

and it is easy to check that, taking into account Ohm’s law, (272) expresses the
Kirchhoff’s law when i ∈ F and the boundary condition

∑
j Iij = Ii for i ∈ N .

We see that our problem is equivalent to finding the voltages Ui, i ∈ N ∪ F
for at which P has a critical point. As P is clearly convex, any critical point
has to be a minimum. To prove that our problem is solvable, it is enough to
show that P attains its infimum over the set of the admissible voltages. This
is easily seen when D ̸= ∅. In that case we get the existence and uniqueness of
the solution from the variational immediately, without any detailed analysis of
the equations. For uniqueness, note that when D ̸= ∅, then P is strictly convex
in {Ui}i∈F∪N and use the fact that a strictly convex function cannot attain its
minimum at two different points.

When D = ∅, we note that when Ui = A for all i, we have

P = −A
∑
i∈N

Ii (273)

and we see that
∑
i Ii = 0 is a necessary condition for P to attain its infimum.

One can also see directly that
∑
i∈N Ii = 0 is a necessary condition for the

solvability of the linear system of equations associated with our problem.

If D = ∅ and the condition
∑
i∈N Ii = 0 is satisfied, then one can check eas-

ily that P attains its infinum. In that case the function P does not change if
we shift Ui → Ui + A. On any subspace complementary to the 1d subspace
(A,A, . . . , A), A ∈ R.96 The function P will be strictly convex on such a sub-
space, and hence the solution will be unique modulo the shifts Ui → Ui+A, i ∈
N ∪ F .

96One can also think of P as a function on a factor space Y=Rn/(R(1, . . . , 1)). One can
check that P is strictly convex on Y .
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The Laplace equation with Dirichlet/Neumann boundary conditions can be
thought of as an infinite-dimensional version of the problem above. In fact,
one can approximate the problem

∆u = 0 in Ω ,
u = g1 on Γ1 ⊂ ∂Ω ,
∂u
∂ν = g2 on Γ2 = ∂Ω \ Γ1

(274)

by the finite-dimensional problems above. In some sense, the PDE problem (274)
is a continuous version of the circuit problem above, with a particular arrange-
ment of the resistors. Consider a fine mesh (made of out of a conducting wire
with some non-zero resistance) covering Ω. The nodes will be identified with the
points where the wires of the mesh cross. The wires connecting the nodes will
be identified with the resistors. The points of the mesh inside Ω will correspond
to nodes F , the meshpoints at Γ1 will correspond to nodes D, and the nodes at
Γ2 will correspond to nodes N . The voltages Vi, i ∈ D correspond to g1 and
the currents Ii, i ∈ N correspond to g2. The analogue of the function P will
be the functional

J(u) =

∫
Ω

1

2
|∇u|2 −

∫
∂Ω

g2u , (275)

which should be minimized over all (sufficiently regular) functions with u = g1
on Γ1.

One can see easily that the finite-dimensional problem with the mesh will have
a solution – the minimizer of P . In the case Γ2 = ∂Ω, we will have to have
a compatibility condition

∑
i∈N Ii = 0, corresponding to

∫
∂Ω
g2 = 0, which is

necessary when Γ2 = ∂Ω.

One way to prove the existence of (274) would be to show that the solutions of
the finite-dimensional problems (with suitable normalization of the boundary
curents) converge to a suitable limit as the mesh size approaches zero, and the
limit is a solution of (274). This is doable, and provides one way of proving
existence results for PDEs. Another method is to work directly in the infinite-
dimensional setting, and this is what we will do. The results about the solutions
obtained independently of particular approximations are in fact useful for the
study of the convergence of the approximations to the PDE solution.

Consider a positive definite symmetric n × n matrix A and the corresponding
quadratic quadratic form

P (x) =
1

2
(Ax, x) . (276)

Let us set for each y ∈ Rn

Q(y) = inf
x
P (x)− yx . (277)

For each y ∈ Rn the minimum of P (x)− yx is attained for x which solves

Ax = y . (278)
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As an exercise, you can prove that Q is a quadratic form given by −A−1, the
negative inverse matrix of A. For each y the solution of P ′(x) = y is given by x =
−Q′(y). For this it is not so important that P be quadratic, the main assumption
needed is that P be convex, although one needs a little more if we demand that
x → P ′(x) covers the whole Rn. The function Q is then defined in the same
way as above, and will be concave. The equation P ′(x) = y will be inverted
by y = −Q′(x). The function Q is called the Legendre transformation of P .
(Sometimes the Legendre transformation is defined by Q(y) = supx(xy−P (x)).
With this definition it is convex and the inversion of P ′(x) = y is x = Q′(y).)
Legendre transformation is interesting even in dimension 1, and it is a good
exercise to work out the details of the statements above in the 1d case.
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Lecture 21, 10/27/2010

Let us consider the problem

∆u = f in Ω ,
u = 0 at ∂Ω ,

(279)

where f is a “sufficiently regular” function, and Ω is a smooth bounded domain.
The condition of being “sufficiently regular” is somewhat ambiguous – its mean-
ing can depend on the context. For example, we will see that for some purposes
f ∈ L2(Ω) is already “sufficiently regular”. For other aspects it is good to as-
sume that f is Hölder continuous, i. e. f ∈ C0,α. If we look at higher derivatives
of u, it is natural to have assumptions about derivatives of f . Each aspect of the
problem has its natural assumptions on f . We say that f is sufficiently regular
if we expect that some assumptions on f will be needed for our investigation,
but we are leaving open for the moment what exactly those assumptions are.
Of course, eventually we have to make some precise statement, and say exactly
what the assumptions on f are.

Instead of (279) we could choose some other boundary conditions, such as those
in (274) (and we will see later that it is easy to incorporate them), but for now
we wish to illustrate the main idea of the Direct Method in a simple setting,
and problem (279) seems to be well-suited for that.

Based on the last lecture, we know that the following functional will play an
important rôle.

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dx . (280)

Let X denote some space of functions u : Ω → R which vanish at ∂Ω and are
sufficiently regular in the sense above. These assumptions are not very precise
yet, we will make them precise after it becomes clearer what is really important
for our approach. For now we can say that we wish that if u ∈ X then

• The functional (280) is well-defined, and

• u → 0 is some sense as we approach ∂Ω. The strongest sense would be
to assume that u has a continuous extension to Ω which vanishes at ∂Ω.
However, we will see that one can work with weaker notions, which are
not defined by point-wise limits.

We would like to minimize J over X. There are several issues which we have to
clarify.

A. Is J bounded from below on X? (Boundedness from below is clearly a
necessary condition for minimization.)

B. Is the infimum of J over X attained on some element u ∈ X?

Note that once we know that there exists u ∈ X such that

J(u) ≤ J(u) for all u ∈ X, (281)
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then we know that for each smooth, compactly supported φ : Ω→ R the function

t→ J(u+ tφ), t ∈ R (282)

attains its minimal value at t = 0. We note that t → J(u + tφ) is a quadratic
function of t, and since it attains minimum at t = 0, we must have

0 =
d

dt
|t=0 J(u+ tφ) =

∫
Ω

(∇u∇φ− fφ) dx . (283)

If we can integrate by part and put the derivatives on u, we obtain∫
Ω

(−∆u− f)φdx = 0 for each φ : Ω→ R smooth and comp. supported in Ω.

This means that −∆u = f , at least if u is sufficiently regular, which we however
do not know at this point.

As the function φ is smooth, we can integrate by parts and put the derivatives
on φ without any problems to obtain∫

Ω

(−u∆φ− fφ) dx = 0 . (284)

We recall this is exactly the definition from lecture 5 that −∆u = f is satisfied
weakly. Note that Weyl’s Lemma which we proved in lecture 4 implies that in the
interior of Ω the function u has the same degree of smoothness as the potential
K0∗f (where we extend f by zero outside Ω). This is because ∆(u−K0∗f) = 0
weakly and therefore it is smooth in Ω by Weyl’s Lemma.

Although it is worth mentioning these connections to some of the previous
material we covered, the passage to the weak solution in the sense of lecture 4,
and the use of Weyl’s Lemma is somewhat unnatural in this situation, as the
methods we used in lectures 4,5 are quite different from the Direct Method. It is
much more natural to prove regularity of u within the Direct Method, without
resorting to the use of the potentials. This is what we will soon do. You will
see that the proof via the Direct Method will have the advantage of covering
the case of variable coefficients practically without any extra work.

In any case, we see that it is not so hard to justify that the minimizer u should
satisfy the equation −∆u = f in Ω, at least in some weak sense. How is it with
the boundary condition? The condition u|∂Ω = 0 is a part of the “definition” of
X above, and therefore u should vanish at the boundary by definition. However,
this is where we have to do some work and make sure that the condition u|∂Ω = 0
will “survive” the minimization procedure. We will see that this is indeed the
case, but it should be emphasized that it is not automatic. It is not difficult to
give examples of boundary conditions which will not “survive” the minimization
procedure.97 In fact, we will see that if we replace Ω by Ω \ {a} for some point

97Such examples were already known to Weierstrass, who constructed them in order to show
that – in comparison with the finite-dimensional situation – the minimization procedure in
function spaces can have many more subtleties.
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a ∈ Ω 98and try to impose the condition u(a) = 0 at this new part of the
boundary, then typically this extra boundary condition will not survive the
minimization, except in dimension n = 1.

We will now start addressing the points A, B above.

Lemma (weak Poincare inequality)
Assume Ω is contained in a cube of size A. Then for each C1 function u : Ω→ R
vanishing at ∂Ω we have ∫

Ω

|u|2 dx ≤ A2

∫
Ω

|∇u|2 dx. (285)

Proof: Choose coordinates so that the cube is [0, A]n. Extend u by 0 outside
Ω. For each x ∈ Ω ⊂ [0, A]n we have, by Cauchy-Schwartz inequality,

|u(x)|2 =

(∫ x1

0

∂u

∂x1
(s, x2, . . . , xn) ds

)2

≤ A
∫ A

0

| ∂u
∂x1

(s, x2, . . . , xn)|2 ds .

(286)
Integrating this inequality over x, we get (285).

It is now easy to see that J is bounded from below:

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dx ≥ 1

2
||∇u||2L2 − ||f ||L2 ||u||L2 ≥ (287)

1

2
||∇u||2L2 −A||f ||L2 ||∇u||L2 ≥ −1

2
A2||f ||2L2 . (288)

Let
m = inf

u∈X
J(u) , (289)

and let uj , j = 1, 2, . . . be a minimizing sequence for J , in the sense that

J(uj)↘ m j →∞ . (290)

One can see from (287) that the sequence ∇uj is bounded in L2(Ω). 99 In finite
dimension we could now use compactness and choose a converging subsequence
to complete the proof. This argument cannot be used in our infinite-dimensional
function space. However, the structure of the functional J gives us what is
needed:

Lemma
With the notation introduced above, let uj be a minimizing sequence for J .
Then ∇uj is a Cauchy sequence in L2.

98The new domain Ω \ {a} will not have smooth boundary, of course.
99In this case the function space is the space of vector-valued functions, but we still denote

it in the same way as the corresponding space of the scalar functions. As you will see, there
is no danger of confusion from this.
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Proof: Heuristically, the reason is the following: if f is a uniformly convex func-
tion on R, m = inft∈R f(t) and f(t1), f(t2) are both close to m, then t1, t2 must
be close to each other. The heuristics is justified by the following calculation.
Assume

m ≤ J(u1) ≤ m′, m ≤ J(u2) ≤ m′. (291)

One checks easily that

J

(
u1 + u2

2

)
+

1

2
||∇u2 −∇u1

2
||2 =

1

2
[J(u1) + J(u2)] . (292)

Hence

1

2
||∇u2 −∇u1

2
||2 ≤ 1

2
[J(u1) + J(u2)]− J

(
u1 + u2

2

)
≤ m′ −m, (293)

and the statement easily follows.

We have established that the sequence ∇uj is Cauchy in the space L2(Ω). The
Lebesgue theory now implies that ∇uj must converge in L2 to some limit, let
us call it w = (w1, . . . , wn). We expect that w = ∇u for some u and that the
function u will be the minimizer of our functional. Note that the existence of
the limit w would be hard to establish without Lebesgue integration. Next time
we introduce function spaces in which the limiting function u will live. This will
settle the still unanswered question what exactly the space X is.
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Lecture 22, 10/29/2010

Recall that Ω is a bounded smooth domain. Let us set

D(Ω) = {φ : Ω→ R; φ is smooth and compactly supported in Ω.} (294)

We consider the norm || · ||H1
0
on D(Ω) defined by

||φ||2H1
0
=

∫
Ω

|∇φ|2 dx . (295)

By the weak Poincarè inequality (285) we know that

||φ||L2 ≤ A||∇φ||H1
0
. (296)

This means that the completion of D(Ω) in norm || · ||H1
0
can be considered as

a certain subset of the space L2(Ω). (We know that D(Ω) is dense in the space
L2(Ω).) In particular, every set in the completion can be identified with an
L2-function. We can therefore say that the completion is a subset of L2(Ω). We
set

H1
0 (Ω) = the completion of D(Ω) in the norm || · ||H1

0
. (297)

If v ∈ H1
0 (Ω) we have a sequence vj ∈ D(Ω) converging to v in L2(Ω) such

that the gradient ∇vj converge in L2(Ω) to some vector-valued function w =
(w1, . . . , wn). It should be the case that

w = ∇v , (298)

but in which sense? Easy examples show that H1
0 (Ω) is not contained in C1(Ω).

The following definition addresses this point.

Definition
Let u, u1, . . . , un be locally integrable functions in an open set Ω. We say that

∂u

∂xk
= uk (299)

in the sense of distributions if∫
Ω

−u ∂φ
∂xk

dx =

∫
Ω

ukφdx (300)

for each φ ∈ D(Ω). In the above situation with vj → v and ∇vj = wj → w in
L2(Ω), it is easy to check that ∇v = w in the sense of distributions.

An important point now is that for the derivative defined in the sense of distri-
butions, many of the basic rules we use for the point-wise derivative remain true
for the distributional derivative. For example, it commutes with mollification.
More precisely, if ϕε(x) =

1
εnϕ(

x
ε ) and Ωε = {x ∈ Ω; dist (x, ∂Ω) > ε}, then

∂

∂xj
(ϕε ∗ v) = ϕε ∗ (

∂

∂xj
v) (301)
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in Ωε.
We leave the proof of (301) to the reader as an easy exercise. The main point is
that the new definition of the derivative – just as the classical one – commutes
with the shifts v → τyv : x→ v(x− y) and, is linear in v.

One can use (301) to show that the derivative in the sense of distributions has
many of the properties we usually associate with the derivative. For example,
one has

If v is locally integrable in Ω and ∇v = 0 in the sense of distributions, then v is
constant in Ω.

Proof: Let vε = ϕε ∗ v and let Ωε be defined as above. Then

∇vε = ∇(ϕε ∗ v) = ϕε ∗ (∇v) = 0 in Ωε,

and hence vε is constant in Ωε for each ε > 0. As vε → v in L1
loc(Ω), we see

that v will be a limit of vε, and hence it will be constant on Ωε.

Remark: The above proof can be interpreted in the following way. Assume first
that we are in dimension n = 1 for simplicity and Ω = (a, b). Let v ∈ L1

loc(a, b),
and let x1, x2 ∈ (a, b), x1 ≤ x2. Assume ε < min (x1 − a, b− x2). The integrals∫ b
a
v(x)ϕε(x − xj) dx, j = 1, 2 , converge respectively to v(x1) and v(x2) at the

Lebesgue points of v. We note that the function x→ ϕε(x− x1)− ϕε(x− x2)
is a derivative of a smooth compactly supported function ψ : (a, b) → R de-
fined simply by ψ(x) =

∫ x
a
ϕε(x

′ − x1) − ϕε(x′ − x2) dx′ . Hence we must have∫ b
a
v(x)ϕε(x− x1) dx =

∫ b
a
v(x)ϕε(x− x2) dx and in the limit ε→ 0 we see that

v(x1) = v(x2).

The main point here is that the condition
∫ b
a
−vψx = 0 for each ψ ∈ D(a, b) is

equivalent to saying that
∫ b
a
vη = 0 for each η ∈ D(a, b) with

∫
η = 0.

As an exercise, you can check that similar interpretation also works in higher
dimensions. Note first that it is enough to do the proof when the segment [x1 x2]
belongs to Ω. One can then integrate on each line parallel to [x1, x2] in the same
way as above to obtain ψ ∈ D(Ω) such that b∇ψ(x) = ϕε(x− x1)− ϕε(x− x2),
where b = (x2 − x1)/|x2 − x1|. 100

Returning back to our space H1
0 and the question in which sense we have (298),

it is easy to see that we have w = ∇v in the sense of distributions.

If v ∈ H1
0 (Ω), then ∇v = w in the sense of distributions for some w =

(w1, . . . , wn) ∈ L2(Ω). If v = lim∇φj in the norm || · ||H1
0
with φj ∈ D(Ω),

then w = lim∇φj in L2(Ω).

100The most natural approach here would be to show that each η ∈ D(Ω) with
∫
Ω η = 0

can be written as η = divψ for some ψ = (ψ1, . . . , ψn) ∈ D(Ω). This is true and the above
method more or less shows that, but some details would still have to be filled in.
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The proof is immediate by using the standard convergence results from Lebesgue
theory in our definitions. 101

Let us now consider v ∈ L2(Ω) such that ∇v = w ∈ L2(Ω) is the sense of
distributions. When do we have v ∈ H1

0 (Ω)? If we avoid questions about the
behavior of v near the boundary ∂Ω, the asnwer is simple:

If v ∈ L2(Ω) is compactly supported in Ω and ∇v = w ∈ L2(Ω) in the sense of
distributions, then v ∈ H1

0 (Ω).

Proof: Let us take vε = ϕε ∗ v. These functions are well-defined and compactly
supported in Ω for sufficiently small ε. We have ∇vε = ϕε ∗ w. As ϕε ∗ w → w
is L2 as ε→ 0, we see that v ∈ H1

0 (Ω).

When we do not avoid the boundary, the answer the conditions characterizing
v ∈ H1

0 (Ω) are still simple and natural, but one has to work a bit more. We will
deal with that situation next time.

101As is the case with many other results about distributions, the proofs are simple. The
non-trivial part of the theory is in choosing the right definitions. There are many ways to
generalize the point-wise definitions of derivatives, but most of them are not suitable for PDEs.
The definition above (which is a special case of a more general definition due to L. Schwartz)
gives us all the flexibility we need, while preserving the basic properties we expect from the
derivatives, e. g. that a function with vanishing derivatives must be constant.
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Lecture 23, 11/1/2010

In addition to the space H1
0 (Ω) we have introduced last time, it is natural to

introduce the following spaces.

W 1,2(Ω) =

{v ∈ L2(Ω), ∇v = w in distributions for some w = (w1, . . . , wn) ∈ L2(Ω)},

with the norm defined by

||v||2W 1,2 = ||v||2L2 + ||∇v||2L2 . (302)

Let us denote by E(Ω) the space of restrictions to Ω of smooth functions defined
in some neighborhood of Ω. We define

H1(Ω) = closure of E(Ω) in W 1,2(Ω) . (303)

We clearly have
H1

0 (Ω) ⊂ H1(Ω) ⊂W 1,2(Ω) . (304)

Our first goal is to show that

H1(Ω) =W 1,2(Ω) (305)

for bounded regular domains Ω.
We first describe an elementary localization technique which is useful for this
purpose and also in other situations.
Let O1,O2, . . .Om be open sets covering Ω, and assume Uj ⊂ Uj ⊂ Oj , j =
1, . . . ,m be open sets still covering Ω. Consider non-negative smooth functions
ϕ̃j which are compactly supported in Oj with ϕ̃j > 0 on Uj , and set

ϕj =
ϕ̃j

ϕ̃1 + · · ·+ ϕ̃m
. (306)

The functions ϕj are obviously well-defined, smooth, and non-negative in some
neighborhood O of Ω and

ϕ1 + · · ·+ ϕm = 1 in O. (307)

We mention one more step one can take, although we will not really need it for
now. We can take a smooth function η compactly supported in O with η = 1
in some neighborhood of Ω and replace the functions ϕj by ηϕj . With this
new definition, the functions ϕj are smooth and globally defined in Rn, their
support is contained in Oj , and one has (307) with O replaced by a smaller
neighborhood of Ω.
The system of functions ϕ1, . . . ϕm we have constructed is often called the par-
tition the unity for Ω.
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If u ∈ W 1,2(Ω) and a smooth function φ defined in a neighborhood of Ω, the
function φu also belong to W 1,2(Ω), and the distributional derivative of φu is
given by the usual Leibnitz rule:

∇(φu) = (∇φ)u+ φ∇u . (308)

This is an immediate consequence of the definitions and the Leibnitz rule for
smooth functions.102

For any function u ∈W 1,2(Ω) we can write

u = uϕ1 + · · ·+ uϕm = u1 + · · ·+ um , (309)

and – as we have just seen – we have uj ∈W 1,2(Ω) , j = 1, 2, . . . ,m .
The support of the functions uj is contained in the set Oj of the original cover
of Ω. By taking Oj to be small balls, we can achieve that each uj is either
compactly supported in Ω, or is supported in a neighborhood of a boundary
point, such that the boundary ∂Ω in that neighborhood is very close to being
flat. This is not the case if the boundary is merely Lipschitz.103 However, even
for Lipschitz functions this localization can achieve that each uj which does
not vanish close to ∂Ω has all its support near ∂Ω and in an area where ∂Ω is
described in a single coordinate frame by a graph of a Lipschitz function.

Let us now go back to the proof of H1(Ω) = W 1,2(Ω). The only non-trivial
part is to show that each u ∈ W 1,2(Ω) can be approximated in the W 1,2-norm
by functions smooth in Ω. It is clear that for this it is enough to approximate
each function uj in the decomposition (309). If the support of uj is contained
in Ω, we can approximate just by mollification, as we did in the last lecture. It
remains to deal with the case when the support of uj intersects the boundary.
Assume that uj is supported in a small area near ∂Ω, and that ∂Ω is described
by xn = g(x′), with x′ = (x1, . . . , xn−1) and g Lipschitz, and Ω is locally
described by xn > g(x′). In this picture the approximation of uj is simple. The
only obstacle to straightforward mollification is the possible interference coming
from the boundary, when we would need the values of uj outside of Ω for the
mollification. This is however easily fixed by slightly shifting uj in the negative
direction of the xn axis: we replace uj by uδj with uδj(x

′, xn) = uj(x, xn + δ)

for some small δ > 0. Now we can mollify the shifted function uδj . We let

uδ,εj = ϕε ∗uj , where ϕε is the usual mollifier. It is easily seen that after we have

chosen δ, we can choose a small ε > 0 so that all the values of uδ,εj in Ω are

well-defined only in terms of uδj , without a need for extending it. Moreover, the

restriction of uδ,εj to Ω is close to the restriction of uδj to Ω in the W 1,2-norm.

As uδj is close to uj in W
1,2-norm for small δ, the proof is easily finished.

102We notice again how well the definition of the distributional derivative works. The proof
of the Leibnitz rule is more or less automatic.
103By definition, this means that ∂Ω is locally described by a graph of a Lipschitz function.
We recall that a function g is Lipschitz if |g(x1) − g(x2)| ≤ L|x1 − x2| for some constant L
for all x1, x2 in the domain of the function.
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Lecture 24, 11/3/2010

Recall that our goal is to minimize functional (280) over a suitable space X of
functions on Ω for which J is well-defined and which vanish at ∂Ω. From what
we have seen so far it is clear what X should be. The minimizing sequence of J
will always be Cauchy in H1

0 (Ω) and hence it is natural to take

X = H1
0 (Ω) . (310)

With this choice any minimizing sequence uj for J will converge to an element
u ∈ H1

0 (Ω), and we have seen in lecture 21 that u will satisfy (283) and (284).
So u satisfies the right equation, at least weakly. We now address the question
if u also satisfies the correct boundary condition, at least in some weak sense at
first. (Later we will see that for smooth data our minimizer will be smooth in
Ω and vanish at ∂Ω.)

It may be useful to look first at some simple examples of (irregular) domains for
which the boundary condition is not preserved everywhere by the minimization
procedure, i. e. the minimizer u does not vanish everywhere where the members
of the minimizing sequence uj do.

Let take a point a ∈ Ω and consider the domain Ωa = Ω \ {a} for n ≥ 2. We
claim that H1

0 (Ω\{a}) = H1
0 (Ω), unless n = 1. This implies that if we minimize

our functional over smooth functions in Ωa with the boundary condition that
u = 0 in ∂Ωa in dimension n ≥ 2, the limit ua of any minimizing sequence
will be the same as if we do not take the boundary condition u(a) = 0 into
account. Therefore, unless the minimizer u of the problem is Ω happens to
satisfy u(a) = 0, the problem in Ωa does not have a minimizer, in the sense that
no sufficiently regular function with u(a) = 0 can be a minimizer. If we take a
smooth minimizing sequence uj of J in Ωa which will satisfy uj(a) = 0, its limit
u may not satisfy u(a) = 0. Again, all this is true in dimensions n ≥ 2. For
n = 1 the condition u(a) = 1 will be preserved under convergence in H1

0 (Ω). (It
is a good exercise to prove this.)

The examples are especially easy in dimensions n ≥ 3. We can clearly assume
a = 0 without loss of generality. Let ψ : R→ R be a smooth function supported
in the unit ball B1 such that ψ = 1 is some neighborhood of 0, and for ε > 0 set

ψε(x) = ψ
(x
ε

)
. (311)

The support of ψε is contained in Bε. We still have ψε = 1 in some (even
smaller) neighborhood of 0. We can calculate∫

Rn

|∇ψε|2 dx = εn−2

∫
Rn

|∇ψ|2 dx → 0, n ≥ 3 . (312)

For any u ∈ D(Ω) we can consider the function ũ = u(1− ψε). We have

||ũ− u||H1
0
= ||∇uψε + u∇ψε||L2 ≤ ||∇uψε||L2 + ||u∇ψε||L2 → 0 , ε→ 0 .

(313)
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We any u ∈ D(Ω) can be approximate as closely the H1
0 -norm as we wish by

ũ ∈ D(Ω \ {a}). We have shown the case n ≥ 3 of the following

Proposition
D(Ω \ {a}) is dense in H1

0 (Ω) when n ≥ 2.

Proof: Above we proved the case n ≥ 3. It remains to do the proof for n = 2.
The idea is the same, except we have to be more careful with the choice of ψε.
Let us consider a smooth non-negative radial function ϕ : R2 → R supported
in B1 \ B 1

2
with

∫
ϕ = 1. Set ϕδ = 1

δ2ϕ(
x
δ ) and Kδ(x) = ϕδ ∗ K0, where

K0(x) = 1
2π log |x|. Note that Kδ is constant near 0 and coincides with K0

outside a ball of radius δ. To prove the proposition, assume without loss of
generality that a = 0 and that Br ⊂ Ω. Let η be a cut-off function such that is
η ≡ 1 in B r

4
and support η ⊂ B r

2
. Finally, set

ψδ(x) = η(x)
Kδ(x)

Kδ(0)
. (314)

The function ψδ is supported in B r
2
, is ≡ 1 in B δ

2
for δ < r

4 , and a simple direct

calculation shows that ||∇ψδ||L2 → 0 as δ → 0. We can now proceed with the
proof in the same way as in the case n = 3 above, replacing ψε by ψδ.

As an exercise you can show that for n ≥ 2 we also have

W 1,2(Ω) =W 1,2(Ω \ {a}) and H1(Ω) = H1(Ω \ {a}) . (315)

The functions (314) and (311) can be used to prove theorems about remov-
able singularities for harmonic functions, which are closely related to the above
proposition. For example, one has

Lemma104

Assume u is a bounded harmonic function in Ω\{a}. Then u can be continuously
extended to Ω and the extended function is harmonic in Ω.

Proof (a sketch): We assume that a = 0. By Weyl’s lemma (lecture 4), it is
enough to show that ∫

Ω

u∆φ = 0 (316)

for each φ ∈ D(Ω). Our assumption implies that (316) holds for φ ∈ D(Ω\{a}).
Let φ ∈ D(Ω) and let ψδ be as in (314) (when n=2). We know that∫

Ω

u∆(φ(1− ψδ)) = 0 (317)

104The assumptions of the lemma can be weakened in various ways. For example, instead
of assuming that u is bounded, we can make a weaker assumption that |u| grows slower than
K0(x − a) (the fundamental solution) as x → a, or that u ∈ Lp for p ≥ n

n−2
(when n ≥ 3),

etc. Our point here is not to get an optimal result, but to illustrate the effect in a simple
situation.
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We see that it is enough to show that

lim
δ→0

∫
Ω

u∆(φψδ) = 0 . (318)

We write
∆(φψδ) = (∆φ)ψδ + 2∇φ∇ψδ + φ∆ψδ (319)

and in (318) we estimate the contribution from these three terms one-by-one,
using that u is bounded. (In fact, u growing slightly slower than the fundamental
solution at a is sufficient.) The most dangerous term is the third one, but we
note that ∆ψδ is large only in Bδ, with

∫
Bδ
|∆ψδ| ≤ 1

Kδ(0)
.

All which we did above for the one-point set {a} can be investigated for more
general compact sets. It is immediately clear that the one-point sets can be
replaced by finite sets. Also, in dimension n we can replace the one-point sets
by (n − 2)-dimensional surfaces. A necessary and sufficient condition for a
compact set K ⊂ Ω to be negligible in the same sense as the one-point sets
above is that the capacity of the set K be zero. This is equivalent to

inf{
∫
Ω

|∇φ|2 , φ ∈ D(Ω) , φ|K ≥ 1} = 0 . (320)

We have seen that in some cases, when the boundary is not smooth, we can
lose the boundary condition at some part of the boundary in the process of
minimization. We will now show that “in the mean” this cannot happen when
the boundary is regular. Later we will still improve this when we prove boundary
regularity, but for now our goal is to show that the boundary condition u|∂Ω is
preserved in a L2-sense.

Let us recall that the space E(Ω) of restrictions to Ω of smooth functions defined
in a neighborhood of Ω is dense in W 1,2(Ω) when the boundary of Ω is regular.
(For example, Lipschitz boundary is sufficient.)
For u ∈ E(Ω) the boundary values u|∂Ω are of course well-defined. We will show
that for each u ∈ E(Ω) we have

||u|∂Ω||L2(∂Ω) ≤ C||u||W 1,2(Ω) , (321)

with C independent of u. This means that the map u → u|∂Ω, first defined on
E(Ω), extends continuously to W 1,2(Ω). Therefore for each u ∈ W 1,2(Ω) the
restriction u|∂Ω is well-defined as an L2-function on ∂Ω. The function u|∂Ω is
sometimes called the trace of the function u ∈W 1,2(Ω) and the linear map u→
u|∂Ω defined on W 1,2(Ω) is sometimes called the trace operator. For u ∈ D(Ω)
one of course has u|∂Ω = 0 and therefore u|∂Ω = 0 for any u ∈ H1

0 (Ω).
105 We

105In fact, we will see that when u ∈ H1
0 (Ω), then “on average” u → 0 as we approach the

boundary. This will be made more precise.
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will see later that this condition characterizes H1
0 (Ω) as a subset of W 1,2(Ω), at

least when Ω is regular (e. g. Lipschitz).

For the proofs of the properties of u ∈ W 1,2(Ω) near the boundary ∂Ω we can
again use localization and partition of unity, similarly to what we did in the last
lecture. We can assume without loss of generality that u is a neighborhood of
some point on the boundary ∂Ω in which the boundary is described by xn =
g(x1, . . . , xn−1) = g(x′) where g is a Lipschitz function defined in some open
ball Bn−1

r ⊂ Rn−1. We assume that, locally near the graph of g, our domain Ω
is described by xn > g(x′). Moreover, we assume that for some b > supBr

g the
set {x = (x′, xn) , x

′ ∈ Bn−1
r , g(x′) < xn < b} is contained in Ω and that the

support of u is contained in {x = (x′, xn) , x
′ ∈ Bn−1

r , g(x′) ≤ xn < b}.
For a smooth u we can write
and hence

|u(x′, g(x′)|2 ≤ (b− g(x′))
∫ b

g(x′)

(
∂u(x′, s)

∂xn

)2

ds . (322)

Integrating over Bn−1
r , we obtain (321). 106

Remarks
1. A simple modification of the proof above shows that in fact

||u|∂Ω||L2(∂Ω) ≤ C||u||
1/2
W 1,2(Ω)||u||

1/2
L2(Ω) . (323)

This form of the trace inequality will be useful later.

2. When dealing with the boundary, sometimes it is efficient to change coordi-
nates so that in the new coordinates the boundary becomes flat. In the picture
above that would correspond to g(x′) = const. It is not hard to check that in
the context of W 1,2(Ω) the changes of variable x = h(x̃) where h is a Lipschitz
homeomorphism with a Lipschitz inverse can be used, and those are sufficient to
“straighten up” (locally) any Lipschitz boundary. If our boundary is smoother,
the map h can be more regular, of course.

3. Let Σδ be the surface given by xn = g(x′) + δ. The function u|Σδ
can be

identified with a function on Σ0 ⊂ ∂Ω is the obvious way. We can now consider
the map

u→ u|Σδ
(324)

as a map from W 1,2(Ω) to L2(Σδ) ∼ L2(Σ0). The above proof shows that the
mapping is uniformly continuous for δ ∈ (0, δ0) for some δ0 > 0. In particular
it has a limit as δ → 0. We see that in this L2 sense any function from W 1,2(Ω)
approaches its boundary value as we approach the boundary.

106Note that if we wish to express the surface integral
∫
∂Ω . . . dx in the coordinates x′, we

should replace dx by
√

1 + |∇g(x′)|2dx′. When g is Lipschitz, the factor
√

1 + |∇g(x′)|2 is
bounded from above and below, so that the norms which we get if we leave it out will be
equivalent.
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Lecture 25, 11/5/2010

We will characterize the space

H1
0 (Ω) ⊂ H1(Ω) =W 1,2(Ω) (325)

in terms of the behavior of its function near or at the boundary. The domain
Ω is assumed to be boundary and “sufficiently regular”. For example, Lipschitz
boundary is sufficient.

Theorem
Let u ∈W 1,2(Ω). The following conditions are equivalent:

(i) u ∈ H1
0 (Ω) ,

(ii) u|∂Ω = 0 (in the sense of the trace operator) ,

(iii)
∫
Ω

[
u(x)

dist(x,∂Ω)

]2
dx < +∞ .

Proof: We first prove that (i) is equivalent to (ii). The non-trivial part is
(ii)=⇒(i). To prove this implication, we note that we can use the partition
of unity to localize the problem, similarly to what we did in lecture 23 when
proving the density of H1(Ω) inW 1,2(Ω). We can therefore assume without loss
of generality that u is either supported away from the boundary, in which case
we can directly use mollification to obtain the approximating smooth functions
(see also the last part of lecture 22), or u is supported in a small area near ∂Ω,
and that ∂Ω is described by xn = g(x′), with x′ = (x1, . . . , xn−1), g Lipschitz,
and Ω locally described by xn > g(x′). Let us extend u by 0 outside Ω, and
let ũ denote this extended function. Let O be some open neighborhood of Ω.
We claim that the function ũ belongs to W 1,2(O) and that the distributional
derivative w̃ = ∇ũ is given as

w̃ =
0 in O \ Ω
∇u in Ω .

(326)

To prove this, we have to verify the identity∫
O
−ũ∇φ =

∫
Ω

∇uφ (327)

for φ ∈ D(O). From lecture 23 we know that we can approximate u by smooth
functions uj defined in a neighborhood of Ω. We have∫

Ω

∇ujφ =

∫
∂Ω

ujφn+

∫
Ω

−uj∇φ , (328)

where in the first term on the right-hand side we use n to denote the normal
to the boundary. As the map v → v|∂Ω is continuous from W 1,2(Ω) to L2(Ω),
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uj → u in W 1,2(Ω) and u|∂Ω = 0, we see that the first term on the right-hand
side converges to 0 as j →∞. The left-hand side of (328) converges to the left-
hand side of (327), the passage to the limit in

∫
Ω
−ujφ is obvious, and (327) is

established.
The approximation of u is now easy. We shift the extended function ũ up along
the xn-axis, so that the shifted function is compactly supported in Ω, and then
we mollify the shifted function with by a mollifier with sufficiently small support.
The details are left to the reader as an exercise. This establishes the equivalence
of (i) and (ii).

It remains to establish the equivalence of (i) and (iii). We first note that
(iii)=⇒(i) is easy. Let Ωε = {x ∈ Ω , dist(x, ∂Ω) > ε}, and let Uε = Ω \ Ωε.
Let ηε ∈ D(Ω) be such that ηε = 1 in Ωε and |∇ηε| ≤ 2/ε in Ω. Set uε = uηε.
Clearly uε ∈ H1

0 (Ω), and we only have to show that ||∇u − ∇uε||L2 → 0 for
ε → 0. However, this is a simple consequence of condition (iii), as it implies
that ∫

Uε

u2

ε2
dx → 0 when ε→ 0 . (329)

For (i)=⇒(iii) we will use (a special case of) Hardy’s inequality for smooth
functions v : [0,∞)→ R vanishing at 0 :∫ ∞

0

( v
x

)2
dx ≤ 4

∫ ∞

0

|v′|2 dx . (330)

This shows that, in situation when u is localized near boundary and in an area
where ∂Ω is described by xn = g(x′), with g : Bn−1

r → R Lipschitz, we have for
a suitably chosen b (so that {xn = b} is “above” the support of u)∫ b

g(x′)

|u(x′, s)|2

(s− g(x′))2
ds ≤ 4

∫ b

g(x′)

|∂u(x
′, s)

∂xn
|2 ds (331)

As the function is Lischitz, it is not hard to see that for g(x′) < s < b we have
dist((x′, s), ∂Ω) ≥ c(s − g(x′)) for some c > 0, and we see that (iii) follows by
integrating (331) over x′. The proof of the theorem is finished.
Remark. An alternative approach would be to locally straighten the boundary
to {xn = 0} by a suitable change of variables which will change the distance to
the boundary only by a multiplicative factor bounded from above and below.
Then we can take g(x′) ≡ 0 in the above arguments.

The above theorem clarifies what happens with the boundary values, and we
now have a good set-up for the minimization procedure of the functional

J(u) =

∫
Ω

(
1

2
|∇u|2 − fu) dx (332)

over functions with u|∂Ω = 0. The above results about the space H1
0 (Ω) show

that it is natural to minimize J over this space. In other words the natural
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choice for the space X which we did not quite identify in lecture 21 is

X = H1
0 (Ω) . (333)

Our investigations in lecture 22 show that J has a unique minimizer in u ∈ H1
0 (Ω).

As J is quadratic, it is differentiable is any direction v ∈ H1
0 (Ω) and J

′(u)v = 0
translates to ∫

Ω

∇u∇v =

∫
Ω

fv for each v ∈ H1
0 (Ω) . (334)

We have seen that the boundary condition u|∂Ω = 0 is guaranteed at least in
the L2 - sense by u ∈ H1

0 (Ω). It is also easy to verify that u satisfies the
equation ∆u = f in Ω in the weak sense introduce in lecture 4. We now adjust
our terminology so that we can distinguish between the various notion of weak
solutions.

1. A weak solution of the boundary-value problem ∆u = f in Ω and u|∂Ω = 0
is a function u ∈ H1

0 (Ω) satisfying (334) for each v ∈ H1
0 (Ω).

2. A local very weak solution of the equation ∆u = f is Ω is a locally inte-
grable function u satisfying∫

Ω

u∆φ =

∫
Ω

fφ for each φ ∈ D(Ω). (335)

3. A very weak solution of the boundary value problem ∆u = f in Ω and
u|∂Ω = 0 is an integrable function u in Ω satisfying∫

Ω

u∆φ =

∫
Ω

fφ (336)

for each smooth φ : Ω→ R with φ|∂Ω = 0.

In the context of the minimization of the functional J the notion of the weak so-
lution is very natural. Note that for our problem we get existence and uniqueness
of the weak solution of a boundary-value problem quite easily. As we have seen,
the existence can be obtained from the direct minimization of J over H1

0 (Ω).
The uniqueness follows from the strict convexity of the functional J and can also
seen directly from the equations: if we had two different weak solutions u1, u2to
the problem ∆u = f , u|∂Ω = 0, then their difference v = u1 − u2 ∈ H1

0 (Ω)
would satisfy equation (334) with f = 0, which means that

∫
Ω
∇v∇w = 0 for

each w ∈ H1
0 (Ω). Taking w = v we see that v = 0.

The definition of the very weak solution is also quite natural in case we wish to
work with minimal possible regularity of f . However, the proof of uniqueness
is not as straightforward in this case.
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In general, a good generalization of a notion of a solution should preserve unique-
ness for problems where uniqueness is expected.

So far we have dealt with the equation ∆u = f and the boundary condition
u|∂Ω = 0. It is easy to adapt the “Direct Method” to much more general
situation. As we will see, the methods is very flexible, and can accommodate
easily more general situations, such as variable coefficients, systems of equations,
various types of boundary conditions, etc. Also, variational formulations are
very suitable for setting up numerical schemes: roughly speaking one just needs
to replace X = H1

0 (Ω) by a finite-dimensional subspace.107

107Of course, details concerning to choice of the subspace can lead to non-trivial questions.
These are studied in Numerical Analysis.
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Homework assignment 2

due November 22

Prove the following statement.

Let u : R3 \ BR → R be a bounded harmonic function. Then for each m ∈ N
we can write

u(x) = A+ a 1
|x| +

∑
j aj

∂
∂xj

1
|x| +

∑
jk ajk

∂2

∂xj∂xk

1
|x| + . . .

+
∑
j1,...,jm

aj1...jm
∂m

∂xj1 ...∂xjm

1
|x| +O( 1

|x|m+2 ) |x| → ∞ ,

where A, a, aj , . . . , aj1,...,jm are suitable constants.

Hint:
Extend u from R3 \ B2R to R3 to a smooth function ũ on R3. Then consider
the function

v(x) =

∫
R3

− 1

4π|x− y|
∆ũ(y) dy . (337)

Show that v−ũ is constant. Note that for large x one can expand the expression
1

|x−y| into a power series in y. Use the necessary number of the terms of this

power series in (337).

Remark
Consider the following transformation taking a function u in Rn \B1 to function
v on B1 given by

u(x) = K0(x) v(
x

|x|2
) , (338)

where K0 is the fundamental solution, K0(x) = − 1
(n−2)|Sn−1||x|n−2 . We can

write v = Tu. The transformation T is called the Kelvin transformation. It
can be shown that T takes harmonic functions into harmonic functions. (You
can prove this as an optional part of the homework.) The series above for u at
x → ∞ is related via the Kelvin transform to the Taylor series of v at x = 0.
This can be used as an alternative way to establish the series for u at ∞.
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Lecture 26, 11/8/2010

Let X be a Hilbert space over R with scalar product x, y → (x, y) and let
l : X → R be a linear functional. We recall that

||l|| = sup
||x||≤1

|l(x)| . (339)

A classical theorem of F. Riesz says that l can be represented by an element of
X via the scalar product: there exists a unique a ∈ X such that

l(x) = (x, a) x ∈ X . (340)

We have ||l|| = ||a||.
We have de facto proved this theorem when we established the existence of a
minimizer for the functional J in lecture 21: we can just go through the proof
with

J(x) =
1

2
||x||2 − l(x) (341)

and we note that the minimizer a of J satisfies (340).

We can also take the Riesz theorem as a starting point, and apply it to the linear
functional v →

∫
Ω
fv in the Hilbert space X = H1

0 (Ω) with the scalar product
(u, v)H1

0
=
∫
Ω
∇u∇v. This immediately gives the existence and uniqueness of

the weak solution for problem (279).

Important classes of equations with variable coefficients are also immediately
covered by the Riesz theorem, or the minimization procedure used for J . Let
aij = aij(x), i, j = 1, . . . n be bounded measurable functions satisfying

aij(x)ξiξj ≥ ν|ξ|2 ξ ∈ Rn , (342)

where we sum over the repeated indices, as usual. Let also c = c(x) be a
non-negative bounded measurable function in Ω.
Assume

aij = aji (343)

and consider the functional

J(u) =

∫
Ω

1

2
aij(x)

∂u

∂xi

∂u

∂xj
+

1

2
c(x)u2 − f(x)u . (344)

Thanks to the assumptions on aij and c, one can show again, in the same way,
that J has a minimizer u on H1

0 (Ω) and that∫
Ω

(aij
∂u

∂xj

∂v

∂xi
+ cuv − fv) dx = 0 v ∈ H1

0 (Ω) . (345)

This means that

− ∂

∂xi
(aij

∂u

∂xj
) + cu = f (346)
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in the sense of distributions, and we also note that u|∂Ω = 0 (in the sense of the
trace operator) since u ∈ H1

0 (Ω).

Alternatively, we could define a new scalar product

(u, v)a,c =

∫
Ω

(aij
∂u

∂xj

∂v

∂xi
+ cuv) dx (347)

on H1
0 (Ω), which is easily seen to be equivalent to the standard one, and apply

the Riesz theorem. We leave the details for the reader as an easy exercise.

There are important classes of equations which are not covered by the above.
For example, let us consider

−∆u+ bj
∂u

∂xj
= f (348)

where b = (b1, . . . , bn) = (b1(x), . . . , bn(x)) is a bounded measurable vector
field.108 The term bj

∂u
∂xj

is often called “drift”. Such equations arise in many

situations and in general are not covered by the simple application of the Riesz
theorem we saw above. The following generalization of the Riesz theorem ad-
dresses this problem.

Let us fist introduce some terminology. Let A = A(x, y) be a continuous bi-
linear form on a Hilbert space X. This means that A is linear in each variable
and |A(x, y)| ≤ c||x|| ||y|| for some c ≥ 0. The form A is not assumed to be
symmetric, i. e. A(x, y) may not be equal to A(y, x). We say that A is coercive
if there exists α > 0 such that

A(x, x) ≥ α||x||2 . (349)

Lemma (Lax-Milgram)
Let A = A(x, y) be a continuous bilinear form on a Hilbert space X. Assume
that A is coercive and let α be as in (349). Then each continuous linear func-
tional l : X → R can be uniquely represented as

l(x) = A(x, a) for all x ∈ X , (350)

with a ∈ X and ||a|| ≤ 1
α ||l||.

Proof: For each y ∈ X define Ty by

A(x, y) = (x, Ty), x ∈ X. (351)

The existence of Ty follows from the continuity of A and the Riesz theorem. It
is easy to see that the map y → Ty is a bounded linear operator on X. We

108The assumptions on b (and also on c above) can still be relaxed, we are not striving for
the greatest possible generality at this point.
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need to show that T is invertible. Once the invertibility is established than we
can write l(x) = (x, b) for some b ∈ X by the Riesz theorem, and using the
invertibility of T we see that

l(x) = (x, b) = A(x, T−1b) , x ∈ X , (352)

and we take a = T−1b.
We note that T satisfies

(Tx, x) ≥ α||x||2 . (353)

We show that a bounded linear operator T satisfying (353) is invertible, with
||T−1|| ≤ 1

α .
We note that the condition (353) gives the required bound: Tx = y implies
α||x||2 ≤ (Tx, x) = (y, x) ≤ ||x|| ||y|| and hence ||x|| ≤ 1

α ||y||. This shows that
the range of T is closed. No vector non-trivial vector y ∈ X can be perpendicular
to T (X), as this would mean (Ty, y) = 0, and hence T (X) = X.109

As an example of an application of the Lax-Milgram lemma, let us consider a
bounded vector field b = (b1, . . . , bn) = (b1(x), . . . , bn(x)) with div b = 0. For
f ∈ L2(Ω) consider the problem

−∆u+ b∇u = f in Ω ,
u = 0 at ∂Ω .

(355)

The weak formulation is: find u ∈ H1
0 (Ω) such that

A(u, v) = l(v) =

∫
Ω

fv for each v ∈ H1
0 (Ω), (356)

where

A(u, v) =

∫
Ω

[∇u∇v + (b∇u)v] . (357)

Since div b = 0 it is easy to check that

A(u, u) =

∫
Ω

|∇u|2 (358)

109One can also see the invertibility of T directly in the following way. Let us write T = S+B
where S is symmetric and B is anti-symmetric, i. e. B(x, y) = −B(y, x). We recall that if M
is a continuous invertible operator, then M +N is invertible for ||N || < ||M−1||−1. We note
that (Sx, x) ≥ α||x||2 and since S is symmetric, we know it is invertible by the Riesz theorem,
with

||S−1|| ≤
1

α
. (354)

The operator S+tB will be still invertible for |t| < t0 = α
||B|| , and will satisfy the same bound

||(S + tB)−1|| ≤
1

α
.

This means that we can repeat the argument with S replaced by S + tB and we get that
S + tB is invertible for t ≤ 2t0. It is clear that this can be continued to reach any t, and in
particular t = 1.

97



and hence A is coercive in H1
0 (Ω). We conclude that the problem (355) will

have a unique weak solution for each f ∈ L2(Ω).
It turns out that the result is true even without the assumption div b = 0, but
we will need to develop the theory a little further to see that.

Remark
Note that when div b = 0, we can write −∆u + b∇u = − ∂

∂xi
(aij

∂u
∂xj

) where

aij = δij + cij with cij = −cji. This form of the equation is sometimes useful.

Up to now we have dealt only with the Dirichlet boundary condition. Next time
we will consider other boundary conditions.
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Lecture 27, 11/10/2010

Let us first indicate how the problem

∆u = 0 in Ω ,
u = g at ∂Ω ,

(359)

fits into the “Direct Method” setting.
One to solve the problem is to minimize the Dirichlet integral∫

Ω

|∇u|2 (360)

over
W 1,2
g (Ω) = {u ∈W 1,2(Ω) , u|∂Ω = g}. (361)

Using the techniques we developed, there is no difficulty in showing that the
problem has a unique minimizer as long as W 1,2

g (Ω) is non-empty. This is
clearly so for “sufficiently regular” g, for example g ∈ W 1,2(∂Ω). In general,
the requirement W 1,2

g (Ω) ̸= ∅ does represent a restriction on g. The precise

result is that W 1,2
g (Ω) ̸= ∅ if and only if g ∈ W

1
2 ,2(∂Ω), which is a space we

have not really defined yet. For now we will not go into these questions in more
detail. Instead we will illustrate where restrictions may come from with the
following example. Consider Ω = B2

1 = {x ∈ R2 , |x| < 1}. The boundary ∂Ω
is the unit circle S1. Let r, θ be the polar coordinates in the plane. The angle
θ parametrizes the circle S1 in the obvious way. The function g describing the
boundary condition can be thought of as a function of θ, and we can consider
its Fourier series

g(θ) =
∑
k

gke
ikθ . (362)

The solution of (359) can be written in polar coordinates as

u = u(r, θ) =
∑
k∈Z

gkr
|k|eikθ . (363)

We can calculate the Dirichlet integral (360) in terms of the Fourier coeffi-
cients gk: ∫

Ω

|∇u|2 =

∫
Ω

[(
∂u

∂r
)2 + (

∂u

r∂θ
)2]r dθ dr ∼

∑
k

k|gk|2 . (364)

We expect that g belongs to W 1,2
g (Ω) if and only if

∑
k k|gk|2 < +∞, which is

indeed the case. This condition can be used to define the spaceW
1
2 ,2(S1). As an

exercise, you can give an example of a continuous function g on S1 which does
not belong to W

1
2 ,2(S1). For such a function we cannot solve the problem (359)

directly by the minimization of the Dirichlet integral (360), because the integral
cannot be finite. On the other hand the solution clearly exists, we can write
it as the Poisson integral, for example. So there are some constraints on the
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applicability of the direct method, but in practice they rarely present a serious
concern. For example, in the case at hand we can approximate g by smooth
functions gε for which we do get a solution uε by minimization, and then show
that uε converge as gε → g.

Assume W 1,2
g (Ω) is not empty and let g̃ ∈ W 1,2(Ω) be an extension of g. We

can use the theorem we proved last time to conclude that

W 1,2
g (Ω) = g̃ +H1

0 (Ω) , (365)

and hence minimizing (360) over W 1,2
g (Ω) is the same as minimizing

J(v) = v →
∫
Ω

|∇v +∇g̃|2 (366)

over H1
0 (Ω). Note that

J(v) =

∫
∂Ω

(
|∇v|2 + 2∇v∇g̃

)
+

∫
∂Ω

|g̃|2 (367)

The last term is constant, and it does not play any role in the minimization.
The term v →

∫
Ω
2∇g̃∇v represents a continuous linear functional on H1

0 (Ω),
and the equation J ′(v)φ = 0 is∫

Ω

(2∇v∇φ+ 2∇g̃∇φ) = 0, φ ∈ H1
0 (Ω) , (368)

which means that ∆v +∆g̃ = 0 in the sense of distributions, which is what we
needed.

The above is an example that, in addition to the linear functionals v →
∫
Ω
fv

on H1
0 (Ω), one can also consider the linear functionals of the form

v →
∫
Ω

fj
∂v

∂xj
=

∫
Ω

f∇v (369)

where f = (f1, . . . , fn) is an L2(Ω) vector field. The equation we get from
minimization of

u→
∫
Ω

1

2
|∇u|2 − f∇u (370)

is

∆u = divf =
∂fj
∂xj

. (371)

For sufficiently regular f and u ∈ H1
0 (Ω) we have∫

Ω

f∇u =

∫
Ω

− (div f)u (372)
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so for regular f and minimization overH1
0 (Ω) we do not get anything new. How-

ever, when we minimize over spaces where the boundary value is not fixed, the
integration by parts in(372) results in and additional boundary term

∫
∂Ω
fjnju

which will affect the boundary condition.

Let us now consider other boundary value problems. Let us consider the func-
tional

J(u) =

∫
Ω

(
1

2
aij

∂u

∂xj

∂u

∂xi
+

1

2
cu2 − fu

)
+

∫
∂Ω

(
1

2
γu2 − gu

)
, (373)

where the coefficients aij , c, γ and the functions f, g satisfy the following as-
sumptions:

• aij = aij(x) are bounded measurable and satisfy the ellipticity condi-
tion (342). Note that only the symmetric part of aij plays a role, so we
can assume that aij = aji.

• c = c(x) and γ = γ(x) are bounded measurable,

• f, g are L2-functions on Ω and ∂Ω respectively,

• The quadratic part of J is coercive, in the sense that for some κ > 0 we
have

J(u) =

∫
Ω

(
1

2
aij

∂u

∂xj

∂u

∂xi
+

1

2
cu2
)
+

∫
∂Ω

1

2
γu2 ≥ κ||u||2W 1,2(Ω) . (374)

We will discuss the coercivity assumption and its variants in some detail
later on, for now let us just note that it is trivially satisfied what c ≥ δ > 0
and γ ≥ 0.

It is clear from the continuity of the trace operator u→ u|∂Ω that J is continuous
on W 1,2(Ω). We can use minimization or the Riesz representation theorem to
show that J has a unique minimizer in W 1,2(Ω) and the equation J ′(u) = 0 has
a unique solution on W 1,2(Ω). The condition J ′(u) = 0 is∫

Ω

(
aij

∂u

∂xj

∂v

∂xi
+ cuv − fv

)
+

∫
∂Ω

(γu− g) = 0 , v ∈W 1,2(Ω) . (375)

Note that no boundary values for u were fixed in advance. The minimization
procedure will “choose” the boundary conditions for us. Let us now interpret
what (375) says in terms of an equation for u and the boundary conditions.
As we have done before in similar situations, we integrate by parts to obtain
an expression in which v comes with no derivatives. This time we have to pay
attention also to the boundary terms. In fact, the only integration by parts we
have to do is in the first term:∫

Ω

aij
∂u

∂xj

∂v

∂xi
=

∫
∂Ω

aij
∂u

∂xj
niv +

∫
Ω

−( ∂

∂xi
aij

∂u

∂xj
)v , (376)
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where ni denotes the components of the outward unit normal to Ω.
At this point this identity is “formal”, in the sense that it is true for “sufficiently
regular” functions, but we are not sure if we can justify it for u ∈W 1,2(Ω), even
when v is smooth. More precisely, while the term on the left-hand side is
clearly well-defined and if we did not have the boundary term on the right-hand
side we could say that the identity actually defines the term

∫
Ω
−( ∂

∂xi
aij

∂u
∂xj

)v,

when v does not vanish at the boundary, we have two terms on the right-hand
side of (376) which are not well-defined (even when v is smooth), and for a
general u ∈ W 1,2(Ω) we cannot really define them individually. However, our
u is not a general function in W 1,2(Ω), we know that it satisfies (375) for each
v ∈ W 1,2(Ω), and this can be used to define the two terms on the right-hand
side of (376) individually.

We first use (375) with v ∈ H1
0 (Ω) to conclude that

− ∂

∂xi
aij

∂u

∂xj
+ cu = f in Ω (377)

in the sense of distributions. That is the equation associated with the functional
J . Once we know that u satisfies this identity inside Ω, we can use it to define
the second term on the right-hand side of (376) by simply substituting f − cu
for − ∂

∂xi
aij

∂u
∂xj

. Then the first term on the right-had side is defined by the

other two terms. In particular, for the solutions of (377) the normal derivative
aij

∂u
∂xj

ni is well defined, at least in the sense that
∫
∂Ω
aij

∂u
∂xj

niv is defined for

every smooth function v (and, in fact, for every function which can be obtained
as trace of a W 1,2(Ω) function).

The resulting boundary-value problem associated with the functional J will be

− ∂
∂xi

aij
∂u
∂xj

+ cu = f in Ω ,

aij
∂u
∂xj

ni + γu = g at ∂Ω .
(378)

When γ = 0 the boundary condition is called the Neumann boundary condi-
tion. The Dirichlet boundary condition u|∂Ω = 0 can be obtained in the limit
γ ↗ +∞.

Note that the derivative which comes into the Neumann boundary condition is
closely associated with the operator. In principle one can consider boundary
conditions of the type

bj
∂u

∂xj
+ γu = g at ∂Ω , (379)

where (b1, . . . , bn) is a given vector field at ∂Ω, whose non-tangential part does
not vanish at ∂Ω. This is possible, and the problems have been studied (the term
“oblique derivative boundary condition” is often used in this connection), but
the simple variational approach above does not work for such problems, except
for the special case when bj = aijni. This might seem restrictive, but in practice
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the Neumann condition with aij
∂u
∂xj

ni (or the Dirichlet condition) is often the

correct boundary condition for the model one is considering. This is exactly
because the correct model is often governed by some type of functional (such
as energy) which should be minimized. The minimization then gives the right
boundary condition. This can also be used in the numerical approximations.
In the situation above with the functional J , we have no trouble designing the
right boundary condition for numerical approximations: one just takes J on
a suitable finite dimensional subspace of Y ⊂ W 1,2(Ω), and minimizes J over
Y . The boundary condition “takes care of itsef”. This is why the boundary
condition in (378) is often called the “natural boundary condition”.

The Neumann boundary condition aij
∂u
∂xj

ni often has a clear physical meaning.

For example, if we talk about electric potential u in a body with electrical
conductivity given by the tensor aij , then the quantity Ii = aij

∂u
∂xj

corresponds

to the electric current. The Neumann condition then is that Iini = 0, which
says that there is no flux of electricity through the boundary. This will be the
case when the boundary is “left alone” and no external devices or fields are
employed to influence the electric potential there.

We note that we can affect the boundary condition by other terms in the integral∫
Ω
. . . . For example, if we add to the functional the term∫

Ω

fj
∂u

∂xj
, (380)

then the expression for J ′(u)v will change by∫
Ω

− ∂fj
∂xj

v +

∫
∂Ω

fjnjv (381)

and the last term will contribute to the boundary condition. Note that if
∂fj
∂xj

= 0, then the effect of the term will be only on the boundary condition,

the equation will remain the same. Such terms in the functional are often called
“null lagrangians”. We should mention more terminology: The expression defin-
ing J , namely

L(x, u,∇u) = 1

2
aij

∂u

∂xj

∂u

∂xi
+

1

2
cu2 − fu+ fj

∂u

∂xj
+ bj

∂u

∂xj
u (382)

(where we added the extra two terms with fj and bj) is called the lagrangian.
The equation J ′(u) = 0 is called the Euler-Lagrange equation. Note that the
boundary terms in (373) can be added by taking adding fj

∂u
∂xj

and bj
∂u
∂xj

u with

suitable fj , gj satisfying
∂fj
∂xj

= 0 and
∂bj
∂xj

= 0 to the lagrangian.
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Lecture 28, 11/12/2010

We plan to address the issue of coercivity of the functional (373) and also of
more general forms A(u, v) appearing in the variational formulation of boundary
value problem. An important tool will be the Poincarè inequality below. We
first introduce the following notation.

−
∫
O
f =

1

|O|

∫
O
f ,

(f)O = −
∫
O
f .

Lemma (Poincarè inequality for cubes)

Let Q = QR = [0, R]n. Then for each u ∈W 1,2(Ω)∫
Q

|u− (u)Q|2 ≤ nR2

∫
Q

|∇u|2 . (383)

Proof: It is enough to prove the inequality for smooth functions, due to the
density results in lecture 25. We note that by a simple application of the Cauchy-
Schwartz (or, alternatively, Jensen’s) inequality we have∫
Q

|u−(u)Q|2 =

∫
Q

|−
∫
Q

(u(x)−u(y)) dy|2 dx ≤
∫
Q

−
∫
Q

|u(x)−u(y)|2 dx dy . (384)

We can write

u(y)− u(x) =
∫ y1

x1

∂u

∂x1
(s, x2, . . . , xn) ds+ · · ·+

∫ yn

xn

∂u

∂xn
(y1, . . . , yn−1, s) ds .

(385)
Writing the right-hand side as I1 + . . . In, we see that

|u(y)− u(x)|2 ≤ (I1 + · · ·+ In)
2 ≤ n(I21 + . . . I2n). (386)

A simple application of the Cauchy-Schwartz inequality shows that

I2j ≤ R
∫ R

0

| ∂u
∂xj

(x1, . . . , xj−1, s, yj+1 . . . , yn)|2 ds . (387)

Using this, integrating (386) over x and y, and dividing by |Q| = Rn we obtain∫
Q

−
∫
Q

|u(x)− u(y)|2 dx dy ≤ nR2

∫
Q

|∇u(x)|2 dx , (388)

which – keeping in mind (384) – completes the proof.
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Remark
It is clear that the previous estimate is not optimal, note that in (387) we are
throwing away a lot of information. A more careful calculation shows that in
fact ∫

Q

−
∫
Q

|u(x)− u(y)|2

|x− y|2
dx dy ≤ 2n

∫
Q

|∇u(x)|2 dx (389)

for any convex set Q. This can be seen as follows. We have

u(y)− u(x) =
∫ 1

0

∇u((1− s)x+ sy)(y − x) ds (390)

and a simple application of Cauchy-Schwartz inequality (or Jensen’s inequality)
gives

|u(x)− u(y)|2

|x− y|2
≤
∫ 1

0

|∇u((1− s)x+ sy)|2 ds . (391)

Letting F (x) = |∇u(x)|2 and integrating over x, y, we see that it is enough to
show ∫

Q

−
∫
Q

∫ 1

0

F ((1− s)x+ sy) dx dy ds ≤ 2n
∫
Q

F (x) dx . (392)

This is not hard: we can split the integration over s as∫ 1

0

ds =

∫ 1/2

0

ds+

∫ 1

1/2

ds. (393)

It is enough to estimate
∫ 1

1/2
ds, the estimate of the other part being similar.

We have∫
Q

F ((1− s)x+ sy) dy = s−n
∫
sQ

F ((1− s)x+ η) dη ≤ s−n
∫
Q

F ≤ 2n
∫
Q

F,

(394)
and integrating over s ≥ 1/2 and x ∈ Q we obtain the required estimate.110

The proof of the Poincarè inequality for cubes/convex sets can be generalized to
other domains, but it is easier to handle the case of a general domain somewhat
indirectly, via a compactness argument based on the following compactness
result which is a relatively easy consequence of the Poincarè inequality for cubes.
The result is crucial in many other situations.

Theorem (Rellich)
The set {u ∈W 1,2(Ω); ||u||W 1,2(Ω) ≤ 1} is compact in L2(Ω).

110An alternative proof can be done by evaluating the left-hand side of (392) with the co-area
formula. For the co-area formula see for example the book of H. Federer “Geometric Measure
Theory”, Theorem 3.2.12, p 249. That approach is not simpler than the elementary estimate
above, but it provides a good exercise for calculations with the co-area formula.
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Corollary (The Poincarè inequality for bounded domains)111

Assume Ω is bounded and u ∈W 1,2(Ω). Then∫
Ω

|u− (u)Ω|2 ≤ C(Ω)
∫
Ω

|∇u|2 . (395)

Proof: Let us first show that

||u||2W 1,2(Ω) ≤ C[
∫
Ω

|∇u|2 + (

∫
Ω

u)2] (396)

for a suitable C = C(Ω). We argue by contradiction. If the statement failed,
there would exist a sequence uk ∈W 1,2(Ω) with ||uk||W 1,2(Ω) = 1 and

∫
Ω
|∇uk|2+

(
∫
Ω
uk)2 → 0. By the compactness theorem, we can assume that uk converge

strongly in L2 to some function u. As ||∇uk||L2 → 0, the distributional deriva-
tive of u vanishes, and hence u ≡ const. Also,

∫
Ω
(uk)2 → 1, and therefore, due

to the L2(Ω) convergence of the sequence uk we have
∫
Ω
(u)2 = 1. However, as∫

Ω
uk → 0, we see that u ≡ 0, a contradiction.

If we use (395) for u− (u)Ω, we obtain (395).

111Recall that, by definition, all domains are connected.
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Lecture 29, 11/15/2010

Before going to the proof of Rellich’s compactness theorem, let us give another
example where it can be applied to prove coercivity. As usual, we assume that
Ω is bounded domain with sufficiently regular boundary. (Lipschitz boundary
is sufficient, for example.)

Let γ : ∂Ω→ R be a bounded non-negative measurable function with∫
∂Ω

γ > 0. (397)

Then there exists C > 0 such that

||u||2W 1,2(Ω) ≤ C
(∫

Ω

|∇u|2 +
∫
∂Ω

γu2
)
. (398)

The proof is similar to the proof of (396) from the last lecture. Assuming
that the statement fails, we get a sequence uk of functions in W 1,2(Ω) with
||uk||W 1,2 = 1 such that

∫
Ω
|∇uk|2 +

∫
∂Ω
γ(uk)2 → 0 as k → ∞. By Rellich’s

theorem we can assume uk → u in L2(Ω) as k →∞. As in the last lecture, we
can conclude that u is constant,

∫
Ω
|u|2 = 1, and uk → u in W 1,2(Ω). This also

shows that uk|∂Ω converge in L2(∂Ω) to the constant c = u, contradicting to∫
∂Ω
γ(uk)2 → 0.

Proof of the Rellich’s Theorem.

Let X = {u ∈ W 1,2(Ω) , ||u||W 1,2 ≤ 1}. We wish to show that X is a compact
subset of L2(Ω). We note that X is closed in L2(Ω). This is because if uk ∈ X
converge in L2 to u, then the (distributional) gradients ∇uk are bounded in L2

and satisfy for each φ ∈ D(Ω)∫
Ω

∇ukφ =

∫
Ω

−uk∇φ→
∫
Ω

−u∇φ , k →∞ . (399)

This shows that the sequence ∇uk is weakly convergent in L2(Ω), the distribu-
tional gradient of u is the weak limit of ∇uk and u ∈ X. 112

The main point of the proof is to show that X is totally bounded in L2(Ω), which
means that for each ε > 0 we can cover X by finitely many L2-balls of radius
ε. Let us consider the following statement:

(∗) For each ε > 0 there exists a finite-dimensional subspace Yε ⊂ L2(Ω) such
that the orthogonal projection Pε : L

2(Ω)→ Yε satisfies

||u− Pεu||L2 ≤ ε (400)

112You should go through this argument carefully, as we have not used weak convergence
before.
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for each u ∈ X.

It is not hard to see that (∗) implies the total boundedness of X: the set
{u ∈ Yε , ||u||L2 ≤ 1} is compact, hence we can cover it by finitely many balls
of radius ε. Now (400) shows that if double the radius of these balls, they will
also cover X.

We prove (∗) when Ω is a cube Q. This will establish compactness of the
unit ball of W 1,2(Q) in L2(Q). The compactness for general Lipschitz Ω then
follows from the usual localization and boundary straightening technique.113

Alternatively, one can also prove (∗) directly for Lipschitz domains. From the
proof for Q it will be clear how to proceed in that case.
Let Q = QR. Set r = R/m, and divide Q into N = mn cubes Q1, . . . , QN of size
r. For u ∈ L2(Q) we denote by Pu the piece-wise constant function which is
equal to (u)Qj = −

∫
Qj
u on Qj . Clearly P is the orthogonal projection of L2(Ω)

onto the subspace consisting of functions constant on each cube Qj . By the
Poincarè inequality from lecture 28, we know that∫

Qj

|u− (u)Qj |2 ≤ nr2
∫
Qj

|∇u|2 . (401)

Summing over the cubes, we obtain∫
Q

|u− Pu|2 ≤ nr2
∫
Q

|∇u|2 , (402)

which gives (400) with ε =
√
nr.

Remarks
1. The proof above is quite similar to the proof of the classical Arzela-Ascoli
theorem about characterization of relatively compact sets in the space of contin-
uous functions, except that estimates of oscillation of the functions are replaced
by the Poincarè inequality.

2. The proof can also be done by using Kolmogorov’s criterion of relative com-
pactness for subsets of Lp spaces in (subsets of) Rn.

113It is a good exercise to do this in detail.
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Lecture 30, 11/17/2010

We consider a Lax-Milgram form

A(u, v) =

∫
Ω

(
aij

∂u

∂xj

∂v

∂xi
+ bj

∂u

∂xj
v + b̃ju

∂v

∂xj
+ cuv

)
+

∫
∂Ω

γuv , (403)

where the coefficients are bounded measurable functions, and, in addition, the
aij satisfy the ellipticity condition

aijξiξj ≥ ν|ξ|2 . (404)

The form is considered on some closed space X, with H1
0 (Ω) ⊂ X ⊂ W 1,2(Ω).

The space X is determined by the boundary conditions. Here are some exam-
ples.

1. Let Γ0 ⊂ ∂Ω and setX = {u ∈ W 1,2(Ω) , u|Γ0 = 0}. This space cor-
responds to prescribing the Dirichlet boundary condition on Γ0 and the
Neumann/mixed boundary condition on the rest of the boundary.

2. Let ∂Ω consist of connected components Γ0,Γ1, . . . ,Γm and assume that
Γ0 is also the boundary of the unbounded connected component of the
complement of Ω.

X = {u ∈W 1,2(Ω) , u|Γ0 = 0, u|Γj = cj ,with c1, c2, . . . , cm ∈ R not fixed}.
(405)

Similar space could be used when dealing with problems of electrostatics
mentioned in lecture 7. The condition u|Γ0 = 0 corresponds to the system
being enclosed with a grounded conducting surface, and the condition that
u is constant on each Γj corresponds to Γj being made of conductors. If
the total charge contained in Γj is given for each j, we add

∫
Γj
ugj (for

suitable constants gj) to the linear functional l which represents the “right-
hand side” in the abstract formulation of problem, se below. (In the “PDE
formulation” this part of the functional will not contribute to the right-
hand side in the interior, but it will specify the integral of the normal
derivative over each Γj , which corresponds to the change.)

3. X = {u ∈ W 1,2(Ω) ,
∫
∂Ω
u = 0}. This is a good space to take when

considering the Neumann problem and the coefficients b̃j , c vanish.

The differential operator associated with A is formally given by

(Lu, v)L2 = A(u, v), v ∈ H1
0 (Ω) (406)

and one has

Lu = − ∂

∂xi
(aij

∂u

∂xj
) + bj

∂u

∂xj
− ∂

∂xj
(b̃ju) + cu . (407)
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If we take v ∈ X we obtain (formally)

A(u, v) = (Lu, v)L2 + boundary terms (408)

The boundary terms will be∫
∂Ω

aij
∂u

∂xj
niv + b̃jnjuv + γuv (409)

and they will contribute to the boundary conditions, in addition with the bound-
ary terms coming from the linear functional l below, and the possible Dirichlet
boundary conditions incorporated in the definition of X. (The boundary condi-
tion covered by this set-up include only the “natural boundary condition”, we
do not consider the oblique derivative problems mentioned in lecture 27, (379).

Let l be a continuous linear functional on X. We will denote by X∗ the space
of continuous linear functionals on X. A typical l is

l(v) =

∫
Ω

f0v + fj
∂v

∂xj
+

∫
∂Ω

gv, (410)

where f0, f1, . . . , fn are L2-functions in Ω and g is an L2 function on ∂Ω.

The abstract problem of finding u ∈ X with

A(u, v) = l(v) , v ∈ X (411)

corresponds to

Lu = f0 −
∂fj
∂xj

in Ω , + boundary conditions . (412)

Note that the term
∫
Ω
fj

∂v
∂xj

can also contribute to the boundary conditions, as

already discussed at the end of lecture 27.

Let us first consider the case of a coercive form A. We assume

A(u, u) ≥ α||u||2W 1,2 , u ∈ X, (413)

for some α > 0. With this assumption the problem (436) is uniquely solvable
(by the Lax-Milgram Lemma) and the solution u satisfies

||u|| ≤ 1

α
||l||X∗ , (414)

where
||l||X∗ = sup

||v||W1,2≤1, v∈X
l(v). (415)

Let GA : X∗ → X be the solution operator which takes l to the solution u. As
each f ∈ L2(Ω) defines an element of X∗ by v →

∫
Ω
fv, the operator is defined
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on L2(Ω). By (438) GA maps the unit ball of L2(Ω) into a bounded subset
of W 1,2(Ω). In view of the Rellich compactness theorem, this means that the
operator GA, considered as an operator from L2(Ω) into L2(Ω) is compact. (It
is still useful to keep in mind that GA is defined on the larger space X∗.)

We can repeat the above consideration with A replaced by A∗ defined by

A∗(u, v) = A(v, u) . (416)

(The space X remains the same.) Obviously A(u, u) = A∗(u, u) and hence A∗

is coercive, with the same constant α.

Remark
If we work with spaces of complex-valued functions, then we have to make the
usual adjustments to the definition of scalar products and the adjoint operator.
For example the form A could be defined by

A(u, v) =

∫
Ω

(
aij

∂u

∂xj

∂v

∂xi
+ bj

∂u

∂xj
v + b̃ju

∂v

∂xj
+ cuv

)
+

∫
∂Ω

γuv , (417)

and the adjoint A∗ by A∗(u, v) = A(v, u). If we use this definition and keep our
other conventions, then v → A(u, v) gives anti-linear functionals, i. e. functionals
l with l(zv) = zl(v) for z ∈ C, and we should work with these. For example, for
f ∈ L2(Ω) we consider l(v) =

∫
Ω
fv. We also need to generalize the Lax-Milgram

Lemma to the complex Hilbert space situation, which is an easy exercise. In
what follows we will continue working with the real-valued functions, but we
still will use the notation A∗, L∗ etc., even though it could perhaps invoke spaces
over the complex numbers. An alternative would be to use the notation A′, L′

for the adjoints when we work over the real numbers. These notational issues
are not a serious concern, there will be no danger of misunderstanding.

Let L,L∗ be the differential operators associated with the formsA(u, v), A∗(u, v).
It is easy to see that, formally (Lu, v)2L = (u, L∗v)2L.
Let GA∗ the solution operator corresponding the form A∗. As GA before, GA∗

can be considered as operators on L2(Ω).

Lemma
With the notation above, we have for f1, f2 ∈ L2(Ω)

(GA f1, f2)L2 = (f1, GA∗ f2)L2 . (418)

In other words GA∗ is the L2-adjoint of GA:

GA∗ = G ∗
A . (419)
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Proof
Let GAfj = uj , j = 1, 2. We just go through the definitions to verify

(GAf1, f2)L2 = A(u2, u1) , (f1, GA∗f2) = A(u2, u1) , (420)

which of course implies (418).

If the form is symmetric, i. e. A∗ = A, then the problem (436) corresponds to
finding the minimizer of the functional

J(u) =
1

2
A(u, u)− l(u) (421)

in the space X. In this case the operator GA is self-adjoint. We have seen that
it is also compact. Recalling the important fact that every compact self-adjoint
operator on a Hilbert space is diagonal in some orthonormal (Hilbert) basis, we
arrive at the following conclusion:

Theorem
Assume A is symmetric and coercive. Then there exists a sequence functions
ϕ1, ϕ2, . . . in X, and real numbers λ1 ≥ λ2 ≥ · · · ↘ 0 such that ϕ1, ϕ2, . . . form
an orthonormal Hilbert basis in L2(Ω) and

GAϕj = λjϕj . (422)

Proof
Let f ∈ L2(Ω), f ̸= 0 and u = GAf . Since A is coercive, we know that u ̸= 0
and

(GAf, f)L2 = A(u, u) ≥ α||u||2W 1,2 > 0 . (423)

This shows that the spectrum is non-negative and that 0 is not an eigenvalue.
The operator GA maps L2(Ω) into X, and therefore the equation λjϕj = GAϕj
shows that all eigenfunctions are in X.

In terms of the differential operator L the equation for eigenfunction is

Lϕj =
1

λ
ϕj , + boundary conditions , (424)

where the equation is satisfied in the sense of distributions and the boundary
conditions are determined by the choice of the space X. For instance, in ex-
ample 1 above, the boundary condition for each ϕ = ϕj is ϕ = 0 on Γ0 and

aij
∂ϕ
∂xj

ni + (b̃jnj + γ)ϕ = 0 on ∂Ω \ Γ0. (The last equation can be taken as it

is only when ϕ are sufficiently regular which, as we shall see, is the case when
the coefficients are smooth. In the general case of non-smooth coefficients when
the expression aij

∂ϕ
∂xj

is not defined point-wise, one has to interpret it in a weak

sense.)
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If A is not symmetric then GA wil not be self-adjoint. In general, compact
operators on a Hilbert space which are not self-adjoint may not have to have
any eigenvalues, the spectrum can be just {0}. However, this cannot happen
with the operators GA above. Even for non-symmetric A one can show that
the real spectrum is non-trivial. This is a consequence of the Krein-Rutman
theorem. In general we will have complex eigenvalues. 114

There are important cases when the form A is not coercive, and yet the bound-
ary value problem is uniquely solvable. Let us first consider the following toy
example:

Consider −u′′ + au = f on (0, π), with u(0) = u(π) = 0. The corresponding
from A is A(u, v) =

∫ π
0
(u′v′+auv), which is not coercive for a ≤ −1, as one can

check by using the Fourier series u =
∑∞
k=1 uk sin kx. From the Fourier series

one can also see that the problem is uniquely solvable for each f ∈ L2 if and
only if a ̸= −k2, k = 1, 2, . . . .

The above example is a special case of the following consequence of the spectral
theory for the compact operators GA considered above. If A is coercive and L is
the corresponding operator, than the problem Lu−λu = f + natural boundary
conditions is uniquely solvable for all f ∈ L2(Ω) when for all λ ∈ R \ S, where
S is a discrete countable subset of R. The forms corresponding to L−λ are not
coercive when λ is large.

In general, the Lax-Milgram form associated with the equations such as

aij(x)uij = f, u|∂Ω = 0

(where uij denotes
∂2u

∂xi∂xj
) or

∆u+ bj(x)uj = f, u|∂Ω = 0

(where uj = ∂u
∂xj

) are not coercive, although there are interpretations of those

equations115 from which it is more or less clear that they should be uniquely
solvable. We will see that one can still use the Direct Method approach to
handle these cases, but only with the help of additional arguments (such as the
maximum principle).

114Is the space generated by the (possibly complex) eigenfunctions dense in (the complexifi-
cation of) X? I am sure this has been investigated and the answer should be in the literature.
115such as the probabilistic interpretation
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Lecture 31, 11/19/2010

We now consider problems with non-coercive Lax-Milgram forms. We assume
that A(u, v) is of form (403) as in the last lecture (with the same assumptions
of the coefficients). As before, A(u, v) is considered on some space X with
H1

0 (Ω) ⊂ X ⊂W 1,2(Ω), which is dictated by the boundary conditions.

For λ ∈ R we consider the form

Aλ(u, v) = A(u, v) + λ(u, v)2L . (425)

Lemma
There exists λ0 such that for λ ≥ λ0 the form Aλ is coercive in W 1,2(Ω), with

Aλ(u, u) ≥
ν

2
||u||2W 1,2 , u ∈W 1,2(Ω) , (426)

where ν is the constant in the ellipticity condition (455).

Proof: We have

A(u, u) ≥
∫
Ω

(
ν|∇u|2 − C1|∇u||u| − C2|u|2

)
− C3

∫
∂Ω

|u|2 . (427)

We use

|∇u||u| ≤ ε

2
|∇u|2 + 1

2ε
|u|2 (428)

and choosing ε = ν
2C1

we obtain

A(u, u) ≥
∫
Ω

(
ν|∇u|2 − ν

4
|∇u|2 − C4|u|2

)
− C3

∫
∂Ω

|u|2 . (429)

If it was not for the boundary term, this would prove the lemma (with λ0 =
C4 + ν/2).
To deal with the boundary term, we use

||u|∂Ω||2L2(∂Ω) ≤ C||u||W 1,2(Ω)||u||L2(Ω) . (430)

To obtain this strengthened version of the trace inequality (321), it is enough
to replace the identity

u(x′, g(x′)) =

∫ b

g(x′)

−∂u(x
′, s)

∂xn
ds , (431)

in the proof of the trace inequality by

|u(x′, g(x′))|2 =

∫ b

g(x′)

−∂|u(x
′, s)|2

∂xn
ds =

∫ b

g(x′)

−2∂u(x
′, s)

∂xn
u(x′, s) ds , (432)
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integrate over x′, and use the Cauchy-Schwartz inequality. Once we have (458),
we can use

||u||W 1,2 ||u||L2 ≤ ε

2
||u||2W 1,2 +

1

2ε
||u||2L2 (433)

and absorb the first term on the right-hand side into the first term of (457)
(at the cost replacing ν with a smaller number). This finishes the proof of the
lemma.

Let l ∈ X∗ and consider the problem

A(u, v) = l(v), v ∈ X , (434)

corresponding to

Lu = f + boundary conditions , (435)

as discussed in the last lecture. Let λ0 be such that the form Aλ0 is coercive
and write (434) as

Aλ0(u, v) = l(v) + λ0

∫
Ω

uv , v ∈ X. (436)

Let G0 be the solution operator of the form Aλ0 , defined in the last lecture. We
can re-write (436) as

u = G0l + λ0G0u , (437)

or
u− λ0G0u = G0l . (438)

We have seen in the last lecture that the operator G0 can be considered as a
compact operator on L2(Ω), and hence (438) can be considered as a Fredholm
equation in L2(Ω). Note that G0l ∈ X and G0v ∈ X for each v ∈ L2(Ω), so any
solution u ∈ L2(Ω) of (438) will automatically be in X. We apply the Fredholm
theorems to (438). We denote by G∗

0 the L2-adjoint of G0. As we have seen in
the last lecture, this is the solution operator associated with the form A∗

λ0
, or

the differential operator L∗ + λ0 (with appropriate boundary conditions).

Let us first look at the question of unique solvability of (434). By Fredholm
theory we know that I − λ0G0 is invertible (as an operator on L2(Ω)) if and
only if the only solution u ∈ L2(Ω) of u − λ0G0u = 0 is u = 0. Tracing back
our definitions, we see that the condition u−λ0G0u = 0 for a u ∈ L2(Ω) means
that u ∈ X and

A(u, v) = 0 v ∈ X . (439)

Hence we have
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Theorem
The problem

A(u, v) = l(v), v ∈ X (440)

is uniquely solvable in X for each l ∈ X∗ if and only if the homogeneous problem

A(u, v) = 0, v ∈ X (441)

has only the trivial solution u = 0 in X.

Recall that l can be of the form

l(v) =

∫
Ω

(f0v + fj
∂v

∂xj
) +

∫
∂Ω

gv . (442)

and assume that X = W 1,2(Ω). Then the boundary problem corresponding
to (440) is

− ∂

∂xi
aij

∂u

∂xj
+ bj

∂u

∂xj
− ∂

∂xj
(b̃ju) + cu = f0 − ∂fj

∂xj
in Ω , (443)

aij
∂u

∂xj
ni + (b̃jnj + γ)u = g + fjnj at ∂Ω. (444)

The theorem above says that this boundary values problem is uniquely solvable
in W 1,2(Ω) for each f0, f1, . . . , fn ∈ L2(Ω) and each g ∈ L2(∂Ω) if and only if
the problem with f0 = f1 = · · · = fn = 0 and g = 0 has only the trivial solution
u = 0.

It is important to note that our definition of the solution of (443), (444) is
exactly (440). At this stage we cannot tell if the solutions are smooth when all
the coefficients are smooth. In particular, even in the case of smooth coefficients,
to prove unique solvability of (440), we do not yet know if it is enough to verify
that the only smooth solution of (443), (444) is u = 0. The theorem above merely
says that we can conclude unique solvability if the variational formulation (441)
of the homogeneous problem has no other solution than u = 0. If we knew that
each such solution has to be smooth, it would be enough to look only at the
smooth solutions. We will see later that this is indeed the case, but we will have
to work some more to get to that conclusion.

As an example where the above issues are relevant, let us consider

−∆u+ bj
∂u

∂xj
= f in Ω , (445)

u = 0 at ∂Ω . (446)

In this case we work with X = H1
0 (Ω). Assume the coefficient bj are smooth and

that Lax-Milgram form is not coercive.116 To decide the unique solvability117 we

116As an exercise, find some bj where this would be the case.
117assuming that A is not coercive
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should look at the case f = 0. We suspect, based on the maximum principle,118

that the only solution of (445), (446) with f = 0 is u = 0. However, if we
wish to decide that using only the theorem above, we would have to show that
every H1

0 (Ω)-solution of the problem with f = 0 is trivial. At the same time,
general functions in H1

0 (Ω) do not have enough smoothness for our proof of the
maximum principle to work. We see that we have to develop the theory a little
further before we can take the full advantage of the above theorem.

Let us now go back to (438) and consider the situation when the the equation
v−λ0G0v = 0 does have non-trivial solutions. The Fredholm theory tells us the
following: consider the L2-adjoint G∗

0 of G0, which – as we have seen last time –
can also be defined as the solution operator for the form A∗

λ0
(u, v) = Aλ0(v, u).

Set

Y = ker(I − λ0G∗
0) = {v ∈ L2(Ω) , v − λ0G∗

0 v = 0} ⊂ X ⊂W 1,2(Ω) . (447)

The equation
u− λ0G0u = G0l (448)

is solvable in L2(Ω) if and only if G0l is perpendicular to the kernel Y :∫
Ω

(G0l)v = 0 v ∈ Y. (449)

We have, by our definitions,∫
Ω

v(G0l) = A(G0v,G0l) = l(G∗
0v) . (450)

Remark
We have shown earlier, see (420), that GA∗ is the L2-adjoint of GA. The same
proof shows (just as (450)) that l1(GA∗ l2) = l2(GA l1) for l1, l2 ∈ X∗. We can
also use the notation ⟨l, v⟩ = l(v). Then we can write ⟨l1 , GA l2⟩ = ⟨l2 , GA∗ l1⟩.

For v ∈ Y we have G0v = 1
λ0
v, and hence∫

Ω

v(G0l) =
1

λ0
l(v) . (451)

We have arrived at an important generalization if the previous theorem:

118You can check which of our proofs of the maximum principle for harmonic functions
(lecture 6) work for this more general equation when all the involved functions are sufficiently
regular. At least one of them does!
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Theorem
Let A be a Lax-Milgram form (403) on X, not necessarily coercive, with aij
satisfying the ellipticity condition (455). Then

A(u, v) = l(v), v ∈ X (452)

is solvable if and only if l(v) = 0 for each v which solves the homogeneous
adjoint problem

A(w, v) = 0, w ∈ X . (453)

Moreover, the space of the solutions of the adjoint problem is finite-dimensional.

Proof: See above.

Example

Let X = W 1,2(Ω), let the form A be given by A(u, v) =
∫
Ω
∇u∇v, and let

l(v) =
∫
Ω
fv+

∫
∂Ω
gv for some f ∈ L2(Ω) and g ∈ L2(∂Ω). This corresponds to

solving −∆u = f in Ω and ∂u
∂n = g at ∂Ω. The adjoint problem is A(w, v) = 0

for each w ∈W 1,2(Ω), corresponding to ∆v = 0 in Ω and ∂v
∂n = 0. (In this case

the form is self-adjoint.) It is easy to see that the only solutions of the adjoint
problem are constant functions. Clearly these are solutions, and using w = v
in the definition of the adjoint problem we see that the solutions of the adjoint
problem must satisfy A(v, v) = 0. Our assumption is that Ω is connected, and
hence v must be constant.119 By the theorem above the original problem will
be solvable if and only if l(v) = 0 for each constant function v. This is exactly
the condition

∫
Ω
f+

∫
∂Ω
g = 0, the necessity of which one can get by integrating

the original equation over Ω.

An alternative set-up for this problem would be to use the space X = {u ∈
W 1,2(Ω) ,

∫
∂Ω
u = 0}. Take A as above, and show that this time A is coercive

on X. Therefore the problem A(u, v) = l(v) for each v ∈ X now has a unique
solution for each v ∈ X. As an exercise, explain that this conclusion does not
contradict the previous one.

Yet another approach would be to minimize
∫
Ω
(|∇u|2−fu)−

∫
∂Ω
gu directly on

the space W 1,2(Ω)/constants. Note that
∫
Ω
fv +

∫
∂Ω
gu is well-defined on this

space if and only if
∫
Ω
f +

∫
∂Ω
g = 0.

Of course, all the three approaches are just alternative ways of describing the
same.

119Note that we are using the result that if the ∇u ∈ L2 exist in the sense of distributions
and vanishes, then the function is constant.
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Lecture 32, 11/22/2010

We will discuss the meaning of the various terms in the equations conditions we
have looked at so far, together with the various boundary conditions. Let us
start with the equation

−∆u = f in Ω + boundary conditions (454)

We have see that this can describe the electric potential u. If the environment
in which the potential is considered is inhomogeneous, then ∆ is replaced by
∂
∂xi

aij(x)
∂
∂xj

, where aij describe the properties of the material. The boundary

conditions can depend on how we model the material of the boundary. Rather
than going into the details we can refer the reader to the classical text “Elec-
trodynamics of Continuous Media” by Landau and Lifschitz.

Equation (454) can also describe steady distribution of temperature or density
of particles subject to diffusion, in an enviroment where the heat conductivity
or the diffusivity are constant in x. The right-hand side f describes the heat
sources or the particle sources respectively. The Dirichlet boundary condition
u = g at ∂Ω means that the temperature (resp. particle density) is forced to
a given value g by some external devices (heating/cooling of the boundary or
adding/removing particles at the boundary). The Neumann boundary condition
∂u
∂n = 0 at ∂Ω means that the boundary insulates the domain from external

influences. The inhomogeneous boundary condition ∂u
∂n = g at ∂Ω means that

a given steady flux of heat/particles (specified by g) is kept at the boundary
by external devices. The boundary condition ∂u

∂n + γu = 0 means that the
boundary is partially insulating, with γ = 0 corresponding to the insulating
case and γ = +∞ corresponding to the case with no insulation.

If the heat conductivity or the diffusivity of the environment is not constant, we
have to introduce variable coefficients into the laplacian. This has to be done
differently for the heat equation and the diffusion equations. In both cases the
properties of the environment are described by a matrix aij(x) which locally
characterizes the relevant environment properties.

When describing heat conduction, with u being the temperature, the right equa-
tion for u is (in the absence of sources) is

− ∂

∂xi
aij(x)

∂u

∂xj
= 0 , 120 (455)

similar to what we have in electrostatics. This is a divergence form equation.
Note that u satisfies the maximum principle,121 as one would heuristically ex-
pect: at a steady-state, the temperature cannot have a local maximum or min-
imum inside the domain if no sources are present. The Neumann boundary

120To avoid ambiguity, we should perhaps write − ∂
∂xi

(aij(x)
∂u
∂xj

) = 0.
121You can check as an exercise that some proofs of the maximum principle we did for
harmonic functions work in this more general case.
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condition (describing an insulating boundary) will be aij(x)
∂u
∂xj

ni = 0 at ∂Ω,

reflecting the fact that the heat flux, given by Ii = aij
∂u
∂xj

, cannot transport

heat across the insulating boundary.

For diffusion the correct equation is (in our simple situation) a special case of
the Fokker-Plank equation, also called the forward Kolmogorov equation. In our
special case it will be

∂2

∂xi∂xj
aij(x)u = 0 .122 (456)

Note that this equation will not satisfy the maximum principle.123 This is
because particles can get stuck in areas where diffusion is small, and their con-
centration in such regions will be higher. The natural Neumann-type boundary
condition describing an insulating boundary will be ni

∂
∂xj

(aij(x)u) = 0, which

is still a “natural boundary condition” for our theory, and it is covered by our
theorems, at least for sufficiently regular coefficients aij .

Although (456) does not satisfy the maximum principle, the dual equation

aij(x)
∂2u

∂xi∂xj
= 0 (457)

does satisfy it.124 This is a non-divergence form equation. A natural interpre-
tation of u in (457) is not in terms of some densities, but in term of mean values
and probabilities. For example, for the non-homogeneous Dirichlet condition
u = g at ∂Ω, the value u(x) is

∫
∂Ω
g(x)p(x, y)dy, where y → p(x, y) is a func-

tion on ∂Ω, with
∫
M
p(x, y)dy being the probability that a particle starting at

x will hit the boundary for the first time at M . In other words, y → p(x, y) is
a probability density with which particles “launched” at x will be hitting the
boundary. With this interpretation the maximum principle is transparent. Note
also the similarity between p(x, y) and the Poisson kernel introduced earlier for
the Laplace equation.

You can check that our theory based on the Lax-Milgram lemma works very
well for the divergence form equations even in the case when aij are merely
bounded and measurable. On the other hand, to cover the non-divergence form
equations, we need stronger assumptions on aij . With the theorems we have
proved so far we need that aij are Lipschitz. 125

122Here also we should perhaps write ∂2

∂xi∂xj
(aij(x)u) = 0 to avoid ambiguity.

123Give an example in dimension 1.
124Show that at least one proof we did for the harmonic functions works also in this more
general case, at least when the coefficients are smooth.
125This can be extended to continuous coefficients aij and slightly further, but not much,
if we wish to keep uniqueness. By contrast, we have seen that uniqueness is no problem for
divergence-form equations with bounded measurable coefficients.

Deeper properties (such as Hölder continuity, or Harnack inequality) of solutions of
divergence-form equations with bounded measurable coefficients in arbitrary dimensions were
discovered in the 1950s and 1960s (by E. DeGiorgi, J. Nash, J. Moser, O. A. Ladyzhenskaya,
N. Uraltseva and others) For non-divergence form equations with measurable coefficients these
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Let us now turn to the terms bj
∂u
∂xj

or ∂
∂xj

(bju). The diffusion interpretation

provides a simple heuristics for the term ∂
∂xj

(bju). We imagine that the diffu-

sion takes place in a fluid (compressible or incompressible) which moves, and
the motion (often called a drift) is given by the vector field b. In addition to
the random motion, the particles are “carried with the fluid”. For the simple
diffusion given by the laplacian, the equation describing the stationary state of
this process is (in the absence of sources)

−∆u+
∂

∂xj
(bju) = 0 , (458)

which is again a special case of the general Fokker-Planck equation (or forward
Kolmogorov equation). 126 The interpretation of the various boundary con-
ditions is similar to other examples. The Dirichlet boundary condition u = 0
at some part of the boundary means that particles disappear once they touch
the boundary. The condition that the boundary is impenetrable to the parti-
cles (but does not destroy them) is − ∂u∂n + bjnju = 0. Note that (458) does
not satisfy the maximum principle, as the particles can concentrate at places
where the drift is “focusing”. (This is not possible when the underlying flow b
is incompressible, i. e. satisfies div b = 0.) The adjoint equation to (458) is

−∆u− bj
∂u

∂xj
= 0 . (459)

As with (457), this equation does have the maximum principle. The natural
interpretation of u in (459) is in terms of probability and mean values (and
not some particle density), similar to (457). The boundary condition for an
“insulating boundary” is ∂u

∂n = 0.
The reader who is interested in these interpretations should consult a book on
stochastic processes.127 In the stochastic interpretation, it is often easier to work
with the dual of the Fokker-Planck equation (often call the Kolmogorov backward
equation), as its solution can be directly written down in terms probabilities of
events for well-defined processes.

Finally, let us look at the term c(x)u in the equations. The interpretation of
this term is simple for the Fokker-Planck equation: adding c(x)u means that
the particles decay (if c ≥ 0). Roughly speaking, each particle moving near a
point x has a certain probability (proportional to c(x)) of disintegrating and
disappearing.

were only proved in the late 1970s (by N. Krylov and M. Safonov from our own department),
and the lack of uniqueness in this case was only shown in 1990s (by N. Nadirashvili). It turns
out that he regularity results obtained for these general classes of linear equations are crucial
for studying smooth non-linear equations.
126 − ∂2

∂xi∂xj
aij(x)u+ ∂

∂xj
(bju) + cu = f

127For example, the book “Stochastic Differential equations: An Introduction with Applica-
tions” by B.K.Oksendal provides a god introduction to these topics.
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If you are in doubt about the meaning of a particular term in the equation or a
specific boundary condition, it is usually helpful to consider simple examples in
dimension n = 1. Often these are good for obtaining some reasonable heuristics
for what happens with the solutions even in dimensions n ≥ 2.
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Lecture 33, 11/24/2010

We now turn to regularity theory for the solutions we constructed by the Direct
Method. We will use the standard method based on L2-estimates of the higher
derivatives. The main idea can be illustrated on the example of the Laplace
equation. Suppose u ∈W 1,2(Ω) satisfies∫

Ω

∇u∇v = 0 , v ∈ H1
0 (Ω) . (460)

We will prove that u has to be smooth in the following steps:

Step 1 (Caccioppoli’s inequality).128

For any concentric balls BR1
⊂ BR0

⊂ Ω we have∫
BR1

|∇u|2 ≤ C

(R0 −R1)2

∫
BR0

|u|2 . (461)

Step 2 (Formal application of (461) to higher derivatives).

At first (461) may not seem to a be very strong conclusion – we already know
that u ∈ W 1,2(Ω). However it is stronger than it looks due to its local nature.
We note that any partial derivative of u satisfies again the Laplace equation, at
least formally, so we should be able to apply (461) successively to higher and
higher derivatives of u and obtain, for any concentric balls BRk

⊂ BRk−1
· · · ⊂

BR0
⊂ Ω: ∫

BRk

|∇ku|2 ≤ ck
(Rk−1−Rk)2

∫
BRk−1

|∇k−1u|2 ,∫
BRk−1

|∇k−1u|2 ≤ ck−1

(Rk−2−Rk−1)2

∫
BRk−2

|∇k−2u|2 ,
. . .∫

BR1
|∇u|2 ≤ c1

(R0−R1)2

∫
BR0
|u|2 ,

(462)

which implies (by choosing for example (Rj −Rj−1 ∼ 2−j−1(R0 −Rk))∫
BRk

|∇ku|2 ≤ Ck
(R0 −Rk)2k

∫
BR0

|u|2 (463)

for suitable constants Ck (which can approach infinity as k →∞).129

Step 3 (Justification of the formal calculations in step 2).

In step 2 we were taking higher derivatives of the equations, but a priori we
do not know that these derivatives are integrable functions. We have to show
that this is indeed the case. This can be done by first replacing derivatives with

128sometimes also called “local energy inequality”
129The constants ck in (462) depend on k as the number of components of ∇ku increases
with k.
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difference quotients, such as Dh
j u(x) =

u(x+hej)−u(x)
h , and checking that at each

step of establishing (462) we can first apply (461) to the difference quotient and
then pass to the limit. For that we will need a characterization of the condition
∂u
∂xj
∈ L2 in terms of bounds on the difference quotients Dh

j u in L2 which are

uniform in h ∈ (0, h0).

Step 4 (Sobolev Imbedding Theorem)

Steps 1–3 establish that u, in the sense of distributions, the derivatives of u
of any order belong locally to L2. We need to show that this implies that u
is smooth. The Sobolev Imbedding Theorem says that if a function has more
than n/2 derivatives in L2, it is continuous. This implies that in our situation
above, the function u is smooth.

Steps 1–4 establish the following version of the pointwise estimate for harmonic
functions (33) from lecture 4

sup
BR1

|∇ku|2 ≤ C(k,R0, R1)

∫
BR0

|u|2 . (464)

The factor C(k,R0, R1) can be made more precise130, but (464) is sufficient for
our purposes at the moment.131

Estimate (464) is an example of a local interior estimate. Note that boundary
conditions play no role in it. There are two other types of estimates used in
the regularity theory: local boundary estimates and global estimates. We will
discuss those later.

The above proof of regularity looks more complicated than the method in lec-
ture 4 using the representation formulae, but it has a significant advantage:
it can be very easily generalized to equations with lower order terms, variable
coefficients, boundary regularity, etc. We will see that in such more general situ-
ations the proof remains essentially the same, except that we have to write more
terms in the calculations, and go through some additional steps when proving
boundary regularity. In fact, the method works for all equations we have been
studying so far when the coefficients are sufficiently regular. For boundary regu-
larity we also need that the boundary is sufficiently regular. The method used in
lecture 4 can also be generalized to cover this class of equations, but the general-
ization is more complicated. Regularity theory for equations with not-so-regular
coefficients (or in not-so-regular domains) requires additional ideas.

We will now proceed with a justification of steps 1 – 4 above.

Proof of (461)
Let η be a smooth cut-off function with η = 1 in BR1 , compactly supported in
BR0 , and |∇η| ≤ 2

R0−R1
. We use (460) with

130The optimal form would be Ck

(R0−R1)2k+n .
131The more precise form can be useful for the proof of the Liouville theorem, for example.
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v = uη2 (465)

and obtain∫
Ω

|∇u|2η2 =

∫
Ω

−2(η∇u)(u∇η) ≤ ε

2

∫
Ω

|∇u|2η2 + 1

2ε

∫
Ω

4|u|2|∇η|2 , (466)

where ε > 0 can be chosen arbitrarily. Choosing ε = 1
2 , we obtain (461) with

C = 32.

Difference quotients

We recall that

Dh
j u(x) =

u(x+ hej)− u(x)
h

, (467)

where ej is the unit vector in the direction of the xj axis, h ̸= 0, and x ∈ Ω|h| =
{x ∈ Ω,dist(x, ∂Ω) > |h|}.

Lemma
Let u ∈ L2(Ω). The following conditions are equivalent

(i) There exists wj ∈ L2(Ω) such that ∂u
∂xj

= wj in Ω in the sense of distribu-

tions.

(ii) For some h0 > 0 we have∫
Ωh

|Dh
j u|2 ≤ C < +∞ (468)

uniformly for h ∈ (0, h0).

Remark
It will be clear from the proof of the lemma that if one the equivalent conditions
is satisfied, than in fact Dh

j u→ ∂u
∂xj

as h→ 0 strongly in L2 on compact subsets

of Ω, but we will not need this in what follows.

Proof of the lemma:
The implication (i) =⇒ (ii) is an easy consequence of the identity

Dh
j u(x) =

∫ 1

0

∂u

∂xj
(x+ hejt) dt , x ∈ Ωh , (469)

and the continuity properties of the translation operator on Lebesgue spaces.132

132It is a good exercise to go through all the details, there are several things working in the
background of this argument.
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To prove (ii) =⇒ (i), we note that for any compactly supported smooth function
φ we can write∫

Ω

−u ∂φ
∂xj

= lim
h→0+

∫
Ω

−uD−h
j φ = lim

h→0+

∫
Ω

Dh
j u φ ≤

√
C||φ||L2(Ω) . (470)

We see that the linear functional φ →
∫
Ω
−u ∂φ

∂xj
is continuous with respect to

the L2-norm, and hence can be represented by an L2 function wj as∫
Ω

−u ∂φ
∂xj

=

∫
Ω

wjφ , (471)

which exactly says that ∂u
∂xj

= wj in the sense of distributions.

Remark
The above proof also shows that the following condition is also equivalent to
condition (i) and (ii) in the lemma:

(iii) lim infh→0

∫
Ωh
|Dh

j u|2 < +∞ .
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Lecture 34, 11/29/2010

We start with discussion of step 4 – the Sobolev Imbedding Theorem – in the
scheme for establishing regularity we discussed in the last lecture. Imbedding
theorems are a large topic in the theory of function spaces, and at this point
we will only cover one particular result which we need for our regularity proofs.
We will return to this topic later and study it in a more systematic way.
For step 4 of out regularity theory we only need to establish, roughly speaking,
that a function u with sufficiently many derivatives in L2 is continuous. Apply-
ing this to ∇ku will also show that if k more derivatives are in L2 the function
is Ck.
Let us consider some easy special cases.

Example
If u is a compactly supported function in R3 with ∇2u ∈ L2, then u is continu-
ous.

This is a direct consequence of the representation formula (25) from lecture 3.
Assume the support of u is in BR and let GR = GχB2R

, where χB2R
is the

characteristic function of the ball B2R. Assume first that u is smooth. Then for
x ∈ BR

u(x) = G(x− y)∆u(y) dy = GR(x− y)∆u(y) dy ≤ ||GR||L2 ||∆u||L2 . (472)

For a continuous function v on Rn let us denote

||u||C = sup
x
|u(x)| . (473)

Identity (472) shows that

||u||C ≤ CR||∇2u||L2 , (474)

where CR is a constant depending on R. If u is not smooth, we can use (474) for
uε = u∗ϕε (where ϕε is a mollifier), and (474) shows that uε converge uniformly
to u, showing that u is continuous. 133

The reader can check that a similar result works also in dimension n = 2.

In dimension n = 4 a compactly supported function u with ∇2u ∈ L2 may no
longer be continuous.134 On the other hand, if u is supported in BR, ∇3u ∈ L2

(and n = 4), u will be continuous. This can be seen from the representation
formula

u = G∗G∗∆2u = G,j∗G∗∆u,j = (G,j∗G)∗∆u,j = Qj∗∆u,j = (QjχB2R
)∗∆uj ,
(475)

133Strictly speaking, if we wish our terminology to be completely accurate, we should not
say that u is continuous, but rather that u has a continuous representative. This is be-
cause originally our function u is only defined as an element of some Lebesgue space, and its
point-wise values are defined only almost everywhere. Our proof above then shows that the
class of measurable functions which are equal to u almost everywhere contains a continuous
representative. Once it exists, such representative is of course unique.
134Hint: consider u(x) = f(|x|) for a suitable f : (0,∞) → R.
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where G(x) = 1
2|S3||x|2 , we use the notation f,j for

∂f
∂xj

, and Qj = G,j ∗G. The
function QjχB2R is easily checked to be in L2. (It is O( 1

|x| ) at the origin.)

The above proof also work in dimension n = 5, with G = 1
3|S4|x|3 .

In dimension n = 6 it is not enough to have ∇3u in L2 to get continuity.135

However, if we have ∇4u ∈ L2, u will be continuous. This is again seen from

u = G ∗G ∗∆2u , G =
1

(n− 2)|Sn−1||x|n−2
, n = 6 (476)

and
G ∗GχB2R

∈ L2 . (477)

Continuing this pattern we arrive at the following conclusion: if u ∈ L2(Rn) is
compactly supported and ∇mu ∈ L2 for m > n

2 , then u is continuous.

If u is not compactly supported, we can multiply it by a suitable cut-off function
φ so that φu is compactly supported. If ∇ju ∈ L2(Ω) for j = 0, 1, . . . ,m and φ
is supported in Ω, then we can extend φu by 0 outside Ω and ∇m(φu) ∈ L2(Rn).
Hence we have shown

If Ω ⊂ Rn and u ∈ L2
loc(Ω) with ∇ju ∈ L2

loc(Ω) for j = 1, . . . ,m for some
m > n/2, then u is continuous in Ω.136

Proof: See above.

We now obtain a generalization of this result by using Fourier Transforma-
tion. 137

Let S = S(Rn) be the space of complex-valued smooth functions f in Rn satis-
fying

|∇kf(x)|(1 + |x|2)m/2 ≤ Ck,m x ∈ Rn . (478)

The space S is called the Schwartz class (after L. Schwartz). For f ∈ S we

define f̂ : Rn → C, the Fourier transform of f , by

f̂(ξ) =

∫
Rn

f(x)e−iξx dx . (479)

Note that the integral is convergent and that f̂ is a smooth function of ξ.
Integration by parts gives

∂̂f

∂xj
(ξ) = iξj f̂(ξ), (480)

and

−̂ixjf =
∂f

∂ξj
. (481)

135Hint: consider u(x) = f(|x|) for suitable f .
136As we already discussed, the precise statement is that u has a continuous representative.
137Expressing functions via their Fourier Transformation can also be thought of as a repre-
sentation formula, and it makes certain properties of functions very transparent.
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These two formulae show that when f ∈ S, then f̂ ∈ S.

A simple application of the Fubini theorem shows that for f, g ∈ S we have∫
Rn

fĝ =

∫
Rn

f̂g . (482)

We can calculate explicitly

̂
e

−|x|2
2 = (2π)

n
2 e

−|ξ|2
2 . (483)

We also have, for g ∈ S and ε > 0

ĝ(εx) = ε−nĝ(
ξ

ε
) . (484)

Using (482) with g(x) = gε(x) = e
|εx|2

2 and letting ε → 0, we obtain, for any
f ∈ S the formula:

f(0) =
1

(2π)n

∫
Rn

f̂(ξ) dξ . (485)

Combining (485) with the obvious formula

̂f(x+ a) = eiaξ f̂(ξ) (486)

we obtain, for any f ∈ S the crucial inversion formula

f(x) =
1

(2π)n

∫
Rn

f̂(ξ)eiξx dξ . (487)

It can be though of as a kind of representation formula for f . It expresses f as
a “linear combination” of the simple functions x→ eiξx.

Letting f∗(x) = f(−x), where the bar denotes conjugation of complex numbers,
we check easily

f̂∗ = f̂ . (488)

An easy calculation shows that the product fg for f, g ∈ S transforms to con-
volution

f̂g =
1

(2π)n
f̂ ∗ ĝ , (489)

and the convolution f ∗ g transform to the product:

f̂ ∗ g = f̂ ĝ . (490)

Finally, applying the inversion formula (487) to f ∗ g∗ (for f, g ∈ S), we obtain
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∫
Rn

fg =
1

(2π)n

∫
Rn

f̂ ĝ , (491)

called Parserval’s formula. Taking f = g in it, we obtain∫
Rn

|f |2 =
1

(2π)n

∫
Rn

|f̂ |2 , (492)

called the Plancherel’s formula.

We can now define the spaces Hs = Hs(Rn). We first note that that for a
non-negative integer k and f ∈ S we have∫

Rn

(
|f |2 + |∇f |2 + · · ·+ |∇kf |2

)
= (493)

=
1

(2π)n

∫
Rn

(1 + |ξ|2 + |ξ|4 + . . . |ξ|2k)|f̂(ξ)|2 dξ ∼ (494)

∼ 1

(2π)n

∫
Rn

(1 + |ξ|2)k|f̂(ξ)|2 dξ , (495)

where ∼ means that the ratio of the two quantities involved is bounded both
from above and below.
It is therefore natural to define for any s ∈ R the following norm for a function
f ∈ S:

||f ||2Hs =
1

(2π)n

∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ . (496)

The Sobolev space Hs(Rn) is defined as the completion of S in the norm || · ||Hs .

Theorem (Sobolev Imbedding Theorem)138

If s > n
2 , then all functions in Hs are continuous with f(x)→ 0 as x→∞, and

||f ||C ≤ C||f ||Hs . (497)

Proof: It is enough to prove (497) for f ∈ S. This is not hard:

|f(x)| ≤ 1

(2π)n

∫
Rn

|f̂(ξ)eiξx| dξ = (498)

1

(2π)n

∫
Rn

(1 + |ξ|2) s
2 |f̂(ξ)|(1 + |ξ|2)− s

2 dξ ≤ (499)

1

(2π)n

(∫
Rn

(1 + |ξ|2)s|f̂(ξ)|2 dξ
) 1

2
(∫

Rn

1

(1 + |ξ|2)s
dξ

) 1
2

≤ C||f ||Hs .(500)

138This terminology is often used also for more general imbedding results.

130



It is useful to have also the following result

If f ∈ L2(Rn) together with all distributional derivatives of order k, then
f ∈ Hk(Rn).

Remark
The space of functions with all distributional derivatives up to order k in L2

is usually denoted by W k,2(Rn). The above statement can be re-written as
Hk(Rn) =W k,2(Rn).

Proof: Take a smooth compactly supported function ϕ on Rn which is = 1 in
a neighborhood of 0, and set ϕε(x) = ϕ(εx). The functions ϕεu are compactly
supported and can be approximated in Hs by smooth compactly supported
functions. Moreover, it is easy to check that as ε → 0, the functions ϕεu form
a Cauchy sequence in Hk with ∇j(ϕεu)→ ∇ju in L2(Rn) for j = 0, 1, 2, . . . k.
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Lecture 35, 12/1/2010

In preparation for dealing with boundary regularity, we also prove imbedding
version of the Sobolev Imbedding Theorem for bounded domains. Let Ω be a
bounded domain. For smooth functions in Ω we define the norm

||u||2Hk =

∫
Ω

(
|u|2 + |∇u|2 + · · ·+ |∇ku|2

)
dx . (501)

Let E(Ω) be the space of functions in Ω which are obtained as restrictions to Ω
of smooth functions defined in a some neighborhood of Ω. We define the space
Hk(Ω) as the closure of E(Ω) in the Hk-norm. We also define the spaceW k,2(Ω)
is the space of L2-functions in Ω for which all distributional derivatives up to
order k are in L2(Ω). The norm in W k,2(Ω) is defined by the expression on the
right-hand side of (501). In lecture 23 we showed that H1(Ω) = W 1,2(Ω) for
Lipschitz domains Ω. By inspecting the proof, we see that it in fact works for
any k = 1, 2, . . . . Hence we have

For any bounded Lipschitz domain Ω ⊂ Rn we have

Hk(Ω) =W k,2(Ω) . (502)

One way to prove continuity of the functions in Hk(Ω) is to extend them to the
whole space Rn with some control of the norm of the extension: we can apply
the Sobolev Imbedding Theorem in Rn we proved last time to the extended
function, showing the continuity up to the boundary of the original function in
Ω. Our next topic is the construction of such an extension.

If u ∈ Hk(Ω), can it be extended to ũ ∈ Hk(Rn) with

||ũ||Hk(Rn) ≤ C||u||Hk(Ω) , (503)

then we can conclude that for k > n/2 all functions in Hk(Ω) will be continuous
in Ω up to the boundary (which is the same as having a continuous extension
to Ω).

We are now going to construct an extension operator. Let us first note that we
can localize by using partition of unity: if u = uϕ1+· · ·+uϕm and we can extend
each uϕj in a controlled way, we can clearly extend u in a controlled way. For
the functions uϕj which are compactly supported in Ω there is nothing to prove,
they can be trivially considered as functions in Rn without changing their Hk

norm. Therefore the only issue is to extend functions which are supported in
small balls near the boundary. Letting x′ = (x1, . . . , xn−1), as usual, we assume
the boundary by

xn = a(x′) (504)
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where a is a function with Lipschitz (k − 1)-st derivative. (This is class of
functions is usually denoted by Ck−1,1 or W k,∞.) The domain {xn > a(x′)
can be transformed to the upper half-space by (x′, xn)→ (x′, xn − a(x′)). This
transformation has enough regularity to map our situation into the equivalent
situation in the half-space {xn > 0}. When working with Ck−1,1 domains,
our extension problem for Hk(Ω) therefore reduces to the problem of extending
a function from Rn+ = {xn > 0} to all Rn, with good control of ∇ju, j =
1, . . . , k. We note that functions which are restrictions of smooth functions
in the neighborhood of Ω are dense, and hence it is enough to construct the
extension operator for these functions. Note that such functions are already
defined in a neighborhood of Ω and therefore it is simple to extend them to Rn
if we do not worry about controlling the norm of the extension. The main point
of the extension we construct below139 is that we have a good control the norm
of the extension.

When extending a function from Rn+ to Rn, it is natural to try to extend it along
each line x′ = a′ ∈ Rn−1. In other words, we take the function xn → u(x′, xn)
for each x′, and we want to find a good extension of these functions, originally
defined for xn ≥ 0, to xn ∈ R.

Let f : [0,∞) → R be a smooth function and let us consider the following
formula which extends it to R:

f̃(x) =

k∑
j=1

ajf(−jx), x < 0 , f̃(x) = f(x), x ≥ 0 , (505)

where the coefficients are to be chosen. Differentiating (505), we see that if we
wish f̃ to have continuous derivatives up to order k − 1, the coefficients must
satisfy

k∑
j=1

jlaj = (−1)l, l = 0, . . . , k − 1 . (506)

The matrix of this linear system of equations for a1, . . . , ak is the Vandermonde
matrix 

1 1 . . . 1
λ1 λ2 . . . λk
λ21 λ22 . . . λ2k
. . . . . . . . . . . .

λk−1
1 λk−1

2 . . . λk−1
k

 (507)

with λj = j, and therefore is non-singular and a1, . . . , ak are uniquely deter-

mined by (506). The distributional derivativef̃ (k) of f̃ of order k is given for
x < 0 by the expected formula (from differentiation of (505). At x = 0 the
derivative f̃ (k) may not be well-defined (the left and right derivatives of f̃ (k−1)

may not coincide at x = 0), but the important point is that the distributional

139originally due to S. M. Nikolskii
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derivative of the (continuous) function f̃ (k−1) is a bounded function given by
the expected formulae everywhere except perhaps at x = 0. 140 If we wish that
the extended function has continuous derivatives up to order k we simply do
the above construction with k replaced by k + 1.

Returning to functions in the upper half-space Rn+, we consider a smooth func-

tion u : Rn+ → R with bounded support and for each x′ = (x1, . . . , xn−1) we
apply the one-dimensional construction above to the function xn → u(x′, xn),
obtaining an extension ũ : Rn → R. It is now easy to verify that ũ will also have
bounded support, and ũ ∈W k,2(Rn) = Hk(Rn) with

||ũ||Hk(Rn) ≤ C||u||Hk(Rn
+) , (508)

with C independent of u.141

Summarizing the above considerations, we see that we have proved the following
result:

Theorem
Let Ω be a bounded domain with Ck−1,1 boundary. Then we can define an
extension operator u → ũ on from W k,2(Ω) to Hk(Rn) such that all functions
ũ are supported in a fixed compact set and for some C > 0 we have

||ũ||Hk(Rn) ≤ C||u||Wk,2(Ω) , u ∈W k,2(Ω). (509)

Corollary
If Ω is as in the theorem, then each function in W k,2(Ω) is continuous in Ω up
to the boundary, and

||u||C(Ω) ≤ C||u||Wk,2(Ω), u ∈W k,2(Ω) . (510)

Let us now return to the proof of regularity and look in more detail at some of the
steps outlines in lecture 33. We start with interior regularity and Caccippoli’s
inequality for the equation

− ∂

∂xi
aij(x)

∂u

∂xj
=
∂fj
∂xj

(511)

140Note that in general this will not be the case for f (k+1), due to the possible discontinuity
of f (k) ate x = 0. If you have not come across similar consideration before, I recommend
that you go through this is detail. It is enough to check to understand what happens with
the derivatives of the function g(x) = |x| on the real line. We do have g′(x) = sign (x) in the
sense of distributions. However, it is not the case that g′′ = 0 in the sense of distributions. It
is important to understand this example completely.
141Note that if we use the extension (505) with a given k, than the extended function ũ may
not be inWk+1,2(Rn). That is a disadvantage of this particular extension technique: it works
only up to a given finite order k. We can choose k in advance, but near xn = 0 the extended
functions will typically be of the class Ck−1,1 = Wk,∞, and no better. In particular, the
method does not give a C∞ extension of C∞ functions.
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We recall that we really weak with the weak formulations, so that this equations
really is ∫

Ω

aij(x)
∂u

∂xj

∂v

∂xi
=

∫
Ω

−fj
∂v

∂xj
, v ∈ H1

0 (Ω) . (512)

Since we are looking at the interior regularity at the moment, we do not worry
about the boundary conditions, and that is why we take the space H1

0 (Ω) for
the test functions v in (512). Later when we deal with boundary regularity, we
the choice of the test functions v will depend on the boundary conditions.
Repeating the arguments (465), (466) in the proof of (461) from lecture 33, we
obtain ∫

BR1

|∇u|2 ≤ C

(R0 −R1)2

∫
BR0

|u|2 + C1

∫
BR0

|f |2 , (513)

where the constants C,C1 now depend on the constant ν in the ellipticity con-
dition aijξjξi ≥ ν|ξ|2.
We now take the derivative of equation (511) in a given direction, say ∂

∂x1
, and

denote u′ = ∂u
∂x1

. At this stage this is formal, we just wish to check what we
would get if we could proceed that way. For the rigorous proof we will replace
the derivative by the difference quotient Dh

j defined in lecture 33, see (467).
The calculation with the difference quotients will be almost the same as with
the derivative. After differentiation, (511) becomes

− ∂

∂xi
aij(x)

∂u′

∂xj
=

∂

∂xj
(fj + a′ij(x)

∂u

∂xj
) . (514)

It is of the same form as before, except the right-hand side has an additional
term coming from the differentiation of aij . Assuming that a′ij are Lipschitz,
we can again apply Caccippoli’s inequality to the solution u′ and the new right-
hand side. (If the equation has more terms with variable coefficients, the terms
with the derivatives of those coefficients would also appear on the right-hand
side. (Assuming that all the coefficients are Lipschitz, the extra terms from the
lower order terms would be “weaker”, the term coming from aij(x) is the “most
dangerous” term.)∫

BR2

|∇u′|2 ≤ C

(R1 −R2)2

∫
BR1

|u′|2 + C1

∫
BR1

(
|f ′|2 + |a′ij∇u|2

)
. (515)

We do this for u′ = ∂u
∂xj

, j = 1, . . . , n.

Assuming we can justify this so far formal procedure, it is clear how we continue:
we take a derivative of (514) in each direction, and repeat the procedure. Then
we take the next derivative, etc, eventually obtaining (under the assumption
that the derivatives of order k − 1 of aij are bounded)

||u||Hk+1(BR ) ≤ C1(R,R0)||u||L2(BR0 )
+ C2(R,R0)||f ||Hk(BR0 )

(516)

for R < R0. (We choose R0 > R1 > . . . Rk = R, so that we get to radius
R in step k.) This is a local interior regularity estimate. It shows that at the
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level of Hk spaces, the solution is as good as it can be. (It is clear from (511)
that the solution u cannot gain more than one derivative over f .) Also note
that both terms in on right-hand side of the estimate are important. The first
term is necessary to get control of the non-trivial solutions with f = 0, and the
importance of the second term is self-evident.
The dependence of the constants C1, C2 on R,R0, ν and the bounds of the
derivatives of aij can be made more explicit, if necessary, but the form (516) is
often sufficient.

It remain to justify the procedure of taking derivatives. The key is the last
lemma in lecture 33. At each step we first replace the derivative with the
difference quotient, and obtain estimates for the difference quotient first. Then
we take h → 0 in the difference quotient and use the lemma to establish the
existence of the derivative. The only issue we have to deal with in this process is
that the Leibnitz rule we used in differentiating the equation has to be slightly
modified for the difference quotient. Namely, for any two functions f, g we have

Dh
j (fg) = Dh

j (f)(τhg) + f(Dh
j g) , (517)

where τhg(x) = g(x+ h). It is easy to see that this modification of the Leibnitz
rule makes no difference in the proofs, and hence the proof of the local interior
estimate (516) is finished.
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Lecture 36, 12/3/2010

Today we will consider local boundary regularity. The scheme is quite similar
to the local interior regularity, with some adjustments. Our set-up is the same
as in lecture 30. We will proceed in the following steps:

Step 1 (Caccioppoli’s inequality near the boundary)

It is similar to the interior case. Let us assume for simplicity that the weak
form of the equation is∫

Ω

aij(x)
∂u

∂xj

∂v

∂xi
+

∫
∂Ω

γuv =

∫
Ω

fj
∂v

∂xj
+

∫
∂Ω

gv , v ∈ X, (518)

where the space X with H1
0 (Ω) ⊂ X ⊂ W 1,2(Ω) is chosen according to the

boundary condition. We will work in a ball centered at the boundary. We as-
sume that the boundary has already been (locally) straightened up by a suitable
coordinate change. (Note that the form (518) of the equation is invariant under
diffeomorphisms.) We will use the notation

B+
R = {x , |x| < R , xn > 0} . (519)

Assume that in the area we are interested in the boundary ∂Ω is given by xn = 0,
and assume B+

R0
is contained in Ω. Consider R1 < R0. We consider a cut-off

function η defined in B+
R0

, obtained as a restriction to B+
R0

of a function which

is = 1 in B+
R1

and is compactly supported in B+
R0

, with |∇η| ≤ 2/(R0 − R1).

We will assume that the space X has the property u ∈ X =⇒ uη2 ∈ X, not
only for η, but also for the restriction to B+

R0
of any other smooth function

η̃ : B+
R0
→ R compactly supported in BR0 , i. e. η̃ ∈ D(BR0). In particular,

these test functions may not vanish at the flat part of the boundary of B+
R0

.

The condition is satisfied for example for X = W 1,2(Ω) (corresponding to the
Neumann or mixed boundary conditions), but it is not satisfied in Examples 2
and 3 in lecture 3. In each case there is an easy “fix”. In Example 2 we subtract
from u a smooth function with the same boundary condition as u (which adds a
new smooth term to the right-hand side). For Example 3 we use the alternative
formulation presented at the end of lecture 31.
We now use (518) with v = uη2 and can proceed as in (465), (466), except we
get the boundary terms ∫

∂Ω

γu2η2,

∫
∂Ω

guη2 . (520)

These can be dealt with in the same way as in the proof of the coercivity of the
from Aλ for large λ in lecture 31. There we used (458) to prove (403), and the
same method will work again in the situation at hand. For example, we have,
assuming that γ is bounded,∫
∂Ω

γu2η2 ≤ C||γ||L∞ ||uη||L2 ||uη||W 1,2 ≤
∫
B+

R0

ε|∇u|2η2+C̃(ε,R0, R1, γ)

∫
B+

R0

|u|2 .

(521)
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The second integral in (520) is estimated similarly. The end result of our calcu-
lation is is the boundary version of the Caccioppoli inequality:∫

B+
R0

|∇u|2η2 ≤ C

(R0 −R1)2

∫
B+

R0

|u|2 + C1

∫
B+

R0

|f |2 + C2

∫
∂′B+

R0

|gη|2 , (522)

where the constants depend on ν and ||γ||L∞ , and ∂′B+
R0

denotes the flat part

of the boundary of B+
R0

.

Step 2 (Taking higher derivatives)

In principle one can take derivatives of the equation and the boundary conditions
as in the case of the interior estimates, but one has to be slightly more careful.
First of all, it is natural to take derivatives in the directions x1, . . . , xn−1 at first,
as this does not interfere with the boundary condition. Let us denote by ′ the
derivative ∂

∂x1
. It is best to go to higher derivatives directly from the variational

formulation (518). For that we take as a test function in (518) the function

v = −(u′η2)′ , (523)

where η is a cut-off function adapted to the balls B+
R1

and B+
R2

. Strictly speak-
ing, we should replace the expression for v by

v = −D−h
1 ((Dh

1u)η
2) (524)

obtain estimates for Dh
1∇u, and then let h → 0. Note also that the expression

with the difference quotients belongs to X under quite general assumptions (and
certainly in the case of the homogeneous Dirichlet, Neumann, or the mixed
conditions). The reason for using D−h

1 in (524) is to get good expressions after
an integration by parts we will do. We will work directly with the derivative
to obtain formal estimates first, and we will see that the calculation with the
difference quotient is similar.
Substituting (524) into (518) and integrating by parts, we obtain∫

Ω

(aiju,j)
′(u′η2),i +

∫
∂Ω

(γu)′u′η2 =

∫
Ω

f ′ju
′
,jη

2 +

∫
∂Ω

g′u′η2 . (525)

which is the same as∫
Ω

aiju
′
,j(u

′η2),i +

∫
∂Ω

γ(u′)2η2 =

∫
Ω

(f ′i − a′iju,j)u′,jη2 +
∫
∂Ω

(g′ − γ′u)u′η2 .

(526)
This is what we used to get (522), except u, fi, g are replaced by u′, f ′i −
a′iju,j , g

′ − γ′u respectively. We control the last three quantities by assump-

tions on f ′, g′, γ′ 142 and estimate (522) from the first step.

142It is natural to assume f ′ ∈ L2(B+
R0

), g′ ∈ L2(B+
R0

∩ ∂Ω) and γ′ ∈ L∞(B+
R0

∩ ∂Ω) at
this step.

138



Therefore we have estimated ∫
B+

R1

|∇u′|2 . (527)

We can continue this procedure, by taking in the kth step the test function

v = (−1)k(u(k)η2)(k) , (528)

where (k) denotes the k−the derivative generated by ′.
We can do this in all tangential directions x1, . . . , xn−1, and this gives an esti-
mate of ∫

B+
Rk

|∇(∇′)ku|2 . (529)

To estimate the full gradient ∇k+1u, we can use the equation. We already know
that in the interior of Ω the solution is as smooth as the coefficients allow, and
therefore we can use the equation freely. In particular, denoting u,ij , u,i the

partial derivatives ∂2u
∂xi∂xj

, ∂u∂xi
, we have

annu,nn = −aij,iu,j + fj,j −
∑

(i,j)̸=(n,n)

aiju,ij . (530)

The ellipticity condition aijξiξj ≥ ν|ξ|2 implies that ann ≥ ν. Therefore (530)
shows that the number of derivatives ∂

∂xn
in any expression ∂m

∂xm
n
(∇′)lu can be

lowered as long as m ≥ 2, at the expense of bringing in linear combinations of
the tangential derivatives. The end result of this procedure of lowering of the
degree of ∂

∂xn
will be expressions estimated by (529) and∫

B+
Rl

|(∇′)lu|2 . (531)

In the end we obtain the following estimate

||u||Hk+1(B+
R ) ≤ C1||f ||Hk(B+

R0
) + C2||g||Hk(∂′B+

R0
) + C3||u||L2(B+

R0
) , (532)

where the constants C1, C2, C3 depend on k,R0, R, ν and the bounds on the
coefficients of the equation and their derivatives up to order k.

Step 3 (Difference quotients)

As we already indicated, to obtain the bound of (530), one should start at each
step with a difference quotient of the preceding derivative, obtain estimates
for the difference quotient, and then pass to the limit using the last lemma in
lecture 33. This presents no difficulty, and the details are left to the reader.

Step 4 (Sobolev Imbedding Theorem)
We have already proved the Sobolev Imbedding theorem “up to the boundary”
in lecture 34, so we know that estimate (??) implies the continuity of (∇)lu up
to the boundary whenever l + n/2 < k.
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This completes our proof of boundary regularity. We did not work with the most
general Lax-Milgram form (403), but the form we considered contains the most
difficult terms, and covers many boundary conditions encountered in practice.
The terms in the forms (403) which we did not include in the regularity proof
easier to handle that those we did, and hence we can say that we proved the
local boundary estimate (532) for the general Lax-Milgram form and for the
boundary conditions which allow our construction of the test functions (529).
This includes the Dirichlet and Neumann boundary conditions, together with
the “mixed” boundary condition aiju,jni + γu = g.
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Lecture 37, 12/6/2010

We have established local interior estimates and local boundary estimates for
the problem (436) with the Lax-Milgram form (403). We emphasize that these
estimates are valid regardless of the coercivity of the form A(u, v), as long as
the leading coefficients are elliptic. If we combine the local estimates with the
Fredholm alternative results obtained in lecture 31, we can easily obtain the
global estimates mentioned in lecture 31. In what follows we assume that the
coefficient of the equation are as regular as necessary for the estimates we will
consider.
We consider global estimates of the form

||u||Hk+1(Ω) ≤ C1||f ||Hk(Ω) + C2||g||Hk(∂Ω) (533)

for the problem

A(u, v) = l(v) = −
∫
Ω

fj
∂v

∂xj
+

∫
∂Ω

gv , v ∈ X (534)

where A is given by (403) and X is a subspace of W k,2(Ω) depending on the
boundary conditions. We assume that X contains H1

0 (Ω) and satisfies the con-
ditions needed for the construction of test functions in the last lecture. For
example, when X =W 1,2(Ω), then the conditions are satisfied.

We should point out that there are simple situations when (534) is not satisfied
for k ≥ 1. A typical case is when we “switch” from Neumann to Dirichlet
boundary conditions in the middle of a connected component of the boundary.
Consider the following example. Let Ω be the unit disc {|x| < 1} in R2, and
let Γ1 = ∂Ω ∩ {x1 ≥ 0} and Γ2 = ∂Ω ∩ {x1 < 0}. Let us consider the space
X = {u ∈ W 1,2(Ω), u|Γ1 = 0} and the Lax-Milgram form A(u, v) =

∫
Ω
∇u∇v.

Consider (534) with g = 0. Our boundary value problem then is

−∆u =
∂fj
∂xj

in Ω, (535)

u|Γ1 = 0 , (536)

∂u

∂n
|Γ2

= 0 . (537)

We do not expect that the local boundary estimate (521) will be satisfied near
points a = (0, 1) and b = (0,−1) for k ≥ 1, as we are passing from one boundary
condition to a completely different one at those points.143

For our global estimate (533) our problem must admit local estimates in a
neighborhood of any interior point and also any boundary point, so we must
avoid situations similar to the example above.

143The problem of investigating the exact regularity of solutions at such points is interesting.
To see that it can be non-trivial, try to decide if all solutions with smooth f are continuous
at the points a and b.
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Theorem
The following conditions are equivalent

(i) When f = 0 and g = 0, the problem (534) only has the trivial solution
u = 0, and all solutions satisfy the local interior and boundary estimates
near each point of Ω.

(ii) The problem is uniquely solvable for each f ∈ L2(Ω), g ∈ L2(∂Ω) and the
global estimates (533) are satisfied.

Proof:
The implication (ii)=⇒(i) is trivial. To prove (i) =⇒ (ii), it is enough to prove
the global estimate. Assuming the global estimate fails, for some k ≥ 0, we
can produce a sequence of functions um, fm, gm solving the problem such that
||um||Hk+1(Ω) = 1 and ||fm||Hk(Ω) → 0, ||gm||Hk(∂Ω) → 0. We can assume

without loss of generality that um converge weakly in Hk+1(Ω) to some func-
tion u ∈ Hk+1(Ω). This implies that the gradients ∇um converge weakly in
L2(Ω) to ∇u and the functions um converge strongly in L2(Ω) to u (by Rellich’s
compactness theorem). Now the local estimates imply

||um||Hk+1(Ω) ≤ C1||fm||Hk(Ω) + C2||gm||Hk(∂Ω) + C3||um||L2(Ω) , (538)

for suitable constants C1, C2, C3 ≥ 0. This gives a non-trivial bound from below
of ||um||L2 , and hence the limit function u cannot vanish. On the other hand,
one sees easily that u satisfies (534) with f = 0 and g = 0. This contradicts the
uniqueness assumption in (i), and the proof is finished.144

We now discuss the assumptions under which we derived the regularity of the
solutions. So far we have measured the regularity of our solutions only in one
way: we check how many derivatives of the solution are in L2. To derive that
k + 1 derivatives of u are in L2, we need to to assume that we can take k
derivatives of the equation, and that the derivatives of the coefficients aij , bj , b̃j , c
which produce new terms in the derived equations are bounded. Let us look at
some simple examples:

Example 1 (divergence-form equation)

∂

∂xi
aij(x)

∂u

∂xj
= 0 . (539)

If we only assume that aij are bounded measurable (and satisfy the ellipticity
condition, of course), the only information we have about the solution from our
theory is u ∈ H1

0 (Ω). Even in dimension n = 2 this does not give continuity of

144We note that the global estimate is non-trivial even for k = 0, as we do not assume the
Lax-Milgram from is coercive. In fact, the technique of local estimates can be used for an
alternative approach to the Fredholm theory in lecture 31.
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u.145 To prove continuity by the method we have used so far, we need to take k
derivatives of the equation, with k + 1 > n/2, and ∇kaij has to be bounded. If
we wish to prove that the solution is once continuously differentiable, we need
to take k > n/2 and ∇k+1aij should be bounded. These requirements are way
stronger than what is really necessary. For example, it can be shown that for
bounded measurable aij satisfying the ellipticity assumptions the solutions are
always Hölder continuous. This is a famous result of E. De Giorgi and J. Nash
proved in 1950s. The proof is not easy and we will probably not cover it in
this course. In the special case of dimension n = 2 the proof is much easier,
and we will at least show how to prove the continuity of the solutions in that
situation in one of the next lectures. It is clear that the proof cannot rely on
taking derivatives of the equation and a different idea has to be used.

Let us now assume that aij are Hölder continuous.146 What can we say about
the regularity of the solution? The method of taking derivatives we have used
so far cannot be applied, as the coefficients aij still may not be differentiated.
One can get a hint from the easy case of dimension n = 1. In this case the
equation is

(a(x)u′)′ = 0 . (541)

The general solution of this ODE is

u(x) =

∫
A

a(x)
dx+B , (542)

where A,B are constants. We see that if a is Hölder continuous, than the first
derivatives of u are Hölder continuous (with the same Hölder exponent), but in
general we do not have any additional regularity for the second derivatives.
In higher dimension the situation is the same, although the proof is more diffi-
cult. For equation

− ∂

∂xi
aij(x)

∂u

∂xj
=
∂fj
∂xj

(543)

We have a local estimate (for R < R0)

||u||C1,α(BR) ≤ C1||f ||C0,α(BR0 )
+ C2||u||L2(BR0 )

, (544)

145We will see later that in this two-dimension case the continuity of u can be proved by a
simple argument, which nevertheless requires a new idea.
146We recall that the Hölder norm ||f ||C0,α of a function on Ω is usually defined for α ∈ (0, 1)
by

||f ||C0,α = sup
x,y∈Ω , x ̸=y

|f(x)− f(y)|
|x− y|α

+ sup
Ω

|f | . (540)

The Hölder norm Ck,α can be defined as the sum of the Hölder norms of derivatives up
to order k. (There various equivalent definitions, depending on which lower-order terms we
include.) The definition makes sense also for α = 1, in which case we are dealing with
Lipschitz functions. However, estimates with C0,1 usually fail in the context of PDEs we are
considering.
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where C1, C2 depend on R0, R, ν, the dimension n and the C0,α Hölder norm
of the coefficients in BR0. The dependence can be made more explicit, if neces-
sary.147 If the coefficients are in Ck,α, one has

||u||Ck+1,α(BR) ≤ C1||f ||Ck,α(BR0
) + C2||u||L2(BR0

) , (545)

where the constants will now also depend on k.
There are several techniques for establishing (543), but none of them is an
obvious generalization of the “energy estimates” technique which we used in
the previous lectures. Sometimes such estimates are called Schauder estimates,
although some authors may use the term in the slightly different situation of
the non-divergence form equations, which we are going to consider next.
The non-divergence form equations are usually written as

aij(x)u,ij = f . (546)

This equation is covered by our “direct method” only if aij are Lipschitz, or,
equivalently, if ∇aij is bounded. (This could be relaxed to ∇aij ∈ Ln, but not
much more.) The reason for this regularity requirement is that the Lax-Milgram
form is

A(u, v) =

∫
Ω

aij
∂u

∂xj

∂v

∂xi
+ aij,i

∂u

∂xj
v . (547)

On the other hand, the natural classes of coefficients aij for which the solutions
of (546) should be considered (and are well-behaved) include the case when aij
are merely Hölder continuous, without any assumptions on their derivatives.
Such situation is not covered by our techniques so far. We will probably cover
it later, but for now we should at least mention the Schauder estimate for (546).
When aij are in C

0,α, one has for any solution of (546) the local interior estimate

||u||C2,α(BR) ≤ C1||f ||C0,αBR0
+ C2||u||C(BR0

) , (548)

where || · ||C denoted the usual sup-norm in the space of continuous functions.
Using the one-dimensional example

au′′ = f , (549)

one sees easily that estimate (548) is more or less optimal. The techniques
used to prove the Schauder estimate (549) are quite different from the energy
techniques we have been using. One way to establish (548) is to return the the
representation of solutions via potential we used in the beginning of the course.
Another approach can be found in the book “Lectures on Elliptic and Parabolic
Equations in Hölder Spaces” by Professor N. Krylov of our own department.

147See for example the paper “The inverse function theorem of Nash and Moser” by
R. Hamilton, Bulletin AMS, Vol. 7, No. 1, July 1982, Section 3.3, p. 155.
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Homework assignment 3

due December 22, 2010

Let Ω ⊂ Rn be a bounded smooth domain and let b = (b1, . . . , bn) be a bounded
smooth vector field in Ω. Let us consider the boundary value problem

−∆u+ ∂
∂xj

(bju) = 0 in Ω ,

− ∂u∂n + bjnju = 0 at ∂Ω .
(550)

Show that the problem has at least one non-trivial solution. (Hint: use Fredholm
theory.)

Additional optional problems:

1. Show that the space of solutions of (550) is one-dimensional.

2. Show that if b = ∇φ for some smooth function φ, then u is given by u = Ceφ.

3. Show that the solutions of (550) do not change sign.

4. Study the same problems for the equation ∂2

∂xi∂xj
aij(x)u = 0 in Ω, with the

boundary condition ni
∂
∂xj

(aiju) = 0.
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Lecture 38, 12/8/2010

In our proofs of regularity so far we have been measuring regularity of functions
in a particular way: we were looking at how many derivatives are in the space
L2. This leads to the hierarchy of spaces Hk, k = 0, 1, . . . . These spaces work
quite well in some situations, but when we work with coefficients with limited
regularity, these spaces are often not a good match with the problem at hand.
We have seen examples of this last time, when we introduced another hierarchy
of spaces - the Hölder spaces Ck,α. There is still another scale of spaces, which is
a generalization of the Hk-scale, which gives us yet more flexibility when dealing
with regularity. These are the spaces W k,p, which measure the regularity of
functions in terms of how many derivatives are in Lp. In comparison with the
Hk = W k,2 scale, we have an additional parameter p to play with. Let us
illustrate how this can be used on a simple example. Consider the equation

∆u+ b(x)∇u = 0 , (551)

where b∇u = bju,j and the vector field b = (b1, . . . , bn) is in L
∞, but not better.

Assume that u ∈W 1,2(Ω) is a solution. We note that the term b∇u belongs to
L2(Ω). Considering the term as the right-hand side in

∆u = −b∇u = f (552)

we see that we can take one derivative of the equation. Writing u′ = ∂u
∂xj

, we

have

∆u′ =
∂f

∂xj
, (553)

which can be used to estimate ∇u′ in L2, see lecture 35, (515). Therefore we
can conclude that ∇2u ∈ L2. 148

If we only use the Hk-estimates, this is as far as we can get. We cannot take
any more derivatives of the equation, and if we only work with L2-type spaces,
there is not much more we can do. However, the situation becomes different
if we use Lp spaces for general p to measure the regularity of the derivatives.
In other words, we measure the regularity of a function u by the quantities
||∇lu||Lp , p ≥ 1, l = 0, 1, ... This gives us more flexibility: instead of taking
higher derivatives, we can try to increase p. We define the spacesW k,p(Ω) in the
same way as the spaces W k,2 except that the condition u,∇u, . . . ,∇ku ∈ L2(Ω)

148In general, we expect that for the operators L of the form (458) with smooth coefficients,
the second derivatives ∇2u of the solutions of Lu = f should have the same regularity as f ,
i. e. we should have ∇2u ∈ L2 in the case at hand. We did not formulate our regularity
estimates in a way which would directly directly estimate ∇2u in terms of f , because in the
general case ∂

∂xi
aij

∂u
∂xj

= f with f ∈ L2 we cannot conclude that ∇2u ∈ L2 unless we have

additional regularity for the coefficients. It is therefore more natural to have the right-hand-

side in the divergence form, i. e.
∂fj
∂xj

rather then f , if we work irregular coefficients. However,

if the coefficients have some regularity, it is also natural to consider estimates comparing ∇2u
with f . In our setting we can obtain these by taking one derivative of the equation.
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is replaced by u,∇u, . . . ,∇ku ∈ Lp(Ω). The corresponding norm is denoted by
|| · ||Wk,p .
The Sobolev Imbedding Theorem and the Hk estimates can be generalized as
follows.

(i) Imbedding Theorems forW k,p spaces. We will discuss these in some detail
later in the course. Roughly speaking, there are two fundamental results
(for sufficiently regular bounded domains Ω and p ∈ [1,∞) ) also called
Sobolev Imbedding Theorems:

(a) ||u||Lq(Ω) ≤ C||u||W 1,p(Ω) for
1
q = 1

p −
1
n > 0 and

(b) ||u||C0,α(Ω) ≤ C||u||W 1,p(Ω) for
1
p −

1
n = −αn < 0.

(ii) Lp−estimates for elliptic operators. In the simplest case of the laplacian
the estimates roughly says that if ∆u = f with f ∈ Lp, then the second
gradient ∇2u will also be in Lp.149 (Later we will formulate this result
more precisely.) In the general, the regularity requirements on the leading
coefficients aij(x) are stronger than for theHk estimates, but if the leading
term in the equation is the laplacian, we do not have to worry about this
point.

Let illustrate how one can apply these results to (551). We have already seen
that ∇2u is in L2. By the imbedding theorem this means that ∇u is in Lq with
1/q = 1/2 − 1/n. This means that the right-hand side in (552) is in Lq, and
by the Lp estimates this implies that ∇2u is in Lq. This still further improves
the regularity of ∇u, and we can run the argument again.150 After a few steps
we will obtain that ∇u is Hölder continuous. In this case (552) gives that ∇2u
is in Lp for any p ≥ 1 and ∇u is in C0,α for each α ∈ (0, 1), which is more or
less optimal regularity for (551) with bounded measurable b(x). (Clearly ∇2u
cannot be better than L∞, as the ∆u may be discontinuous if b is. Elliptic
estimates typically do not work in L∞ (and in L1). Instead of L∞ we get Lp

for each p <∞.)

Remark
We should note that in the above argument one does not really have to use the
Lp estimates (item (ii) above), as one can directly look at what (552) implies
for ∇u. This is more or less equivalent to item (i) above. So one does not
need the Lp estimates to get optimal regularity for (551). Moreover, one does
not need the optimal imbedding theorem in (i) either: we can run the whole
argument if we get some gain at each step, it does not have to be the optimal
gain. For example, proving (i)(a) with 1/p − 1/n > 1/q is much easier than
with 1/p− 1/n = 1/q, and can be done with using only Young’s inequality for
convolutions. So the whole argument that the solutions of (551) are C1,α can
be quite elementary. However, one does have to go beyond Hk estimates.

149However, these estimates cannot be accomplished by a simple integration by parts which
works well for the L2-estimates.
150This is known as “bootstrapping”.
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We have introduced the main spaces used in elliptic PDEs - the spaces W k,p

and Ck,α. The regularity proofs using these spaces - such as our simple ex-
ample (551)- often use only the fact that inverting elliptic operator of order m
gains m derivatives in these spaces. If a proof is based on this result, it usually
works well not only for scalar equations of second order, but also for general
systems of equations, the method is quite robust.

Some of the deepest results about scalar elliptic equations of the second order
use additional properties of solutions of these equations, such as those related
to the maximum principle. The proof of the famous result of De Giorgi and
Nash that the solutions of (539) with measurable aij are Hölder continuous is a
good example. It uses in a crucial way properties of solutions of scalar second
order equations. It cannot be generalized to system of equations, because the
result simply fails for systems. We will not cover the proof of the DeGiorgi -
Nash result at this point, but we will illustrate in a simpler situation how the
maximum principle can be used in regularity theory.

Let us consider the equation

− ∂

∂xi
aij(x)

∂u

∂xj
= 0 (554)

in dimension n = 2. We assume that the coefficients aij are bounded measurable
and satisfy the ellipticity condition aij(x)ξiξj ≥ ν|ξ|2. We assume that u ∈
W 1,2(Ω) is a weak solution of (554), i. e. we have∫

Ω

aij
∂u

∂xj

∂v

∂xi
= 0, v ∈ H1

0 (Ω) . (555)

The solutions of this equation satisfy a maximum principle. As general functions
in W 1,2(Ω) are not defined point-wise, we have to be somewhat careful in the
formulation of the maximum principle. We will use the following notation:
x+ = max(x, 0). An important property of W 1,2(Ω) functions is that if u ∈
W 1,2(Ω), a ∈ R, then the function x → (u(x)− a)+, which will be denoted by
(u − a)+ again belongs to W 1,2(Ω). The proof of this statement is left to the
reader as an exercise.151 We will say that a function u ∈ W 1,2(Ω) satisfies a
maximum principle, if it has the following property: for any open set O ⊂ Ω
and any a ∈ R, if (u − a)+ ∈ H1

0 (O), then (u − a)+ = 0 in O. We note that if
O is a ball Bx,r compactly contained in Ω, the condition is equivalent to saying
u|∂Bx,r

≤ a a. e. implies u ≤ a a. e. in Bx,r. Note that u|∂Bx,r
is well-defined in

L2(∂Bx,r), by the Trace theorem we proved in lecture 24.
We will say that u is monotone152 if both u and −u satisfy the maximum
principle. We aim to show the following:
(1) The solutions of (555) are monotone.
(2) In dimension n = 2, monotone functions in W 1,2 are continuous.153

151It is a good exercise, I recommend that you do it.
152Sometimes the term monotone in the sense of Lebesgue is used.
153This statement is sometimes called the Lebesgue-Courant lemma.
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Lecture 39, 12/10/2010

We continue with investigating the monotonicity in (the sense of Lebesgue) of
equation (555) and its consequences. Let us first prove that any weak solution is
monotone. This is quite easy: Let O ⊂ Ω be open. Assuming (u−a)+ ∈ H1

0 (O),
we have, by definition ∫

O
aij

∂u

∂xj

∂(u− a)+
∂xi

= 0 . (556)

Hence

0 =

∫
O
aij

∂u

∂xj

∂(u− a)+
∂xi

=

∫
O
aij

∂(u− a)+
∂xj

∂(u− a)+
∂xi

≥ ν
∫
O
|∇(u− a)+|2 ,

(557)
and we see that (u− a)+ must vanish in O. The same argument applies to −u,
and we see that u is monotone (in the sense of Lebesgue).

Our next goes is to show the following result, often called the Lebesgue-Courant
lemma:

Theorem
In dimension n = 2, a function u ∈W 1,2(Ω) which is monotone (in the sense of
Lebesgue) is continuous.

As preparation for the proof of the theorem, let us start with looking more
closely at properties of general functions in W 1,2(Ω). For simplicity we assume
that Ω is the cube [0, 1]n. Let us denote x = (x′, xn). Consider any u ∈W 1,2(Q).
The values of the function u(x) are not defined at all points. In fact, except
in dimension n = 2, the function xn → u(x′, xn) is not well-defined for all x′.
However, even with merely assuming u ∈ L2(Q) this function is well defined, as
an element of L2(0, 1), for almost every x′ ∈ Q′ = [0, 1]n−1.

Lemma
For any u ∈ W 1,2(Q) the function xn → u(x′, xn) belongs to W 1,2((0, 1)) for
almost every x′ ∈ Q′. Moreover,∫

Q′
||u(x′, ·)||2W 1,2((0,1)) dx

′ ≤ ||u||2W 1,2(Q) . (558)

Proof:
For h > 0 consider the difference quotient Dh

nu(x) =
u(x+hen)−u(x)

h . Set

Fh(x
′) =

∫ 1−h

0

|Dh
nu(x

′, xn)|2 dxn. (559)
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We have (see lecture 33, (469))∫
Q′
Fh(x

′) dx′ ≤
∫
Q

∣∣∣∣ ∂u∂xn
∣∣∣∣2 dx . (560)

Let
F (x′) = lim inf

h→0+
Fh(x

′) . (561)

By Fatou’s lemma ∫
Q′
F (x′) dx′ ≤

∫
Q

∣∣∣∣ ∂u∂xn
∣∣∣∣2 dx. (562)

If xn → u(x′, xn) is well-defined as an L2 function and F (x′) < +∞, we can
see from the proof of the last lemma in lecture 33 ((470) and (471) with lim
replaced by lim inf) that u(x′, ·) ∈W 1,2((0, 1)) and ||u(x′, ·)||2W 1,2 ≤ F (x′). This
finishes the proof of the lemma.

A similar proof and a simple (local) change of coordinates gives the following:

If u ∈ W 1,2(Ω) and Bx,r0 ⊂ Ω, then u|∂Bx,r ∈ W 1,2(∂Bx,r) for almost every
r ∈ (0, r0).

If n = 2 and u ∈ W 1,2(∂Bx,r), then by a simple application of the Cauchy-
Schwartz inequality we have, for each y, z ∈ ∂Bx,r,

|u(y)− u(z)| ≤

(∫
∂Bx,r

|∇u|2
) 1

2

(πr)
1
2 . (563)

(Strictly speaking, we should say that u has a representative for which it is true,
as the functions in W 1,2 are well-defined only module a set of measure 0.)

Let us denote by
oscX u = sup

x,y∈X
|u(x)− u(y)| . (564)

and also (for a measurable set X)

ess oscX u = inf{ε > 0 , |u(x)− u(y)| < ε for almost every x, y ∈ X} . (565)

We aim to show that under the assumptions of the theorem we have

ess oscBx,r u→ 0 r → 0+, x ∈ Ω . (566)

This implies that u has a continuous representative.154

Let, for a given x ∈ Ω with Bx,r0 ⊂ Ω and r ∈ (0, r0)

ω(r) = ess oscBx,r u. (567)

154It is a good exercise to work out the details of this claim.
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We note that Ω is a non-decreasing function of r. For a u which is monotone
(in the sense of Lebesgue) we clearly have

ω(r) = ess osc∂Bx,r u . (568)

(Note that by the theorem about traces in lecture 24 the function u|∂Bx,r is
defined for every r ∈ (0, r0).)

By (563) we have
ω2(r)

r
≤ π

∫
∂Bx,r

|∇u|2 . (569)

Integrating (569) between over (r1, r0), and using that ω is non-decreasing, we
obtain

ω2(r1) log
r0
r1
≤ π

∫
Bx,r0

|∇u|2 . (570)

We see that ω(r) → 0 as r → 0, uniformly on compact subsets of Ω, with the
rate depending only on

∫
Ω
|∇u|2. This finishes the proof of the theorem.

We next turn to the maximum principle for the equation

− ∂

∂xi
aij

∂u

∂xj
+ bj

∂u

∂xj
= 0 . (571)

It is still possible to prove the following result, which is also called the weak
maximum principle.

Theorem Any weak solution of (571) is monotone (in the sense of Lebesgue).

This is true without any smoothness assumptions on aij , bj (we only assume that
aij , bj are bounded measurable and aij satisfy the ellipticity condition aijξiξj ≥
ν|ξ|2), however it is not as easy to prove as in the case when (b1, . . . , bn) = 0.
Let us first give the classical proof in the case when the coefficients are smooth.
Then the solution is also smooth, and we can use derivatives freely. Assume that
for some domain O ⊂ Ω the maximum of the solution u over O is attained at
x0 ∈ O, with (u−a)+ ∈ H1

0 (O) for some a < u(x0). At the point x0 the gradient
∇u vanishes. Our differential operator can be written as −aiju,ij+ b̃ju,j , where
b̃j = bj − aij,i. As uij = uji, we can assume aij = aji without loss of generality

(as long as we allow general b̃j). We can choose coordinates so that aij(x0) is
diagonal, with λ1 > 0, . . . , λn > 0 on the diagonal. At x0 we will have

−λ1u,11(x0)− · · · − λnu,nn(x0) = 0. (572)

As u11(x0) ≤ 0, . . . , u,nn(x0) ≤ 0, this is close to a contradiction, but the
equation can still be satisfied if ∇2u(x0) = 0. We use a trick which we already
mentioned in the proof of the maximum principle for harmonic functions. If we
had some strictly negative number on the right-hand side of (572), we would have
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a contradiction at the point of the maximum x0. We can achieve this situation
(with x0 slightly shifted) by adding to u a function εv where v satisfies

− ∂

∂xi
aij

∂v

∂xi
+ bj

∂v

∂xj
< 0 . (573)

and ε > 0 is small. This will clearly give a real contradiction (for small ε).
The only remaining issue to construct a v satisfying (573). Such a v can be
written down explicitly. For example, v(x) = eµx1 work well, if we take µ > 0
sufficiently large. This finished the proof when the coefficients are smooth.

When the coefficients are not smooth, the proof is more difficult. One way to
proceed is as follows. We can use (u − a)+ in the weak formulation as a test
function, and we obtain∫

O
aiju,j [(u− a)+],i + bjuj(u− a)+ = 0 . (574)

This gives ∫
O
|∇(u− a)+|2 ≤ C[(u− a)+]2 . (575)

This inequality, used for a close to the maximum of u, leads to a contradiction.
We will not complete the proof at this point, as it would lead us in a different
direction, 155 but it is hoped that this example illustrates well some of the
issues which arise in connection with our equations when the coefficients are
not smooth.

155Nevertheless, it is probably worth mentioning the main idea of the proof. One can proceed
for example as follows. Let Ea = {x ∈ O, u ≥ a}, and let 1/p = 1/2 − 1/n for n ≥ 3, and
p > 2 for n = 2. Using imbeddings mentioned in lecture 38, we have∫

(u− a)2+ ≤ {
∫

(u− a)p+}2/p|Ea|1−2/p ≤ C1

∫
|∇(u− a)+|2|Ea|1−2/p ≤

C2|Ea|1−2/p

∫
(u− a)2+.

This shows that u is bounded. Let M = ess supO u. If |Ea| → 0 as a → M− (which is
the same as |EM | = 0), we see from the above inequality that M = 0. If |EM | > 0 we let
va = (u− a)+/(M − a). The functions va again satisfy (575), and hence they are bounded in
W 1,2, and stay in a compact subset of L2(O). We can assume that va → v weakly in W 1,2

as a → M−. It is not hard to see that v must be the characteristic function of EM , which
however cannot be in W 1,2 when |EM | ≥ 0. We see that M ≤ 0.
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Lecture 40, 12/13/2010

We would like to explain some of the motivation behind studying the problems
with low-regularity coefficients. One reason is “intrinsic”: the class of equations
which can be treated by our existence theory includes equations with bounded
measurable coefficients in such a natural way that one could be compelled to try
extend as many “smooth case” results as possible to this case. Historically, one
of the main reasons for the study of the case of low-regularity coefficients was
their appearance in connection with regularity theory for nonlinear equations.
The regularity theory for non-linear equations goes back to Hilbert’s problems
no. XIX and XX, formulated around 1900. Let us look at a special case of
these problems. Let Ω ⊂ Rn be a smooth bounded open set. We have seen in
lecture 21 that the solution of the problem

∆u = 0 in Ω,

u|∂Ω = g at ∂Ω,

can be obtained by minimizing the functional∫
Ω

|∇u|2 (576)

over the set W 1,2
g (Ω) = {u ∈W 1,2(Ω), u|∂Ω = g}.

Assume now that (576) is replaced by

I(u) =

∫
Ω

f(∇u(x)) dx (577)

for some function f : Rn → R in the above problem. Can we minimize I in
W 1,2
g (Ω)? Historically, one of the first cases people looked at for n = 2 is

f(ξ) =
√
1 + |ξ|2 . (578)

In this case the functional I(u) gives the area of the graph of u, and the problem
of minimization of I overW 1,2

g (Ω) arises if we wish to find minimal surfaces with
the boundary curve given by the graph of the function g. It turns out that the
functional I with (579) is quite difficult to handle in general, as the minimal
surfaces can sometimes prefer not to be graphs of functions. In terms of f this
can be seen as a result of the slow growth and lack of uniform convexity as
ξ → ∞. Let us consider an easier problem when the function f has bounded
second derivatives and is uniformly convex:∣∣∣∣∂2f(ξ)∂ξi∂ξj

∣∣∣∣ ≤ C ξ ∈ Rn , (579)

and
∂2f(ξ)

∂ξi∂ξj
ξiξj ≥ ν|ξ|2 , ξ ∈ Rn, ξ ∈ Rn . (580)
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Can we then minimize I over W 1,2
g (Ω) and if so, what is the smoothness of the

minimizing functions? This is an important special case of Hilbert’s XIXth and
XXth problems.

The proof of existence and uniqueness of the minimizer is quite similar to the
quadratic case (576), and does not present a difficulty, once the theory of W 1,2-
spaces is developed. One has to find a suitable replacement for the explicit
expressions we used when I was quadratic, so one cannot copy the proof line-
by-line but it is a good exercise to show that – similarly to the quadratic case
we treated in lecture 21 – any minimizing sequence is Cauchy in W 1,2(Ω) and
the problem has a unique minimizer. (These are consequences of the uniform
convexity of f and the geometric picture is the same as in the quadratic case.)

At the minimizer u, the derivative of I in any direction v ∈ H1
0 (Ω) will vanish:

I ′(u)v =

∫
Ω

fξi(∇u) v,i = 0 , v ∈ H1
0 (Ω) , (581)

where fξi =
∂f
∂ξi

. This is the weak form of the Euler-Lagrange equation for the
functional I:

− ∂

∂xi
fξi(∇u) = 0 . (582)

The vector field fξi(∇u) can be thought of as a flux induced by the gradient ∇u,
but the dependence is now non-linear.
It is not hard to see that the minimizers u have to be monotone (in the sense
of Lebesgue). Therefore in dimension n = 2 we know right away that the
minimizers are continuous, based on the result of last lecture.156

The hard part of Hilbert’s problem is the following question:

Are the minimizers smooth?

Recall that f is assumed to be smooth. At the boundary the minimizer u can
be only as smooth as allowed by the boundary condition g, of course.

The problem was solved (with positive answer) in dimension n = 2 in 1930s by
Ch. B. Morrey, and in general dimension in 1956 by DeGiorgi and Nash. The
general case

∫
Ω
f(x, u,∇u) was solved by Ladyzhenskaya and Uraltseva a few

years later.157

Let us now explain how linear equations with low regularity coefficients appear
in these problems. A simple observation is that (582) can be written as

∂

∂xi
ãij(x)u,j = 0 (583)

156In fact, it is easy to see that the minimizing sequence can be taken to be monotone (in
the sense of Lebesgue). In dimension n = 2 such minimizing sequences converge uniformly.
157Many of these developments are explained in the book “Linear and Quasilinear Elliptic
Equations” by Ladyzhenskaya and Uraltseva.
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with

ãij(x) =

∫ 1

0

fξiξj (t∇u(x)) dt . (584)

In other words u solves a linear elliptic equation with low-regularity coefficients.
Another linear equation one formally has is

aij(x)u,ij = 0 aij(x) = fξiξj (∇u(x)) , (585)

but it has the disadvantage of not being well-defined for u ∈W 1,2.

Although (584) or (585) can be sometimes of interest, they do not get us very
far with the regularity problem. The key idea leading to regularity results is
to take derivatives of the Euler-Lagrange equation (582). Let us first do that
formally, postponing the justification of the calculation till later. Let us set
u′ = ∂u

∂x1
and take ∂

∂x1
of (582). We obtain

− ∂

∂xi
aij(x)u

′
,j = 0 , aij(x) = fξiξj (∇u(x)) . (586)

The assumptions on f guarantee that the coefficients aij(x) are bounded, and
satisfy the ellipticity condition aijξiξj ≥ ν|ξ|2. It is also clear that we cannot
say much about the smoothness of the coefficients at this point, as we only
know that ∇u ∈ L2. Therefore we have to treat aij(x) as general L

∞ functions
(satisfying the ellipticity conditions), until we obtain more information about
∇u.

We now recall Caccioppoli’s inequality from lecture 33, and see that (586) gives
us a new estimate for u:∫

BR

|∇u′|2 ≤ C

(R0 −R)2

∫
BR0

|u′|2 . (587)

The right-hand side is controlled by the known quantity
∫
Ω
|∇u|2. In this calcu-

lation u′ can be the derivative in any direction, and therefore we have obtained
an L2-estimate for ∇2u in L2. It remains to justify the formal calculation.
However, this is not hard to do by using the difference quotients technique. To
apply it in the non-linear case, one can use the formula

1

h
(fξi(∇u(x+ he1))− fξi(∇u(x))) = ahij(x)(u

h),j , (588)

where

ahij(x) =

∫ 1

0

fξiξj (t∇u(x+ h) + (1− t)∇u(x)) dt (589)

and
uh(x) = Dh

1u(x) . (590)

We do the calculation with aij and u
′ replaced by ahij and u

h, respectively, and

obtain and estimate for ∇uh in BR which is uniform in h. We can then take the
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limit h → 0 using the last lemma in lecture 33 to obtain ∇u′ ∈ L2(BR). This
also justifies (586).

We have proved in the last lecture that in dimension n = 2 the solutions of (586)
are continuous. Therefore we can conclude (still for n = 2) that u′ is continuous.
The same is true for any other partial derivative, and we see that ∇u is con-
tinuous. We used the linear equation satisfied by a quantity from a non-linear
equation to improve our information about the regularity of the solution. Now
that we know that ∇u is continuous, we see that the coefficients aij in (586)
are continuous. This enables us still further increase the regularity of u′, which
further increases the regularity of the coefficients, which still further increases
the regularity of u′, etc. The optimal argument (which is technically slightly
different even in the two-dimensional case from what we used so far) works as
follows:

1. Prove that any solution u′ of (586) is Hölder continuous. This is true in
any dimension for any solution of (586) if aij are bounded, measurable,
and satisfy the ellipticity condition aijξiξj ≥ ν|ξ|2. The proof of this
statement is the most difficult step, completed by DeGiorgi and Nash in
1956 for general n. In dimension n = 2 it is easier to show. (We have
seen that when n = 2 we get relatively easily that the coefficients aij are
continuous, which simplifies things substantially.)

2. If ∇u is of class Ck,α for some k (including k = 0), then aij(x) are of
class Ck,α. Using linear regularity for (586), we obtain that ∇u is of class
Ck+1,α. This way we increase the regularity of u step-by-step, going up by
one derivative in each step. This procedure is often called “bootstrapping”.

We see that practically every step in the proof is based on some quite precise
estimates for linear equations, which is what we aimed to illustrate in this
lecture. In the theory of PDE this is is quite common, it is not limited to the
type of equations we have been studying.158

158On the other hand, not all important estimates are “linear” (although this was the case
in our example). One can encounter important estimates which are of non-linear nature.

156



Lecture 41, 12/15/2010

Today we will consider the strong maximum principle for the solutions of the
equations

− ∂

∂xi
aiju,j + bju,j = 0 . (591)

Let us first start by making a few remarks about the weak maximum principle we
considered in lecture 39. There we showed that solutions of (591) are monotone
(in the sense of Lebesgue). The same proof can be used to show that the
solutions of

− ∂

∂xi
aiju,j + bju,j ≤ 0 , (592)

satisfy the maximum principle (as defined in lecture 39), and non-negative so-
lutions of

− ∂

∂xi
aiju,j + bju,j + cu ≤ 0 , (593)

with c = c(x) ≥ 0 satisfy the maximum principle.159 These generalizations are
simple, but they can be useful.

The weak maximum principle says, roughly speaking, that u cannot attain a
strict local maximum at a compact set contained in the interior of a domain.160

The strong maximum principle describes what happens when we leave out the
condition that the maximum be “strict”. Clearly, constant functions solve (591)
and do attain a (non-strict) maximum at interior points. The strong maximum
principle says that these constant solutions are the only case when this can
happen. More precisely, we have the following results

Theorem (Strong Maximum Principle)
Let u be a solution of (591) in a domain Ω and assume that for some x0 ∈ Ω
u ≤ u(x0) in Ω. Then u ≡ u(x0) in Ω.

Remarks:
1. We did not explicitly state any smoothness assumptions on the coefficients.
This is because the result is true for general L∞ coefficients, as long as aij satisfy
the ellipticity condition aij(x)ξiξj ≥ ν|ξ|2. However, we will do the proof only
when the coefficients are “sufficiently regular”. Essentially we need that the
weak maximum principle is true and that the solution u is differentiable at each
point. This will certainly be the case of the coefficients are smooth. If we use

159Our proof based in the evaluation of the second derivatives needs that u is of class C2,
which dictates some assumptions about c. However, the statement is true for any bounded
measurable c (and the boundedness can be replaced by still weaker assumptions, if necessary).
160Typically we think of the set where the local maximum is attained as a point, but in
principle it could be for example a curve, or a more complicated object.
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some of the facts mentioned in lectures 37 and 38, we see that our proof will
work when aij are Lipschitz and bj are bounded. The proof for the general L∞

coefficients requires more advanced techniques.
2. It is easy to see that the statement remains true for inequality (592) (i. e.
when u is a subsolution rather than a solution), and also for inequality (593)
under the assumptions that c ≥ 0 and u ≥ 0.
3. If we replace the assumption that u ≤ u(x0) in Ω by the weaker condition
that u ≤ u(x0) in a neighborhood of x0, we have by the above that u is constant
in a neighborhood of x0. If the leading coefficients aij are Lipschitz, the theory
of unique continuation implies that u has to be constant in Ω. However, this
result is quite subtle and requires new techniques. For harmonic functions we
can obtain it by using analyticity of the solutions. When the coefficients of the
equations are analytic, it can be shown that the solutions are also analytic, and
the same argument as for the harmonic functions can be used. If the coefficients
are not analytic, another argument is needed.

The proof of the strong maximum principle in the case of sufficiently regular
coefficients is traditionally based on the following lemma of E. Hopf, which is
of independent interest.

Hopf’s Lemma
Assume that the coefficients in (591) are sufficiently regular161 and let u be a
solution with in the ball BR, with u ∈ C1(BR). Let x0 ∈ ∂BR be such that
u(x) < u(x0) for each x ∈ BR. Let ν(x0) = (ν1(x0), . . . , νn(x0)) be the outward
unit normal to BR at x0. Then

∂u

∂ν
(x0) > 0 . (594)

Proof:
We note that on ∂BR/2 we have u ≤ u(x0) − δ for some δ > 0. Assume that
we construct a smooth function v in the closure of the set O = BR \BR/2 such
that

(i) v|∂BR = u(x0), v|∂BR/2
= u(x0)− δ,

(ii) − ∂
∂xi

aijv,j + bjv,j ≥ 0 in O, and

(iii) ∂v
∂ν (x0) > 0 .

By the weak maximum principle we than have u ≤ v in O, and since u(x0) =
v(x0) we see from (iii) that ∂u

∂ν (x0) > 0.
We will seek v in the form

v(x) = −εe−λ
|x|2
2 + c, (595)

161Our proof will require Lipschitz aij and bounded bj

158



where λ > 0, ε > 0 and c ∈ R are chosen so that boundary conditions (i) are
satisfied.

It is now enough to verify that for w = e−λ
|x|2
2 with a suitable λ > 0 we have

− ∂

∂xi
aijw,j + bjw,j ≤ 0, in O. (596)

If aij are Lipschitz and bj are bounded, we only need to look at

−aijw,ij + b̃jw,j (597)

with some bounded b̃j . We calculate

w,i = −λxiw, w,ij = λ2xixjw − λδijw , (598)

and substituting this into the expression (597) it is not hard to see that the
expression (597) is ≤ 0 a. e. in O when λ is large enough, as (597) will be

−λ2aijxixj + λγ(x) ≤ −λ2ν|R/2|2 + λM, (599)

where γ(x) is an L∞ function in O,M = ess supO γ, and ν > 0 is the constant in
the ellipticity condition aijξiξj ≥ ν|ξ|2. 162 The proof of the lemma is finished.

It is now easy to prove the theorem. Let K = {x ∈ Ω, u(x) = u(x0)} and
assume that both K and O = Ω \K are non-empty. As Ω is connected by our
assumptions, this means that ∂O ∩ Ω ̸= ∅. Let us take x1 ∈ ∂O ∩ Ω. Set r1 =
dist(x1, ∂Ω), and choose x2 ∈ O with |x1−x2| < r1/2. Let R = dist(x2, ∂O) and
let x3 ∈ ∂Bx2,R ∩K. By Hopf’s lemma, ∂u∂ν (x3) > 0, which is in contradiction
with the condition that u ≤ u(x3) = u(x0) in Ω. This finishes the proof of the
theorem.

162We also use ν for the normal, but hopefully there is no danger of confusion here.
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Lecture 42, 1/19/2011

Last semester our focus was on elliptic equations. This semester we will study
more general classes of linear equations, including parabolic equations and (ex-
amples of) dispersive and hyperbolic equations. We will start with an intro-
duction into the theory of distributions, which can be considered as an ideal
language for formulating many results about linear differential operators and
Fourier transformation. To introduce this language, we will need to go through
a certain number of definitions. As we will see, the flexibility the language of
the distribution provides is well worth the modest effort needed to introduce it.

We will denote by D(Ω) the space of all smooth, compactly supported complex-
valued functions in an open set Ω ⊂ Rn. For φ ∈ D(Ω) and α = (α1, . . . , αn)

where αj are non-negative integers, we will denote by ∂
αφ the derivative ∂|α|φ

∂x
α1
1 ...∂xαn

n
.

(We use the usual notation |α| = α1 + · · ·+ αn.)

For φ ∈ D(Ω) we set

||φ||m = sup
x∈Ω, |α|≤m

|∂αφ(x)| . (600)

Each || · ||m obviously is a norm on D(Ω). We note that D(Ω) is not complete
in those norms.163

Let K ⊂ Ω be a compact set. We define DK(Ω) as the set of all functions in
D(Ω) which are supported in K. On the space DK(Ω) we consider the topology
given by the following notion of convergence: φj → φ when for each m we have
||φj − φ||m → 0 as j →∞. This topology is defined by a metric, which can be
taken for example as

dist(φ1, φ2) =
∑
m

2−m
||φ1 − φ2||m

1 + ||φ1 − φ2||m
. (601)

The space DK(Ω) is easily seen to be complete in this metric. In the terminology
used in Functional Analysis, the space DK(Ω) is a Fréchet space. Fréchet spaces
are a natural generalization of Banach spaces to the situation where convergence
is defined not just by one norm, but by a countable family norm (or semi-norms),
and the resulting metric space is complete. Many classical consequences of
completeness known in the theory of Banach spaces164 can be more or less
directly generalized to Fréchet spaces.165

The following result, despite its elementary nature, is very useful. Its main point
is that although the definition of convergence in DK(Ω) involves the derivatives

163As an exercise you can characterize the completion of D(Ω) in the norm || · ||m.
164Such as the Open Mapping Theorem, Closed Graph Theorem, Uniform Boundedness
Principle (Banach-Steinhaus Theorem)
165A good reference for these results is for example W. Rudin’s textbook Functional Analysis.
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of arbitrary high orders, the values of any given continuous linear functional
on DK(Ω) converge on sequences {φj} where only finitely many derivatives are
convergent.

Lemma
A linear functional l on DK(Ω) is continuous if and only we have

|l(φ)| ≤ C||φ||m , φ ∈ DK(Ω) (602)

for some C > 0 and some non-negative integer m.

We leave the proof to the reader as an exercise.

We now define convergence in D(Ω) in the following way. By definition, a
sequence φj ∈ D(Ω) converges to φ ∈ D(Ω) when
(a) There exists a compact K ⊂ Ω such that all functions φj are supported
in K.
(b) φj → φ in DK(Ω), i. e. ∂αφj converges uniformly to ∂αφ for each multi-
index α.

The above convergence in D(Ω) defines a topology on D(Ω), which however is
not metrizable. As we will see, this does not cause problems, since one can
always work with the simple definition of convergence.

By definition, a distribution in Ω is a linear functional on D(Ω) which is contin-
uous with respect to the above defined convergence. The set of all distributions
in Ω is denoted by D ′(Ω). For u ∈ D ′(Ω) and φ ∈ D(Ω) we will denote by ⟨u, φ⟩
or u(φ) the value of u at the function φ.

Examples

1. Each locally integrable function u in Ω defines a distribution by

⟨u, φ⟩ =
∫
Ω

uφ . (603)

2. Given u ∈ D ′(Ω), we define its derivatives ∂αu ∈ D ′(Ω) by

⟨∂αu, φ⟩ = ⟨u, (−1)|α|∂αφ⟩ . (604)

The verification that ∂αu ∈ D ′(Ω) is straightforward and is left to the reader
as an easy exercise. For u represented by a sufficiently regular function u the
derivative ∂αu of the distribution u is represented by the usual derivative ∂αu,
as one can see from the integration by parts. In general, the derivatives ∂αu
may not be representable in terms of locally integrable functions.

3. For a ∈ Ω we define the distribution δa (also called the Dirac mass) by

⟨δa, φ⟩ = φ(a) . (605)
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The derivatives of δa are given by

⟨∂αδa, φ⟩ = (−1)|α|∂αφ(a) . (606)

As a consequence of the above lemma, one can see easily the following statement:

A linear functional on D(Ω) is a distribution if and only if for each compact
set K ⊂ Ω there exist a non-negative integer m = m(K,u) and a constant
C = C(K,u) ≥ 0 such that

|⟨u, φ⟩| ≤ C||φ||m, φ ∈ DK(Ω) . (607)

We say that a distribution u ∈ D ′(Ω) vanishes in an open subset O ⊂ Ω if
⟨u, φ⟩ = 0 for each φ ∈ D(O).
The support of a distribution u ∈ D(Ω) is defined as the complement of the
union of all open sets on which u vanishes. The support of u will be denoted by
suppu. If suppu ⊂ K for some compact set K ⊂ Ω, we say that u is supported
at K. If u is given by a locally integrable function then the definition coincides
with the usual definition. To prove that, one needs the following statement:

If u is a locally integrable function in an open set O and
∫
uφ = 0, for each

φ ∈ D(O), then u(x) = 0 for almost every x ∈ O.

This is a standard (non-trivial) fact from the theory of Lebesgue integration,
which can be seen from u ∗ ϕε → u (locally in L1) as ε → 0, where ϕε is the
standard mollifier introduced in lecture 2, see (21).

The support of the distributions ∂αδa introduced above is the one-point set
{a}. The following result is important in that it shows that our definition of
distributions does not allow any unexpected “parasitic” objects.

Proposition
Let a ∈ Ω and assume that u ∈ D ′(Ω) is supported at a. Then there exists a
non-negative integer m such that

u =
∑

|α|≤m

cα∂
αδa (608)

for some coefficients cα ∈ C.
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Lecture 43, 1/20/2011

We proceed with the proof of the last proposition in the previous lecture. We
can assume without loss of generality that a = 0, and that a closed ball K =
{x, |x| ≤ r1} is contained in Ω. By the first lemma in the last lecture, see (602),
we know that for some C > 0 and a non-negative integer m we have

⟨u, φ⟩ ≤ C||φ||m , φ ∈ DK(Ω) . (609)

We claim that

⟨u, φ⟩ = 0 whenever φ ∈ D(Ω) and ∂αφ(0) = 0 for |α| ≤ m. (610)

To prove the claim, let us consider a smooth function ψ supported in the unit
ball of Rn with ψ = 1 in {x, |x| ≤ 1

2} and for ε > 0 let us set

ψε(x) = ψ(
x

ε
) . (611)

For each φ ∈ D(Ω) the value ⟨u, φψε⟩ is independent of ε. To see this, we
note that for each 0 < ε1 ≤ ε2 and each φ ∈ D(Ω) the support of the function
φψε1 − φψε2 is contained in Ω \ {0}, and by the assumption suppu ⊂ {0} we
must have ⟨u, φψε1 − φψε2⟩ = 0. In view of (609), the proof of (610) will be
finished if we show that

lim
ε→0+

||φψε||m = 0 whenever φ ∈ D(Ω) and ∂αφ(0) = 0 for |α| ≤ m. (612)

Assuming ∂αφ(0) = 0 for |α| ≤ m, let us estimate the derivatives ∂α(φψε) for
|α| ≤ m. By Leibnitz rule, these derivatives are a linear combination of the
terms

(∂βφ)(∂γψε), |β|+ |γ| ≤ m. (613)

Under our assumptions on φ we have

|∂βφ(x)| = O(|x|m+1−|β|) , x→ 0 (614)

and

|∂γψε| ≤
Cγ
ε|γ|

in suppψε ⊂ Bε = {x, |x| < ε}. (615)

We see that for |β|+ |γ| ≤ m we have

⟨(∂βφ)(∂γψε), 0⟩ = O(ε), ε→ 0 in Ω , (616)

which implies (612) and hence also (610) (due to (609)).
With (610) established, it is easy to finish the proof. Let N be the number of
multi-indices α with |α| ≤ m, and let

π : D(Ω)→ CN (617)
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be the map defined by
φ→ {∂αφ(0)}|α|≤m . (618)

We have established that

π(φ) = 0 =⇒ ⟨u, φ⟩ = 0 . (619)

In other words, the kernel of the linear map π is contained in the kernel of the
linear map u. This means that the map φ→ ⟨u, φ⟩ can be factored through π.
That is, there exists a linear map l : CN → C such that

⟨u, φ⟩ = l(π(φ)) . (620)

Every map l ◦ π as above is clearly of the form

φ→
∑

|α|≤m

cα∂
αφ(0) , (621)

and the proof of the proposition is finished.

If we replace the one-point {a} in the proposition by a compact set K ⊂ Ω, the
following result can be obtained.

Let u ∈ D ′(Ω) and suppu ⊂ K, where K ⊂ Ω is compact. Then there exists a
non-negative integer m and L2(Ω)-functions gα, |α| ≤ m, such that

⟨u, φ⟩ =
∫
Ω

∑
|α|≤m

gα(x)∂
αφ(x) dx . (622)

Note that it is not claimed that the functions gα are supported in K. However,
once the existence of gα is known, they can be easily modified so that they have
support in any given neighborhood of K.
For general compact sets K it is not always possible to achieve a representation
⟨u, φ⟩ =

∫
K

∑
|α|≤m ∂

αφdµα, where µα are (signed) measures supported in

K.166

166See for example the book “The Analysis of Linear Partial Differential Operators I” by
L. Hörmander, Section 2.3.
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Lecture 44, 1/24/2011

We prove the representation (622) from the last statement of the previous lec-
ture. Let ψ ∈ D(Ω) be a function which is ≡ 1 in a neighborhood of K. Since
suppu ⊂ K, we have ⟨u, φ⟩ = ⟨u, φψ⟩ for each ψ ∈ D(Ω). In view of the first
lemma in lecture 42, see (602), we have for some C ≥ 0 and a non-negative
integer m

⟨u, φψ⟩ ≤ C||φψ||m φ ∈ D(Ω) . (623)

As ψ is fixed, we can write (after possibly changing C)

⟨u, φ⟩ ≤ C||φ||m . (624)

From lecture 34 we recall the definition of the Sobolev spaces Hs(Rn) and the
Sobolev Imbedding Theorem, see (497). We note that D(Ω) can be obviously
considered as a subspace of Hs(Rn). In view of (497), when s > m + n/2 we
can write

⟨u, φ⟩ ≤ C||φ||Hs , φ ∈ D(Ω) (625)

for some C ≥ 0. Let us take s to be an integer and let N be the number of
multi-indices α with |α| ≤ s. We consider the mapping

ι : D(Ω)→ [L2(Ω)]N (626)

defined by
ι(φ) = {∂αφ}|α|≤s . (627)

The image of D(Ω) under the map ι is some linear subspace Y of [L2(Ω)]N . The
map φ→ ⟨u, φ⟩ defines a linear functional l on Y by

l : {∂αφ}|α|≤s → ⟨u, φ⟩ . (628)

By (625) this map is continuous on Y (taken with the [L2(Ω)]N -norm). We
can now extend the linear functional l to the whole space [L2(Ω)]N so that the
extension (still denoted by l) satisfies

l(v) ≤ C||v||[L2(Ω)]N , v = {vα}|α|≤s ∈ [L2(Ω)]N . (629)

To construct the extension, we can either directly apply the Hahn-Banach
Theorem, or extend by l(v) = l(Pv), where P is the orthogonal projection
onto Y . By the Riesz representation theorem for linear functionals on Hilbert
spaces, there exist function gα ∈ L2(Ω), |α| ≤ s such that

l(v) =

∫
Ω

∑
|α|≤s

gαvα , v = {vα}|α|≤s ∈ [L2(Ω)]N . (630)

In particular,

⟨u, φ⟩ =
∫
Ω

∑
|α|≤s

gα∂
αφ , φ ∈ D(Ω) , (631)
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which finishes the proof.

Remarks

1. Using ⟨u, φ⟩ = ⟨u, φψ⟩ where ψ is as above, we see that the functions gα can
be taken so that their support is in any given neighborhood of K.

2. By the construction, the regularity of the functions gα is not very high -
they are just L2−functions. However, we can increase the regularity of the
representing functions gα at the cost of taking a higher s in the following way.
Let G = ∆−1 be the inversion of the Laplace operator by the Newton potential
we studied in lecture 2. We can write∫

Ω

gα∂
αφ =

∫
Ω

gαG(∆∂αφ) =
∫
Ω

(Ggα)∆∂αφ . (632)

This improves the regularity of the functions gα, although for the new functions
α does not refer to the index in ∂αφ in the integral (631). We can be repeat this
step as many time as we wish. In some sense, the procedure moves regularity
from φ (where regularity is always “available”) to gα.

3. Any distribution u ∈ D ′(Ω) can be written as a locally finite sum of compactly
supported distributions. For this we can consider a suitable partition of unity
ϕ1 + ϕ2 + · · · = 1 in Ω, where ϕj ∈ D(Ω) and only finitely many functions
are non-zero in any compact subset of Ω. We define ⟨uj , φ⟩ = ⟨u, ϕjφ⟩. Then
u =

∑
j uj in Ω, and each uj has a representation as in the above proved theorem

(with m = mj now depending on j, and possibly approaching ∞ as j → ∞).
Moreover, the construction can be done so in such a way that at most finitely
many representing functions gj,α are non-zero on any given compact subset of
Ω. The details are left to the reader as an exercise.
It is easy to construct examples of u in which the “degree” mj of the localized
distributions uj in the above construction (i. e. the minimal possible number m
in (624)) is unbounded as j → ∞. For example one can take

∑∞
j=1 cj∂

αjδaj ,
where aj ∈ Ω is a sequence with no accumulation points in Ω, cj ̸= 0, and
|αj | → ∞ as j →∞.

We now investigate convergence of distributions. Let uj ∈ D ′(Ω) , j = 1, 2, . . . .
We say that uj converge to u ∈ D(Ω) if

⟨uj , φ⟩ → ⟨u, φ⟩ , φ ∈ D(Ω) . (633)

If uj → u in D ′(Ω), then clearly for each φ ∈ D(Ω) the sequence ⟨uj , φ⟩ is
bounded. We prove the following result.

Theorem
For any sequence of distributions uj ∈ D ′(Ω) with the property that the se-
quence ⟨uj , φ⟩ is bounded for each φ ∈ D(Ω), we can choose a subsequence ujk
which converges in D ′(Ω) to some u ∈ D ′(Ω).
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The theorem can be thought of as a certain compactness property of suitable
subsets of D ′(Ω).

The theorem is a consequence of two important principles of Functional Analy-
sis: the Uniform Boundedness Principle167 and the Cantor diagonal argument.

Recall that in the context of Banach spaces the Banach-Steinhaus Theorem says
the following: If X is a Banach space, and M ⊂ X∗ is a subset of its dual space
such that the set {l(x), l ∈ M} is bounded for each x ∈ X (with the bound
possibly dependent on x), then M is bounded in norm in X∗, i. e. the bound
on the sets {l(x), l ∈ M} can be taken to be independent of x. The statement
is one of the classical consequences of completeness of X. The standard proof
works also for Fréchet spaces, without much change.168 Applying this result in
our situation (using that DK(Ω) are Fréchet spaces), we obtain the following
statement:

(S) IfM ⊂ D ′(Ω) is a set of distributions such that {⟨u, φ⟩ , u ∈M} is bounded
for each φ ∈ D(Ω), then M is uniformly bounded in the following sense: for
each compact K ⊂ Ω there exists C ≥ 0 and a non-negative integer m such that

|⟨u, φ⟩| ≤ C||φ||m , φ ∈ DK(Ω), u ∈M . (634)

With the statement (S) the proof of the theorem is easy: first, under the as-
sumptions of the theorem we see from (S) that the sequence {uj}∞j=1 is uniformly
bounded in D ′(Ω) in the sense of (634). Second, we choose a countable dense
subset X is D(Ω) and use the Cantor diagonal argument to produce a subse-
quence ujk such that ⟨ujk , φ⟩ converges to a finite limit for each φ ∈ X. From
the bound (634) (applied with M = {uj}) we conclude that ⟨ujk , φ⟩ converges
to a finite l(φ) limit for each φ ∈ D(Ω), with the bound (634) still satisfied for
φ→ l(φ). Hence l(φ) = ⟨u, φ⟩ for some u ∈ D ′(Ω).

We remark that the above proof also shows the following results.

If uj is a sequence of distributions such that l(φ) = limj→∞⟨uj , φ⟩ exists and is
finite for each φ ∈ D(Ω), then l defines a distribution, i. e. there exists u ∈ D ′(Ω)
such that l(φ) = ⟨u, φ⟩ for each φ ∈ D(Ω).

167In the context of Banach spaces it is also known as the Banach-Steinhaus Theorem.
168See for example W.Rudin’s “Functional Analysis”, Section 2.3.

167



Lecture 45, 1/26/2011

In lecture 2 we introduced mollification as a procedure to approximate a given
locally integrable function by a smooth function. Let ϕε =

1
εnϕ(

x
ε ) be mollifiers

as in lecture 2. For ε > 0 we will denote by Ωε the set {x ∈ Ω, dist(x, ∂Ω) > ε}.
For a locally integrable function in Ω the function u ∗ ϕε (defined in Ωε) can be
interpreted as a “linear combination” of shifts of u. More precisely, let us define
the shift of u by y ∈ Rn by

τyu(x) = u(x− y). (635)

Then

u ∗ ϕε =
∫
τyuϕε(y) dy in Ωε. (636)

Formula (636) can be naturally applied to distributions. For u ∈ D ′(Ω) and
y ∈ Rn we define τyu by

⟨τyu, φ⟩ = ⟨u, τ−yφ⟩, when τ−yφ ∈ D(Ω). (637)

For u ∈ D ′(Ω) and ε > 0 we define

uε = u ∗ ϕε =
∫
τyuϕε(y) dy . (638)

We have uε ∈ D ′(Ωε) and

⟨uε, φ⟩ =
∫
⟨u, τ−yφ⟩ϕε(y) . (639)

Denoting ϕ̃ε(y) = ϕε(−y), we can write

⟨uε, φ⟩ = ⟨u, φ ∗ ϕ̃ε⟩ . (640)

We can also write

⟨uε, φ⟩ =
∫
⟨u, τyϕε⟩φ(y) dy , (641)

which shows that the distribution uε is given by the function

uε(x) = ⟨u, τxϕ̃ε⟩ , (642)

which can be also formally obtained as uε(x) = ⟨uε, δx⟩ . 169 From the definitions
it is easy to see that the function x → uε(x) is smooth in Ωε and uε → u as
ε → 0+ in D ′(Ωε1) for every ε1 > 0. Although we do not have uε ∈ D ′(Ω),
we notice that for any given φ ∈ D(Ω), the value ⟨uε, φ⟩ is well defined for
sufficiently small ε.

169The expression ⟨u, δx⟩ is of course not defined for general distributions u. It can be defined
as the limit of ⟨u, φj⟩ where φj → δx gives an approximation of the Dirac mass δx if the limit
exists in a suitable sense.
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With the definitions above the usual formulae

∂α(u ∗ ϕε) = (∂αu) ∗ ϕε = u ∗ (∂αϕε) (643)

are valid, as can be easily checked.

The convolution u∗v can in fact be defined when both u and v are distributions,
provided some natural conditions concerning supports of u, v are satisfied.170

For now we will not study this aspect in more detail, but we may return to it
in the future.

As an application of the approximation procedure, we give a prove of the impor-
tant result that any distribution with vanishing derivatives has to be constant.
We use the following notation: for u ∈ D(Ω) we denote by ∇u the n−tuple of
distributions (∂1u, . . . , ∂nu). Also, we will say that a distribution u ∈ D(Ω) is
constant if it is given by ⟨u, φ⟩ =

∫
Ω
cφ for some c ∈ C.

Theorem
Assume Ω is connected and u ∈ D ′(Ω) with ∇u = 0. Then u is constant in Ω.

Proof: Consider the approximating distributions uε = u ∗ ϕε. By (643) we see
that ∇uε = 0 in Ωε. Therefore uε is a locally constant function is ε For any
given φ ∈ D(Ω) the function uε will be constant on the support of φ when ε
is sufficiently small. Let cε be the value of the constant. As ⟨uε, φφ⟩ converges
when ε → 0, we see that the constants cε have to converge as ε → 0 to some
c ∈ C. It remains to show that c is independent of the choices made in this
process, and that u = c in Ω. We leave this to the reader as an easy exercise.

Remarks
1. The above theorem is important in that it shows that we have the right def-
inition of the derivative. The result that a function with zero derivative should
be constant is a good test whether a given generalized notion of a derivative is
reasonable. If we could have non-constant functions with vanishing generalized
derivative, then the definition of the generalized derivative would not be suitable
for PDE purposes.

2. The above proof of the theorem via approximations may not look like the most
elegant proof of the result. Probably the most natural proof is the following:
if φ ∈ D(Ω) with

∫
Ω
φ = 0, then there exist functions ψ1, . . . ψn ∈ D(Ω) such

that φ = ∂jψj (summation convention is understood). When u ∈ D ′(Ω) with
∇u = 0, then by definition ⟨u, ∂jψj⟩ = 0, and hence ⟨u, φ⟩ = 0 for each φ ∈
D(Ω) with

∫
Ω
φ = 0. This shows that ⟨u, φ⟩ = c

∫
Ω
φ for each φ ∈ D(Ω).

However, the proof of the existence of ψj requires some work. If we look at the
proof via approximations which we used above in more detailed, we see that it

170See for example the book “The Analysis of Linear Partial Differential Operators I” by
L. Hörmander.
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is not so far away from the proof just mentioned, and to some degree it also
suggests how to construct the ψj .

Examples

1. For n = 1 we consider the distribution u given by the characteristic function
of the interval (0,∞),

⟨u, φ⟩ =
∫ ∞

0

φ . (644)

This distribution (often called the Heaviside function) is sometimes denoted by
H and also θ. The derivative of u is given by

⟨u′, φ⟩ = −⟨u, φ′⟩ =
∫ ∞

0

−φ′ = φ(0) = ⟨δ, φ⟩ , (645)

where, as usual, δ denotes the Dirac mass at 0. In short,

u′ = δ . (646)

In spite of its simplicity, this example is important in that it shows a difference
between the point-wise notions of the derivative and the distributional deriva-
tive. In this case the distributional derivative is a measure.

2. Let us consider the characteristic function u of the half-space {x, x1 > 0} is
Rn. It can be identified with the distribution

⟨u, φ⟩ =
∫
{x1>0}

φ . (647)

Let δΣ be the natural surface measure on the hyperplane Σ = {x, x1 = 0}. As
an exercise show that

∂1u = δΣ (648)

and
∂ju = 0 , j ≥ 2 . (649)

3. Let u be the characteristic function of the set {x ∈ Rn; xj ≥ 0 , j =
1, 2, . . . , n}. As an exercise you can show that

∂1∂2 . . . ∂nu = δ . (650)

The calculation consist of repeating n times the calculation from example 1.

4. Let us consider the distribution given in R3 by the locally integrable function

u(x) = − 1

4π|x|
(651)
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introduced in lecture 2, where we showed that

∆(u ∗ φ) = φ φ ∈ D(Rn) . (652)

Show that this is equivalent to
∆u = δ . (653)

If K is the kernel of the Newton potential in general dimension n (see lecture
11), we have

∆K = δ (654)

in distributions.
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Lecture 46, 1/28/2011

We will continue with some more examples of distributions. Let φ ∈ D(Rn). In
lecture 14 we defined the integral

p.v.

∫
R

φ(x)

x
dx . (655)

The functional u in D(Rn) defined by

⟨u, φ⟩ = p.v.

∫
R

φ(x)

x
dx (656)

is clearly linear. We show that it in fact defines a distribution, e. i. u ∈ D ′(R).
Note first that |⟨u, φ⟩| ≤ C(a)||φ||1 for φ with φ(0) = 0 and suppφ ⊂ [−a, a],
where a > 0. For general φ write φ = φ−φ(0)ψ+φ(0)ψ, where ψ ∈ D(R) with
ψ = 1 in a neighborhood (−h, h) of x = 0. Note that ⟨u, ψ⟩ =

∫
R\(−h,h)

ψ(x)
x dx.

Note that when ψ is even, the last integral vanishes and in this case we have for
any φ ∈ D ′(R) with suppφ ∪ suppψ ⊂ [−a, a]

|⟨u, φ⟩| ≤ C(a)||φ− φ(0)ψ||1 ≤ C(a)||φ||1 + C(a)||ψ||1||φ||0 . (657)

We can also keep ψ “general” not necessarily even,171 and add an additional
term Cψ||φ||0 to (657).

Another way to establish that u ∈ D ′(R) is to show that

u =
d

dx
log |x| , (658)

where we differentiate in the sense of distributions. The function log |x| is locally
integrable, and hence its derivative is well-defined as a distribution. We need to
check (658), which is an easy calculation left to the reader as an exercise. (Note
that the main issue is to show that (658) is valid across 0.)

Heuristically we expect that the distribution u satisfies

xu = 1 . (659)

To make this more precise we first define formally the multiplication

ψv (660)

for any v ∈ D(Ω) and any ψ ∈ E (Ω), where E (Ω) denote the space of all smooth
functions in Ω.172 The definition of course is

⟨ψv, φ⟩ = ⟨v, ψφ⟩ , (661)

171Still with ψ ≡ 1 in a neighborhood of 0, of course.
172Note that the functions in E (Ω) can become unbounded and oscillatory as we approach
the boundary of Ω. This is not dangerous as the functions in D ′(Ω) have compact support.
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and the reader can easily check that with this definition we have ψv ∈ D ′(Ω)
for each v ∈ D ′(Ω) and each ψ ∈ E (Ω). With these definition the relation (659)
is easily verified.

The equation (659) can be thought of as an equation for an unknown u ∈ D ′(R).
When (659) is considered in distributions, it is somewhat more complicated
than when it is considered only as an equations for functions, although the
difficulties are only at x = 0. In general, if we have the equation ψu = v
where ψ ∈ E (Ω), v ∈ D ′(Ω) and u ∈ D ′(Ω) is the unknown, one can check
easily from the definitions that in any open set where ψ does not have zeros we
have u = ψ−1v. (In particular, it is clear that any solution of (659) is given
by u = 1/x away from the origin.) So the equation determines u uniquely in
regions where ψ does not have zeroes. This is no longer case across the zeroes
of ψ. For example, equation (659) does not determine u uniquely. It determines
u only up to the solutions of

x v = 0 , (662)

where v ∈ D ′(R). To determine the solutions of (662), we first note that

supp v ⊂ {0} (663)

for any solution. Therefore

v =
m∑
j=0

cj∂
j
xδ, (664)

and the reader can check that the only distribution of this form satisfying (662)
is

v = c δ . (665)

We can also check what happens with the equation

xku = 1 , (666)

where k is a non-negative integer and the unknown u is a distribution. The
solution is again uniquely determined in the set {x ̸= 0} by u = x−k. It is easy
to check that the solutions of

xk v = 0 (667)

in D ′(R) are exactly the distributions

v =
k−1∑
j=0

cj∂
j
xδ . (668)

Therefore the solutions of (666) in D ′(R) are not unique, and are determined
only modulo distributions of the form (668).

Does (666) has solutions for general positive integer k? One can guess that the
distribution

uk =
(−1)k−1

(k − 1)!

dk−1

dxk−1

(
p.v.

1

x

)
(669)
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is a solution, and the reader can check this as an exercise.

Let us look in more detail at the distribution u2, which is given away from
the origin by the function 1

x2 . First we note that for functions φ ∈ D(R) with
φ(0) = 0 and φ′(0) = 0 we have

⟨u2, φ⟩ =
∫
R

φ(x)

x2
dx . (670)

As above, let ψ ∈ D(R) be a function which is ≡ 1 in a neighborhood of the
origin. We can write a general φ ∈ D(R) as

φ(x) = φ̃(x) + φ(0)ψ(x) + φ′(0)xψ(x) , (671)

with
φ̃(x) = φ(x)− φ(0)ψ(x)− φ′(0)xψ(x) . (672)

The value ⟨u2, φ̃⟩ is well-defined as in (670), so we only need to calculate ⟨u2, ψ⟩
and ⟨u2, xψ⟩ . Using the definitions, we check that

⟨u2, ψ⟩ =
∫
R

ψ′(x)

x
dx, ⟨u2, xψ⟩ = p.v.

∫
R

ψ(x)

x
dx . (673)

Note that the second integral vanishes if ψ is even, and the first integral tends
to zero if we take replace ψ by ψε(x) = ψ(εx) and take ε → 0. Therefore,
in some sense we can set ⟨u2, 1⟩ = 0 and ⟨u2, x⟩ = 0. The evaluation of the
integral

∫
R
φ
x2 which formally defines u2 can then be seen as simply subtracting

the infinite value
∫
R

1
x2 dx and formally taking

∫
R

1
x dx = 0. The distributions

uk can be interpreted in a similar way for any positive integer k.

It is interesting to see what happens when we try to approximate the distribu-
tions uk by the distributions uk,ε defined by the functions (x + iε)−k, ε → 0+,
i. e.

⟨uk,ε, φ⟩ =
∫
R

φ(x)

(x+ iε)k
dx. (674)

For example, one has
lim
ε→0+

u1,ε = u1 − iπδ . (675)

This formula is related to formula (164) from lecture 14, and the reader can
verify it as an exercise. The limits uk,0+ = limε→0+ uk,ε are easily seen to
satisfy xkuk,0+ = 1, but they differ from uk, as already seen in (675) for k = 1.
For general k we can infer from (669)

uk,0+ =
(−1)k−1

(k − 1)!

dk−1

dxk−1
u1,0+ = uk − iπ

(−1)k−1

(k − 1)!
δ(k−1) . (676)

Another interesting family of distributions in R is

va(x) =
xa+

Γ(a+ 1)
, (677)

174



where a is a complex number, x+ = (|x| + x)/2 and Γ is the standard gamma
function of Euler. This family of distributions naturally extends the family

vk(x) =
xk+
k!

(678)

defined for positive integers k, which are important due to the identity

dk

dxk
vk = δ , (679)

which the reader can easily verify. The distributions va are transparently well-
defined for a ∈ C with Re a > −1. However, using the relation

d

dx
va = va−1 , (680)

the definition can be extended to all a ∈ C. The dependence a→ va is analytic
inC, in the sense that a→ ⟨va, φ⟩ is analytic in a for each φ ∈ D(R). The reader
can check L. Hörmander’s book “The Analysis of Linear Partial Differential
Operators I”, section 3.2, for further details.
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Lecture 47, 1/31/2011

In lecture 34 we introduced the Fourier transformation and some of the basic
results concerning it, see (479) and (487). The Fourier transform is one of the
most effective tools for studying linear PDEs (and their also some of their non-
linear perturbations). One reason for this is the following. Recall that for each
y ∈ Rn we have the translation operator τy on L2(Rn) given by

τyf(x) = f(x− y) . (681)

Partial derivatives are related to “infinitesimal translations” τ(δy) (where (δy) ∈
Rn is “infinitesimally small”) by

τ(δy)f(x) = −
∂f

∂xi
(x)(δy)i . (682)

The operators τy, y ∈ Rn, are clearly unitary and commute with each other.
Therefore, by general principles of the Spectral Theory, they should be simul-
taneously diagonalizable. The Fourier Transformation accomplishes this diago-
nalization. In view of (682), it should also diagonalize the operators f → ∂f

∂xi
,

and this is indeed the case, as one can see from (480).

The integrals

f̂(ξ) =

∫
Rn

f(x)e−iξx dx . (683)

and

f(x) =
1

(2π)n

∫
Rn

f̂(ξ)eiξx dξ . (684)

are both well-defined in the usual sense of the Lebesgue theory if both f and
f̂ are in L1(Rn). This condition is too restrictive for many applications. One
try to circumvent this difficulty by working with integrals which are not abso-
lutely convergent, introducing various regularizations, etc. However, the most
effective way to overcome the difficulty seems to be to extend the definition of
the Fourier transformation to a certain class of distributions, called “tempered
distributions” which will be introduced below. The idea is due to L. Schwartz.

The motivation for the definition of û for distributions comes from formula (482),
which we reproduce here for convenience:∫

Rn

fĝ =

∫
Rn

f̂g . (685)

By analogy with (685), we define û for a suitable class of distributions by

⟨û, φ⟩ = ⟨u, φ̂⟩ . (686)

If the map φ → φ̂ was continuous from D(Rn) to D(Rn), formula (686) would
define û as a distribution. However, we note that for φ ∈ D(Rn) the function
φ̂ is never in D(Rn), unless φ ≡ 0. This can be seen from the fact that for
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any f ∈ L1(Rn) which is compactly supported, the function f̂ is analytic. The
analyticity is clear from (683), as the formula can be clearly used not only

for ξ ∈ Rn, but also for ζ ∈ Cn, and the resulting f̂(ζ) satisfies the Cauchy-
Riemann conditions in Cn. We now recall that an analytic in function in Rn
cannot vanish on any open subset of Rn unless it vanishes identically.

The function φ̂ is still quite nice at ∞: any derivative of ∂αξ φ̂(ξ) approaches
zero faster than any inverse power of |ξ| as ξ → ∞. This can be seen from
formulae (480) and (481). This motivates the definition of the Schwartz class

S (Rn) = {φ : Rn → R; φ is smooth and
|x|m|∂αφ(x)| → 0 as x→∞ for any m ≥ 0 and any α}.

(687)
Note in particular that there is no condition on the support of φ. The space
S (Rn) can be equipped with a natural countable family of norms which turns
it into a Fréchet space:

||φ||k = sup
x∈Rn,|α|≤2k

(1 + |x|2)k|∂αφ(x)| (688)

As an exercise the reader can prove that the space D(Rn) is dense in S (Rn).173
Using (683), (684), (480), and (481), it is not hard to show that the Fourier
transformation φ → φ̂ is a bijection of S (Rn), continuous in both directions.
In other words, the map φ→ φ̂ is an isomorphism of the Fréchet space S (Rn).
We note that φj → φ in D(Rn) can be easily seen to imply φj → φ in S (Rn),
while the opposite implication fails.

We will denote by S ′(Rn) the space of linear continuous functionals on S (Rn).
By the previous remark we see that S ′(Rn) ⊂ D ′(Rn). The distributions in
S ′(Rn) are called tempered distributions.

Examples

Consider u1, u2, u3 ∈ D ′(R) defined by

u1 =
∑
k

2kδk, u2 =
∑
k

∂kδk, u3 =
∑
k

δ1+1/2+···+1/k (689)

As an exercise, you can show that all uj are well defined distributions in D ′(Rn),
but they do not belong to S ′(Rn). On the other hand, every function u which
is locally integrable and has at most polynomial growth defines an element of
S ′(Rn) by the usual integration

⟨u, φ⟩ =
∫
Rn

uφ . (690)

The formula (686) can now be used to define Fourier transformation for each
u ∈ S ′(Rn). As we shall see, this definition removes most of the difficulties
related to the non-convergent integrals one has to face when dealing with the
“point-wise” formulae (683) and (684).

173In other words, for each φ ∈ S (Rn) there exists a sequence φj ∈ D(Rn) such that
||φj − φ||k → 0 for each k when j → ∞.
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Lecture 48, 2/1/2011

We start with a few elementary examples illustrating some of the features of
the Fourier transformation.

Example 1.

Consider a > 0 and let u = ua = χ(−a,a) be the characteristic function of the
interval (−a, a). The function is in L1(R), and therefore we can calculate the
Fourier transform directly:

û(ξ) =

∫ a

−a
e−ixξ dx =

2 sin aξ

ξ
. (691)

We note the following simple facts:

(i) The function û(ξ) is smooth and, in fact, it is an analytic function of ξ,
defined globally for ξ ∈ C. We can see that already from the fact that u
has compact support. The integral (691) transparently defines a holomorphic
function of ξ ∈ C.

(ii) The decay of û(ξ) as ξ → ∞ is relatively slow. In particular, û is not in
L1(R). This can also be inferred from general principles, without calculating
û explicitly: if û were in L1(R), the inversion formula (684) would imply that
u is continuous, which is not the case. One can also see without calculation
that a jump discontinuity should produce some O(1/|ξ|) behavior of the Fourier
transform at infinity: the decay of û(ξ) as ξ → ∞ is due to the cancelations
in the integral (691), resulting from the oscillations of eixξ. However, with the
jump discontinuity present, the “remainder” of the cancelation process can be
of the order of the period of the function eixξ, which is of order 1/ξ.

(iii) The function û is in L2(R). This can again be seen without calculation: it is
a consequence of the obvious fact that u ∈ L2(R) and Plancherel’s equality (493).

(iv) In the limit a→∞ the distributions ua converge to a distribution given by
the constant function 1, and hence ûa must converge to 1̂ in distributions. We
will determine 1̂ momentarily, however we can see from (691) that ûa → 0 in
distributions in any open set not containing 0. Hence we expect that 1̂ will be
supported at 0.

(v) The functions ua

2a converge to δ in distributions as a→ 0. The functions ûa

2a

converge locally uniformly to 1 as a → 0. Therefore we have δ̂ = 1, which can
also be seen directly from (686).

(vi) The inversion formula formally is

ua(x) =

∫
R

2 sin aξ

ξ
eixξ dξ . (692)

If we do not wish to resort to (686) in interpreting this formula, we can “reg-
ularize” the integral in (692) (which is not of course absolutely convergent) in
various ways. For example, we can try to calculate

lim
ε→0

∫
R

2 sin aξ

ξ
eixξe

−|εξ|2
2 dξ . (693)
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As ε → 0, the distributions given by the integrant of in (693) clearly converge
to the distribution given by the integrant of (692), so the limit in (693) should
exist in some sense. In fact, the integrands also converge in L2(R) and hence
their Fourier transforms must also converge in L2(R), by (491). In general, from
the convergence in distributions (or even the L2 convergence) one cannot really
infer the existence of the “point-wise” limit (693), but in our example the point-
wise limit happens to exist. The integrals can be in fact calculated explicitly in
various ways, for example by using formulae (483), (484), and (490). We set

gε(x) =
1

(2πε2)
n
2
e

−|x|2

2ε2 (694)

and use (483), (484) to infer

ĝε(ξ) = e
−|εξ|2

2 . (695)

By ˆf ∗ g = f̂ ĝ, we see that 2 sin aξ
ξ e

−|εξ|2
2 is the Fourier transform of ua ∗ gε, and

hence ∫
R

2 sin aξ

ξ
eixξe

−|εξ|2
2 dξ = (ua ∗ gε)(x) . (696)

From this we see that the limit (693) exists point-wise (for each x), and is equal
to ua(x) except at x = ±a, where it is equal to 1/2.

Instead of (693), we could use the regularization∫ L

−L

2 sin aξ

ξ
eixξ dξ (697)

and let L → ∞. Integral (697) can also be evaluated explicitly, by a similar
method as above. We write it as∫

R

2 sin aξ

ξ
eixξχ(−L,L)(ξ) dξ (698)

and note that χ(−L,L) is the Fourier transformation of

gL(x) =
1

2π

2 sinLx

x
, (699)

thanks to inversion formula (692). Therefore, formally at least, the function
2 sin aξ
ξ χ(−L,L)(ξ) is the Fourier transformation of the function ua ∗ gL, which

is also an approximation of ua, but of a different nature: it oscillates174 much
more and has slow decay at infinity. At the same time, by (481) the functions
ua ∗ gL must converge to ua in L2 as L → ∞, and in fact the convergence is
point-wise (with limit 1/2 at x = ±a). The slow decay at ∞ is unavoidable,
due to the discontinuities of 2 sin aξ

ξ χ(−L,L)(ξ).
175

174The oscillations will be most pronounced at the points of discontinuity of ua, where their
appearance is often referred to as the Gibbs phenomenon.
175Note that for some exceptional values of L the function will be continuous, but for a
typical L it will be discontinuous at x = ±L.
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As you could notice, in the calculations above we benefited from knowing what
the result should be. In situations where we do not know what to expect the
calculations may not be so easy, but the above examples still give a good idea
about certain effects which we may encounter.

Example 2

The function u(x) = 1 represents a tempered distribution. The direct calcula-
tion of û from definition (686) is straightforward:

⟨û, φ⟩ = ⟨u, φ̂⟩ =
∫
R
φ̂ = (2π)n φ(0) (700)

where we have used the inversion formula (684). One can arrive at the same

result from approximating 1 by e
−|εx|2

2 and using (483), (484):

1̂ = lim
ε→0

̂
e

−|εx|2
2 = lim

ε→0
(2π)n

1

(2πε2)n/2
e

−|x|2

2ε2 = (2π)nδ (701)

It is easy to check that formulae (480) and (481) remain true for distributions.
(The multiplication of a tempered distribution u by a function ψ is defined as
expected: ⟨ψu, φ⟩ = ⟨u, ψφ⟩. The function ψ has to satisfy some assumptions
so that the map φ → ψφ is a continuous map from S (Rn) to S (Rn). The
assumptions are trivially satisfied by any polynomial.) Hence we have

−̂ixj = (2π)n
∂

∂ξj
δ (702)

and hence also

P̂ (−ix) = (2π)n P (
∂

∂ξ
) δ (703)

for any polynomial P .
Similarly, we can take take derivatives of the equation

δ̂ = 1 (704)

to obtain
̂
P (

∂

∂x
)δ = P (iξ) (705)

Example 3

It is also interesting to take derivatives in the formula

̂
e

−|x|2
2 = (2π)

n
2 e

−|ξ|2
2 . (706)

If we take derivatives of order m on the left-hand side, we get a function of the
form

P (x)e
−|x|2

2 . (707)
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From (480) we see that Fourier transform of such function is of the same form.
Therefore functions of the form (707) with degree of P at most m form a sub-
space invariant under the map φ→ φ̂

If we use formula (686) with φ = gε defined by (694) and assume that u ∈ L1(R),
we can let ε→ 0 to recover the classical definition (683) for ξ = 0. The general
ξ is then obtained by suitably using the shift operators. We leave the details to
the reader as an exercise.
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Lecture 49, 2/4/2011

We continue with some more examples.

Example

Let u = χ[0,∞) be the Heaviside function from lecture 45, see (644). The Fourier
transform of u can be calculated for example as follows: we approximate u by

uε(x) = χ[0,∞)e
−εx , ε→ 0+ . (708)

The distributions uε clearly converge to u in S ′(R) as ε→ 0+.
We calculate

ûε(ξ) =

∫ ∞

0

e−ixξ−εx =
1

iξ + ε
→ −i p.v. 1

ξ
+ πδ, ε→ 0+ , (709)

where we have used (675).

Using the last calculation together with (701) we see that

̂
u− 1

2
=

1̂

2
signx = −i p.v.1

ξ
. (710)

The last identity can be used to calculate the Fourier transform of p.v. 1x . For
that it is useful to introduce notation for the inverse Fourier transform. For
f ∈ L1(R) we let

f̌(x) =
1

(2π)n

∫
Rn

f(ξ)eixξ dξ . (711)

For (tempered) distributions we set

⟨v̌, φ⟩ = ⟨v, φ̌⟩ . (712)

It is clear that for functions we have

f̂(ξ) = (2π)nf̌(−ξ) . (713)

The same formula applied to distributions, with the understanding that we
define, with a slight abuse of notation,

⟨v(−x), φ⟩ = ⟨v, φ(−x)⟩ , (714)

A more formal notation would be to define the operator v → v ◦ (−I) of S ′(Rn)
by ⟨v ◦ (−I), φ⟩ = ⟨v, φ◦ (−I)⟩, with −I denoting the map x→ −x. As we have

ˇ̂v = v , (715)

we see from (714) that
ˆ̂v = (2π)nv(−x) . (716)
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Applying this to (710), we get

̂
p.v.

1

x
= −πi sign ξ . (717)

Letting

K(x) =
1

πx
, (718)

we see that
K̂ = −i sign ξ . (719)

This formula is important in connection with the Hilbert transformation we
discussed in lecture 14, see (163). Formula (163) can be rewritten as

Hg = K ∗ g . (720)

Recalling the formula f̂ ∗ g = f̂ ĝ, we see that

Ĥg(ξ) = −i(sign ξ) ĝ(ξ) . (721)

We see that the Fourier transformation “diagonalizes” the Hilbert transforma-
tion (and, in fact, any other convolution operator f → K ∗ f). It is also trans-
parent from (721) and the Plancherel formula (493) that the Hilbert transform
is an L2 isometry. 176

We now give examples of how the Fourier transform can be used for solving
PDEs. We start with a simple 1d example. Assume we wish to find a solution
of the equation

dk

d xk
u = δ , (722)

where δ is, as usual, the Dirac mass at x = 0. In other words, we wish to
determine a fundamental solution of the operator dk/dxk. We have already
come across a solution of (??)15 in lecture 46, see (679), but this time we will
look at things from the Fourier transformation angle.

After taking the Fourier transformation of (722), we obtain

(iξ)kû = 1 . (723)

As we have seen in lecture 16, equation (723) does not determine u uniquely.
This is to be expected, as the same it true for (722): it only determines u up to
a polynomial of order k − 1. We choose a solution by setting

û+ = lim
ε→0+

1

(iξ + ε)k
. (724)

176A number of properties of the Hilbert transform are made transparent by (721). We
encourage the reader to revisit lecture 14 and take a look at some of the formulae there from
the Fourier transform perspective.
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We have seen in lecture 46 that û+ is a well-defined distribution. We need to
calculate its inverse Fourier transform. Formally we have

u+(x) =
1

2π
lim
ε→0+

∫
R

eiξx

(iξ + ε)k
dξ. (725)

The last limit can be easily evaluated via the residue theorem. For simplicity we
will assume that k ≥ 2. (The case k = 1 is in fact covered by our first example
today.) Let us first assume that x > 0. The integral in (725) is well-defined
for any ε > 0. We note the the integrand decays exponentially as we move ξ
to complex numbers with large positive imaginary part. (Here the assumption
x > 0 is crucial.) The integrand has a single pole in the upper half-plane, at
ξ = iε. By standard application of the residue theorem we see that the integral
is equal to the 2πi multiple of the residue of the integrand at ξ = iε. In the limit
of ε → 0+, we obtain the 2πi multiple of the residue of the function eiξx/(iξ)k

at ξ = 0. Evaluating the residue, we obtain

u+(x) =
xk−1

(k − 1)!
, x > 0. (726)

For x < 0 the exponential decays exponentially in the lower half-plane, while
the residue stays in the upper half-plane and we see from the residue theorem
(or the basic Cauchy formula) that u+(x) = 0.

It remains to justify the somewhat formal calculation. We note that the integral
in (688) gives a well-defined function uε(x) for each ε > 0. We have shown that
for x ̸= 0 the point-wise limit of these functions is given by u+(x). We wish to
check that in fact uε → u+ in tempered distributions.177 This can be done for
example by estimating the residua we get at ξ = iε for ε > 0 and using these
bounds to get suitable uniform estimates for uε.

178

177We could al also skip this step and check directly that u+ solves (722).
178In more detail, the situation is as follows: Let us denote be vε the distribution (iξ+ ε)−k

and by v+ its limit for ε → 0+. The limit exists in S ′(R). This can be easily checked by
using (675) and (676). Our distributions uε and u+ are inverse Fourier transforms of vε and
v+, respectively. The inverse Fourier transform is continuous, and therefore uε → u+ in
S ′(R). We have shown above by a direct calculation that the functions uε(x) converge point-
wise (except possibly for x = 0, where we have not investigated the limit) to the expression
in (726), which we somewhat prematurely identified with u+. It looks very likely that the
point-wise limit will be the same as the distributional limit, but, strictly speaking, it is not
completely automatic. We should justify the identification of the limits. In many books such
technicalities are usually left to the reader and only the formal calculation is made. Often the
correctness of the formal calculation is justified by the fact that the result of our calculation
transparently solves our problem, as it is also the case in our example above.
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Lecture 50, 2/7/2011

When we calculate the Fourier transforms, the use of symmetries can simplify
the calculations. Let us first look at the orthogonal symmetries. We will work
with the group full orthogonal group O(n). For n ≥ 2 we can replace O(n) with
SO(n) in all the results below. For a transformation R in the orthogonal group
O(n) and a function f : Rn → C we let

(R · f)(x) = f(R−1x) (727)

We can write

R̂ · f(ξ) =
∫
Rn f(R

−1x)e−iξx dx =∫
Rn f(x)e

−iξ(Rx) dx =
∫
Rn f(x)e

−i(R−1ξ)x dx = R · f̂(ξ) .
(728)

If f is invariant under O(n), i. e. R · f = f for each R ∈ O(n), we see that f̂ is
also invariant under O(n) and vice versa.

When dealing with distributions, we need to let the symmetries act on the test
functions. For u ∈ D ′(Rn) we define R · u by

⟨R · u, φ⟩ = ⟨u,R−1 · φ⟩ . (729)

We check easily from the definitions that

R̂ · u = R · û . (730)

In particular, the Fourier transformation of a tempered distribution invariant
under O(n) will again be a tempered distribution invariant under O(n).

Scaling symmetries can also provide useful simplifications. We recall that a
function f : Rn → C is a−homogeneous if f(λx) = λaf(x). We can extend the
definition to distributions by setting

⟨u(λx), φ⟩ = ⟨u, λ−nφ(λ−1x)⟩ , (731)

where we slightly abuse notation by writing u(λx) not for the point-wise value of
u at the point λx, but for the whole scaled distribution. Hopefully such notation
will not cause any problems. The distribution u(λx) will also be denoted by
(u)λ. In this notation the a−homogeneity of u means

(u)λ = λau . (732)

The operation u→ (u)λ is defined not only on D ′(Rn), but also on D ′(Rn\{0}).

Lemma 1
If u ∈ D ′(Rn \ {0}) is invariant under O(n) and a−homogeneous, it is given by
a multiple of the function |x|a. In other words,

⟨u, φ⟩ =
∫
Rn\{0}

c|x|aφ(x) dx , φ ∈ D(Rn \ {0}) (733)

for some c ∈ C.
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Proof

The statement is obvious if we already know that u is represented by a smooth
function. The only non-trivial step is to show that u is indeed represented by a
smooth function. This can be seen for example as follows. For R ∈ O(n) and
λ > 0 we set

R · [λ−a(u)λ] = uR,λ . (734)

By our assumptions

uR,λ = u R ∈ O(n), λ > 0 . (735)

Let ϕ = ϕ(λ) be a smooth function on (0,∞) which is supported in a small
neighborhood of λ = 1 and satisfies∫ ∞

0

ϕ(λ)dλ = 1 . (736)

We can use the notation vR,λ also for a general v ∈ D ′(Rn \{0}), with the same
definition. For such a general v consider the distribution

v =

∫ ∞

0

∫
O(n)

vR,λ dR ϕ(λ)dλ . (737)

Where dR denotes the invariant measure on O(n). In some sense, v is obtained
from v by averaging over all possible orthogonal transformations and certain
scalings.179 We claim that v is represented by a smooth function invariant
under O(n). Heuristically this should be more or less clear. For a formal proof
we can write

⟨v, φ⟩ = ⟨v, φ̃⟩ , (738)

where

φ̃(x) =

∫ ∞

0

∫
O(n)

λ−a−n(R · φ)(λ−1x) dR ϕ(λ) dλ . (739)

If we take formally φ = δy, the Dirac mass at y ∈ Rn \ {0}, the function φ̃ will
be smooth. More precisely, of φj are smooth function approximating δy, then
φ̃j converge smoothly to a smooth function ψy which is invariant under O(n).
The distribution v is given by the function

v(y) = lim
j→∞
⟨v, φ̃j⟩ = ⟨v, ψy⟩ , (740)

179If you do not know much about the invariant measure on O(n), it is enough to look at
the averaging over O(n) heuristically, as a natural procedure to obtain invariant objects. In
dimensions n = 1 and n = 2 it is easy to write the averaging explicitly. The integral over
λ should be thought of as a convolution with a smooth function (and hence a smoothing
operator), except that we are using the multiplication in the group R+ instead of the addition
in R. In the usual convolution we average over certain translations of a given function. Here
we average over certain scalings of a given function. If we make a substitution λ = ey ,
our new convolution will become the usual convolution. In this substitution the measure dy
corresponds to dλ

λ
, which is why the integral (737) is often written with dλ

λ
rather than just

dλ. The normalization condition (736) must then be changed accordingly.
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and it is not hard to see that this is a smooth function of y. The smoothness of
u now follows from the obvious identity

u = u , (741)

which is a consequence of the invariance of u. This finishes the proof of Lemma 1.

Lemma 1 is no longer valid in full generality if we replace Rn \ {0} by Rn. For
example, the Dirac distribution δ is (−n)-homogeneous, but is not of the form
c|x|−n. The derivatives ∂αδ are (−|α| − n)-homogeneous.

However, for a > −n the lemma remains valid in Rn.

Lemma 2 Any a− homogeneous distribution invariant under O(n) in Rn with
a > −n is given by a multiple of |x|a .
This follows easily from Lemma 1. If u is a−homogeneous, we can use the lemma
to subtract a multiple of |x|a from u so that v = u−c|x|a is supported at 0. Since
the only distributions supported at {0} are the finite linear combinations of the
Dirac mass and its derivatives and a > −n, any a−homogeneous distribution
supported at {0} must vanish.

Lemma 3
Let u ∈ S ′(Rn) be a−homogeneous. Then û is (−n− a)-homogeneous.

Proof

⟨û(λξ), φ⟩ = ⟨û(ξ), λ−nφ(λ−1ξ)⟩ = ⟨u, ̂λ−nφ(λ−1ξ)⟩ = ⟨u(x), (φ̂)(λx)⟩ =
⟨λ−nu(λ−1x), φ̂⟩ = λ−n−a⟨u, φ̂⟩ = λ−n−a⟨û, φ⟩ .

(742)
A simple consequence of Lemmas 1,2,3 is the following statement

Let a ∈ (0, n). Then

|̂x|−a = c(n, a)|ξ|−n+a . (743)

The constant c(n, a) can be evaluated in terms of Euler’s Gamma function from
the formula

⟨û, φ⟩ = ⟨u, φ̂⟩ (744)

applied with u = |x|−a and φ = e
−|x|2

2 . Recalling that

Γ(s) =

∫ ∞

0

xs−1e−s ds , (745)

we can write

⟨û, φ⟩ = c(n, a)

∫
Rn

|ξ|−n+ae−
|ξ|2
2 dξ = c(n, a)

∫ ∞

0

|Sn−1|r−n+ae− r2

2 rn−1 dr ,

(746)
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where |Sn−1| represents the (n − 1)−dimensional volume of the sphere Sn−1.

Using the substitution r2

2 = t, we see that

⟨û, φ⟩ = c(n, a)|Sn−1|
∫ ∞

0

(2t)
a−2
2 e−t dt = c(n, a)|Sn−1|2

a−2
2 Γ(

a

2
) . (747)

Recalling that for our choice of φ we have φ̂ = (2π)
n
2 φ, we obtain by a similar

calculation

⟨u, φ̂⟩ = |Sn−1| 2
n−a−2

2 Γ(
n− a
2

) . (748)

We see that

c(n, a) = π
n
2 2n−a

Γ(n−a2 )

Γ(a2 )
. (749)

We can use the above formulae to calculate the fundamental solution of the
laplacian ∆. We will consider the equation in the form

−∆u = δ (750)

We seek u in tempered distributions. After taking the Fourier transformation,
we obtain

|ξ|2û(ξ) = 1 . (751)

For n ≥ 3 this equation has an obvious solution

û(ξ) =
1

|ξ|2
(752)

Applying the inverse Fourier transform, (743) and (748), we obtain

u(x) =
c(n, 2)

(2π)n|x|n−2
=

Γ(n−2
2 )

4π
n
2 |x|n−2

(753)

In lecture 11 we saw that

u(x) =
1

(n− 2)|Sn−1||x|n−2
. (754)

Comparing the two expression, keeping in mind that sΓ(s) = Γ(s+1), we recover
a well-known formula

|Sn−1| = 2π
n
2

(n−2)
2 Γ(n−2

2 )
=

2π
n
2

Γ(n2 )
, (755)

which can of course be derived more directly.

We note that the solutions of (751) are not unique, as the equation

|ξ|2û = 0 (756)
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has non-trivial solutions in S ′(Rn). For example, the Dirac mass δ and its first
derivatives are the obvious solutions, but there are many more solutions (all of
them supported at ξ = 0, of course), reflecting the existence of many harmonic
polynomials. Since all solutions of (756) are clearly supported at ξ = 0, we can
use the last proposition in lecture 42, see (608), to prove the following version
of the Liouville theorem.

Any tempered distribution u in Rn satisfying ∆u = 0 is a harmonic polynomial.

The proof is easy: the Fourier transform û of u must be supported at the origin
by (756). Hence û is a finite linear combination of the Dirac mass at ξ = 0 and
its derivatives. This means that u is a polynomial.

The above calculations do not immediately give the solution of (751) in dimen-
sion n = 2. This can be calculated for example as follows. We assume n = 2.
For ε > 0 we let

vε(ξ) =
1

|ξ|2−ε
(757)

and

uε(x) = v̌ε(x) =
2ε

Γ(1− ε/2)
Γ( ε2 )

4π|x|ε
. (758)

This does not have a good limit when ε→ 0, but we note that for the calculation
of the fundamental solution we can change uε be a constant, or – equivalently
– we can add a suitable multiple of the Dirac mass at ξ = 0 to vε. The Fourier
transformation Vε of

Uε(x) =
2ε

Γ(1− ε/2)
Γ( ε2 )

4π
(|x|−ε − 1) (759)

still solves the equation
|ξ|2−εVε = 1 . (760)

The Γ function has a pole at s = 0 with residue 1, and hence we have

Uε(x) ∼
1

2π

|x|−ε − 1

ε
, ε→ 0+ . (761)

Taking the limit as ε→ 0+, we obtain a solution of (750) for n = 2 in the form

u(x) = − 1

2π
log |x| , (762)

which we have of course seen before.

The interesting detail to note in the above calculation is that the limit of the
distributions Vε for ε → 0+, let us call it V solves the equation |ξ|2V (ξ) =
1, but is not −2-homogeneous. In fact, the equation does not have a −2-
homogeneous solution in tempered distributions. We refer the reader to the
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book “The Analysis of Linear Partial Differential Operators I” by L. Hörmander,
Chapter 3.2, for a general discussion of related topics.

There is another way to overcome the complications with solving (751) in di-
mension n = 2. We know that the derivatives of u should satisfy

∂̂ju =
iξj
|ξ|2

, (763)

which is of course a locally integrable function, and its inverse Fourier transform
is also a −1-homogeneous function. We can calculate it by taking derivatives in
the inverse Fourier transform version of (743) for a small positive a and then
letting a → 0+. We know what the result should be: the derivatives of the
function (762). The details are left to the reader.
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Lecture 51, 2/9/2011

Today we will do some calculations for the heat equation

ut −∆u = 0 . (764)

The unknown function u is a function of x = (x1, . . . , xn) ∈ Ω ⊂ Rn and
t ∈ (t1, t2) . Typically also needs some boundary conditions, which will be
discussed later.

The equation was first studies by J. Fourier around 1812. It models the propa-
gation of heat in a homogeneous body (occupying the region Ω). It is perhaps
useful to recall a simple derivation of the equation. The quantity u(x, t) can be
thought of as the temperature of the body at site x and time t.
The amount of energy due to heat contained in a domain O ⊂ Ω at time t is∫
O cu(x, t) dx, where c is the specific heat per unit volume of the material.180

We assume that the heat “flows” from the areas of high temperature to the
areas of low temperature. Mathematically we model this by introducing the
heat flux q = (q1, . . . , qn) = (q1(x, t), . . . , qn(x, t)). If O ⊂ Ω is a domain
with smooth boundary, ν the outward unit normal at ∂O, then the quantity
(
∫
∂O qj(x, t)νj(x) dx) dt gives the amount of heat which left O during the in-

finitesimal time interval dt. If there are no sources of heat in the body, we
clearly must have

d

dt

∫
O
cu(x, t) dx+

∫
∂O

qj(x, t)νj(x) dx = 0 (765)

for any (sufficiently smooth) domain O ⊂ Ω . Assuming c is independent of
t, using the Divergence Theorem181 and the fact that O can be arbitrary, we
obtain

cut + div q = 0 . (766)

To close the system, we need to express q in terms of u. This is done by assuming
(following Fourier)

q = −κ∇u , (767)

which is known as Fourier’s law. Substituting (767) into (766) we obtain, when
κ is constant

ut −
κ

c
∆u = 0 . (768)

Changing the units of time so that κtc becomes the “new time”, we obtain (764).

To determine u(x, t) from this equation for x ∈ Ω and t ∈ (t1, t2), we need to
know the field u(x, t) at t = t1 (the initial condition), and the conditions satisfied
by u at ∂Ω. These are similar to the elliptic case: we can consider for example
the Dirichlet boundary conditions (in which the values of u(x, t) are prescribed

180In principle c can be considered as depending on x and even on t, but for now we will
consider it to be constant.
181

∫
O div q =

∫
∂O q · ν
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for x ∈ ∂Ω and t ∈ (t1, t2); the Neumann boundary conditions ∂u
∂ν (x, t) = 0 for

x ∈ Ω and t ∈ (t1, t2) (expressing that the boundary is isolated and no heat
flows through it); the condition ∂u

∂ν + γu = 0 for x ∈ ∂Ω and t ∈ (t1, t2); we can
impose different conditions on different parts of the boundary, etc.

We will often consider the case Ω = Rn when no boundary is present, but we
have to make some assumptions about the behavior of u at ∞ (e. g. that u is
bounded.182)

Let us first look at the symmetries of the equation. We have the transla-
tional symmetries u(x, t) → u(x − x0, t − t0) and the rotational symmetries
u(x, t) → u(R−1x, t), where R is an orthogonal transformation. In addition to
these obvious symmetries, we have the scaling symmetry

u(x, t)→ u(λx, λ2t), (769)

where λ > 0. This symmetry confirms the important practical observation that
hot large bodies take a long time to cool.183

We now consider the non-homogeneous equation

ut −∆u = f(x, t) , (770)

where f is a given function of x and t. This equation is obtained by adding a
source term of the form

∫
O f(x, t) dx to the balance law (765). This term models

“pumping heat” into our substance at a rate given locally by the function f(x, t).
(In areas where f < 0 this of course means cooling.)

Let us consider the following situation: we wish to determine u from the equa-
tion (770) in Rn × R under the assumption that f is compactly supported in
Rn × R and u vanishes for large negative times. Heuristically it seems that
in this situation u should be determined by f . This is true if we know that
u cannot have a very fast growth as x → ∞, but it may fail if no additional
conditions are imposed on u - we will return to this point later. We will now
consider the special case when f(x, t) = δ(x, t), the Dirac mass at (x, t) = (0, 0).
We wish to solve

ut −∆u = δ(x, t) (771)

under the assumptions that u vanishes for t ≤ 0 and behaves “reasonably” at the
the spatial infinity for all t. For example, the assumption that u is a tempered
distribution is sufficient.184 The interpretation of u is clear. Assume the whole
space is filled with a heat-conducting material. We observe it over the time
interval (−∞,∞). Nothing happens for t < 0, the temperature is identically
zero. Then at time t = 0 suddenly a unit amount of heat is injected at the
origin. After that the system is left of its own, and the solution describes the
propagation of the injected heat in the material.

182In fact, a much weaker assumption is sufficient.
183If u(x, t) describes the cooling process of a body Ω, than a similar cooling process for λΩ
is described by u(x/λ, t/λ2). If the cooling took T time units for body Ω, it will take λ2T
time units for body λΩ.
184It can be relaxed, but that is our concern at the moment.
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We will apply the Fourier transformation in the space-time (in both x and t).
The “Fourier variable” dual to x will be denoted by ξ and the Fourier variable
dual to t will be denoted by τ . We obtain

(iτ + |ξ|2)û = 1 (772)

Formally this gives

û(ξ, τ) =
1

iτ + |ξ|2
. (773)

We have seen that one has to be careful when interpreting such expressions, but
in this case there are no difficulties, as the function given by (772) is locally
integrable, and decays to 0 as (ξ, τ) → ∞. Therefore û(ξ, τ) is a well defined
tempered distribution solving (772). It is clear that any other solution of (772)
can differ from (773) only by a distribution supported at (ξ, τ) = (0, 0). This
means that the tempered distribution solutions of (771) is uniquely determined
modulo polynomials solving the homogeneous heat equation. Such polynomials
are called “heat polynomials” or “caloric polynomials”. Their theory is quite
analogous to the theory of harmonic polynomials. If we add the requirement
that the solution vanishes for t < 0, we see that the solution is unique (as
any polynomial vanishing on an open set must vanish identically). the Fourier
inversion of û(ξ, τ) given by (773) can be formally written as

u(x, t) =
1

(2π)n

∫
Rn

1

2π

∫
R

eiξx+iτt

iτ + |ξ|2
dτ dξ . (774)

The integral is not absolutely convergent, which does not surprise us, since we
do not expect u to be continuous at the origin (x, t) = (0, 0). The integral over
τ can be evaluated by the residue theorem, but we do not really need to do the
calculation, as we see from (709) that the inverse Fourier transform of 1

iτ+|ξ|2

in τ is χ(0,∞)(t)e
−t|ξ|2 . We have already seen (see e. g. (483), (484) what the

inverse Fourier transform in ξ of this function is. We obtain

u(x, t) =

{
1

(4πt)
n
2
e−

|x|2
4t t > 0

0 t < 0
(775)

Although our calculation was completely rigorous (we used Fubini’s theorem for
a function which is not in L1, and had implicitly chosen a certain regularization
of the integral over τ which is not absolutely convergent), one can verify that
u(x, t) is the required solution in several ways. For example, we note that u
satisfies the heat equation away from (x, t) = (0, 0) and that the functions
x → u(x, t) converge to δ(x) as → 0+. Hence for any smooth, compactly
supported φ = φ(x, t) we have∫ ∫

u(x, t)(−φt −∆φ) dx dt =
limt1→0+

∫
Rn u(x, t1)φ(x, t1) dx+

∫∞
t1

∫
(ut −∆u)φdt dx .

(776)

The last integral on the right-hand side vanishes as ut −∆u = 0 for t > t1, and
the first integral on the right-hand side converges to φ(0, 0) as t1 → 0+.
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If we prefer to do the justification in the Fourier picture, we can verify that u
given by (775) satisfies (773) for example as follows. We note that for ε > 0
the function uε(x, t) = u(x, t)e−εt is in L1(Rn). We can calculate its Fourier
transform directly by integrating first over x and then over t. We obtain

ûε(ξ, τ) =
1

iτ + |ξ|2 + ε
. (777)

This is not surprising, as uε satisfies

uε t −∆uε + εuε = 0 . (778)

It is easy to see that uε → u in S ′(Rn) and that ûε converges to 1
iτ+|ξ|2 in

S ′(Rn) as ε → 0+. This shows that the Fourier transform of the tempered
distribution u given by (775) is given by the formula (773), which means that
the Fourier inversion of (773) must be (775), as our formal calculation suggested.

We note that the behavior of u(x, t) is largely what one would expect it to be
from our intuitive picture of the heat conduction, except for the fact that the
disturbance at (0, 0) has an effect everywhere in x for any t > 0. The effect
is very, very small for large x and small t, but it is not zero, and we have to
conclude that in this model the disturbances propagate infinitely fast.

Another interesting feature of u(x, t) is that it is smooth everywhere except at
(0, 0), but it is not analytic in t at any point (x, 0).

Finally, we note that if we replace (764) by

ut +∆u = 0 , (779)

which is the backward heat equation, obtained by reversing the direction of the
heat flux q, the problem

ut +∆u = δ(x, t) (780)

will not have any solution in tempered distributions vanishing for t < 0, while it
will have the solution −u(x,−t) (with u given by (775)) which vanishes for t > 0.
Similarly, problem (771) does not have any solutions in tempered distributions
which vanish for t > 0. We will return to this when we discuss issues related to
well-posedness.
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Lecture 52, 2/11/2011

The fundamental solution of the heat equations we calculated last time is often
denoted by Γ(x, t). We recall that

Γ(x, t) =

{
1

(4πt)
n
2
e−

|x|2
4t t > 0 ,

0 t < 0 .
(781)

It is worth pointing out some similarities of this solution with the fundamental
solution of the Laplace equation, we studied in the last semester, see e. g. (11).
(There are of course also significant differences, but at the moment we focus
on the similarities.) To highlight the similarities, it is useful to use parabolic
scaling. We already saw the parabolic scaling in the last lecture:

u(x, t)→ u(λx, λ2t) . (782)

With the scaling (x, t)→ (λx, λ2t) = (x′, t′) the volume element dV = dx1 . . . . . . xndt
scales as

dV ′ = dx′1 . . . dx
′
ndt

′ = λn+2dV . (783)

Based on this scaling we can also consider the parabolic mollification: if ϕ =
ϕ(x, t) is a smooth compactly supported function in Rn×R with

∫
ϕ(x, t) dx dt =

1 and ε > 0, we can let

ϕε(x, t) =
1

εn+2
ϕ(λx, λ2t) . (784)

If f : Rn×R→ C is a continuous function, then obviously ϕε ∗f → f uniformly
on compact sets. Also, if f ∈ Lp(Rn × R), then ϕε ∗ f → f in Lp as ε→ 0. 185

If f is locally integrable in Rn×R, then (ϕε ∗f)(x, t)→ f(x, t) for almost every
(x, t) as ε→ 0.

Because of the scalings (782) and (783), it is sometimes useful to think about
the underlying space (x, t) of the heat equation as a space of dimension (n+2),
although of course the topological dimension of the space is still (n+ 1).186

In what follows we will write z = (x, t) for space-time points, and we will also
write for z = (x, t) ∈ Rn × [0,∞)

|z|par =
√
|x|2 + t . (785)

Let m = n + 2 be the parabolic “dimension” of the variable z. Then we have
the following:

185Here and in what follows we assume ε > 0. We should perhaps write ε → 0+, but we’ll
just write ε→ 0, there is no danger of confusion here.
186There is also another dimension counting in which the variable t is considered as po-
tentially infinite-dimensional, see the famous paper of G.Perelman arXiv:math/0211159, Sec-
tion 6. We may look at this counting in more detail later.
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• Γ is −(m− 2)-homogeneous with respect to the parabolic scaling.

• For any non-negative integers k, l the function∇kx∂ltΓ(z) is−(m− 2 + k + 2l)
-homogeneous and

|∇kx∂ltΓ(z)| ≤
c(m, k, l)

|z|m−2+k+2l
par

, z = (x, t) ∈ Rn × [0,∞) . (786)

We note that these properties are quite analogous to the corresponding prop-
erties of the fundamental solution of the laplacian G(x) = 1

(n−2)|Sn−1||x|n−2 . Of

course, the important difference is that Γ is not as isotropic as G.

Some of the considerations we did for the laplacian apply to the heat operator
(and, in fact, to a broader class of operators) without much change. Let us
illustrate this by re-proving in the context of the heat operator some of the
results we obtained for the laplacian in the first few lectures.

Let us first consider the proof of the inversion formulae (25) for the laplacian.
We already implicitly derived the analogous formulae for the heat operator by
means of Fourier transformation, but it is useful to look at the situation from a
different point of view.

Let K be an smooth function in Rn × R supported in {t ≥ 0} such that the
support of Γ−K is compact. We note that∫

(∂t −∆)K(x, t) dx dt = 1 .187 (787)

We set

Kε(x, t) =
1

εn
K(

x

ε
,
t

ε2
) . (788)

We note that the function (∂t−∆)Kε can be considered as a parabolic mollifier.

Assume now that f is a compactly supported integrable function in Rn×R and
set u = K ∗ f, uε = Kε ∗ f . Clearly

(∂t −∆)uε = (∂t −∆)(Kε ∗ f) = [(∂t −∆)Kε] ∗ f → f (789)

as ε→ 0. At the same time, uε → u as ε→ 0, and therefore

(∂t −∆)u = f . (790)

We see that the operator f → Γ ∗ f inverts the heat operator, in the sense of

the formulae (25) from lecture 2 We could again repeat the whole discussion

187Hint: Note that we can integrate
∫ T
0

∫
Rn . . . dx dt as Γ−K is compactly supported and the

heat operator vanishes on Γ away from (x, t) = (0, 0). The integral
∫
Rn ∆K(x, t) dx vanishes

for each t. Now we use
∫
Rn

∫ T
0 ∂tK(x, t) dt dx =

∫
Rn K(x, T ) dx =

∫
Rn Γ(x, T ) dx = 1 when T

is “above the support” of Γ−K.
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from the beginning of lecture 3 addressing the question in which sense is (790)
satisfied.

We should note that at this stage we have more technical tools available than we
had in lecture 2, and therefore the above calculations can be replaced by referring
to general principles of dealing with distributions. We know that (∂t−∆)Γ = 0
in distributions, and hence we can just write

(∂t −∆)(Γ ∗ f) = [(∂t −∆)Γ] ∗ f = δ ∗ f = f .188 (791)

The differentiation is taken in the sense of distributions.

Strictly speaking, so far we only defined the convolution v ∗ w for distributions
in the case when one of the distributions is a compactly supported smooth func-
tion189, so we should really extend our definition of convolution to cover (791)
fully even when, say, f is a compactly supported distribution. This is not hard
and we will return to this point later190.

For now we will look at the consequences of the formula

u = Γ ∗ [(∂t −∆) ∗ u] (792)

for compactly supported functions u. Here we can follow the reasoning used for
the laplacian in lecture 4, with only minor changes

Let u be a solution of the heat equation in an open domain O ⊂ Rn × R and
let ϕ be a smooth, compactly supported function in O. Using the formula

(∂t −∆)(φu) = u(φt +∆φ)− 2 div(∇φu) , (793)

and (792), we obtain

φu = Γ∗ [u(φt+∆φ)]+Γ∗ [−2∇(φu)] = Γ∗ [u(φ1+∆φ)]−2Γxj
∗(φu)xj

. (794)

For z = (x, t) and R > 0 we define

Qz,R = Bx,R × (t−R2, t), QR = Q(0,0),R . (795)

These sets are sometimes called parabolic balls. We consider z as the “parabolic
center” of Qz,R. The “parabolic boundary” of Qz,R is defined by

∂parQz,R = Bx,R × {t−R2} ∪ ∂Bx,R × [t−R2, t] (796)

Heuristically, for the solution of the heat equation ut−∆u = 0 the value u(z) is
uniquely determined by the values of u at ∂parQz,R. We note that the parabolic
center z of Qz,R is not in the topological interior of Qz,r. The position of the

188This is of course the main point behind our interest in the solution of ut −∆u = δ.
189In(791) this would have to be the function f .
190The reader can also consult Section 4.2 in “The Analysis of Linear Partial Differential
Operators I” by L. Hörmander

197



parabolic center is natural if we think about how u(z) is determined from the
boundary values for the solutions of ut −∆u = 0, a topic which we will discuss
in some detail later. However, even at this point we can see from (794) and the
fact that the fundamental solution Γ is supported in {t ≥ 0} that u(z) depends
only on the values of u in Qz,R \Qz,R′ for any R′ < R. To see that it is enough
to take in (794) a function φ which is ≡ 1 in Qz,R′ and vanishes near ∂parQz,R.
Also, if we think about the propagation of heat, it should be heuristically clear
that u(z) should depend only on the values of u at ∂parQz,R if no sources of
heat are present in Qz,R.

191

Let us consider a smooth cut-off function ψ in the ball Q2 which is ≡ 1 in Q 3
2

and vanishes near ∂parQ2. Let

φR(x, t) = ψ(
x

R
,
t

R2
) . (797)

Using (794) with φ2R in the ball Q2R together with (786), we obtain the fol-
lowing analogues of estimates (33). We will use the term caloric functions for
the solutions of the heat homogeneous heat equation ut −∆u = 0.

Let u be a caloric function in the parabolic ball Q2R of radius 2R. Then for any
non-negative integers k, l we have the following estimate for u in the ball QR:

|∇kx∂ltu(x, t)| ≤
Ck,l

Rn+2+k+2l

∫
Q2R\QR

|u(x, t)| dx dt , (x, t) ∈ QR . (798)

where Ck,l are constants independent of u and R.

The proof of this statement can be obtained by following the proof of (33) in
lecture 4 line-by-line, with obvious adjustments to the parabolic situation.

An obvious consequence of (??)16 is the following:

For caloric functions in Q2R we have

sup
QR

|∇kx∂ltu| ≤
Ck,l
Rk+2l

sup
Q2R

|u| , (799)

where the constants Ck,l are independent of u and R.

Mimicking the proof of the Liouville theorem for harmonic functions in lec-
ture 4, we obtain the following analogue of the Liouville theorem for harmonic
functions:
191Appealing to the physical meaning of the equation is usually helpful, but one has to be
somewhat cautious, as the equation may not capture the physical phenomena exactly. For
example, we note that the heat equation predicts that heat will propagate with infinite speed,
which of course cannot really be true. This wrong prediction is caused by certain idealizations
in the model of heat propagation which the heat equation presents. For the propagation of
heat in macroscopic bodies the effects of the idealizations are negligible and the heat equation
can be used without worries, but the situation is different if we go to the atomic scales.
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Liouville Theorem for the heat equation
Let u be a bounded caloric function in Rn × (−∞, 0). Then u is constant.

As an exercise, the reader can formulate and proof an analogue of the Liouville
theorem, version 2 from lecture 4.

We also have an analogy of the Weyl’s lemma we proved in lecture 4 for harmonic
functions:

Weyl’s lemma for caloric functions
A weakly caloric function is smooth and caloric.

If we wish to follow the proof of the corresponding statement for harmonic
functions from lecture 4, we should define a weakly caloric function as a locally
integrable function satisfying the heat equation in the sense of distributions, in
analogy to the definition we gave in lecture 4 for harmonic functions.
However, in the context of the theory of distributions, the more natural defini-
tion would be that a weakly caloric function is any distribution which satisfies
the heat equation in the sense of distributions. Weyl’s lemma remains true (for
caloric functions, harmonic functions, and, in fact, much more general classes
of PDE solutions) in this form, but the proof via the representation formulas
we used has to be slightly adjusted. The adjustment is not hard: we know that
every distribution is locally represented by derivatives of an integrable function
and in (794) or in (32) we can move these derivatives on the kernel Γ or G
respectively.

In fact, the fact that any distribution satisfying ∆u = 0 in BR is smooth can
be seen easily from the fact that for a radial mollifier ϕε we have ϕε ∗ u = u in
BR−ε, as one can see from the discussion at the end of lecture 5.

From the two examples of harmonic functions and caloric functions one can
expect that the proof of Weyl’s lemma via the representation formulae obtained
from a fundamental solution should be adaptable to any PDE operator with
constant coefficients with a fundamental solution which is smooth away from the
origin. This is indeed the case, although one has to work somewhat harder, as for
general operators the formulae are not so explicit. The same is be true about the
“Harnack theorem” for harmonic function (not to be confused with the Harnack
inequality!) which states that a sequence of harmonic functions converging is
some weak sense actually converges uniformly with all derivatives. (This is of
course a consequence of the estimates on the derivatives.) This statement is also
true for the caloric functions, as we also have good estimates on the derivatives,
and it is in fact also true for all equations with constant coefficients and a smooth
fundamental solution. At the moment we will not pursue these generalizations
further, the interested reader can consult for example the book “The Analysis
of Linear Partial Differential Operators I” by L. Hörmander, Section 4.4. for
more details.
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As we mentioned the Harnack inequality, we should say that its generalization
to the caloric function is a more subtle issue, and one finds that the if we literally
translate the elliptic statement into the parabolic language, it will not be true.
It has to be adjusted - we will return to this point later. If we go to even more
general operators (e. g. higher order operators, or operators for vector-valued
functions), one may not have an analogue of the Harnack inequality.
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Lecture 53, 2/14/2011

Last time we have considered the problem

ut −∆u = f(x, t) (800)

in Rn × R with some compactly supported f . The requirement that f be com-
pactly supported can be significantly relaxed, but that is not our concern for
now. We have see that the requirement that u vanishes for large negative t
together with the equation (800) and the “growth condition” u ∈ S ′(Rn × R)
(which is satisfied when u is bounded, or has at most polynomial growth) de-
termine u uniquely. This set-up models the situation when we have a heat
conducting material filling the whole space, for all times before a certain time
t1 “nothing is going on” and the temperature is 0. After time t1 heat sources
of density f(x, t) are “activated”, and the temperature starts changing. We can
assume without loss of generality that t1 = 0. The history for t < 0 is trivial -
nothing was ever going on, so we can just as well disregard it and consider only
the problem

ut −∆u = f(x, t) , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = 0 , x ∈ Rn . (801)

The solution is given by u = Γ ∗ f . To evaluate the convolution we do not need
to know f for t < 0, as the function Γ is supported in {t ≥ 0}. If we write out
the convolution in detail, we have

u(x, t) =

∫ t

0

∫
Rn

Γ(x− y, t− s)f(y, s) dy ds . (802)

Let us now look at the problem

ut −∆u = 0 , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = u0(x) , x ∈ Rn (803)

It is instructive to solve it by a slightly different application of the Fourier
transformation than the one we used in lecture 51 to calculate Γ(x, t). This
time we only perform the Fourier Transform in the variable x. This approach
is somewhat similar to the classical approach to solving an ODE system

ẋ+Ax = 0 (804)

by diagonalizing the matrix A. When A is diagonal in some coordinates (as
it is the case with symmetric matrices, for example), the system (804) is easy
to solve, and we can then return to the original coordinates to get a formula
for our solution. Applying the Fourier transform in x to (803) is an analogous
procedure. After taking the Fourier transform in x the problem becomes

ût + |ξ|2û = 0 , (ξ, t) ∈ Rn × (0,∞) ,
û(ξ, 0) = û0(ξ) , ξ ∈ Rn , (805)
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which can be solved explicitly:

û(ξ, t) = û0(ξ)e
−t|ξ|2 . (806)

To find the inverse Fourier transform, we recall formula (490) for the Fourier
transform of convolution, and evaluate the inverse Fourier transform of û0(ξ)

and e−t|ξ|
2

. The former is obviously u0(x), and the latter is192 again the heat
kernel Γ(x, t) given by (781). Taking into account the convolution formula, we
obtain

u(x, t) =

∫
Rn

Γ(x− y, t)u0(y) dy . (807)

Sometimes this formula is written as

u(t) = Γ(t) ∗ u0 , (808)

where t→ u(t) means the mapping which takes t into the function x→ u(x, t).
This notation emphasized the distinguished role of the t−variable and the func-
tion u is viewed as a function from a time interval to a space of functions of
x. Similarly for Γ. The convolution in (808) is the spatial convolution in Rn,
in contrast with the formula u = Γ ∗ f after (801), where the convolution was
taken in space-time.

We see that the fundamental solution Γ(x, t) can also be considered as a solution
of the problem

ut −∆u = 0 , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = δ(x) , x ∈ Rn (809)

which at first looks somewhat different than (771). The fact that these two
problems have the same solution is a special case of the Duhamel’s principle.
The principle says, loosely speaking, that the solution of an evolution equation

ut = Lu+ f(x, t) (810)

can be built as a “linear combination”193 of the solutions of initial-value prob-
lems

ut = Lu, t > s
u(s) = us0 .

(811)

The simplest illustration of the principle can be seen already in ODEs. Let us
consider a linear ODE of the form

ẋ+ ax = f(t), t ≥ 0
x(0) = 0 ,

(812)

together with the initial-value problems

ẋ+ ax = 0, t ≥ s ,
x(s) = 1 .

(813)

192by (483) and (484)
193more precisely, an integral

202



Let us denote the solution of the last problem (with the convention that it
vanishes for t < s) by xs(t). Then the solution of (812) is given by

x(t) =

∫ t

0

xs(t)f(s) ds . (814)

When a is a constant independent of t, then xs(t) = e−a(t−s) and we obtain the
classical formula

x(t) =

∫ t

0

e−a(t−s)f(s) ds (815)

for the solution of (812). The case a ≡ 0, in spite of its simplicity, is already
instructive194, and contains the basic idea behind Duhamel’s principle.

We have shown how to go from (813) to (812). If we wish to go in the opposite
direction, we take f(t) = δ(t− s).
returning back to the heat equation, the shifted fundamental solution Γ(t − s)
should be thought of as the function xs(t) = ea(t−s) in the ODE example. The
analogue of the formula (815) will be the formula

u(t) =

∫ t

0

Γ(t− s) ∗ f(s) ds , (816)

where ∗ denotes the convolution in Rn. It is nothing but formula (802), written
in a different notation. Note that we can also write

u(t) =

∫ t

−∞
Γ(t− s) ∗ f(s) ds , (817)

as we assume that f(s) = 0 for s < 0. (If we do not make this assumption,
then (817) is actually the right formula for the solution of the problem considered
in the beginning of the lecture, in which time t = 0 does not play a distinguished
role.) Using (somewhat formally) (817) with f(x, t) = u0(x)δ(t), we recover
formula (807).

Let us look a closer look at formula (808). We recall the notation

ϕε(x) =
1

εn
ϕ(
x

ε
) (818)

we used for mollifiers in the first semester (see lecture 2, (21). Letting ϕ = Γ(1),
we see that

Γ(t) = ϕ√t , (819)

and formula (808) can be thought of in terms of mollification of the initial data
u0(x). The situation is quite similar to the one we studied in lecture 9 for the
Poisson kernel, see (72).

194You can notice that it is just another form of the Fundamental Theorem of Calculus.
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The solution of the general Cauchy problem

ut −∆u = f(x, t) , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = u0(x) , x ∈ Rn (820)

can be written as a combination of (808) and (816):

u(t) = Γ(t) ∗ u0 +
∫ t

0

Γ(t− s) ∗ f(s) ds . (821)

Strictly speaking, we should say “a solution” and not “the solution”, since we
do not know that the solutions are unique. The representation formula (821)
represents our common sense heuristics about how the solution should look like,
and we do not expect that there is any other “reasonable” solution.

Due to the linearity of the problem (820), questions about the uniqueness of its
solution can be reduced to questions about the uniqueness of the homogeneous
equation with the homogeneous boundary conditions, i. e. that case when u0
and f in (820) vanish. We can see easily that solutions of

ut −∆u = 0 , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = 0 , x ∈ Rn (822)

with at most polynomial growth at infinity must vanish. For this we extend u
as u = 0 to negative times and note that the extended function (still denoted
by u) is a tempered distribution satisfying ut−∆u = 0 in Rn×R in the sense of
distributions. Taking the Fourier transform, we see that (iτ+ |ξ|2)û = 0, and we
see that û must be supported at the origin. This means that u is a polynomial.
A polynomial vanishing for t < 0 must vanish identically, and this finishes the
proof.

The proof may be instructive as an application of the Fourier transformation,
but it is not optimal. For example, note that it is “global in time”, whereas a
uniqueness statement for an evolution equation should really be local in time in
the following sense: if we have a solution on [0, T ) which vanishes at 0, it should
vanish in [0, T ). (This is the case when the equation is of the first order in t.
If it is of order m in t, the assumption that u vanishes at 0 should of course
include also derivatives of order ≤ (m− 1).) Also, the growth conditions can be
much relaxed.

The optimal uniqueness proof is based on the representation of the solution via
the fundamental solution. It is not hard and the method is quite general, and
therefore we outline the main idea, which is also useful in other situations.

In general if we have a linear PDE operator L in a domain Ω, we can consider
its L2 adjoint defined by ∫

Ω

Luv =

∫
Ω

uL∗v (823)

for smooth functions u, v compactly supported in Ω. For this definition the
operator L can be a quite general linear operator, not necessarily with constant
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coefficients. If the functions u, v are not compactly supported, we can write∫
Ω

(uL∗v − Luv) =
∫
∂Ω

boundary terms . (824)

Assume now that Lu = 0 and L∗v = δx0 , the Dirac mass at x0. Using (824) for
these u, v, we obtain a representation formula

u(x0) =

∫
∂Ω

b(x, [u], [v]) , (825)

where b(x, [u], [v]) is a bi-linear form, and the notation [u], [v] indicates that u
and v may also appear with derivatives.
We can also replace u by φu, where φ is a cut-off function, and replace the
integral over the boundary by an integral over the area where ∇φ does not
vanish.

Let us now apply this to the heat operator L = ∂t−∆ and the domain Rn×(0, T ),
under the assumption that the decay of u in x is such that we can integrate by
parts in x without any boundary terms coming from ∞. The adjoint operator
is L∗v = −∂t −∆v and the formula (824) becomes∫ T

0

∫
Rn

u(−vt −∆v)− (ut −∆u)v =

∫
Rn

−uv
∣∣t=T
t=0

(826)

Let us consider (x0, t0) ∈ Rn × (0, T ). The solution of −vt −∆v = δ(x0,t0)(x, t)
is

v(x, t) = Γ(x0 − x, t0 − t) . (827)

Using (826) with this choice of v, we obtain

u(x0, t0) =

∫
Rn

u(x, 0)Γ(x0 − x, t0) dx . (828)

which is the same as (808). To see under which assumptions on u the integration
by parts over x in this calculation produces no extra terms so that the above
calculation is legitimate, we can either integrate over BR × (0, T ) and take
R→∞, or multiply v(x, t) = Γ(x0−x, t0−t) by a suitable cut-off function. Note
that v as well as its derivatives have very fast decay as x→∞, and therefore u
can grow quite fast. It is easy to check that for example the condition

|u(x, t)| ≤ Ce
|x|2
8T (829)

for some C > 0 is sufficient.

When our aim is to show uniqueness, we assume that u(x, 0) = 0 and under
the assumption (829) we obtain that u = 0 in Rn × (0, T ). Now we note that
T can be taken small, because the conclusion u = 0 can be “propagated” in
small steps in t. Therefore we obtain the following uniqueness theorem (due to
Tikhonov)
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If a solution of

ut −∆u = 0 , (x, t) ∈ Rn × (0,∞) ,
u(x, 0) = 0 , x ∈ Rn (830)

satisfies the growth condition

|u(x, t)| ≤ CeC|x|2 (831)

for some C > 0, then it has to vanish identically.

Proof: See above.

In his well-known paper on the topic, Tikhonov also constructed and example
that uniqueness can fail if we do not impose restriction on the growth of the
function u. The main idea of the counter-example the following. Take a non-
trivial smooth function F which is compactly supported in (t1, t2) for some
0 < t1 < t2 and consider the series

u(x, t) =
∞∑
k=0

F (k)(t)
x2k

(2k)!
, (832)

where F (k) denotes the k−th derivative. It is easy to check that this function
formally satisfies the heat equation, and gives a counter-example to uniqueness
of (830). The only issue is to establish the convergence of the series (832). This
needs some work. Note that the Taylor series of F cannot be convergent at

each point, as the function F cannot be analytic. However, the terms x2k

(2k)! have

better decay than the term sk

k! of the usual Taylor series. For details we refer the
reader to the original 1935 paper by Tikhonov, which can be found online.195

195See the link on http://en.wikipedia.org/wiki/Andrey Nikolayevich Tychonoff
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Lecture 54, 2/16/2011

We derived the heat equation as a model for heat conduction, but it arises in
other situations. Today we mention one of them – random walks. Consider the
following process: we consider a particle moving in the real line according to
the following rules. At time t = 0 the particle is at x = 0. We toss a coin and
at time t = 1 we move the particle by 1 to the right if we get heads, and to the
left if we get tails. So the position of the particle at t = 1 is either x = 1 or
x = −1, both with equal probability 1

2 . Now we repeat the procedure: we toss
a coin and we move the particle at time t = 2 according to the same rule. So at
time t = 2 the particle can be at x = −2 (with probability 1/4), at x = 0 (with
probability 1/2), and at x = 2 (with probability 1/4). We repeat the procedure
again. After taking m steps, at time t = m, the particle can be at x = −m with
probability 2−m, at x = −m+ 2 with probability

(
m
1

)
2−m, at x = −m+ 4 with

probability
(
m
2

)
2−m, etc. In general, the probability of the particle being at the

position x = k after m steps is non-zero only if m + k is even, −m ≤ k ≤ m,
and for such (k,m) the probability is, by elementary combinatorics,

p(k,m) =

(
m
m+k
2

)
2−m =

m!(
m−k
2

)
!
(
m+k
2

)
!
2−m . (833)

In addition to this explicit expression, there is also a “local rule” satisfied by
the probabilities p(k,m).

p(k,m+ 1) =
1

2
p(k − 1,m) +

1

2
p(k + 1,m) . (834)

The justification is immediate from our rules for moving the particle, without
using (833). In terms of (833), equation (834) is just the well known identity
between the binomial coefficients:(

m+ 1

l

)
=

(
m

l

)
+

(
m

l − 1

)
. (835)

Equation (834) can be made look like a PDE with derivatives replaced by dif-
ference quotients. Subtracting p(k,m) from both sides we get

p(k,m+ 1)− p(k,m) =
1

2
(p(k − 1,m)− 2p(k,m) + p(k + 1,m)) (836)

which looks as a finite difference version of

pt =
1

2
pxx . (837)

However, we must remember that the particle can appear in the space-time
points with coordinates (k,m) with k+m even. The space-time points involved
in (836) cannot all satisfy this parity condition. This is easy to fix: instead
of (836), we consider

p(k,m+ 2) =
1

4
p(k − 2,m) +

1

2
p(k,m) +

1

4
p(k + 2,m) , (838)
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which is an easy consequence of (838). The sums of the coordinates in the
arguments of all the terms in (838) all have the same parity. Subtracting p(k,m)
from both sides of (838) and dividing by 2, we obtain

p(k,m+ 2)− p(k,m)

2
=

1

2

(
p(k − 2,m)− 2p(k,m) + p(k + 2,m)

4

)
, (839)

which again is a finite-difference version of (837) (with the time step = 2 and
the space step also = 2. Equation (839) is satisfied for all (k,m) with k +m
even and m ≥ 0. If we remove the condition m ≥ 0, still considering only m+k
even, we get

p(k,m+ 2)− p(k,m)

2
− 1

2

(
p(k − 2,m)− 2p(k,m) + p(k + 2,m)

4

)
= b(k,m) ,

(840)
where f is given by

b(0,−2) = 1
2 ,

b(−1,−1) = b(1,−1) = 1
4 ,

b(k,m) = 0 elsewhere .
(841)

Our goal is to show that in a suitable scaling limit equation (840) will approach

ut −
1

2
uxx = δ(x, t) . (842)

Since we have an explicit solution (833) to (840), we should have another method
for calculating the fundamental solution. It is not the simplest method to arrive
at the formula, but it is quite illuminating.

Note that the speed of propagation of our random walk on the grid is finite: after
m steps we the position k of the particle cannot be outside [−m,m]. On the
other hand, for (842) disturbances propagate at infinite speed. This is reconciled
by taking the scaling limit.

For the scaling it is useful to consider p(k,m) as some object defined on R×R,
rather than on a grid. This can be done in many ways. For example, one can
consider a piece-wise constant function ũ(x, t) defined to have value 1

2p(k,m)
for k − 1 < x < k and m < t < m + 1. We will proceed in a slightly different
way: define a distribution u in R× R as

u(x, t) =
∑
k,m
m ≥ 0

k +m even

p(k,m) δk,m(x, t) , (843)

where δk,m is the Dirac mass located at (x, t) = (k,m). Let us also define

f(x, t) =
1

2
δ0,−2(x, t) +

1

4
δ−1,−1(x, t) +

1

4
δ1,−1(x, t) (844)
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We write equation (840) in terms of u, f and suitable shift operators. The
operators are

∂htu(x, t) =
u(x, t+ 2h2)− u(x, t)

2h2
, (845)

∂∗htu(x, t) =
u(x, t− 2h2)− u(x, t)

2h2
(846)

∆hu(x, t) =
u(x− 2h, t)− 2u(x, t) + u(x+ 2h, t)

4h2
, (847)

Lh = ∂ht −
1

2
∆h , (848)

and

L∗
h = ∂∗ht −

1

2
∆h , (849)

where h > 0. We have written these operators in the notation usually used
for functions, but as we have seen in lecture 45, the shifts are also defined for
distributions in a natural way.

Equation (840) can be written in terms of the distributions u, f as an equation
in distributions in the following way:

L1u = f , (850)

which is the same as∫
R×R

uL∗
1φ dx dt =

∫
R×R

f φ dx dt, φ ∈ D(R× R) . (851)

If we would prefer to work with the piece-wise functions mentioned above, rather
than the linear combinations of Dirac masses, we can replace the distribution
u defined by (843) by u ∗ χ, where χ is the characteristic function of a suitable
rectangle. (Other approximation schemes can be expressed in terms of different
χ.)

The key point now is to introduce the following scaling: for h > 0 we set

uh(x, t) =
1

h
u

(
x

h
,
t

h2

)
, (852)

fh(x, t) =
1

h3
f

(
x

h
,
t

h2

)
. (853)

Again, we use the notation for functions, but we have seen in lecture 50 how to
make the definitions for distributions, see (731)

If we think of u as some probability density associated to the random walk with
step size 1 in t and 1 in x, then uh represents the probability density associated
with random walk with step size h2 in t and h in x. For example, the density
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x → u√ t
m

(x, t) (which can be thought of as as a finite combination of Dirac

masses in x), represents the probability density obtained by m random steps of

size
√

t
m starting at the origin.

Note that we do not have to talk about random walks at all, and take uh simply
as a function defined on a grid of space step h and time step h2, which solves a
specific finite difference scheme on the grid. Formula (833) can then be viewed
as an explicit solution of the difference scheme.

The function uh is easily seen to satisfy

Lhuh = fh , (854)

in distribution, or∫
R×R

uhL
∗
hφ dx dt =

∫
R×R

fhφ dx dt , φ ∈ D(R× R) . (855)

Since uh describe some probability densities, we have a simple a-priori bound
for uh which is independent of h > 0. Heuristically we expect something like∫

R
uh(x, t) dx = 1 (856)

but due to the discrete nature of the distribution uh this is not quite true
(and in fact, the integral is formally not really well-defined without additional
explanations). It is easier to consider the following bound: for each smooth
function φ = φ(x, t) compactly supported in R× (t1, t2) we have

|
∫
R×R

uh(x, t)φ(x, t) dx dt| ≤M(t1, t2) sup |φ| , (857)

whereM(t1, t2) is an upper bound on h2-multiple of the number of “grid points”
{mh2}∞m=0 contained in the interval (t1, t2). When h2 is small in comparison
with (t2 − t1) we obviously can take M(t1, t2) ∼ (t2 − t1).
By the last statement in lecture 44, we can choose a subsequence hj → 0+ so
that the distributions uh converge to a distribution u along the subsequence.
The distribution u will satisfy bound (857) with M(t1, t2) = t2 − t1. In partic-
ular, in will be a tempered distribution. We claim that

ut −
1

2
uxx = δ(x, t) (858)

in the sense of distributions. To prove this, it is enough to pass to the limit
hj → 0 in equation (855) for a given smooth, compactly supported function
φ = φ(x, t). For such a function we can write

L∗
hφ = (−φt −

1

2
φxx) + r(x, t, h) , (859)
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where r(x, t, h) (which of course depends of φ) satisfies

|r(x, t, h)| ≤ Ch2, h ∈ (0, 1), C = C(φ) . (860)

Using the bound (857) together with (862) and (863), and the obvious fact that
fh → δ in distributions as h→ 0+, we see that the function u will satisfy∫

R×R
u (−φt −

1

2
φxx) dx dt = φ(0, 0) , φ ∈ D(R× R) . (861)

This proves (858). By uniqueness of the fundamental solution in the class of
tempered distributions, we see that actually we do not have to pass to a subse-
quence, and that uh → u as h→ 0+ in distributions.

In the above calculation we have not used formula (833). In fact, since we
calculated the fundamental solution u by other means, we know that

u(x, t) =

{
1

(2πt)
1
2
e−

|x|2
2t t > 0

0 t < 0
(862)

(Note that u(x, t) = Γ(x, t2 ), with Γ given by (775). The difference is due to the
factor 1

2 is front of uxx.)

If we did not calculate u before, we could use (833) to calculate it. For that we
recall Stirling’s formula

n! ∼
√
2πn

(n
e

)n
, (863)

which we can use in (833) to obtain

p(k,m) ∼ 2
1√
2πm

e−
k2

2m , (864)

which is of course the well-known description of the asymptotics of the binomial
distribution in terms of the “bell curve”. From (864) one can see directly that
the distributions uh defined above must converge to (862), without using any
of the “local relations” we investigated above (such as (839),(855), or (858)).
Therefore Stirling’s formula (863) gives an alternative way of calculating the
fundamental solution of the heat equation, without really solving any differential
equations. (Vice versa, a more careful analysis of the convergence of uh → u
should give the approximation (864) without using Stirling’s formula.)

It is also possible to find the fundamental solution by solving an ODE. The
above considerations show that the solution u of (858) will be invariant under
the scaling

u(x, t)→ 1

λ
u (
x

λ
,
t

λ2
) . (865)
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In fact, regardless of the above considerations, we can just take a guess that
this will be the case, and see if we can justify the guess by finding such solution.
The scale invariant u would have to be of the form

u(x, t) =
1√
t
F (

x√
t
) . (866)

Substituting this into ut − uxx = 0, which must be satisfied for t > 0, we get
an ODE for F . It can be solved explicitly, and we again recover the heat kernel
(up to a normalizing constant which can be found by integration). The reader
can do this calculation as an exercise.
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Lecture 55, 2/18/2011

Last time we saw that the heat equation appears in connection with random
walks. In the random walks we considered in the last lecture the space-step and
the time-step were discrete, so the “events” in space-time which were relevant
for the walk formed a certain grid, and the walk was essentially equivalent to
a finite-difference scheme. In fact, we could have avoided mentioning random
walks altogether and work only with the finite-difference scheme.

Today we will consider the same idea from a slightly different angle, in that our
random variables will be “more continuous”. The material covered today can
be considered as optional, it will not be needed in what follows.

Let us consider the following modification of the random walk.196 We will
consider a particle moving along a one dimensional line with coordinate x.197

The particle moves in random steps. The size of individual steps will not be
fixed, but some “global” restrictions of course have to be imposed so that we get
something non-trivial. We assume that at time t = 0 we the particle is located
at x = 0. Then, between times t = 0 and t = t the particle makes n random
steps y1, y2, . . . , yn subject to the constraint

y21 + · · ·+ y2n = t . (867)

Note that if all steps had the same size |y1| = |y2| = . . . |yn| = h, then (867)

would give h =
√

t
n , with h2 = t

n being the time-step, as in the situation

considered in the last lecture. However, this time we will impose only the
“global constraint” (867), the steps do not have to a specified size (as long as
the global constraint is satisfied). After these steps are made, the new position
of the particle will be

x = y1 + · · ·+ yn . (868)

We now must specify the probability law for the “events” (y1, . . . , yn) satisfy-
ing (867). A natural assumption is that the vectors (y1, . . . , yn) are distributed
over the n − 1 dimensional sphere of radius

√
t uniformly with respect to the

canonical “surface measure” on the sphere. Let us denote the surface measure
by µtn. The measure is normalized so that the total mass is 1. We can write

µtn =
1

|Sn−1|tn−1
2

σtn−1 =
Γ(n2 )

2π
n
2 t

n−1
2

σtn−1 , (869)

where σtn−1 is the canonical surface measure,198 and we have used (755).

196It is probably safe to assume that it was already known to 19th century classics. It can
be found for example in the well-known 1923 paper “Differential Space” by N. Wiener.
197The generalization to the higher dimensional case when x = (x1, . . . , xm) ∈ Rm is straight-
forward.
198It can be considered as the restriction of the n− 1-dimensional Hausdorff measure Hn−1

to the sphere (868).
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We wish to find the probability distribution of x given by (868) in the limit
n→∞.

We now pause for a moment to explain some definitions used in this context. In
general, if X,Y are metric spaces, f : X → Y is a continuous mapping, and µ is
a Borel measure on X, we define the push-forward of µ by f to be the measure
ν defined on Y by

ν(O) = µ(f−1(O)) . (870)

We will use the usual notation f#µ for ν. Note that ν can also be defined by∫
Y

φ(y) dν(y) =

∫
X

φ(f(x)) dµ(x) , φ ∈ C0(Y ) , (871)

where C0(Y ) denotes continuous compactly supported functions on Y .199

In the language just introduced, the probability distribution of x referred to
above is

νtn = fn#(µ
t
n) , (872)

where
fn(y) = y1 + · · ·+ yn , (873)

and µtn is given by (869) The measure νtn can be calculated explicitly. First, we
note that instead of working with fn given by (873), we can work with

fn(y) =
√
n y1 . (874)

This is because (873) and (874) are related by an orthogonal rotation which
leaves the measures µtn unchanged. Therefore in what follows we will write

x =
√
n y1. (875)

To calculate fn#(µ
t
n), we first push-forwad µ

t
n by the projection (y1, y2, . . . , yn)→

y1 on the y1-axis, and then we stretch it by the map y1 →
√
n y1. The push-

forward under the projection is easy to calculate:200 it is a measure supported
in [−

√
t,
√
t] given by

|Sn−2|(t− y21)
n−2
2

|Sn−1|tn−1
2

(1− y21
t
)−

1
2 dy1 . (876)

Now we need to stretch this measure by
√
n, which can be done by simply

putting y1 = x√
n
. After this substitution, using (893), we obtain

νtn =
1√
2πt

Γ(n2 )

Γ(n−1
2 )
√

n
2

(1− x2

n
2 2t

)
n
2 − 3

2 dx . (877)

199If µ(X) = +∞, some assumptions are needed so that the integral on the right-hand side
of (871) is well-defined - we leave the exact formulation of these to the reader as an exercise.
200Hint: if you do the calculation for n = 2 and n = 3, the case of general n becomes clear.
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We note (e. g. from Stirling’s formula) that

lim
n→∞

Γ(n2 )

Γ(n−1
2 )
√

n
2

= 1 , (878)

and recalling that

lim
n→∞

(1 +
a

n
)n = ea , (879)

we infer

νtn →
1√
2πt

e
−x2

2t dx , n→∞ , (880)

which is the heat kernel for

ut −
1

2
uxx = 0 . (881)

We see that our new version of the random walk also leads to the heat kernel.

But where does the heat equation come from in this picture? In the discrete
random walk we had a simple “local law” which was quite clearly a discrete
version of the heat equation. Can we see the heat equation in the above version
of the random walk directly, not just by an ex post facto verification that the
limit (880) satisfies (881)?

To consider this issue, it is advantageous to slightly change our point of view.
In the above derivation, we considered the measure νtn in some sense separately
for each t, as projections of the measures µtn from the spheres of radii

√
t by the

map y →
√
ny1. The time t played a role of a relatively passive parameter. To

see the heat equation more directly, it is better to view the measures νtn as time
slices of a space-time object, which comes from a projection of some “global”
measure in the space y ∈ Rn (and note just on the spheres) onto the space-time
(and not just the time-slices t = const.). More precisely, we will be projecting
some measure µn on Rn to the space-time R× R by

Fn(y) =

(
x
t

)
=

( √
n y1
|y|2

)
. (882)

The measure µn should have the property that its “slices” by the spheres
{y, |y|2 = t} should project by Fn onto the measures νtn above. This means

Fn#(µn) =

∫ ∞

0

fn#(µ
t
n) dt . (883)

It is not hard to guess what µn should be, without much calculation. One
might be tempted to take µn = 1

|Sn−1||y|n−1 dy, but this is not quite correct,

since, using the notation r = |y|, we have t = r2 and hence dt = 2r dr. The 2r
in front of dr shows that we should really take

µn =
2

|Sn−1||y|n−2
dy . (884)
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To check that this is consistent with (883), we note that for each find t we have
fn#(µ

t
n)(R) = 1. Letting χR to be the characteristic function of a ball of radius

R, we see that (883) implies∫
Rn

χR dµn = R2 , R > 0 , (885)

and this specifies (884) uniquely among all measures invariant under the rota-
tions of Rn.

We note that the measure µn is of the form

µn = vn(y) dy (886)

and the function vn satisfies

∆vn = −2(n− 2) δ , (887)

where δ is the Dirac mass at y = 0 in Rn. Writing

Fn#(vn dy) = un(x, t) dx dt , (888)

we expect that equation (887) should result in some constraint on the density
un(x, t). Rather then determining the constraint directly from (888), it is easier
to use the equation (871), which in our case is∫

R×R
un(x, t)ψ(x, t) dxdt =

∫
Rn

vn(y)ψ(Fn(y)) dy , (889)

for each smooth, compactly supported ψ : R×R→ R. In view of (887), we take
ψ so that

ψ(Fn(y)) = ∆y φ(Fn(y)) . (890)

We have ∫
Rn

un(y)∆y φ(Fn(y)) dy = −2(n− 2)φ(0, 0) , (891)

by (887). We calculate

∆y φ(Fn(y)) = nφxx(x, t) + 2nφt(x, t) + 4xφxt(x, t) + 4tφtt(x, t) , (892)

where x =
√
n y1 and t = |y|2. Combining (889),(891), and (892), we see that∫

R×R
un(−φt −

1

2
φxx −

2

n
xφxt −

2

n
tφtt) dx dt = (1− 2

n
) φ(0, 0) . (893)

In the limit n → ∞ we obtain (the weak form of) the heat equation. We see
that the heat equation for the limit u(x, t) is a consequence of equation (887).

We can also proceed similarly as in the last lecture with the discrete random
walk approximations uh. The functions un satisfy a uniform bound∫

Rn

un(x, t) dx = 1 , (894)
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and even if we had not calculated their limit before we see that we can choose a
subsequence converging to some tempered distribution u which, in view of (893),
will satisfy

ut −
1

2
uxx = δ . (895)

By uniqueness of the solutions of (895) in tempered distributions, we can con-
clude, without the explicit calculation of the limit, that the limit u has to be
the fundamental solution of the heat operator ∂t − 1

2∂
2
x, confirming the result

of the explicit calculation (880).

The above calculations suggest that caloric functions can be thought of, in some
sense, as harmonic functions in very high dimensional spaces, as we mentioned
in lecture 52.201

201For additional references where related issues are discussed, the reader can consult for
example the paper “Geometry of Differential Space” by H. P. McKean, Annals of Probability,
1973, Vol. 1, No. 2, 197-206, or notes from a course by T. Tao available online at
http://terrytao.wordpress.com/2008/04/27/285g-lecture-9-comparison-geometry-the-high-
dimensional-limit-and-perelman-reduced-volume/

217



Lecture 56, 2/21/2011

Today we will discuss another feature of the heat equation: it is a gradient flow.
Let us first look at some examples of gradient flows in finite dimension. The
simplest situation is the following: assume f : Rn → R is a smooth function
satisfying f(x)→∞ as x→∞, and consider the ODE

ẋ = −∇f(x) , (896)

where we use the usual notation ẋ = dx
dt . In comparison with general au-

tonomous n−dimensional ODE

ẋ = b(x) , (897)

where b(x) = (b1(x), . . . , bn(x)) is a smooth vector field in Rn, the solutions
of (896) have a much simpler behavior. The trajectories x(t) follow the lines
of the “steepest descent” of the function f . They are perpendicular to the
level sets {f = const.} and in the case when all the critical points of f are
non-degenerate202 the trajectories typically converge to the local minima of
f , except for the boundaries between the “basins of attraction” of the various
local minima. The trajectories originating at such boundaries typically converge
to saddle points203. This is much simpler behavior than what is possible for
solutions of (897), where one can meet all the intricate phenomena of chaos,
strange attractors, etc. Non-trivial questions arise even for the gradient flows204,
but one can nevertheless say that the if we know that a flow is a gradient flow, it
usually simplifies its study to a large degree. For example, by taking the scalar
product of (896) with ẋ we obtain

|ẋ|2 = −(∇f(x), ẋ) = − d

dt
f(x) . (898)

Integration in t now gives

f(x(t1))− f(x(t2)) =
∫ t2

t1

|ẋ(t)|2 dt , (899)

which often represents a useful a-priori bound on the integral on the right, when
f is bounded from below. (Note that we can let t2 →∞ in that case.)

Using (896), we can also re-write (899) as

f(x(t1))− f(x(t2)) =
∫ t2

t1

|∇fx(t)|2 dt . (900)

202Recall that x is a critical point of f if ∇f(x) = 0. A non-degenerate critical point is a
critical point x where an additional condition that the Hessian matrix ∇2f(x) is non-singular
is satisfied.
203These are the critical points at which the Hessian matrix ∇2f(x) is indefinite.
204For example: assuming only that f(x) → ∞ as x → ∞, does any solution of (896)
converge to an equilibrium? The answer is non-trivial: no in general, but yes if f is analytic.
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If we define that an equation (897) is a gradient flow if and only if b(x) =
−∇f(x), it is easy to determine which flows are gradient flows: in a simply
connected domain, a necessary and sufficient condition for the existence of an
f with b(x) = −∇f(x) is that the matrix ∇b(x) be symmetric for each x. Thus
for example a linear equation

ẋ = −Ax (901)

is a gradient flow in the above sense if and only if the matrix A is symmetric. If
this is the case, the function f is given by f(x) = 1

2 (Ax, x), where ( · , · ) denotes
the canonical scalar product in Rn. We see that the scalar product plays an
important role in these considerations.

What happens when we take a different scalar product? If an equation is a
gradient flow with respect to a different scalar product, the flow should still
have the simplifying features of the gradient flows, so we should not really
restrict our attention to a particular choice of the scalar product.

Let us consider a symmetric positive definite matrix G = {gij}ni,j=1 and the
scalar product

(x, y)G = (Gx, y) = gijxiyj .
205 (902)

For which A is equation (901) a gradient flow when we consider the scalar
product (902) rather than the canonical scalar product (corresponding to G =
I)? An easy calculation shows that the condition is

GA = AtG , (903)

where At is the transpose of A. Different choices of G give us different conditions
on A for which we get a gradient flow. A natural question in this context is the
following: for which matrices A is (901) a gradient flow with respect to some

205Here we write both gij and xi, yj with lower indices, which is often done. However, we
should really use the classical Einstein convention and use upper indices for vector coordinates
(contra-variant indices) and lower indices for covector coordinates (covariant indices). In this
more precise notation one can only sum over repeated indices if one of them is up and one
of them is down. For example, the above expression is written as gijx

iyj . A matrix of a
linear map A has coordinates aij and Ax is written as aijx

j . A bilinear form b(x, y) should be

written as bijx
iyj . It is symmetric if bij = bji, and this is the case if and only if it comes from

a quadratic form bijx
ixj . On the other hand the statement that a matrix aij is symmetric

does not make sense in this notation, as we cannot exchange upper and lower indices. The
notation is ideally suited for clarifying the issues around the gradient flows we discuss, at least
in finite dimensions. For example, the derivatives of a function f form a covector and should
be written with lower indices fi. The derivative of f in the direction ξ = {ξi} (a vector) is
then fiξ

i. If we try to write the gradient flow (896) we get ẋi = −fi, which does not look
good, as we mix upper and lower indices. We first need to raise the indices of fi (or lower
the indices of ẋi). For that we need a metric gij and its covariant form gij . Then we write

ẋi = gijfj . Similarly, to say that a matrix aji is symmetric, we need to lower the upper index

(or raise the lower index) by a metric gij by aij = gika
k
j . The dependence of these notion

on a metric is transparent. If one fixes some orthogonal frame and takes all coordinates with
respect to that frame, then we do not have to distinguish between the upper and lower indices,
as long as we remember that such notation assumes a particular choice of the frame.

219



scalar product defined as above by some positive definite G? As an exercise
you can prove that a necessary and sufficient condition on A to satisfy (903) for
some positive definite G is that A be diagonalizable over the reals.

The more general situation of (897) is similar: if the matrix∇b is not symmetric,
it can still be the case that the equation is a gradient flow with respect to some
more general scalar product.206

The above considerations show the importance of the scalar product when deal-
ing with a gradient flow.

The importance of the scalar product for gradient flows also becomes imme-
diately apparent when we try to define a gradient flow of a functional on an
abstract linear space, where we are not distracted by existing canonical struc-
tures. Let X be a linear space over R, perhaps with some norm or topology
compatible with the linear structure, and let f : C → R be a continuous func-
tion. Assume that the derivative f ′(x) is well-defined for each x ∈ X by

f ′(x)y =
d

dt

∣∣
t=0

f(x+ ty) , y ∈ X (904)

and that the map y → f ′(x)y is linear (and continuous). To define a gradient
flow of f , we would need to associate to each x ∈ X some b(x) ∈ X related
to f ′(x). However, the derivative f ′(x) naturally belongs to the space X∗ of
(continuous) linear functionals on X. In general, there is not a canonical way
to identify X and X∗, even when the dimension of X is finite.207 In infinite
dimensions this is even more transparent. For example, the space X = L1(0, 1)
is separable, whereas its dual X∗ = L∞(0, 1) is not separable, and hence they
cannot be reasonably identified.

To define a gradient flow, we need some mapping

T : X∗ → X . (905)

Often the exact domain of T or its exact range do not have to be studied
in detail. We can work at a formal level, and establish rigorously only those
consequences of the gradient flow structure which we are interested in.

If T : X∗ → X as above is given, we can define a gradient flow by

ẋ = Tf ′(x) . (906)

We can use the notation
Tf ′(x) = gradT f(x) (907)

and write equation (906) as

ẋ = −gradT f(x) . (908)

206It can for example be given by a suitable Riemannian metric gij(x).
207By contrast, there is a canonical way to identify the double dual X∗∗ with X without the
presence of any additional structures when X is finite-dimensional.
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If X is a Hilbert space, then X∗ can be identified with X by the scalar product
and a canonical T : X∗ → X is given the Riesz representation theorem for the
linear functionals on Hilbert spaces: each l ∈ X is uniquely represented by a
T l ∈ X via l(x) = (x, T l).

Sometimes one can just formally work with a scalar product, without worry-
ing about completeness, and obtain the equations at a formal level, using the
gradient flow structure only as an important guidance to a rigorous treatment.

Let now return to the heat equation. For now we will work at a formal level
with functions defined on Rn and various scalar products. The functions are as-
sumed to be “sufficiently regular” and have “sufficiently fact decay” (sometimes
together with their derivatives), so that all the operations below are allowed.

Let us first take the functional

J(u) =

∫
Rn

1

2
|∇u|2 dx (909)

and the standard L2− product

(u, v) =

∫
Rn

uv dx . (910)

In this case we have, as we have seen during the first semester,

J ′(u)v =

∫
Rn

∇u∇v dx =

∫
Rn

−∆u v dx , (911)

and we see that with these choices equation (908) becomes exactly the heat
equation

ut = ∆u . (912)

Estimate (899) becomes∫
Rn

1

2
|∇u(x, t1)|2 dx−

∫
Rn

1

2
|∇u(x, t2)|2 dx =

∫ t2

t1

∫
Rn

|ut(x, t)|2 dx dt , (913)

showing that we should have∫ ∞

0

∫
Rn

u2t dx dt =

∫
Rn

1

2
|∇u(x, 0)|2 dx . (914)

This can be obtained directly by multiplying (912) by ut and integrating over
x and t, using suitable integration by parts. Estimate (900) becomes∫

Rn

1

2
|∇u(x, t1)|2 dx−

∫
Rn

1

2
|∇u(x, t2)|2 dx =

∫ t2

t1

∫
Rn

|∆u(x, t)|2 dx dt . (915)
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The above is not the only way to represent the heat equation as a gradient flow.
There are many other ways. For example, a simple variation of the above is the
following. Let us consider

J0(u) =

∫
Rn

1

2
|u|2 dx , (916)

and the scalar product

(u, v)−1 =

∫
Rn

[(−∆)(−1)u]v dx =
1

(n− 2)|Sn−1|

∫
Rn

u(x)v(y)

|x− y|n−2
dx dy , (917)

where we assume n ≥ 3 for simplicity. Using the Fourier transform, we can also
write

(u, v)−1 =
1

(2π)n

∫
Rn

û(ξ)v̂(ξ)

|ξ|2
dξ . 208 (918)

We have

J ′
0(u)v =

∫
Rn

uv dx =

∫
Rn

[(−∆)(−1)(−∆)u] v dx , (919)

showing that the gradient flow of J0 with respect to the ( · , · ) scalar product is
again the heat equation (912). Equation (899) now becomes∫ t2

t1

||ut(t)||2−1 dt =

∫
Rn

1

2
|u(x, t1)|2 dx−

∫
Rn

1

2
|u(x, t2)|2 dx , (920)

where we use the notation ||ut||2−1 = (ut, ut)−1 . Equation (900) becomes∫
Rn

1

2
|u(x, t1)|2 dx−

∫
Rn

1

2
|u(x, t2)|2 dx =

∫ t2

t1

∫
Rn

|∇u(x, t)|2 dx dt . (921)

This can be also obtained directly by multiplying (912) by u and integrating
over x and t, using suitable integration by parts.
This is the basic “energy estimate” for the heat equation. Important parts of
the theory of linear parabolic equations 209 can based on it and its localized
versions.210 The situation is quite similar to the elliptic case we studied in the
first semester.

208The constant 1
(2π)n

in front of the integral is unimportant for most purposes, as is often

omitted from this definition. In this case a constant appears in (917).
209including equations with variable coefficients
210This includes existence of weak solutions, their interior and boundary regularity, etc.
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Lecture 57, 2/23/2011

The energy inequality (921) we derived last time for the heat equation in Rn can
also be derived, in the same way, for the heat equation in a domain Ω with natu-
ral boundary conditions at the boundary ∂Ω. In this case the unknown function
is defined on Ω×[t1, t2] and we can consider various boundary conditions, such as
the Dirichlet boundary conditions u|∂Ω = 0, the Neumann boundary conditions
∂u
∂ν = 0, or the boundary condition ∂u

∂ν +γu = 0. The meaning of these condition
is the same as discussed in the elliptic case in lecture 30. The conditions can
also be taken non-homogeneous, i. e. replacing 0 on the right-hand side by a
known function g. In that case we have to add additional terms to the energy
inequality, of course, as is also the case when the equations is inhomogeneous,
ut − ∆u = f , with f a known function. We will get to the non-homogeneous
cases later.

An important consequence of the energy inequality is the uniqueness of natural
initial-boundary-value problems, such as

ut −∆u = f(x, t) , (x, t) ∈ Ω× (0,∞) ,
u|∂Ω = g(x, t) (x, t) ∈ ∂Ω× (0,∞) ,

u(x, 0) = u0(x), x ∈ Ω ,
(922)

or various other versions where the Dirichlet condition u|∂Ω = g(x, t) is replaced
by one of the other conditions mentioned above, or with different conditions of
this type imposed on different parts of the boundary. Let us first consider the
uniqueness of the problem (922) in the class of “sufficiently regular” solutions, by
which we mean the case when the solution is assumed to have differentiability
properties with which the proof of the energy inequality is immediate. For
example, if the time derivative ut and the second space derivatives ∇2u are
continuous in Ω × [t1, t2], then multiplying the equation by u1 and integrating
by parts presents no difficulty, and (921) is easy to obtain. This immediately
gives the uniqueness statement.

The initial-boundary-value problem (922) has at most one solution in the class
of “sufficiently regular” functions u.

For the proof we note that the difference of any two solution satisfies the homo-
geneous problem, with f = 0, g = 0 and u0 = 0, and (921) immediately implies
that the solution of the homogeneous problem has to vanish identically.

With a small modification, the energy inequality also works when the laplacian
in (922) is replaced by operators

Lu = − ∂

∂xi
(aij

∂u

∂xj
) + bj

∂u

∂xj
− ∂

∂xj
(b̃ju) + cu (923)

we studied in the first semester, where the coefficients can now depend on both
x and t, so that we have aij = aij(x, t), bj = bj(x, t), etc. The key assumption
again is the ellipticity condition

aijξiξj ≥ ν|ξ|2 , (924)
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and the boundedness of aij . We will assume that the other coefficients are also
bounded, although this assumption can be relaxed.

The energy inequality is generalized to the equation

ut + Lu = 0 (925)

in the following way. Consider a solution of (925) satisfying the homogeneous
boundary conditions on ∂Ω×(0,∞). Assume the solution is sufficiently regular.
Multiply (925) by u and integrate over Ω. We obtain, in terms of the Lax-
Milgram form A(u, v) corresponding to L, as discussed in Lecture 30,

d

dt

∫
Ω

1

2
|u(x, t)|2 dx + A(u, u) = 0 . (926)

Recalling from lecture 31 that the form Aλ(u, u) = A(u, u) + λ(u, u) is coercive
for sufficiently large λ, we write (926) as

d

dt

∫
Ω

1

2
|u(x, t)|2 dx + Aλ(u, u) = 2λ

∫
Ω

1

2
|u(x, t)|2 dx . (927)

The coercivity of Aλ now implies

d

dt

∫
Ω

1

2
|u(x, t)|2 dx +

ν

2

∫
Ω

|∇u(x, t)|2 dx ≤ 2λ

∫
Ω

1

2
|u(x, t)|2 dx . (928)

This can be rewritten as

d

dt

∫
Ω

1

2
e−2λt|u(x, t)|2 dx +

ν

2

∫
Ω

e−2λt|∇u(x, t)|2 dx ≤ 0 . (929)

Hence∫
Ω

e−2λt2
1

2
|u(x, t2)|2dx+

ν

2

∫ t2

t1

∫
Ω

e−2λt|∇u(x, t)|2dxdt ≤
∫
Ω

e−2λt1
1

2
|u(x, t1)|2dx ,

(930)
which for many purposes is as good as the identity (921) we get for the simple
hear equation. For example, it immediately implied uniqueness for many nat-
ural initial-boundary-value problems for equation (925), at least for sufficiently
regular solutions.
The assumption that the solution be “sufficiently regular” which we work with at
the moment is somewhat unpleasant and should be replaced by a condition that
u belongs to some natural function space suggested by (930). We will see that
that is indeed possible, although the proofs are not completely straightforward.
However, before investigating optimal uniqueness statements, it is useful to see
what can be proved about the existence of the solutions. Our goal is to find
some natural set-up in which both existence and uniqueness can be proved.

There is more than one way to approach the existence results. Our approach
here will be through the Galerkin method, which is also suitable for numerical
integration of the equations.
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To show the main idea of the method, we will consider the initial value prob-
lem (922) with −∆ replaced by L and f = 0 and g = 0. We first reformulate
the problem in the following way: we multiply the equation by v ∈ X = H1

0

and integrate over x. After an integration by parts, we obtain

d

dt

∫
Ω

u(x, t)v(x) dx+A(u( · t), v) = 0 , v ∈ X, t ≥ 0∫
Ω

u(x, 0)v(x) dx =

∫
Ω

u0x)v(x) dx , v ∈ X . (931)

If we consider other boundary conditions, the space X = H1
0 can be replaced

by other spaces X ⊂ W 1,2 we considered in connection with elliptic problems
in lecture 30.
In (931) we can view the scalar product

∫
uv as a coordinate of u, and the

equations as equations for coordinates of u. In fact, the requirement that the
equations are satisfied for each v from some orthogonal basis v1, v2, . . . is equiv-
alent to re-writing our equations in the coordinates of this basis.

If we now replace the space X by a finite dimensional space Y ⊂ X and seek a
function t→ u(t) ∈ Y , the system (931) becomes just a finite-dimensional ODE
system. (The requirement that (931) be satisfied for each v ∈ Y is the same as
the requirement that (931) is satisfies for each element vj of a basis v1, . . . , vm
of Y .) By general theory of ODE we know that the system has a unique local-
in-time solution in some interval (0, T ). In fact, since our system is linear and
the coefficients do not “blow up”, the solution is global. The finite-dimensional
system still satisfies energy estimate (930). To see that, we can write the finite
dimensional system as

∫
Ω

d

dt
u(x, t)v(x) dx+A(u( · t), v) = 0 , v ∈ Y, t ≥ 0∫

Ω

u(x, 0)v(x) dx =

∫
Ω

u0(x)v(x) dx , v ∈ Y . (932)

and note that for each t211 the equations ate true with v(x) = u(x, t), as we
now require that u( · , t) ∈ Y for each t. In other words, we can use (932) with
v(x) replaced by u(x, t). Once we have this conclusion, we just follow the proof
of (930).
The estimate (930) gives us another way of seeing that the local solution of our
ODE system is in fact global. The only way it could not be global is that u(t)
would become unbounded in Y on some open interval (0, T ), but this is not
possible due to the energy estimate. 212

211Strictly speaking, in the coefficients of L are only measurable, we have the pointwise
equation only for almost every t. The ODE theory with the Caratheodory assumptions still
works. We leave a verification of this to the reader as an exercise.
212Note that this argument does not rely on the linearity of the equations, and can be used
also for non-linear equations.
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If we check what assumptions on the coefficients of L are needed so that the
ODE system is covered by the standard ODE theory using the Caratheodory
conditions, we see that it is sufficient to assume that all the coefficients are
bounded measurable. If we wish to get the energy estimate (930), we need to
assume also the ellipticity condition (924).

We see that it is easy to obtain global solution for the finite dimensional approx-
imations (932). Next we need to establish the convergence of these approxima-
tions to some solution of the original problem, if the finite dimensional spaces
in some sense approximate the space X. This is not hard and by this limiting
procedure we get a weak solution of our original problem. We will discuss the
details next time, but even now we see that the overall strategy is somewhat
similar to the elliptic case we studied last semester. We first establish the exis-
tence of weak solution. Next establish their uniqueness, which will be somewhat
more difficult, as we do not really want to assume that the solutions are “suffi-
ciently regular”: we need to establish uniqueness in the same class of functions
where we can prove existence. When we have both existence and uniqueness,
we know that we are working with the right objects. Finally, we can establish
the regularity of the solutions, in a way quite similar to what we did in the first
semester for the elliptic case: using a local version of the energy inequality for
the derivatives of the solution. We will not into the regularity theory in much
detail, as it is quite similar to the elliptic case we studied last semester.
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Lecture 58, 2/25/2011

Last time we considered the finite-dimensional system (932) and we saw that for
each subspace Y ⊂ X the system has a unique global solution. We now choose
a sequence of spaces Ym ⊂ X, m = 1, 2, . . . which in some sense “converge to
X”. For each m we obtain a solution um : : t → um(t) ∈ Ym, so we have a
sequence of functions um = um(x, t) which satisfy

d

dt

∫
Ω

um(x, t)v(x) dx+A(um( · t), v) = 0 , v ∈ Ym, t ≥ 0 ,∫
Ω

um(x, 0)v(x) dx =

∫
Ω

u0(x)v(x) dx , v ∈ Ym . (933)

The functions um(x, t) are of the form

um(x, t) =

j=m′∑
j=1

umj (t)vmj (x) , (934)

where vm1 , . . . , v
m
m′ is a basis of Ym, with m′ = m′(m) = dimYm. Letting

bmij =

∫
Ω

vmi (x)vmj (x) dx , (935)

we see that ∫
Ω

um(x, t)vj(x) dx =
∑
i

umi (t)bmij . (936)

We note that the matrix bmij is invertible, as v1, . . . , vm′ form a basis. Therefore
the first equation in (933) is of the form

d

dt
umi =

∑
j

Ãmij (t)u
m
j , (937)

with the functions Ãmij bounded and measurable. Hence the system (933) is
globally solvable, as discussed last time.

The initial condition um(x, 0) ∈ Ym is given by the second equation of (933).
Note that um(x, 0) is simply the L2(Ω) orthogonal projection of u0 onto the
space Ym. This means that∫

Ω

|um(x, 0)|2 dx ≤
∫
Ω

|u0(x)|2 dx . (938)

The functions um(x, t) satisfy the energy estimate (930). Therefore, for any
given T > 0, the functions um(x, t) are uniformly bounded in the spaces L∞((0, T ), L2(Ω))
and L2((0, T ),W 1,2(Ω)). In particular, the functions are uniformly bounded in
L2(Ω × (0, T )), and we can choose a sunsequence, still denoted by um, which
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converges weakly in L2(Ω × (0, T )) to a function u ∈ L2(Ω × (0, T )). Due to
the compactness of bounded sets in the various weak topologies, the subse-
quence um will also converge to u weakly∗ in L∞((0, T ), L2(Ω)) and weakly in
L2((0, T ),W 1,2(Ω)).

It is clear that the function u should in some sense solve the original PDE
problem, provided the spaces Vm in some sense “converge” to the space X. A
obvious necessary condition is is the following: For each v ∈ X there exists a
sequence vm ∈ Ym such that vm → v inW 1,2(Ω). We will see that this condition
is also sufficient if we also assume that Y1 ⊂ Y2 ⊂ . . . , which is a quite natural
assumption.

It is easy to define a notion of weak solution of the original initial-boundary-value
problem such that the function u will be a solution. We will discuss it in more
detail shortly, for now we can just say that the requirement is, roughly speaking,
that u belongs to the spaces suggested by the energy inequality and (931) is
satisfied if the t−derivative is taking in the sense of distributions. There are
in fact several ways in which the exact definition can be made which are not
transparently equivalent.

A key point for a good definition of a weak solution is uniqueness. We expect
that the solutions of the evolution problems we study here should be unique,
and if we cannot prove uniqueness for our weak solutions, our theory cannot be
considered as satisfactory. As usual, the definition of the weak solution has to
strike the right balance between the existence and uniqueness requirements. For
example, the existence of the weak solutions based on the Galerkin approxima-
tion as above is quite easy to prove. Once we know that the energy inequality
is satisfied for our approximate solutions, we just take the weak limits of the
subsequences of our approximate solutions. In one step we establish global-in-
time solutions, even for coefficients which are quite irregular, and not so easy
to approach by other methods. However, note that in this procedure we lose a
lot of information about the solutions. First, even if all our data are smooth,
in the limiting procedure we only use the energy estimate (930) and the weak
form of the equation. All the other information is lost (unless we make an effort
to track what happens to it in the limiting procedure, which is often not easy).
Therefore, in some sense, the relative ease with which the global existence of
the solutions is established comes at a price: our information about the solution
is quite weak, and we have to work harder to establish uniqueness. We do not
have enough regularity the prove uniqueness by a simple application of the en-
ergy inequality, as we were able to do for “sufficiently regular” solutions. Any
information about the smoothness of the solutions beyond the energy estimates
is lost (unless we track it during the limiting procedures, which – as already
remarked – can be nontrivial), and if we wish to recover it, we have to work on
the regularity theory, similarly to the elliptic case in the first semester. 213

213In the case when the coefficients are merely measurable, it is not a-priori obvious how
much regularity beyond the energy estimates and – for scalar equations – simple consequences
of the maximum principle one should really expect. Questions in this direction are quite
difficult and were resolved only in the 1960s.
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If we compare the situation with the elliptic theory we studied in the first
semester, we see that the situation is quite similar, except that in the elliptic
theory the issue of uniqueness was an “automatic” part of the existence theory:
the solution given my a coercive Lax-Milgram form or by a minimizer of a convex
functional is clearly unique. In the parabolic theory the issue of uniqueness of
weak solutions is more subtle and has to be considered with some care. On the
other hand, the regularity theory is quite similar in both cases.

Note that the issue of uniqueness is also related to the following questions:
when we pass to the limit m → ∞ for our Galerkin approximations um, do
we have to take a subsequence? If we can show the uniqueness for the weak
solutions, and we know that the limit of any subsequence is a weak solution,
than by uniqueness we see that the limit has always be the same, and the whole
sequence um actually converges to the weak solution, without the need to take
subsequences. Establishing this directly is non-trivial.
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Lecture 59, 2/28/2011

Let us now formulate the notion of a weak solution for the initial-boundary-value
problem

ut + Lu = 0 , in Ω× (0, T ) ,
u|∂Ω = 0 , in ∂Ω× (0, T ) ,

u(x, 0) = u0(x) , in Ω ,
(939)

where L is the operator (924). We take the homogeneous right-hand side and
the homogeneous Dirichlet boundary conditions for simplicity, but it is easy
to check that the same method works in more general situations with only
minor modifications, including non-zero right-hand sides, and all the types of
non-homogeneous boundary conditions we have considered for the elliptic prob-
lems in the first semester.214 To emphasize that the method is not tied to the
Dirichlet boundary condition, we will keep using the notation with the space
X ⊂ W 1,2(Ω) from the last lecture. For the homogeneous Dirichlet boundary
condition we of course take X = H1

0 (Ω).

The definition of a weak solution essentially consists of three different types of
requirements. The first requirement is that u belongs to a suitable function
space. The second requirement is that that some weak form of the equations
is satisfied. And the third requirement is that the initial condition and the
boundary conditions are satisfied in a suitable weak sense. These condition can
intertwined. For example, the condition

u ∈ L2(0, T ;X) (940)

for X = H1
0 (Ω) implies that the homogeneous Dirichlet boundary condition is

satisfied at the lateral boundary. (On the other hand, when we deal with the
Neumann boundary condition, we take X = W 1,2(Ω), which by itself does not
impose any boundary condition. In this case the boundary condition will be
imposed through the weak form of the equation and the freedom to choose the
test functions from W 1,2(Ω), as it was the case in the elliptic case.)

In view of the energy inequality (930), all the function spaces considered in this
context are usually contained in the space L2(0, T ;X)

To obtain a weak form of the equation we take a smooth test function φ(x, t)
defined in Ω× [0, T ) which such that φ(·, t) belongs to X for each t, and that φ
is supported in Ω× [0, T − δ] for some δ > 0. In particular, φ(x, T ) = 0. Such

214In fact, in order to understand how to transfer the various boundary conditions we con-
sidered for the elliptic problem to the correct boundary conditions on the lateral boundary
∂Ω× (0, T ) in (939), it is often useful to consider the time derivative ut just as a right-hand
side to in the elliptic problem Lu = −ut at the corresponding time level. This interpretation,
in spite of appearing quite naive and perhaps even problematic, can be surprisingly useful,
although one has to be somewhat careful with it.
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functions will be called smooth admissible test functions. Multiplying the first
equation in (939) by φ and (formally) integrating by parts, we obtain

−
∫
Ω

u0(x)φ(x, 0) dx−
∫ T

0

∫
Ω

uφt +

∫ T

0

A(u(·, t), φ(·, t)) dt = 0 , (941)

where A is the Lax-Milgram form (403) corresponding to L. Note that (941)
takes into account the initial condition u(x, 0) = u0(x), and the choice of the test
functions reflects the boundary condition at the lateral boundary ∂Ω× (0, T ).

Definition
A weak solution of the initial-boundary-value problem (939) is a function
u ∈ L2(0, T ;X) which satisfies (941) for each smooth admissible test function φ.215

This is, in some sense, a “bare minimum” definition of the weak solutions, if we
wish to phrase the definition in terms of the Lax-Milgram form. The solutions
which we construct through the Galerkin method will have additional properties
to those stated in the definition. For example, if u0 ∈ L2(Ω), we see from the
energy inequality for the Galerkin approximations um implies that the functions
um are uniformly bounded in L∞(0, T ;L2(Ω)), and we expect the same from
the limit. Also, we see that by a simple density argument we can extend the
class of φ for which (941) holds from smooth functions (with some additional
properties) to functions with distributional derivatives in L2

x,t (and some ad-
ditional properties). We could try to collect all such possible improvements,
and put them in the definition of the weak solutions as a requirement.216 The
rationale would be that if we know that the expected solutions have a certain
property, why not put the property in the definition? It then obviously restricts
the class of the solutions, and reduces the chance that our definition will allow
some unwelcome parasitic solutions. Such an approach is reasonable as long as
our definition will cover some natural classes of equations, such as the equations
with bounded measurable coefficients (+ the ellipticity assumption (924)). This
is why one can find in the literature various versions of the definitions, differing
in how many “known properties” of general classes of solutions are incorporated
into the definition. The most important test of the definition is whether we can
prove existence and uniqueness of the solutions. As we already discussed, the
more requirements we put in the definition, the more difficult it is to prove
the existence, but the easier it is to prove uniqueness. Vice versa, the fewer

215In case the domain Ω is unbounded (such as Ω = Rn) and the space X is not contained in
L2(Ω), we can make our life easier by adding the condition u ∈ L2(Ω×(0, T )), or simply replace

X by a space containing L2(Ω). For example, we can replace X = H1
0 (Ω) by X = W 1,2

0 (Ω).

If we have terms such as cuv of bj
∂u
∂xj

v in the Lax-Milgram form the requirement L2(Ω) ⊂ X

is in fact a necessity. If the requirement u ∈ L2(Ω× (0, T )) is not immediately satisfied from
the definitions, we have to do some more work in the uniqueness proof. Here we will focus on
bounded domains and will not analyze these issues, which may arise for unbounded domains.
216Taking this trend to the extreme, in case of smooth data, we could require that the
solution be smooth. After all, in the end it is possible to prove the existence of a smooth
solution in this case.
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assumptions we impose, the easier is to prove the existence, but the harder it is
to prove uniqueness.

With the definition above, it is quite easy to prove the existence when u0 ∈
L2(Ω)217, but we will have to work a little harder to prove uniqueness. The
important thing is that uniqueness can be proved. That is why the definition is
reasonable.

Let us now turn to the existence proof. In the last lecture we have constructed
a sequence of approximate solutions um, and it is easy to see that um satisfy

−
∫
Ω

u0(x)φm(x, 0) dx−
∫ T

0

∫
Ω

umφmt+

∫ T

0

A(um(·, t), φm(·, t)) dt = 0 , (942)

for each test admissible function φm(x, t) which is smooth in t and has the addi-
tional property that the function x→ φm(x, t) belongs to the space Ym for each
t ∈ [0, T ). By the energy inequality for the approximate solutions, the sequence
um is bounded in L2(0, T ;X). We can choose a subsequence of the sequence
um, still denoted by um, such that um converges weakly in L2(Ω× (0, T )) to
a function u ∈ L2(Ω × (0, T )). By elementary functional analysis we also have
that um converges weakly to u in L2(0, T ;X). Let φ be an arbitrary smooth
admissible test function. We claim that we can find a sequence of admissible
test functions φm which are smooth in t, the functions x→ φm(x, t) belong to
Vm for each t, φm(x, 0) converge weakly to φ(x, 0) in L2(Ω), and φm converge
to φ strongly in L2(0, T ;X). Let us for the moment take the existence of such
an approximation as proven. Then it is easy to finish the proof: we just pass
to the limit in (942), and obtain (941). The only fact we need to check for this
limiting procedure that the following statement: if wm converge to w weakly in
L2(Ω× (0, T )) and θm converge strongly to θ in L2(Ω× (0, T )), then∫ T

0

∫
Ω

wmθm dx dt→
∫ T

0

∫
Ω

w θ dx dt , m→∞ . (943)

We leave this to the reader as an exercise.218

To finish the proof, we need to justify the strong approximation of φ by the
sequence φm with the required properties. This is not hard. First, we note that
we can approximate φ by finite sums of the form

∑
j ψj(x)ηj(t), with smooth

ψj ∈ X and smooth ηj : [0, T ) → R vanishing close to T .219 Given such an

217This assumption is reasonable for bounded domains, but in case of unbounded domains,
such as Ω = Rn it may be too restrictive in some situations. One can work with local versions
of the energy inequality to remedy that. We will not study this aspect in this course.
218As an additional exercise, the reader can construct examples showing that for the passage
to the limit in (943) it is not enough to assume that both convergencies wm → w and θm → θ
are only weak.
219Strictly speaking, the existence of such an approximation may not be immediately obvious,
but it follows from standard results, such as the Stone-Weiestrass approximation theorem.
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approximation, we can replace each ψj by its approximation ψmj ∈ Ym. and
take

φm(x, t) =
∑
j

ψmjηm(t) . (944)

This finishes our existence proof. We can summarize what we proved as follows:

Theorem

If u0 ∈ L2(Ω), then the initial-boundary-value problem (939) as at least one
weak solution.

Remarks:

1. As we have already indicated, the theorem remains true for non-zero right-
hand side220 and for all the types of boundary conditions at ∂Ω× (0, T ) which
we considered for the elliptic problems in the first semester.

2. Note that for a general function v ∈ L2(0, T ;X) the “initial condition”
v(x, 0) is not well-defined. To see this, consider simply functions constant in
x, i. e. v(x, t) = f(t). Such a function belongs to L2(0, T ;X) if and only of
f ∈ L2(0, T ). However, for such f the value f(0) is in general not well-defined.
We can make sense of the initial condition u(x, 0) = u0(x) only because u is not
a general function in L2(0, T ;X), but it satisfies (941), the weak form of the
equation. The equation implies that for any ψ ∈ X221 the function

fψ(t) =

∫
Ω

u(x, t)ψ(x) dx (945)

has a distributional derivative in L2(0, T ). (To see that, it is enough to take
φ(x, t) = ψ(x)η(t) in (941).) In particular, the function is uniformly continuous,
and therefore the values fψ(t) are well-defined for each t ∈ [0, T ]. We see that
x → u(x, t) is defined, at least as a distribution, for every t, not just almost
every t. This is certainly not true for general elements v ∈ L2(0, T ;X). The
equation provides an additional regularity. This additional regularity will also
be used in our proof of uniqueness (together with the energy inequality).

220The natural form of the right-hand side in the context of the energy inequality (930) is

f +
∂fj
∂xj

for with f, fj ∈ L2(Ω× (0, T )).
221Strictly speaking, we should first say “for any smooth ψ”, and then add that the case of
general ψ ∈ X is justified by suitable approximations.
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Lecture 60, 3/2/2001

We will be looking in more detail at the function u ∈ L2(0, T ;X) satisfying∫ T

0

∫
Ω

u(−φt) + ai(x, t)φxi dx dt = 0 (946)

for certain ai ∈ L2(Ω × (0, T )) and each smooth admissible φ(x, t). In a slight
deviation from the last lecture, this time we will say that φ is admissible if φ(·, t)
belongs to X for each t and vanishes for t outside a compact subset of (0, T ). We
assume that Ω is bounded, and therefore we have L2(0, T ;X) ⊂ L2(Ω× (0, T )).

We note that by a simple approximation argument we can infer that (967) is
true not only for the smooth admissible test functions, but also for all admissible
test functions with the distributional derivatives φt, φxi in L2.

Equation (967) implies that
∂u

∂t
=
∂ai
∂xi

(947)

in Ω×(0, T ) in the sense of distributions. As we assume that ai ∈ L2(Ω×(0, T )),
the information from (968) is sometimes expressed as

ut ∈ L2(0, T ;H−1(Ω)) . (948)

Such notation is commonly used in the literature, and therefore we explain it in
some detail. First we define the space H−1(Ω) as the space of all distributions
v ∈ D ′(Ω) such that

||v||H−1(Ω) = sup
φ ∈ D(Ω)
||φ||H1

0 (Ω) ≤ 1

⟨v, φ⟩ < +∞ . (949)

Clearly H−1(Ω) is one possible representation of the dual space of the space
H1

0 (Ω). Any l ∈ H−1(Ω) can be identified with an element u ∈ H1
0 (Ω) via the

scalar product in H1
0 (Ω):∫

Ω

∇u∇v = l(v) , v ∈ H1
0 (Ω) . (950)

As we saw in the first semester, this correspond to (−∆)−1l = u, where the
laplacian is inverted with the boundary condition u|∂Ω = 0. For example, if
b(x) = (b1(x), . . . , bn(x)) is an L

2−vector field in Ω, then div b ∈ H−1(Ω), with

|| div b||H−1(Ω) ≤ ||b||L2(Ω) . (951)

If we have a vector field (a1(x, t), . . . , an(x, t) in L
2(0, T ;X), it makes sense to

write
∂ai
∂xi
∈ L2(0, T ;H−1(Ω)) . (952)
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In view of (968), we can therefore write (970). 222

Note that the spaces L2(0, T ;H1
0 (Ω)) and L2(0, T ;H−1(Ω)) are “in duality”,

and if u ∈ L2(0, T ;H1
0 (Ω)) with ut ∈ L2(0, T ;H−1(Ω)), then the expression

⟨ut(t), u(t)⟩ is an integrable function of t. This makes it plausible that the
formula ∫

Ω

1

2
|u(x, t2)|2 dx−

∫
Ω

1

2
|u(x, t1)|2 dx =

∫ t2

t1

∫
Ω

utu dx dt (953)

is valid (in the right interpretation), and the function t → u(·, t) is uniformly
continuous in as a map from [0, T ) into L2(Ω). We will see that this is indeed
the case. We will prove (953) in the form∫

Ω

1

2
|u(x, t2)|2 dx−

∫
Ω

1

2
|u(x, t1)|2 dx =

∫ t2

t1

∫
Ω

−uxiai dx dt (954)

directly from (967). This will include showing that the quantities on the left-
hand side are well-defined for each t1, t2 ∈ [0, T ) (and, in fact, in [0, T ]).

We will prove (953) by using suitable approximations for which it is transpar-
ently true.223

For ε > 0 we consider a mollifiers ϕε =
1
εϕ(

x
ε ) on the real line R, where ϕ : R→ R

is smooth, compactly supported and
∫
R ϕ = 1. The functions ϕ is usually taken

to be symmetric about the origin, but for our purposes here it is more convenient
to take a ϕ which is supported in (−1, 0). For a locally function v : Ω×(0, T )→ R
we define its smoothing in time vε : Ω× (0, T − ε)→ R by

vε(x, t) =

∫
R
v(x, t− s)ϕε(s) ds.224 (955)

222We have not discussed the exact definition of spaces such as L2(0, T ;X) for some Hilbert
space X. Usually one defines L2(0, T ;X) as the closure of the set of X−valued “simple
functions” on (0, T ) equipped with the obvious norm. (It is a good exercise to check that
with this definition we for example have L2(0, T ;L2(Ω)) ∼ L2(Ω× (0, T )). For our purposes
here we can also define spaces such as L2(0, T ;X) as completions of suitable spaces of smooth
functions in the corresponding norm. For example, for a bounded domain Ω we can define
L2(0, T ;H1

0 (Ω)) as the closure of the space of smooth, compactly supported function in Ω×
(0, T ) in the norm (

∫ T
0

∫
Ω |∇v|2 dx dt)

1
2 , where ∇ denotes the spatial gradient, as usual (as

opposed to the full space-time gradient, where we would also include the time derivative).
In the case of bounded domains Ω the space L2(0, T ;H1

0 (Ω)) is sometimes also denoted by

W 1,0
0 (Ω × (0, T )). For unbounded domains the last space usually means L2(0, T ;W 1,2

0 (Ω)),

in which the norm is (
∫ T
0

∫
Ω(|∇v|

2 + |v|2) dx dt)
1
2 . For bounded domains the two norms are

equivalent, due to the weak Poincare inequality (lecture 21). Also, we have not discussed the
precise definitions of differentiability of Hilbert-space values functions. These subtleties will
not play an important role for us, as we will work with equation (967), which has a precise
meaning without any additional definitions.

223We essentially follow the book Linear and Quasilinear Equations of Parabolic Type by
O. Ladyzhenskaya, V. Solonnikov, and N. Ural’tseva, Section 3.4.
224As an exercise in the Lebesgue you can verify that this function is well-defined almost
everywhere.
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Let u ∈ L2(0, T ;X). Then uε belongs to the space C([0, T −ε], X) of continuous
functions in [0, T − ε] with values in X. Moreover, if u satisfies (967), then uε
satisfies (967) with ai replaced by aiε (and φ compactly supported in (0, T − ε)
as a function of t). Let us take 0 < ε, ε′ < ε1 and set

v = uε − uε′ , bi = aiε − aiε′ . (956)

Then ∫ T

0

∫
Ω

v(−φt) + bi(x, t)φxi dx dt = 0 (957)

for every admissible test function φ supported vanishing for t > T − ε1. The
function v in some sense represents an error term in the approximations uε,
and (957) can be thought of as an equation describing the propagation of the
error term. Working with the error function v, rather than with uε, makes
things simpler.

Let η : (0, T )→ R be smooth and compactly supported in (0, T − ε1). It is easy
to see that

φ(x, t) = v(x, t)η(t) (958)

is an admissible test function: all its derivatives ∂t, ∂xi are in L
2(Ω× (0, T ) and

the requirements on the support are trivially satisfied. Hence we have∫ T

0

∫
Ω

(
−vvtη − v2ηt + bi(x, t)vxiη(t)

)
dx dt = 0 . (959)

Using vvt = ( 12v
2)t and a simple integration by parts (note that we have enough

regularity in t to be able to do this), we have∫ T

0

∫
Ω

−1

2
v2η′(t) + bivxi

η(t) dx dt = 0 . (960)

Recalling that v is continuous in t (with values in X ⊂ L2(Ω)), we now choose
0 < t1 < t2 < T − ε1 and use (960) with a test function η approximating the
following function

η(t) = 0, t /∈ [t1, t2] , η(t) =
t2 − t
t2 − t1

, t ∈ [t1, t2] . (961)

For example, we can take η = ηδ = ϕδ ∗ η and let δ → 0. Due to the continuity
of v in t we obtain∫

Ω

1

2
|v(x, t1)|2 dx =

∫ T

t1

∫
Ω

−bivxiη +
1

2
v2η′(t) dx dt . (962)

We note that ∫ T

0

∫
Ω

(|bi|2 + |v|2 + |∇v|2) dx dt ≤ θ(ε1) , (963)
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with θ(ε1) → 0 as ε1 → 0, and therefore (962) and a simple application of
Cauchy-Schwartz inequality shows that for each δ > 0 the integrals

∫
Ω

1
2 |v(x, t1)|

2 dx
approach zero uniformly in t1 ∈ [0, T − δ] as ε1 → 0. This means that the func-
tions uε converge to u uniformly in C([0, T − δ);L2(Ω)) for each δ > 0. This
means

u ∈ C([0, T );L2(Ω)) , (964)

which is one of the important consequences of (967). If we now repeat the
procedure above with v = uε, b = aiε and η = χ(t1,t2) and use (964), we
obtain (955). Also, note that if we work from T towards t < T rather than from
0 towards t > 0, we obtain that in fact

u ∈ C([0, T ];L2(Ω)) (965)

and (955) is satisfied for each 0 ≤ t1 ≤ t2 ≤ T .
We can summarize what we proved as follows

Theorem
Assume u is as described in the first paragraph of this lecture. Then u ∈
C([0, T ], L2(Ω)) and∫

Ω

1

2
|u(x, t2)|2 dx−

∫
Ω

1

2
|u(x, t1)|2 dx =

∫ t2

t1

∫
Ω

−uxiai dx dt (966)

for each 0 ≤ t1 ≤ t2 ≤ T .
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Lecture 61, 3/4/2011

The proof of identity (966) from the last lecture can be easily generalized to the
situation when we add some lower-order terms to equation (967), and using this
approach we can prove energy identity (930) from lecture 57 for weak solutions
of problem (939), with the definition of the weak solution given in lecture 59.
Therefore we can complement the existence theorem from lecture 59 by an
equally important uniqueness result:

Theorem

The initial-boundary-value problem (939) has at most one weak solution.

Combining the two theorems, we obtain:

Corollary

The initial-boundary-value problem (939) has precisely one weak solution.

As we already discussed previously (lectures 58 and 59), it is important that
we can prove both existence and uniqueness. It shows that our definition of the
weak solution is good. The same theorem is true for non-homogeneous boundary
conditions, under appropriate assumptions, of course. The proofs are natural
modifications of the proof above. We refer the reader to the book “Linear and
Quasilinear Equations of Parabolic Type by O. Ladyzhenskaya, V. Solonnikov,
and N. Ural’tseva”, Section 3, for a detailed exposition.

If the coefficients of the equation ut + Lu = 0 are smooth, the solution will be
smooth. This is true locally: if the coefficients are smooth in a open space-
time set, the solutions will be smooth there, regardless of the smoothness of
the coefficients in other regions of space-time.225 This regularity result can be
proved by localizing the energy inequality, similarly to what we have seen in
lecture 33 for the elliptic case.

We will illustrate the main idea on the simple case of the heat equation. The
equations with variable coefficients and lower-order terms can be treated in a
similar way, except that we have to write more terms.

In analogy with the local elliptic estimates in lecture 33, let us consider a solution
of the heat equation

ut −∆u = 0 (967)

in parabolic balls
QR = BR × (−R2, 0) . (968)

225By “smooth” we mean C∞. For elliptic equations we studied in the first semester the
statement remained true even when “smooth” meant “analytic”. This is not the case for the
parabolic equations. Even for the constant coefficients heat equation, local smooth solutions
may not be analytic in time (although they are analytic in x), as one can see from inspecting
the fundamental solution Γ(x, t) at t = 0 away from x = 0.
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We introduce the “local parabolic energy norm”

[|u|]R =

(
sup

−R2<t<0

∫
BR

|u(x, t)|2 dx+

∫ 0

−R2

∫
BR

|∇u(x, t)|2 dx dt
) 1

2

, (969)

where ∇ denotes the spatial gradient, as usual. (The time derivative is not
included in ∇.)
The parabolic version of the basic elliptic estimate (461) is the following:

[|u|]
R1

2 ≤ C

(R0 −R1)2

∫
QR0

|u|2 dx dt (970)

where R1 < R0. Once this estimate is proved, it can be applied to the spatial
derivatives of the equation, similarly to (462) in the elliptic case. Once we
control the spatial derivatives of u, we also control the time derivative from the
equation.

The proof of (970) is quite similar to the elliptic case. We take a cut-off func-
tion η with η = 1 in QR1 which is compactly supported in QR0 , with the
spatial gradients of the order 1/(R0 −R1) and the time derivative of the order
1/(R0 −R1)

2. We multiply (967) by u η2 and integrate over BR0 (for a given
time-level) We obtain

d

dt

∫
BR0

1

2
|u(x, t)|2η2 dx+

∫
BR0

|∇u(x, t)|2 η2 dx = (971)∫
BR0

(
2u2η ηt − 2η∇uu∇η

)
dx . (972)

We now estimate the second term in the integral on the right-hand side in the
same way as we estimated the right-hand side of (466) and end up with

d

dt

∫
BR0

1

2
|u(x, t)|2η2 dx+

1

2

∫
BR0

|∇u(x, t)|2 η2 dx ≤ (973)∫
BR0

(
2u2η ηt + 2u2|∇η|2

)
dx . (974)

Estimate (970) can now be obtained by integration over t. The main idea of this
calculation works for quite general equations of the form ut + Lu = f , except
that we have to write more terms. Also, by using the method from the last
lecture, the calculation is in fact valid also for the weak solutions.

We remark that if we only work with the heat equation, we do not have to use
the trick of multiplying with uη2. We can just multiply by uη and do one more
integration by parts in the term

∫
BR0
−u∇u∇η, to obtain a term

∫
BR0

1
2u

2∆η,

which gives the required estimate. However, for more general operators L we
may not have enough regularity to proceed this way, and the first approach is
probably the most natural way to proceed.
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Boundary regularity can also be approached via local energy estimates analogous
to (970), essentially following the ideas in the elliptic case (lecture 36). We
will not go into the details, but we should mention one additional issue which
comes up in the boundary regularity for the initial-boundary-value problems
such as (939). If the solution is smooth up to the boundary of Ω × (0, T ),
then obviously ut = 0 on the lateral boundary ∂Ω × (0, T ). By the equation
this means that also Lu = 0 on the lateral boundary. On the other hand, at
t = 0 we have to have ut(x, 0) = −Lu(x, 0) = −Lu0(x). This means that for
a solution to be smooth at t = 0, we must have Lu0(x) = 0 at ∂Ω. This is an
additional compatibility condition which is necessary for smoothness. Without
this condition the solution will not be smooth at t = 0 at ∂Ω, even if all the
data are smooth.
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Homework assignment 1

due Wednesday, March 23

Let L =
∑

|α|≤m aαD
α be a partial differential operator in Rn with constant

coefficients.

Decide which of the following statement are true:

1. If u is a smooth compactly supported function on Rn satisfying Lu = 0 in
Rn, then u ≡ 0.

2. If u is a compactly supported distribution in Rn satisfying Lu = 0 in Rn,
then u ≡ 0.

3. If u ∈ L1(Rn) such that Lu = 0 (in distributions) in Rn, then u ≡ 0.

4. If u ∈ L2(Rn) such that Lu = 0 (in distributions) in Rn, then u ≡ 0.

5∗. (Optional) If u ∈ Lp(Rn) for some p ∈ [1, 2], and Lu = 0 (in distributions)
in Rn then u ≡ 0. (Hint: when p ∈ [1, 2] we can write write f ∈ Lp(Rn) as a
sum of an L1-functions and an L2-function.)

6∗. (Optional) If u ∈ Lp(Rn) for some p ∈ [1,∞) and Lu = 0 (in distributions)
in Rn, then u ≡ 0. (Hint: consider the equation ∆u + a2u = 0 in R3, and
calculate a radially symmetric solution, either by solving an ODE, or by Fourier
transpformation.)
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Lecture 62, 3/7/2011

In lecture 6 we talked about the maximum principle, strong maximum principle,
and Harnack inequality for harmonic functions. Today we will talk about these
in the context of “caloric functions” - the solutions of the heat equation. We
will see that many of the arguments used for harmonic functions also work (with
some modifications) for caloric functions. As we have already seen, when dealing
with the heat equation, it is useful to introduce the parabolic balls

QR = BR × (−R2, 0] . (975)

For the balls centered at z = (x, t) ∈ Rn × (t1, t2) we use the notation

Qz,R = Bz,R × (t−R2, t] . (976)

We will also use the notation

∂parQz,R = Bx,R × {t−R2} ∪ ∂Bx,R × [t−R2, t] . (977)

For an open set Ω ⊂ Rn we will consider the parabolic cylinders Ω× (t1, t2]. We
define

∂par(Ω× (t1, t2]) = Ω× {t1} ∪ ∂Ω× [t1, t2] . (978)

The maximum principle is quite easy to generalize to caloric functions, and, in
fact, to the solutions of equation

ut − aij(x, t)uxixj + bi(x, t)uxi = ut + Lu = 0 (979)

with “sufficiently regular” coefficients aij(x, t), bi(x, t) satisfying the ellipticity
condition (924).

Lemma (Maximum Principle)

Let u be a C1
t C

2
x solution of (979) in a cylinder Q = Ω × (t1, t2] and assume u

is continuous up to the parabolic boundary ∂parQ. Then

sup
Q
u = sup

∂parQ
u . (980)

Proof
The proof is similar to proof 1 of the elliptic maximum principle in lecture 6.
If (980) fails, than it also fails for uε(x, t) = u(x, t) − εt for some small ε > 0.
Let z = (x, t) be a point of Q where uε attains its maximum. We note that z
cannot be at ∂parQ, due to our assumptions. This means that Luε(x, t) ≥ 0 226

uεt(x, t) ≥ 0, and therefore uεt(x, t)+Luε(x, t) ≥ 0. At the same time, we have
uεt + Lu = −ε < 0 everywhere in Q. This is a contradiction and the proof is
finished.

226See (572)
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Remark
The reader can easily check that we can replace cylinders Q by more general
space-time domains, if we are careful with the definition of the parabolic bound-
ary for such domains.

We have seen that the maximum principle for caloric function is the same as the
harmonic principle for the harmonic functions: roughly speaking, the maximum
is attained at the corresponding boundary. In this case the analogy between
caloric functions and harmonic functions is complete. However, this is not the
case when we consider the strong maximum principle. We recall from lecture
6 that the strong maximum principle for harmonic function implies that a har-
monic function h in a ball BR such that h ≤ h(x0) in BR for some x0 ∈ BR
must be constant. An analogous statement for caloric functions and parabolic
balls QR fails. To see that, let us consider a caloric function u in Q1 with the
boundary condition

u(x, t) = g(t), (x, t) ∈ ∂parQ1 , (981)

where g(t) = 1 for t ≤ − 1
2 and g(t) < 1 for t > −1

2 . (We note that when g is
smooth the corresponding initial-boundary-value problem is uniquely solvable
in the class of smooth functions by the existence and regularity theory discussed
in the last few lectures.) This corresponds to the situation when a body is at
a constant temperature u = 1 up to time t = −1

2 and then for times t > −1/2
we cool the boundary to a lower temperature g(t) < 1. The caloric function u
defined in this way in Q1 clearly satisfies u ≤ 1 in Q1 and u(z0) = 1 for many
interior points z0 ∈ Q1, but is not constant. The difference between the heat
equation and the laplace equation in this respect is that for the Laplace equation
(and any other elliptic equation) information about disturbances propagate in
all directions. On the other hand, for the heat equation this is not the case in
variable t. With respect to this variable all disturbances propagate only in one
direction: from an earlier time to a later time. What happens after t = t0 will
have no effect on what had happened before t = t0. The correct modification
of the strong maximum principle is as follows:

Theorem (Strong Maximum Principle)
Let u be a continuous solution of (979) in a cylinder Q = Ω × (t1, t2], where
Ω ⊂ Rn is open and connected. If u ≤ u(x, t2) in Q for some x ∈ Ω, then
u = u(x, t2) in Q.

This can be proved by using a parabolic version of the Hopf lemma from lec-
ture 41. We will not go into the details at this point. For the heat equation
ut −∆u = 0 the statement will follow from the representation formulae below.

We now turn to the parabolic Harnack inequality. The literal translation of the
Harnack inequality (46) for the harmonic functions to the case of the caloric
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function fails, by the same examples we used above to illustrate the failure of
the naive version of the strong maximum principle for caloric functions.227

We have seen in lecture 6 that the Harnack inequality for the harmonic functions
is a relatively easy consequence of the mean-value formula (40), together with
estimate (37). We have shown an analogue of (??) for caloric functions in
lecture 52, see (799). We will now discuss analogues of the mean-value property
for caloric functions.

Let u be a caloric function in the parabolic ball Q1. In analogy with the mean-
value formula for harmonic functions, we consider a representation formula

u(0, 0) =

∫
Q1

u(z)A(z) dz for each bounded caloric u in Q1, (982)

where A is a suitable function on Q1, the properties of which will be specified
more precisely as we proceed. The main requirements will be that A satisfy∫

Q1

A(z) dz = 1 , (983)

A ≥ ε(K) > 0 on any compact subset K of the interior of Q1. (984)

The existence of functions satisfying (982)– (984) may not be completely obvi-
ous, although we will see that it is not hard. For now we will take it for granted,
and will address the existence issue later.

Let us first look at some simple consequences of representation (982). We note
that we can scale to formula228 to apply to Qz,R :

u(z) =

∫
Qz,R

u(z′)AR(z
′ − z) dz′ , (985)

with

AR(z) =
1

Rn+2
A
( z
R

)
. (986)

The formula immediately implies the strong maximum principle, by an argument
similar to the one used for harmonic functions in lecture 6. Let u be caloric in
Q = Ω× (t1, t2) and let

M = sup
Q
u . (987)

Assume that
u(x, t2) =M (988)

227Recall that the Harnack inequality can be considered as a quantitative version of the strong
maximum principle, see lecture 6. Therefore the failure of the strong maximum principle
implies the failure of Harnack inequality.
228by parabolic scaling (x, t) → (λx, λ2t)
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for some x ∈ Ω. Let z = (x, t2) and let Qz,R ⊂ Q.
We have

M = u(z) =

∫
Qz,R

AR(z − z)u(z) dz ≤
∫
Qz,R

AR(z − z)M dz =M . (989)

We see that we have to have u = M everywhere in Qz,R in order for the
inequality not to be strict. Now we can repeat this argument with z replaced
by any point z1 of Qz,R. and Qz,R replaces by Qz1,R1 ⊂ Q. Assuming that Ω
is connected and iterating the procedure, it is not hard to see that u = M in
Q.229

Let us not turn to the Harnack inequality. Let Q = Ω × (t1, t2) be as above,
and let K1,K2 be two compact subsets of Q such that

K1 ⊂ Ω× (t3 + τ, t2],K2 ⊂ Ω× (t1, t3) , (990)

where
t1 < t3 < t3 + τ < t1 . (991)

Theorem (Harnack Inequality)
For each compact sets K1,K2 as above there exist c = c(Q,K1,K2) > 0 such
that for any caloric function u ≥ 0 in Q we have

inf
K1

u ≥ c sup
K2

u . (992)

Proof

The proof is quite similar to the proof of the Harnack inequality for harmonic
functions in lecture 6. Assuming the statement fails, we can find a sequence of
caloric functions un and points z1,n ∈ K1, z2,n ∈ K2 such that

• un(z2,n) = supK2
un = 1

• un(z1,n)→ 0

• z1,n → z1 ∈ K1

By replacing functions un by their small shift, enlarging K1,K2 slightly, while
shrinking Ω slightly, we can assume without loss of generality that in fact z1,n =
z1. Let Qz1,R ⊂ Q. We have

un(z1) =

∫
AR(z − z1)un(z) dz (993)

and since un ≥ 0, this means, due to (984), that un → 0 in L1(K) for any
compact subset K contained in the interior of Qz1,R. By estimate (798) this

229We leave the details of this argument to the reader as an exercise.
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means that un → 0 uniformly in K. We can now use this argument again with
z1 replaced by any z′ from the interior of a ball Qz′,R′ ⊂ Q to infer that un → 0
uniformly in any compact subset of the union of such balls Qz′,R′ . By repeatedly
using this same argument we see that un will converge to 0 uniformly in K2.
This contradicts un(z2,n) = 1, and the proof is finished.

It remains to establish the existence of the function A in (982) with the required
properties. Let us first consider a heuristic argument for its existence. (We will
comment later on what is necessary to make the argument rigorous.) We con-
sider a representation formula for caloric functions in Q1, somewhat similar to
the spherical mean value formula (39) for harmonic functions. Our considera-
tion are similar to those in lecture 53, see formulae (825), (826), and (828). Let
v be a solution of the problem

vt +∆v = 0 in Q1 , (994)

v(·, 0) = −δ , (995)

v|∂B1×[−1,0] = 0 . (996)

Note that (994) is a backward heat equation, which can be though of as the
usual hear equation with time going in the opposite direction. That is why the
initial condition is at t = 0. The existence of the solution v can be established
as follows. Denoting the standard heat kernel by Γ as usual, we note that the
backward heat kernel

Γb(x, t) = Γ(x,−t) (997)

satisfies (994) and (995). We can now seek v in the form

v = Γb + w (998)

and we get a boundary value problem for w of the form

wt +∆w = 0 in Q1 , (999)

w(·, 0) = 0 , (1000)

v|∂B1×[−1,0] = −Γb|∂B1×[−1,0] . (1001)

By our existence and regularity theory for the heat equation (which applies also
to the backward heat equation, modulo the obvious changes), the last problem
has a unique smooth solution, and therefore the existence of v is established.
By the maximum principle we have v ≥ 0 in Q1.

230

Assume that u is a caloric function in Q1, smooth up to the parabolic boundary.
We have

0 =

∫
B1×(−1,0)

u(vt +∆v) dx dt =

∫
B1

uv dx|t=0
t=−1 +

∫
∂B1×(−1,0)

u
∂v

∂ν
dx dt ,

(1002)

230We have v(0, 0) = +∞, which can still be considered as non-negative.
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and hence

u(0, 0) =

∫
B1

v(x,−1)u(x,−1) dx+

∫
∂B1×(−1,0)

−∂v
∂ν
u dx dt . (1003)

This can be thought of as

u(0, 0) =

∫
∂parQ1

u(z)a(z) dz , 231 (1004)

where a is function on ∂parQ1 which is smooth away from the set ∂B1 × {−1},
where it may have a discontinuity. The maximum principle implies that v ≥ 0 in
Q1 and therefore a ≥ 0. Formula (1004) can be thought of as a parabolic analogy
of the spherical mean value formula (39) for harmonic functions. Heuristically
one expects that a > 0, except possibly at B1 × {−1}, where we expect a to
be discontinuous, with limit 0 if we approach it from B1 × {−1}, and > 0 if we
approach it from the lateral boundary ∂B1×(−1, 0). All this can be established
rigorously if we use the parabolic version of Hopf’s lemma. Hopf’s lemma can
be considered as a slightly stronger version of the strong maximum principle,
but weaker than the Harnack inequality. The important point is that it can be
proved along similar lines as the elliptic version (lecture 41, (594)), and the proof
is independent of any representation formulae, using only the (weak) maximum
principle.
Once we have a formula of the form (1004), we can scale it to balls QR, by

u(0, 0) =

∫
∂parQR

u(x, t)
1

Rn+1
a(
x

R
,
t

R2
) dz =

∫
∂parQR

u(z)aR(z) dz . (1005)

Let us write this as

u(0, 0) =

∫
u(z) dµR(z) , (1006)

where µR is the measure supported at ∂parQR given by aR(z) dz . We can now

take a smooth function φ on (0, 1) which is positive everywhere, with
∫ 1

0
φ = 1,

average (1007) over R with respect to φ(R) dR. This gives

u(0, 0) =

∫
u(z)dµ(z) , µ =

∫ 1

0

µR φ(R) dR . (1007)

The measure µ is easily seen to be of the form A(z) dz with A ≥ 0 satisfying∫
A(z) dz = 1 and “almost” satisfying (984), but not quite – it may not be

bounded away from zero at the paraboloid {t = −|x|2}, due to the fact that
a(z) approaches 0 on the rim of the bottom part of the boundary of Q1. This
defect can be fixed easily, for example by additional averaging. We note that the
function Ã = A∗A (the space-time convolution) is supported in Q̃ = B2×(−2, 0)
and is continuous and strictly positive there. Moreover,

u(0, 0) =

∫
Q̃

u(z)Ã(z) dz (1008)

231We will slightly abuse notation by writing dz for the n−dimensional surface measure
on ∂parQ1.
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for each function u which is integrable and caloric in Q̃. It is easy to change Q̃
to Q1 in (1008): instead of starting the whole construction with Q1, we start
it with B 1

2
× (−1

2 , 0), and after going through the same procedure as above, we

obtain (1008) with Q̃ replaced by Q1.

The above procedure for constructing a representation formula of the form (982)
is quite natural, but it is not the simplest way to arrive at such a representa-
tion. Also, if we wish to prove the strong maximum principle via representation
formulae, we should not rely on it in the proof of the formulae. There is another
way to do the construction, in some sense a more elementary one, which we now
explain.232

We will first look at the formula (982) from a slightly different point of view.
Let V be given by

Vt +∆V = −δ(x, t) +A , V = 0 for t > 0, V (x, t)→ 0 as x→∞ for each t ,
(1009)

where the function A is extended by 0 outside Q1, and δ(x, t) is the space-time
Dirac mass at (x, t) = 0. We have

V = Γb − Γb ∗A . (1010)

We claim that the validity of (982) for any (integrable) u caloric in Q1 is equiv-
alent to

support V ⊂ Q1 . (1011)

In other words, the function A has to have a property analogous to the radial
distribution of mass in a ball in the case of the gravitational potential, which we
noticed in lecture 1: away from the support of the ball the potential is exactly
the same as if we were looking at all the mass concentrated at the center of the
ball. The meaning of (1011) is the same: outside of Q1 the (backward) “heat
potential” of A is exactly is same as if all the sources were moved to the origin
(x, t) = (0, 0).
To see that (982) and (1011) are equivalent, we first notice that (1011) easily
implies (982) by simple integration by parts. On the other hand, if the support
of V is not contained in Q1 we consider a smooth f supported in a compact
disjoint with Q1, such that

∫
V f dx dt ̸= 0. We set u = Γ ∗ f , where Γ is the

(forward) heat kernel. Then u is caloric in Q1 and we have

0 ̸=
∫
fV =

∫
(ut −∆u)V =

∫
u(−Vt −∆V ) =

∫
u(δ −A) , (1012)

showing that (982) fails for this particular u, which is caloric in a neighborhood
of Q1.

232See also L.C.Evans’s textbook Partial Differential Equations
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We see that one way to come up with formulae of the type (982) is to consider
functions V of the form

V = Γb −W , (1013)

where W = Γb outside Q1. We have

Vt +∆V = δ − (Wt +∆W ) (1014)

and setting
A =Wt +∆W (1015)

we obtain (1010) and (1011), and hence also (982). Of course, if we wish to
have A ≥ 0, the function W has to satisfy additional conditions.
It is natural to try to seek W in the form

W = F (Γb) , (1016)

where F (s) = s for s ≤ s0 and F is smooth, bounded, with F (k)(s) → 0 as
s → ∞ for k = 1, 2, ... Assuming W is as in (1016) with F satisfying these
restrictions, we calculate

Wt +∆W = F ′′(Γb)|∇Γb|2 . 233 (1017)

The right-hand side of (1017) is easily evaluated using

F ′′(Γb)|∇Γb|2 = F ′′(Γb)Γ
2
b |∇ log Γb|2 = F ′′(Γb)Γ

2
b |
|x|2

4t2
. (1018)

It is easy to see that we can take F defined by

F (s) = s, s ≤ s0, F ′′(s) = −s0
s2
, s > s0 , F ′ continuous . (1019)

Let us define

QR = {Γb ≥
1

Rn
} . (1020)

Defining FR by the construction of F above with s0 = 1
Rn , and WR = FR(Γb),

we see that the function VR = Γb −WR is supported in QQR and satisfies

VR t +∆VR = −δ + |x|2

4t2Rn
χQR

, (1021)

where χQR denotes the characteristic function of the ball QR. This gives the
representation formula

u(0, 0) =
1

Rn

∫
QR

u(x, t)
|x|2

4t2
dx dt , (1022)

233Formally we have Wt +∆W = F ′(Γb)(Γb t +∆Γb)+F ′′(Γb)|∇Γb|2. We have Γb t +∆Γ =
−δ(x, t), and since F ′(s) → 0 as s→ ∞, we see that we should take −F ′(Γb) δ = 0 .
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for caloric functions u integrable in QR. which can be found in the textbook
“Partial Differential Equations” by L. C. Evans. Different choices of F will lead
to different formulae, but (1022) seems to be the simplest choice.

Note that the derivation of (1022) is explicit and does not rely on any properties
of general caloric functions, such as the strong maximum principle (not even the
maximum principle).

The representation (1022) is, for a suitable R, of the form (982), except that
assumption (984) is not quite satisfied. There will be areas of Q1 where A will
vanish. However, this can be fixed easily by additional averaging. For example,
one can proceed as follows. In the formula

u(0, 0) =

∫
u(z)A(z) dz (1023)

we can express each u(z) as

u(z) =

∫
u(z1)AR(z)(z1 − z) dz1, (1024)

where

AR(z
′) =

1

Rn+2
A

(
x′

R
,
t′

R2

)
. (1025)

The function R = R(z) in (1024) is, say, continuous and non-negative, and such
that the balls z1 +QR(z1) stay inside Q1. Letting A

(1)(z1) =
∫
A(z)AR(z)(z1 −

z) dz, we see that we can replace A by A(1) in (1023). This way the support of
A can be enlarged in a more flexible way that just by using the scaling A→ AR.
We can clearly achieve that A(1) ≥ ε = ε(z1) in some parabolic neighborhood
of any point in z1 +QR1 with z1 ∈ QR and R1 such that z1 +QR1 ⊂ Q1. This
procedure can now be repeated with A replaced by A(1) to obtain A(2), then
A(3), etc. An important point is that the tangent plane to the boundary of
QR at z = 0 is the plane t = 0 in Rn × R. This is why we can “travel” almost
parallel to the planes t = const when extending the support of A using the above
procedure. From the above argument we get that for each compact K ⊂ Q1

there exists representation AK of the form (1023) with A replaced by AK , with
supportAK being contained in the interior of Q1 and AK ≥ ε = ε(K) > 0 on
K. We can then take a sequence

K1 ⊂ K2 ⊂ ... ⊂ interior Q1 , ∪kKk = interior Q1, (1026)

and define

A =

∞∑
j=1

2−jAKj , (1027)

which will have the required properties. This finished the proof of the represen-
tation (982) with A satisfying (983) and (984) .
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It is also possible to prove both the strong maximum principle and the Harnack
inequality by working with the balls Qz,R and formula (1022) in the proofs, and
essentially using the same approach as we did when working with Qz,R.

It is perhaps worth mentioning an analogy of (1004) in the context of the balls
QR. We expect a representation of the form

u(0, 0) =

∫
∂QR

u(z)a(z) dz , (1028)

where dz denotes the n−dimensional surface measure on ∂QR. The explicit
from of a can be determined by using (1018) with

F (s) = max{s, s0} , s0 =
1

Rn
. (1029)

Then
F ′′(s) = −δ(s− s0) (1030)

and
F ′′(Γb) = −δ(Γb − s0) . (1031)

In general, if f : Rm → R is a function which is smooth in a neighborhood of
{f = 0}, and ∇f ̸= 0 at {f = 0} we have

δ(f) =
1

|∇f |
Hm−1|{f=0} , (1032)

where Hm−1|{f=0} denotes the restriction of the (m− 1)-dimensional Hausdorff
measure to the surface {f = 0}.234 From (1031) and (1018) we obtain that
in (1028) we should take

a(z) =
|∇Γb|2

(Γ2
b t + |∇Γb|2)

1
2

. (1033)

The calculation of this expression can be simplified by using

|∇Γb|2

(Γ2
b t + |∇Γb|2)

1
2

= Γb
|∇ log Γb|2

(((log Γb)t)2 + |∇ log Γb|2)
1
2

. (1034)

Note that expressions for the derivatives of log Γb are quite simple, and it is not
hard to carry out the differentiations in (1034) to obtain an explicit formula.
We leave the calcualtion to the interested reader as an exercise. (Note that
Γb = 1

Rn on the set relevant for the calculation, and |x| and t are related
through Γb(x, t) =

1
Rn .)

234Justifying this formula is a good exercise.
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Lecture 63, 3/21/2011

We have covered in some detail the scalar elliptic and parabolic equations of sec-
ond order. We have already mentioned earlier that the variational methods we
have used (i. e. the methods based on the Lax-Milgram lemma/energy estimates
for elliptic equations and Galerkin approximations/parabolic energy estimates
for parabolic equations) work also for more general classes of elliptic/parabolic
equation. There are some new issues which appear in this context, which we
will discuss today.

One special feature of the scalar elliptic/parabolic equations of the second order
is the maximum principle and related deeper properties of the solutions. When
we go to more general classes of elliptic/parabolic equations, the maximum
principle is often no longer valid for the solutions (although in some special
cases one may perhaps find certain quantities constructed from the solution
which do satisfy the maximum principle).

There is another issue which has to be addressed: what is the correct “ellipticity
condition”? So far our basic assumption in the context of elliptic/parabolic
equations was

aijξiξj ≥ ν|ξ|2 , (1035)

see e. g. lecture 30 (455)and lecture 57 (924). This condition was crucial for
practically all results. So far we have not really discussed its necessity, but it is
probably fair to say that the condition is “almost necessary”. 235 In the context
of more general classes of equations, we need look at the ellipticity condition in
more detail.

Let consider the following situation. Let Ω ⊂ Rn be a bounded domain, and
consider functions

u : Ω→ Rm (1036)

defined on Ω. We will write

u = (u1, . . . , um) , (1037)

using latin upper indices for the components of u. The points of Ω will be
denoted by

x = (x1, . . . , xn) = {xα}nα=1 , (1038)

with greek upper indices, which will be more convenient in the current context.
The gradient ∇u of such a function can be identified with a m× n matrix

∇u = {uk,α} =
{
∂uk

∂xα

}
, k = 1, . . . ,m, α = 1, . . . , n . (1039)

235It can be weakened in some situations (if we adjust the corresponding results) to allow
for some degeneracies, in the sense that we can allow ν = ν(x) with ν(x) approaching zero
along some exceptional set. A precise study of this can get quite difficult and technical, and
we will not consider these questions here.
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The set of all m× n matrices will be denoted by Mm×n. The matrices will be
denoted by X, or Xk

α (which can mean both the matrix and its coordinates).

The space of functions u : Ω→ Rm such that each component of u is in H1
0 (Ω)

will still be denoted by H1
0 (Ω), or – if we wish to emphasize we are dealing with

vector-valued function – by H1
0 (Ω,Rm).

Let us now consider a quadratic form on Mm×n given by

X → Q(X) = aαβkl X
l
βX

k
α . (1040)

We wish to determine under which conditions the form

u→
∫
Ω

Q(∇u) =
∫
Ω

aαβkl u
l
,βu

k
,α dx (1041)

is coercive on H1
0 (Ω) in the sense that∫
Ω

Q(∇u) dx ≥ ν
∫
Ω

|∇u|2 dx , u ∈ H1
0 (Ω) , (1042)

for some ν > 0. For now we assume that the coefficients aαβkl are constant,
independent of x.
An obvious sufficient condition is that

Q(X) ≥ ν|X|2 , X ∈Mm×n , (1043)

which is what we have assumed in the scalar case, corresponding to m = 1. In
this case one can in fact assume that aαβkl depend on X, and (1042) is trivially
true. In the scalar case (m = 1) condition (1043) is also necessary for (1042),
and this is also true when n = 1 (for any m).236 However, for n ≥ 2,m ≥ 2
condition (1043) is no longer necessary, as the following example shows.

Example
Consider m = n = 2 and

Q(X) = ν|X|2 + κdetX . (1044)

Exercise:
Show that when n = m = 2, we have∫

Ω

det(∇u(x)) dx = 0 , u ∈ H1
0 (Ω) . (1045)

Hint: use det∇u = (u1u2,2),1 − (u1u2,1),2. Note that (1045) also has a clear
geometric meaning.

236You can try to find a simple proof of these facts. It is not hard, but it requires an idea
which might not be obvious if you see such things for the first time. We prove below a more
general statement.
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We see from (1045) that Q given by (1044) will satisfy (1042) for any κ. Gor
sufficiently large κ the pointwise condition (1043) is obviously not satisfied.

Theorem
In the notation above, the coercivity condition (1042) is satisfied if and only if

Q(X) ≥ ν|X|2, Xk
α = ξαλ

k, ξ ∈ Rn, λ = (λ1, . . . , λm) ∈ Rm. 237

(1046)

In other words, Q(X) ≥ ν|X|2 is only required to hold for very special matrices:
the matrices X with rankX = 1. In the previous example, we have detX = 0
for any rank-one matrix X, and therefore form (1044) satisfies (1046).

Proof of the theorem
We can extend any u ∈ H1

0 (Ω) by u = 0 outside Ω and consider it as an element
of H1

0 (Rn). Clearly
∫
Ω
Q(∇u) =

∫
Rn Q(∇u). Using Plancherel’s formula (493),

we see that∫
Rn

Q(∇u) dx =
1

(2π)n

∫
Rn

aαβkl (iξαû
k(ξ))(iξβûl(ξ)) dξ ≥ (1047)

1

(2π)n

∫
Rn

ν|ξ|2|û(ξ)|2 dξ =
∫
Rn

ν|∇u(x)|2 dx . (1048)

We gave used that we can assume aαβkl = aβαlk . Then for each ξ the matrix

ãkl = aαβkl ξαξβ is symmetric, and for any complex vector zk = λk+ iµk, where λ
and µ are real vectors, we have ãklz

kzl = ãkl(λ
kλl+µkµl), giving the pointwise

inequality between the integrants of the last integral of (1047) and the fist
integral of (1048). This shows that (1046) is sufficient.
To see that it is also necessary, let us assume that for some ξ ∈ Rn, |ξ| = 1

and λ ∈ Rm, |λ| = 1 we have aαβkl ξαξβλ
kλl < ν. Let f(t) = sin(t), let ψ be a

non-negative compactly supported function compactly in Ω with
∫
ψ2 = 1 and

consider

ukκ(x) =
1

κ
f(κ ξ · x)ψ(x)λ . (1049)

Then

ukκ,α(x) = f ′(κ ξ · x)ψξαλk +O(
1

κ
), κ→∞ . (1050)

We have ∫
Ω

|∇uκ(x)|2 dx =
1

2
+O(

1

κ
) , κ→∞ . (1051)

On the other hand, we also have∫
Ω

aαβkl u
l
κ,βu

k
κ,α =

1

2
aαβkl ξαξβλ

kλl +O(
1

κ
) , κ→∞ . (1052)

237Note that here λk means the k−the component of the vector λ, and not the k−th power
of a scalar λ.
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Taking κ sufficiently large, we see that∫
Ω

ν|∇uκ(x)|2 dx >
∫
Ω

aαβkl u
l
κ,βu

k
κ,α dx , κ sufficiently large. (1053)

This finishes the proof of the theorem.

Remarks

(i) Note that the statement of the theorem gives some information even if m = 1
or n = 1. In particular, it shows that the assumption aijξiξj ≥ ν|ξ|2 we have
used in the scalar case is necessary for coercivity.

(ii) In the proof it was important that the coefficients aαβkl are constant (=inde-

pendent of x). In general, when aαβkl depend on x the form
∫
Ω
aαβkl (x)u

l
κ,βu

k
κ,α

may no longer be coercive, even though the condition (1046) is satisfied at each
point x. One can nevertheless prove the following statement

Theorem (a special case of G̊arding’s inequality)

Assume the coefficients aαβkl (x) are uniformly continuous in Ω and that (1046)
is satisfied. Then there exists κ > 0 such that for each u ∈ H1

0 (Ω) we have∫
Ω

(
aαβkl (x)u

l
,βu

k
,α + κ|u|2

)
dx ≥

∫
Ω

ν

2
|∇u|2 . (1054)

We will omit the proof of this theorem, which is based on dividing Ω into small
pieces on which aαβkl (x) are nearly constant, using a suitable partition of unity.

The assumption that aαβkl (x) be continuous is important, the result fails if we

only assume that aαβkl (x) are bounded measurable and satisfy (1046), unless
n = 1 or m = 1.

It should be emphasized that condition (1046) gives coercivity only on the space
H1

0 (Ω). If we allow the functions u to be non-zero even on a small part of the
boundary, the coercivity may be lost and a stronger assumption than (1046)
(but still weaker than (1043)) has to be imposed. We will not discuss these
issues in more detail.238 We will restrict our attention to an important special
case: Lamé’s equations of linear elasticity, which we will discuss next time.

238For a more detailed discussion we refer the reader to two well-known papers of Agmon,
Douglis, and Nirenberg on interior and boundary regularity of solutions of general elliptic
systems.
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Lecture 64, 3/23/2011

An important example of a linear elliptic system where the strict uniform con-
vexity condition (1043) is not satisfied is represented by the equations of linear
elasticity. Let us briefly recall the set-up.239

We consider a body occupying a region Ω ⊂ Rn. Assumes the body undergoes
a deformation ϕ : Ω→ Rn. The map ϕ is assumed to be a (sufficiently regular)
orientation-preserving homeomorphism of Ω onto some other domain Ω̃. The
equations satisfied by the deformation ϕ can in many cases be derived from a
variational principle. We assume that we can associate to the deformation ϕ an
elastic energy, which can be expressed as

E(ϕ) =
∫
Ω

W (∇ϕ(x)) dx (1055)

or perhaps

E(ϕ) =
∫
Ω

W (x,∇ϕ(x)) dx . (1056)

The notation is the following: at each x ∈ Ω the gradient ∇ϕ(x) is considered as
an n×n matrix. The set of all n×n matrices is denoted byMn×n. The function
W is usually called the stored energy function, and in in context of (1055) the
quantity W (X) represents the energy which is necessary to deform a unit cube
of the material by the matrix X. In (1056) the material is not homogeneous
and its properties depend on x and W (x, ·) describes the material at the point
x. In our discussion we will mostly consider (1055), but most of it also applies
to (1056).
We assume that W ≥ 0, with W (I) = 0, where I denotes the identity matrix.
Moreover, W should obviously satisfy

W (RX) =W (X), R ∈ SO(n), (the special orthogonal group). (1057)

As W is considered only for X with detX > 0, this means that W depends on
X only through the symmetric matrix XtX, where Xt denotes the transpose of
X. Note that of ϕ is a diffeomorphism of Ω and Ω̃, then the symmetric matrix
∇ϕt∇ϕ represents the pull-back of the euclidian metric from Ω̃ into Ω. It is
natural that the elastic energy should depend only on this metric.

The above set-up represents the elasticity of “finite deformations”, and the
mathematical issues related to it are quite difficult, with many fundamental
questions remaining unresolved.

For situations when the deformation is only a small deviation from identity
(which should be, for example, most “civil engineering” structures, such as
buildings, bridges, etc.), it is reasonable to linearize the theory. We we write
ϕ(x) = x+ u(x) where u is the displacement vector. We have ∇ϕ(x) = I +∇u,
239A good text on linear elasticity is for example the book The Theory of Ellasticity by
Landau and Lifschitz.
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it is often reasonable to assume that ∇u is small.240 We then consider the
function F (Y ) =W (I+Y ). We note that F ≥ 0 and DF (0) = 0. Therefore the
first non-zero term in the Taylor expansion of F is the quadratic term. Since
W depends on X only through XtX, the function F must depend on Y only
through Y + Y t + Y tY . Since F (0) = 0 and DF (0) = 0, the quadratic part of
F can depend of Y only through Y + Y t. The symmetric matrix 1

2 (Y + Y t)
is called the (linearized) strain tensor corresponding to Y . The quadratic part
of F must be a quadratic from of of the strain tensor. Hence for the quadratic
part Q of F at 0 we have

Q(Y ) = Q̃(
1

2
(Y + Y t)) . (1058)

Given a displacement vector u : Ω→ Rn, the (linear) strain tensor corresponding
to u is defined by

eij = eij(u) =
1

2
(ui,j + uj,i) . (1059)

In the linear theory the elastic energy will be give by a positive-definite quadratic
form of eij

Elin(u) =
∫
Ω

1

2
cijkleijekl dx , eij given by (1059) , (1060)

where cijkl = cjikl = cklij , and the coercivity condition

1

2
cijkleijekl ≥ ν|e|2 (1061)

is satisfied for some ν > 0, where |e|2 = eijeij (with summation over repeated
indices). As an exercise you can check that in dimension n = 3 the quadratic
form (1059) is determined by 21 coefficients. Symmetries can reduce the number
of parameters which is needed to characterize a material, but, in general, one
indeed needs 21 different parameters to describe real materials in this context.
When the material is isotropic, e. g. its properties are independent of direction,
the number of parameters reduces to only two. As an exercise, show that the
isotropy can be characterized by the condition

Q̃(RSRt)) = Q̃(S), S ∈Mn×n is symmetric, R ∈ SO(n) , (1062)

where Q̃ is as in (1058). Moreover all such Q̃ are given by

Q̃(S) = µ|S|2 + λ

2
(TrS)2 . (1063)

Hence a linear, homogeneous, isotropic material is described by

Elin(u) =
∫
Ω

µ|e|2 + λ

2
(ekk)

2 (summation over repeated indices). (1064)

240There is also a slightly more general theory in which we assume that ∇ϕ is close to SO(n),
although not necessarily close to I. For example a long thin rod is a good example where this
modification would be relevant.
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Note that the integrand is a convex quadratic function of ∇u, but it is degener-
ate, in the sense that it vanishes on some non-trivial subspace (antisymmetric
matrices). Hence (1043) cannot be satisfied. For materials which are isotropic
but not homogeneous, the coefficients µ and λ can depend on x. The quadratic
functional satisfies the ellipticity condition (1046), as one can easily verify di-
rectly. In fact, for (1064) the coercivity in H1

0 (Ω) (in the constant coefficient
case) can be proved directly, by simple integration by parts, without the need
to use Fourier transformation For u ∈ H1

0 (Ω) we have∫
Ω

eijeij =

∫
Ω

1

2
(ui,jui,j + ui,juj,i) =

∫
Ω

1

2
(ui,jui,j + ui,iuj,j) . (1065)

Therefore, for constant µ, λ (independent of x), and u ∈ H1
0 (Ω) we have

Elin(u) =
∫
Ω

1

2
µ|∇u|2 + 1

2
(µ+ λ)(div u)2 , (1066)

which is uniformly convex in ∇u. It should be emphasized that this form of
the functional is only good for Dirichlet boundary conditions. If parts of the
boundary are “free” minimizing (1066) can give the wrong boundary condition.
The situation is similar to example (1044): we can add to the integrand in (1064)
a suitable combinationM(∇u) of 2×2 sub-determinants of the matrix∇u which
will make it uniformly convex. We also emphasize that this is possible only when
the coefficients µ and λ are constant.
The Euler-Lagrange equations corresponding functional

Elin(u) =
∫
Ω

µ|e|2 + λ

2
(ekk)

2 − uf(x) dx (1067)

and (with constant µ, λ) also to∫
Ω

1

2
µ|∇u|2 + 1

2
(µ+ λ)(div u)2 − uf(x) dx (1068)

(again with constant µ, λ are

−µ∆u− (µ+ λ)∇div u = f(x) . (1069)

When we minimize of H1
0 (Ω) the boundary condition is of course u|∂Ω = 0. The

system (1069) is known as Lamé’s system, or Lamé’s equations. It describes
small deformation of a homogeneous isotropic materials. For non-homogenous,
non-isotropic materials one works with (1060) with cijkl depending on x. The
corresponding Euler-Lagrange equations are

−τij,j = fi(x) , τij = cijklekl , (summation over repeated indices) (1070)

The (symmetric) matrix τij is called the stress tensor, and it represents tensions
in the material. It is an important quantity, as in general design should be such
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that the stresses do not exceed some limits which are considered safe for a given
material.

When the coefficients are not constant, or the boundary conditions are not
Dirichlet, the coercivity of the elastic energy Elin is harder to prove. The main
result in this area is Korn’s inequality. We will not go into details, but we at
least formulate the following result.

Theorem (a special case of Korn’s inequality)
Let Ω be a bounded domain with a Lipschitz continuous boundary. Let Γ1 ⊂ Γ =
∂Ω be a set of positive measure, and let

X =W 1,2
Γ1

= {u ∈W 1,2(Ω,Rn) , u|Γ1 = 0}. (1071)

There exists ν > 0 such that∫
Ω

|e(u)|2 dx ≥ ν||u||2W 1,2 , u ∈ X . (1072)

We will not go into the proof.241 However, as an exercise which illustrates some
of the issues involved, you can consider a special case. Note that the inequality
implies that if u ∈ X and e(u) = 0, then u = 0. Try to prove this directly!

It is clear from this example that in the vector-valued case the question of
coercivity of general quadratic forms (1041) on subspaces ofW 1,2(Ω) which are
larger than H1

0 (Ω), such as for example the space W 1,2
Γ1

(Ω,Rn) above, can be
quite non-trivial, which is what we aimed to illustrate.

Finally, we should at least mention the general definition of ellipticity for (sys-
tems of) PDEs with constant coefficients. Let Ω ⊂ Rn and consider functions
u : Ω → Rk. For such functions we consider constant coefficient operators L of
the form

Lu =
∑

|α|≤m

Aα(−i∂)αu , (1073)

where Aα are n× k matrices. The principal part of L is

Lmu =
∑

|α|=m

Aα(−i∂)αu . (1074)

The symbol of the operator L is

L(ξ) =
∑

|α|≤m

Aαξ
α , (1075)

241For modern development concerning Korn’s inequalities we refer the reader to the paper
Friesecke, Gero; James, Richard D.; Müller, Stefan A theorem on geometric rigidity and the
derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl.
Math. 55 (2002), no. 11, 1461-1506.
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where, as usual, ξα = ξα1
1 . . . ξαn

n .
By definition, the operator L is elliptic if the symbol Lm(ξ) of its principal
part satisfies the condition that the matrix Lm(ξ) (the principal symbol) is non-
singular (in the sense that its kernel is trivial) whenever ξ ̸= 0.
This class of operators is quite general and cannot be covered by the methods
we used, via the quadratic forms and the Lax-Milgram lemma. Nevertheless,
solutions of Lu = 0 still have nice properties. For example, they are analytic.
The discussion of the correct boundary condition and boundary regularity is
quite non-trivial. These topics are covered in the well-known paper by Agmon,
Douglis, and Nirenberg mentioned earlier.242

A good reference for the class of operators which can treated via the varia-
tional methods (including the equations of linear elasticity and the Korn in-
equality) is the book Les méthodes directes en théorie des équations elliptiques
by J. Nečas.243

242Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. I. Comm. Pure Appl.
Math. 12 1959 623727.

Agmon, S.; Douglis, A.; Nirenberg, L. Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions. II. Comm. Pure Appl.
Math. 17 1964 3592.
243An English edition of the book by Springer is expected to appear soon.
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Lecture 65, 3/25/2011

Today we start discussing dispersive equations. The behavior of the solutions of
these equations can be quite different from what we have seen so far for elliptic
and parabolic equations. Roughly speaking, one can say that the solutions of
the elliptic and parabolic equations try to become as constant as possible, at
least as far as small scales (or high Fourier frequencies) are concerned. Fast
oscillations in the solutions are suppressed, and there is a smoothing effect.
Energy is “damped”, at least for high frequencies. Regularity is typically a
local phenomenon, at least in the linear case and smooth coefficients. Also,
the parabolic equation are usually ill-posed for evolution in the opposite time-
direction.

On the other hand, dispersive equations typically conserve energy, tend to dis-
play periodic behavior unless energy can escape, and possible smoothing effects
cannot be attributed to damping, but to “dispersion”, which means, roughly
speaking, that waves of different frequencies travel at different speeds. More-
over, the “arrow of time” is not important: well-posedness in one direction of
time typically gives also well-posedness in the opposite direction.

We will start by studying a particular examples of a dispersive equations, the
Schödinger equation. As far as classical PDEs are concerned, it is a relatively
new equation, written down by E. Schrödinger around 1926.244

The unknown function in the Schrödinger equation is a complex valued function
u = u(x, t) defined for x ∈ Rn and t in some time interval (t1, t2) (which can be
taken to be R). The variable x can also be restricted to some domain Ω ⊂ Rn,
in which case a boundary condition should be imposed on ∂Ω. For now we will
concentrate on the case Ω = Rn.
The equation is

iut +∆u = 0 . 245 (1076)

The meaning of the function u is not as easy to interpret in comparison what
we have seen for other equations we have studied so far, where the solution

244For comparison, let us recall the dates for other equations:
wave equation: 1747 (d’Alembert),
Euler’s equations for ideal incompressible fluids: 1757,
Laplace’s equation: 1784;
heat equation: 1807 (J. Fourier),
Navier-Stokes equations: 1820s-1840s,
Maxwell’s equations: 1860s.

245This is the simplest “non-dimensionalized” form of the equation, in which units are chosen
so that the coefficients come out in a simples possible way, and the quantum particle is “free”
(no forces). The classical form of the equations, incorporating potential forces, is

i~
∂

∂t
ψ = −

~2

2m
∆ψ + V (x)ψ ,

where ~ is the Planck constant/2π , m is the mass of the particle, and V is the potential
describing forces acting on the particle.
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has a clear intuitive meaning. In fact, after the discovery of the equation in
1926 it took some time before most physicists agreed on what u(x, t) really
represents.246 According to the now standard view proposed by Max Born,
the function u should be viewed as “probability amplitude”247 (which can be
complex valued) and the function uu = |u|2 should be viewed as probability
density.248

The situation we have here is somewhat different to what we have seen with
the Laplace equation or the heat equation. For these equations the heuristic
meaning of the solution was more or less clear, and we could use it to make
some good guesses about what solutions do. With the Schrödinger equation we
will proceed differently. We will try to understand the equation directly from
various formulae, relying only partially on the notion that it should describe
some kind of waves, which however can exhibit quite different behavior from, say,
electromagnetic waves or acoustic waves. After we have seen enough examples
of how solutions behave, we will be able to start to understand how solutions
behave even without doing calculations. 249

We should note that Schrödinger equation appears not only in the context of
Quantum Mechanics, but also in more classical situations. For example, some
limiting regimes of 3d incompressible Euler’s equations lead to (non-linear)
Schrödinger equation (as well as other dispersive equations). Also, propagation
of light in fiber optics cables is described by (non-linear) Schrödinger equation.
The equation has some universal features typical for situations where dispersion
of waves plays an important rôle.250

We will start our mathematical investigation by calculating the fundamental
solution of equation (1076) in Rn ×R. (It should be mentioned already at this
point that the fundamental solutions in Ω×R for a bounded Ω ⊂ Rn and natural
boundary conditions on ∂Ω behave very differently.)

We will make use of our calculation of the fundamental solution of the heat
equation in lecture 51. Let us write the heat equation in a slightly more general
form

ut − a∆u = 0 . (1077)

Using the notation Γ(x, t) for the fundamental solution (775) of the heat equa-
tion, it is easy to check that for any real a > 0 the fundamental solution

246See Max Born’s 1954 Nobel lecture for an account of this, it available online at
http://nobelprize.org/nobel prizes/physics/laureates/1954/born-lecture.pdf

247If you have not seen this term before, you can just ignore it for now.
248Interestingly enough, Schrödinger did not seem to be quite happy with this interpretation
– see M. Born’s lecture mentioned above.
249The process of learning Quantum Mechanics is in some sense similar. “Everyday expe-
rience” does not provide good heuristics about the quantum world, and can in fact be quite
unhelpful in this context.
250One might think that, for example, the interpretation in terms of some limiting regimes
of incompressible flows might be helpful for developing heuristics about the solution. This
only true up to a degree, as behavior of incompressible fluids can be quite counter-intuitive.

262



of (1077), given by

ut − a∆u = δ(x, t) , u ∈ S ′(Rn × R) (1078)

is given by the function
Γa(x, t) = Γ(x, at) . (1079)

We write out the explicit expression for the reader’s convenience

Γa(x, t) =

{
1

(4πat)
n
2
e−

|x|2
4at t > 0 ,

0 t < 0 .
(1080)

It is not hard to check that this formula works also form complex a as long as
Re a > 0. The properties of Γa are quite similar to the properties of the heat ker-
nel in this case.251 This can also be seen in terms of the Fourier transformation.
As in lecture 51, taking the Fourier transformation of (1078) gives

û(ξ, τ) =
1

iτ + a|ξ|2
, (1081)

which is a well-defined distribution when Re a > 0. (It is also well-defined
when Re a < 0, with a = −1 corresponding to the fundamental solution of the
backward heat equation (780).)

For a = i equation (1078) is the equation the fundamental solution of the
Schrödinger equation (1076) .252 In what follows we will focus on this form of
the Schrödinger equation. What happens if we take a = i in the above formulae?

Formula (1080) for a = i gives a smooth, well defined function for t > 0, and
there is no problem checking that the function will satisfy

ut − i∆u = 0 , t > 0 . (1082)

However, the formula (1081) for û(ξ, τ) becomes ambiguous, as the function

1

i(τ + |ξ|2)
(1083)

is not locally integrable and the equation

i(τ + |ξ|2)û = 1 (1084)

does not determine the solutions uniquely.
The situation is similar to the simpler case of the equation in R

d

dt
v = δ(t) , (1085)

251There is an additional feature of some oscillation caused by the imaginary part of a, which
however does not change the qualitative properties of the function, such as the smoothness
away from the origin.
252modulo an unimportant multiple of i
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or
iτ v̂ = 1 , (1086)

which we of course know how to solve. The solutions are of the form

v(t) = θ(t) + const. , (1087)

where θ is the Heaviside function (see lecture 45, (644)).
The constant in (1087) reflect the fact that the solution of (1086) is not unique
in the class of tempered distributions. If v̂ satisfies (1086), then v̂ + cδ also
satisfies (1086). The situation with (1084) is similar, and in some sense we have
the ambiguity of (1087) for each ξ. The solution û(ξ, τ) is given as a distribution
only modulo the solutions of i(τ + |ξ|2)û(ξ) = 0, such as for example measures
supported on the surface {τ+|ξ|2 = 0}. The ambiguity is removed if we demand
that u = 0 for t < 0.

We expect that the limit
Γi = lim

a→ i
Re a > 0

Γa , (1088)

(which obviously vanishes for t < 0), should give the solution of (1078) for a = i.
This is indeed the case, but we have to address the following issues

(i) Is Γi a well defined distribution in Rn × R? Note that this is obvious only
for n = 1, when Γi is a locally integrable function. For general n we have

|Γi(x, t)| =
1

|4πt|n2
, t > 0 , (1089)

and this function is not locally integrable for n ≥ 2.

(ii) Do we have ∂tΓi − i∆Γi = δ in the sense of distributions?

We can also ask the following closely related question:

(iii) If u0(x) is a sufficiently regular integrable function on Rn and we define

u(x, t) =

∫
Rn

Γi(x− y, t)u0(y) dy , 253 t > 0 , (1090)

do we have
u(x, t)→ u0(x) , t→ 0, t > 0 ? (1091)

These questions are somewhat more difficult than the corresponding questions
for the heat equation (or the kernel Γa with Re a > 0), due to the fact that
Γi(x, t) is not integrable in x and in fact does not decay as x→∞.

253Note that for t > 0 this is a well-defined function which is smooth if, say, u0(x) is smooth
and compactly supported (or, more generally, belongs to the Schwartz class S (Rn).)
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The main argument can be seen from the following calculations. For simplicity
we first do the calculations for n = 1.

Let us consider a function φ : R→ C which is “sufficiently regular” and decays
“sufficiently fast” as x→∞. Let us estimate the integral

I(at) =

∫
R
e−

x2

4atφ(x) dx . (1092)

as t → 0+ and a close to i, with Re a ≥ 0. Let us first assume that φ vanishes
in a neighborhood of x = 0. When this is the case and, moreover, Re a > 0,
then as t → 0+ the integral I(at) approaches zero exponentially fast, simply

due to the fast decay of e−
x2

4at . However, the rate of decay depends on Re a and
this argument cannot be used for a = i. For a = i there is decay as t → 0+,
but not due to the point-wise decay of the integrand. The reason for the decay

will be in cancelations in the integral due to the oscillatory nature of e−
|x|2
4it . A

standard way to capture the cancelations is to use integration by parts.254 We
have

e−
|x|2
4at = −2at

x

∂

∂x
e−

|x|2
4at , (1093)

and integration by parts in (1092) gives

I(at) = 2at

∫
R
e−

|x|2
4at

∂

∂x

φ(x)

x
dx . (1094)

Denoting by D̃ the operator φ→ ∂
∂x

φ(x)
x , we see that

I(at) = (2at)k
∫
R
e−

|x|2
4at D̃kφ(x) dx . (1095)

We see that if φ is supported away from x = 0, then for each integrable derivative
of φ we can increase the rate of decay of the integral to zero as t→ 0+ by one
power of t. The integral (1095) is also well-defined and finite when φ has zero
of order 2k at x = 0, and hence in this case I(at) will still decay as tk (when
Re a ≥ 0 and t→ 0+).

What about functions φ which do not vanish at 0? For that we note that every
smooth φ can be written as

φ = φ̃+ P (x)e−
|x|2
2 , (1096)

where φ̃ has zero of order l at x = 0, and P is a polynomial of order l. The
integral ∫

R
e−

|x|2
4at P (x)e−

x2

2 dx (1097)

254See for example L. Hörmander’s book The Analysis of Linear Partial Differential Operators
I, Section 3.3.
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can be evaluated explicitly. First, using
∫
R e

− x2

2κ dx =
√
2πκ we see that for

λ > 0, t > 0, and Re a ≥ 0 we have∫
R
e−

x2

4at e−λ
x2

2 dx =

∫
R
e−

x2(1+2λat)
4at =

√
4πat

1 + 2λat
. (1098)

Taking derivatives in λ at λ = 1 we can evaluate (1097) for P (x) = x2k, while
the integrals with P (x) = x2k+1 clearly vanish. We obtain∫
R
e−

|x|2
4at P (x)e−

x2

2 dx =
√
4πat (P (0)+ b1t+ · · ·+ blt

l+O(tl+1)) , t→ 0+ ,

(1099)
where bj are suitable constants depending on P and a. The exact form of bj will
not be important.255 Putting (1095), (1096) and (1099) together we see that∫

R
e−

|x|2
4at φ(x) dx =

√
4πat (φ(0)+ b̃1t+ · · ·+ b̃lt

l+ o(tl)) , t→ 0+ , (1100)

for suitable b̃1, . . . , b̃l, when φ has continuous and integrable derivatives of order
2l.256 With these calculations, and their variants for n > 1 it is not hard to
check that the answers to questions (i)–(iii) above is positive and that Γi indeed
represents a fundamental solution for (1076), and (1090) gives a solution of the
initial-value problems ut − i∆u = 0, u(x, 0) = u0(x), for t > 0, at least when
u0 is sufficiently regular with sufficiently fact decay to ∞. We will look at the
case n > 1 next time.

Remarks

1. The calculation above is a special case of calculations with oscillatory integrals
of the first kind, see E.M.Stein’s book “Harmonic Analysis” (1993), Chapter
VIII, for more details.

2. The in the Fourier variables (ξ, τ), of û(ξ, τ) defined by (1081) for a = i+ ε
(with ε > 0) is similar to approximating the solution v̂ of (1086) by

v̂ε =
1

iτ + ε
(1101)

and letting ε → 0+. This corresponds to taking the fundamental solution
of (1085) as the limit of fundamental solutions of

d

dt
v + εv = δ(t) , ε > 0, (1102)

which, unlike the solution of (1085) is uniquely determined in the class of tem-
pered distributions. It will be supported in {t ≥ 0}. If we take ε→ 0− in (1101),

255Note however that the power series on the right-had side cannot be convergent, as it
clearly cannot converge for t < 0.
256These assumptions can be somewhat weakened. When we really need is the decomposi-
tion (1096) where D̃kφ̃ is integrable for k ≤ l.
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we obtain a fundamental solution of (1085) which is supported in {t ≤ 0}. This
also corresponds to taking ε < 0 in (1102). Quite similarly, we take a = i − ε,
ε > 0 in (1081), we obtain another fundamental solution Γ̃i of the Schrödinger
equation, which will be supported in {t ≤ 0}. That solution is related to the
fundamental solution of the backward heat equation in the same way the solu-
tion Γi above is related to the solution of the forward heat equation, and one
has

Γ̃i(x, t) =

{
− 1

(4πit)
n
2
e−

|x|2
4it t < 0 ,

0 t > 0 .
(1103)

The difference
K(x, t) = Γi(x, t)− Γ̃i(x, t) (1104)

is also of interest. It is a distribution satisfying

Kt − i∆K = 0 in Rn × R (1105)

and
K(x, t)→ δ(x) in S ′(Rn) as t→ 0. (1106)

The Fourier transform of K is the surface measure on {τ + |ξ|2 = 0} which
projects on the standard Lebesgue measure in Rn under the projection (ξ, τ)→ ξ.

The kernel K can also be arrived at in another way. Assume we wish to solve

ut − i∆u = 0 in Rn × R , (1107)

with the initial condition u(x, 0) = u0(x). Taking Fourier transform in x only,
the equations decomposes into a family of one-dimensional ODEs for û(ξ, t),

ût(ξ, t) + i|ξ|2û(ξ, t) = 0 , (1108)

with initial condition û(ξ, 0) = û0(ξ). The solution is

û(ξ, t) = u0(ξ)e
−i|ξ|2t , t ∈ R . (1109)

Taking the inverse Fourier transform, we obtain

u(x, t) =
1

(2π)n

∫
Rn

û0(ξ)e
iξx−i|ξ|2t dξ . (1110)

For u0 = δ, we have û0 = 1 and – at least formally – the integral (1110) then
expresses the inverse Fourier transformation of the above described measure on
the surface {τ + |ξ|2 = 0}.
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Lecture 66, 3/28/2011

Today we will look at the situations for n > 1 with questions (i)–(iii) we dealt
with last time for n = 1.

Let us first recall the following formula, which follows from (483) and (484).

̂
e−

|x|2
2a = (2πa)

n
2 e−

a|ξ|2
2 . (1111)

Strictly speaking, the calculations in lecture 34 show this only when a is real. In
that case we must have a > 0, so that the functions represent tempered distri-
butions. For complex a the functions in (1111) represent tempered distribution
if and only if Re a ≥ 0, and it is not hard to check that the formula remains
valid for such a. This includes the case a = i (or more generally, a = σi for real
σ ̸= 0). In particular, taking ξ = 0 and a = 2it we obtain∫

Rn

e−
|x|2
4it = (4πit)

n
2 , t ̸= 0 . (1112)

This integral is of course not absolutely convergent, but we can regularize it, for
example by adding e−ε|x|

2

to the integrand and taking ε→ 0+ or by integrating
over the balls BR and taking R → ∞. Taking n = 1 and t = 1

4 we obtain the
well-known identities for the so-called Fresnel integrals257∫

R
cosx2 dx =

∫
R
sinx2 dx =

√
π

2
. (1113)

Returning the the fundamental solution Γi from the last lecture, we see from (1112)
that, with proper interpretation,∫

Rn

Γi(x, t) dx = 1 , (1114)

similar to what we have for the heat kernel.258 The kernel Γi also has the same
scale invariance as the heat kernel:

Γi(x, t) = t−
n
2 Γi(

x√
t
, 1) (1115)

So we see that the functions

Γi(t) = Γi(·, t) (1116)

should for t → 0+ in some sense approach the Dirac mass, if we can verify
that outside of the origin the oscillations give us enough cancelation so that

257See also http://en.wikipedia.org/wiki/Fresnel integral
258That this should be true can also be seen by integrating (1078) over x.
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Γi(t)→ 0 in Rn \ {0} in distributions when t→ 0+. To prove this, as well as to
show that the asnwer to questions (i)–(iii) from the last lecture is positive, we
will use integration by parts in a way similar to the case n = 1 we considered
last time.

Let us start by estimating the integral

I(at) =

∫
Rn

e−
|x|2
4at φ(x) dx, a ̸= 0, Re a ≥ 0, t > 0 , (1117)

where φ is sufficiently regular (with sufficiently fast decay). The exact require-
ments will be determined in the course of the calculation. As in the case n = 1,
we use integration by parts to capture the cancelations coming from the oscil-
lations of the integrand. We have

e−
|x|2
4at = −2at x

|x|2
∇e−

|x|2
4at . (1118)

We define an operator D̃ by

D̃φ = div

(
x

|x|2
φ

)
. (1119)

Using (1118), and integration by parts, we can write, at least formally

I(at) = 2at

∫
Rn

e−
|x|2
4at D̃φ dx .. (1120)

Under which assumptions is this formal identity valid?

The reader can verify the following statement as an exercise:
If f is a bounded function in Rn with bounded derivatives and v = (v1, . . . , vn)
is an integrable vector field with integrable div v, then

∫
Rn −v∇f =

∫
Rn f div v .

From this we see that a sufficient condition for validity of (1120) is that φ
|x| and

D̃φ are both integrable. The procedure can be continued: if φ
|x| ,

D̃φ
|x| , . . . ,

D̃k−1φ
|x| , D̃kφ

are integrable, then

I(at) = (2at)k
∫
Rn

e−
|x|2
4at D̃kφdx . (1121)

For a general sufficiently smooth φ can now proceed in a way similar to the case
n = 1 from the last lecture. Assume for simplicity that φ ∈ S (Rn). We write

φ = φ̃+ P (x)e−
|x|2
2 , (1122)

where P is a polynomial of order 2l and φ̃ has zero of order 2l at x = 0. Then

I(at) =

∫
Rn

e−
|x|2
4at P (x)e−

|x|2
2 dx+ o(tl) , t→ 0+ . (1123)
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The last integral can be written as a product of one-dimensional integrals which
were evaluated in the previous lecture, see (1098) and (1099). Putting things
together, we obtain

I(at) = (4πat)(φ(0) + b1t+ . . . blt
l + o(tl)) . (1124)

Although we will not need it in what follows, it is worth noting that (1121)
could be used even for the evaluation of the leading term. For example, when
n = 2 and k = 1, we have

D̃φ = div(∇ log |x|φ(x)) = 2πδ(x)φ(0) + (∇ log |x|)∇φ , (1125)

and we see that we obtain the leading term in (1124) directly.

Relation (1124) easily implies that the answer to the equations (i)–(iii) from the
previous lecture is positive. For example, let us check that Γi is a well-defined
distribution. Let φ(x, t) be a compactly supported function of Rn×R. We wish
to show that the integral ∫

Rn×R
Γi(x, t)φ(x, t) dx dt (1126)

is well-defined, for example in the sense of (1088). This is an easy consequence
of (1124), as (1124) implies that the expression∫ ∞

0

∫
Rn

Γa(x, t)φ(x, t) dx dt (1127)

converges as a→ i, Re a > 0 to∫ ∞

0

(∫
Rn

Γi(x, t)φ(x, t) dx

)
dt (1128)

which is well defined, as the inner integral is a bounded function of t by (1124).

Positive answer to question (iii) (previous lecture) is a direct consequence of (1124).

Positive answer to question (ii) (previous lecture) follows from the identities∫
R

∫
Rn

Γ1(−φt − i∆φ) = lim
t1→0+

∫ ∞

t1

∫
Rn

Γi(x, t)(−φt − i∆φ) dx dt (1129)

and∫ ∞

t1

∫
Rn

Γi(x, t)(−φt − i∆φ) dx dt =
∫
Rn

Γi(x, t1)φ(x, t1) dx t1 > 0 , (1130)

where φ ∈ D(Rn × R). By (1124), the last integral converges to φ(0, 0) as
t1 → 0. (This is another example of Duhamel’s principle, discussed in lecture
53 for the heat equation.)
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We can also look at these calculations in the Fourier picture. For example let
φ be a sufficiently regular initial datum and let

u(x, t) =

∫
Rn

Γi(x− y, t)φ(y) dy , t > 0. (1131)

We also have, e. g. by (1111)

u(x, t) =
1

(2π)n

∫
Rn

φ̂(ξ)eiξx−i|ξ|
2t dξ , t > 0. (1132)

If the Fourier transform φ̂ is integrable, then we see from the Lebesgue Dom-
inated Convergence Theorem that(1132) in fact defines a continuous function
in Rn × R, with u(x, 0) = φ(x) (and satisfying (1076) in Rn × R in distribu-
tion).259 This is another way of showing that the answer to question (iii) from
the previous lecture is positive. The positive answer to (i) and (ii) can also be
verified via the Fourier transformation.

In the considerations above we did not try to obtain minimal regularity condi-
tions under which the various expressions converge to the right limits. Questions
such as what are the minimal assumptions on φ which still give u(x, t)→ φ(x)
for each x (or for almost every x) when t→ 0 can be quite difficult.260

259The extension to Rn × R can also be written an u(x, t) =
∫
Rn K(x − y, t)φ(y) dy, where

K is given by (1104).
260See, for example, the paper “Schrödinger equations: pointwise convergence to the initial
data” by L. Vega, Proceedings of AMS, Vol. 102, No. 4, 1988.
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Lecture 67, 3/30/2011

Today we will discuss some examples of solutions of the Schrödinger equation

ut − i∆u = 0 in Rn (1133)

with the initial condition261

u(x, 0) = u0(x) . (1134)

We will use the the representation through the kernel K defined by (1104)

u(x, t) =

∫
Rn

K(x− y, t)u0(y) dy , (1135)

which is equivalent to the Fourier representation

u(x, t) =
1

(2π)n

∫
Rn

û0(ξ)e
iξx−i|ξ|2t dξ . (1136)

We assume at this point that u0 is “sufficiently regular”. This can be inter-
preted in various ways, depending on which phenomenon we wish to illustrate.
Typically we will assume that u0 has a certain number of derivatives which are
integrable.

We have not yet addressed the the question to what degree the solutions are
unique. This will be addressed later. For now we will discuss the properties of
the solutions given by the representation formulae (1135) or (1136).

Although formally the formulae are very similar to corresponding formulae for
the heat equation, there are some important differences in the properties of
the solutions. Let us take for example u0(x) to be compactly supported, with
continuous derivatives up to some fixed order l, which is large enough for the
formulae to work, but still finite. We can assume that ∇l+1u0 is discontinuous.
Under these assumptions it is easy to see from (1135) that u will be smooth
(and, in fact, analytic) in the Rn × (0,∞) and Rn × (−∞, 0). We can now take
the same solution but think about t = −1 as the initial time. Then u should
still be a solution for this shifted initial-value problem. This may be somewhat
less obvious than it looks as we define the solution of the initial-value problem
by representation formulae, as the integral in the expected formula

u(x,−1 + s) =

∫
K(x− y, s)u(y,−1) dy (1137)

is may not be absolutely convergent. Let us nevertheless ignore this issue for
now, and assume that u(x, t) gives the right evolution from u(x,−1). The
evolution from the locally smooth (and bounded) function u(x,−1) will result

261We use this terminology even though the solution is also defined for negative t.
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at time t = 0 in the non-smooth function u0(0). This is completely different
from what we have for the heat equation. We have to be cautious with some
certain formal manipulations with the representation (1137), such as taking
derivatives in x.

Let us now look at some more specific examples of the solutions.

Example 1

Let u0 to be a smooth, radially symmetric, compactly supported in the unit
ball, with u0 ≥ 0 and u(0) ∼ 1, |∇u0| ≤ 2, and the growth of supx |∇ku0(x))|
with k as slow as possible for what is consistent with these assumptions. How
does u(x, t) behave? Looking at the representation formula (1134), we expect
that

• For small times, |t| ≤ t1 with, say, t1 ∼ 0.1, the solution will change only
slightly. The solution cannot have compact support for any t ̸= 0, and
will have a small (and decaying) oscillatory “tail” for large x, but for the
most part it will stay quite close to u0 in this range of t. In some sense,
we can say that not much happens for |t| ≤ t1.

• For t ∼ 1, there will be change of order 1, both for the size of the region
where the bulk of the solution is supported, as well as in the profile of u.
The change has to be consistent with the conservation laws∫

Rn

|∇ku(x, t)|2 dx =

∫
Rn

|∇ku0(x)|2 dx , (1138)

which will be discussed in some detail later. These are easily seen from
example from the Fourier representation (1136), but it is not hard to
derive them also in the “physical space” (the variable x) by integration by
parts. The solution will again have an oscillating, small amplitude “tail”
for large x, although the oscillation at the same x will be slower (but with
larger amplitude)

• For large t the solution will be pointwise small, with slow oscillations in x
for moderate x. The oscillations will be becoming faster and the amplitude
smaller as |x| → ∞. Again, the changes have to be consistent with (1138).

We can in fact illustrate this with an explicit formula. The reader can check
easily that the function

v(x, t) =
1

(1 + 2it)
n
2
e−

|x|2
2(1+2it) (1139)

solves (1133) and

v0(x) = e
−|x|2

2 . (1140)

Of course, v0 is not really compactly supported, but the solution still gives a
good illustration of the above described behavior.
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Example 2

Let us now take a small ε > 0 and consider the initial data

uε0(x) = u0(εx) . (1141)

The corresponding solution will be

uε(x, t) = u(εx, ε2t) , (1142)

where u is the solution from Example 1. Here we use the fact that (1133) has
the same scaling symmetry as the heat equation, see (769). The properties of
uε can be read off from the properties of u. What will be important for us is
that for the solution uε “not much happens” for times t with |t| ≤ t1

ε2 . For very
small ε and times |t| ≤ 1

ε2−δ nearly nothing happens. (Of course, there is still
some activity, but the amplitude of the resulting changes is very small. A first
impression of an observer would probably be that the solution is constant in
that time interval, and only after having a closer look she would notice that this
is not quite true.) This is consistent with the fact that the function

u ≡ const. (1143)

is an exact solution of (1133), and the solutions uε approach (1143) with const. =
u0(0) as ε→ 0+.

We will now use the simple solutions uε above and the symmetries of the equa-
tion to generate more interesting solutions.

Example 3

We will use the following non-trivial symmetry of equation (1133). If u(x, t) is
a solution and b ∈ Rn, then

ub(x, t) = u(x− bt, t)eix b
2−i

|b|2
4 t (1144)

is again a solution. This symmetry is related to the invariance of descrip-
tion of a classical particle under the Galilean transformations - the changes
(x, t)→ (x− bt, t) of the coordinate system. We see from this symmetry that

– modulo uniqueness issues – multiplying initial condition u0 by ei
b
2x results in

the change of the solution u(x, t) corresponding to u0 to u
b(x, t) given by (1144).

This transformation is sometimes referred to as a Galilean boost.

Let us apply this transformation to the solutions uε from example 1. The initial
data will be ubε0(x) = uε0(x) e

i b2x. This can be interpreted as a “wave packet”

– the slowly changing function uε0 is modulated by the oscillations of ei
b
2x. The

time evolution of the wave packet is quite simple: for times t with |t| ≤ t1
ε2 the

main feature of the evolution is translation at speed b. During the translation
the wave packet is slowly disintegrating - it “radiates away” small disturbances,
and gradually loses some “mass” and focus, but it takes time of order t1

ε2 before

274



these effects accumulate to a significant change. After times significantly longer
that 1

ε2 the wave packet will completely disintegrate.

If we now take general initial data u0, we can write them as a linear combination
of suitable wave packets. For example we can take a smooth partition of unity
ϕk(ξ) is the Fourier coordinate ξ such that the size support of ϕk is of order ε and
write u0 =

∑
k u0k with u0k being the inverse Fourier transform of û0ϕk. The

solution will decompose as u =
∑
uk, where the evolution of uk is the evolution

of u0k. Each solution uk will for while look like a wave packet, and the wave
packets with different frequencies will move at different speeds. This produces
the dispersion. The high-frequency wave packets will move out very fast, with
speed proportional to the frequency. This explains the smoothing effect of the
evolution when the initial data are, say, compactly supported. The part of the
function responsible for the possible singularities is in the high frequencies, and
therefore it will move away. It can however also work in the opposite direction:
for initial data which are locally smooth, but with increasing oscillations as
x→∞, the high-frequency wave packets can arrive quickly from far away and
if they are coordinated in exactly the right way, they can produce a non-smooth
function.
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Lecture 68, 4/1/2011

Last time we looked at the “wave packets” for the Schrödinger equation. The
notion of a wave packet can be considered for more general equations. For
example, let P (ξ) be a real polynomial in the Fourier coordinate ξ ∈ Rn. Then
the operation

u(x)→ inverse Fourier transform of P (ξ)û(ξ) (1145)

corresponds to the the differential operator L = P (−i∂) and the functions

u(x, t) =
1

(2π)n

∫
Rn

û0(ξ)e
i(ξx−P (ξ)t) dx (1146)

formally solve
ut + iLu = 0, u(x, 0) = u0(x) . (1147)

Note that if u0 ∈ S (Rn), then u(x, t) is is smooth and well-defined in Rn × R,
and equations (1147) are satisfied poitwise. If we assume û0 ∈ L1(Rn), the
function is still well-defined pointwise, satisfies the second equation of (1147)
pointwise, and the first equation in the sense of distributions. In the physics
literature the notation often is

u(x, t) =
1

(2π)n

∫
Rn

û0(ξ)e
i(ξx−ω(ξ)t) dx . (1148)

The relation between ξ and ω is called the dispersion relation. It expresses the
angular frequency ω of the plane wave ei(ξx−ωt) in terms of the wave vector ξ.
For equations of the form (1147) the dispersion relation is given by a polynomial,
but there are important situations where the relation is given by a more general
function.262

The notion of the wave packet discussed in the last lecture in the context of
the Schrödinger equation generalizes to the situation described by (1148). This
formula can also produce distinctive wave packets traveling at a quite well-
defined speed for a relatively long time, before they disperse. Let us consider
a smooth non-zero function û0(ξ) supported near some fixed ξ0, say, in the
interval (ξ0− ε

2 , ξ
0+ ε

2 ) for some small ε > 0. For ξ0 = 0 the function u0 will be
a slowly varying function in the Schwartz class S (Rn). For ξ0 ̸= 0 we can think

of u0 as a slowly varying function modulated by eiξ
0x. This is our initial wave

packet. (Recall that the shift f̂(ξ)→ f̂(ξ − ξ0) on the Fourier side corresponds

to f(x)→ f(x)eiξ
0x in the x – variable.) We can say that the frequency of the

wave packet is approximately ξ0, but at the same time we should keep in mind
that there is some ambiguity in ξ0 as the function û0 is not supported at one
point. If we wish to have our wave packet localized in space, it cannot have a
sharply defined frequency.263

262For example, for the wave equation utt − ∆u = 0, which we will study in some detail
later, we have two “admissible” frequencies ω for each ξ, given by ω+ = |ξ| and ω− = −|ξ|.
263This is related to the Uncertainly Principle.

276



We will now consider the time evolution of the wave packet u0, with û0 as above,
over times which are quite smaller than 1

ε2 . We assume that ω(ξ) is a smooth
function of ξ. For ξ close to ξ0 we have

ω(ξ) = ω(ξ0) +∇ω(ξ0)(ξ − ξ0) +O(|ξ − ξ0|2) . (1149)

On the support of u0 we have

|ξ − ξ0|2 ≤ ε2 , (1150)

and hence for t << 1
ε2 we can write

ω(ξ)t = ω(ξ0) +∇ω(ξ0)(ξ − ξ0) t+ o(1), ξ ∈ support û0(ξ) . (1151)

We see that for t << 1
ε2 formula (1148) gives

u(x, t) ≈ eiγ(ξ
0)t

(2π)n

∫
Rn

û0(ξ)e
iξ(x−∇ω(ξ0) t) dξ = eiγ(ξ

0)t u0(x−∇ω(ξ0)t) , (1152)

where γ(ξ0) = ω(ξ0)−∇ω(ξ0)ξ0. We see that the main feature of the evolution of
the wave packet is its translation at speed ∇ω(ξ0). There is also the modulation

by eiγ(ξ
0)t but note that this factor is constant in x and therefore it does not

really significantly change the properties of u(x, t) viewed for a fixed t as a
function of x.

Our conclusion therefore is that, modulo some error terms and before disinte-
gration, the wave packets of frequency ξ move at speed ∇ω(ξ). The velocity
∇ω(ξ) of the wave packets is called the group velocity of the waves.

For example, for the equation

ut = uxxx, x ∈ R, t ∈ R (1153)

(sometimes called the Airy equation) we have ω(ξ) = ξ3, and therefore the wave
packets of frequency ξ move at speed 3ξ2 (before disintegrating).

It is important to keep in mind that – except in some special cases – the wave
packets are typically losing their focus during the evolution and eventually will
disperse. The special cases where this does not happen include the linear trans-
port equation ut+a∇u = 0, describing the translation of the function u at speed
a (in any dimension), the one-dimensional wave equation utt − uxx = 0 (which
we will be studying in some detail later) or more general hyperbolic systems in
1 + 1 dimension.
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Lecture 69, 4/3/2011

Let us consider the initial value problem

ut − i∆u = 0 , (x, t) ∈ Rn × R ,
u(x, 0) = u0(x) , x ∈ Rn . (1154)

Let us at first assume that u0 ∈ S (Rn). We have seen in lecture 67 that the
solution can be given by Fourier representation formula

u(x, t) =
1

(2π)n

∫
Rn

û0(ξ)e
iξx−i|ξ|2t dξ , (1155)

which can also be written as

û(ξ, t) = û0(ξ)e
−i|ξ|2t . (1156)

It is transparent that

|û(ξ, t)|2 = |û0(ξ)|2 , t ∈ R (1157)

and hence for each s ∈ R∫
Rn

|û(ξ, t)|2|ξ|2s dξ =
∫
Rn

|û0(ξ)|2|ξ|2s dξ , t ∈ R . (1158)

Taking s = 0 and using Plancherel’s formula (493), we see that∫
Rn

|u(x, t)|2 dx =

∫
Rn

|u0(x)|2 dx , t ∈ R . (1159)

Taking s = k, and using also (480), we obtain∫
Rn

|∇ku(x, t)|2 dx =

∫
Rn

|∇ku0(x)|2 dx, k = 0, 1, 2, . . . , t ∈ R , (1160)

or, for general s ∈ R,

||u(t)||Hs(Rn) = ||u0||Hs(Rn) , t ∈ R . (1161)

We see that the evolution given by the Schrödinger equation preserves L2−
Sobolev regularity of the initial data. This should be contrasted with other
notion of smoothness, such as, say, the property that u0 is smooth and bounded,
which is not preserved by the evolution.

So far we have assumed that u0 ∈ S (Rn). If we have, say, u0 ∈ L2(Rn),
formula (1155) still gives a well-defined function u ∈ C(R, L2(Rn)), the space
of functions u in Rn × R such that t→ u(·, t) is continuous from R to L2(Rn).
The function u will satisfy ut − i∆u in distributions. All this can be also seen
by approximations: when u0 ∈ L2(Rn), we can take a sequence uk0 ∈ S (Rn)
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converging to u0 in L2(Rn). The corresponding sequence of solutions uk will
obviously be a Cauchy sequence in C(R, L2(Rn)), and hence will have a limit
u this space, which solves the equation in distributions and satisfies u(x, 0) =
u0(x) (as L

2-functions). The same considerations work when L2(Rn) is replaced
by Hs(Rn).

It is important to note that all the above conclusions were made under the as-
sumption that the solutions or their approximations are given by (1155). Note
that we did not prove that, for example, any distributional solution of ut−i∆u =
0 in Rn × R which is in C(R, L2(Rn)) satisfies ||u(t)||L2(Rn) = ||u(0)||L2(Rn).
Equivalently, we have not really proved that solutions the initial-value prob-
lem (1154) are unique in the class C(R, L2(Rn)). We will prove a uniqueness
result below.

Most of the above can also been seen by calculation in the physical space,
without using the Fourier transformation. For that we note that the equation
ut − i∆u = 0 implies that

∂t(uu) = utu+ uut = i(u∆u− u∆u) = i∂k(uu,k − uu,k) . (1162)

The vector
qk = −i(uu,k − uu,k) (1163)

is real and if we write u = Aeiϕ with A, ϕ real (functions of (x, t)) we have

q = 2∇ϕ uu , (1164)

and we can write

(uu)t + div q = (uu)t + div (2∇ϕ uu) = 0 . (1165)

Equation (1165) describes the transport of the “density” uu by the “velocity
field” 2∇ϕ. 264 Note that all this is consistent with the picture of a wave packet
of frequency ξ moving at speed 2ξ. 265

Let φ be a smooth compactly supported function with φ(0) = 0. Letting
φε(x) = φ(εx) we obtain from (1165)∫

Rn

φε|u(x, t2)|2 dx =

∫
Rn

φε|u(x, t1)|2 +
∫ t2

t1

∫
Rn

q∇φε dx dt , (1166)

and if the last integral on the right-hand side converges to 0 whan ε→ 0+, we
obtain the conservation law (1159). A straightforward sufficient condition for
having

lim
ε→+

∫ t2

t1

∫
Rn

q∇φε dx dt = 0 (1167)

264The classical equation of continuity describing the evolution of density ρ(x, t) of some
substance moving with the flow given by a velocity field v(x, t) is ρt + div(vρ) = 0. We will
discuss transport equations in more detail later in the course.
265If we write the equation as iut +

1
2
∆u = 0 the term 2∇ϕ in (1164) will be replaced by

∇ϕ.
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is u ∈ L2(t1, t2;H
1(Rn)) as the reader can easily verify. As a consequence we

have the following statement:

If u ∈ L2(t1, t2;H
1(Rn)) solves ut − i∆u = 0 in distributions in Rn × (t1, t2),

then u ∈ C([t1, t2], L2(Rn)) and
∫
Rn |u(x, t)|2 dx is constant in t.

It is a good exercise to prove this results with all details - it is not hard, but
one has to be careful.

Note that the result implies uniqueness for (1154) in the class L2(t1, t2,H
1(Rn)),

and therefore the solution is given by the representation formula (1155) (assum-
ing that 0 ∈ [t1, t2]). From this one can infer that in fact u ∈ C([t1, t2], L2(Rn)).

We now prove a more general uniqueness result.

Theorem
Assume that u ∈ S ′(Rn× (t1, t2)) satisfies ut− i∆u = 0 in distributions. Then
(i) For each t ∈ [t1, t2] the distribution u(·, t) is well-defined and
(ii) If u(x, t) = 0 for some t ∈ [t1, t2], then u ≡ 0.

Proof:
The main idea is to use solutions of the dual equation as test functions. This is
an important and quite general method in linear PDEs, going back at least to
the proof of Holmgen’s Uniqueness Theorem around 1900.266 We have already
seen an example of this method in lecture 53, when we proved the uniqueness
for the heat equation under quite general assumptions.

Let us consider a standard mollifier ϕε in space-time Rn × R. Assume for
simplicity that ϕε(x, t) = ϕε(−x,−t) and let uε = u ∗ ϕε. (We have defined
this convolution for distributions in lecture 45.) Let v(x, t) be a solution of
the dual equation vt + i∆v = 0 with v(x, t0) = φ(x) for some t0 ∈ (t1, t2) and
φ ∈ S (Rn). Let η(t) be a smooth compactly supported function in (t1, t2).
The function vη belongs to S (Rn × (t1, t2)). The necessary fast decay in x
can be inferred for example from the representation formula (1135), using the
calculations in lecture 66.267 By our assumptions, we have∫

uv(η′(t)) dx dt =

∫
u[(vη)t + i∆(vη)] dx dt = 0 , (1168)

and the same is true for uε. For uε, which is locally a smooth function, it is
admissible to take formally η = η1 which is smooth except for a jump at t = t0
and satisfies for a suitable small τ > 0

η1 = 0, t ∈ (t1, t0), η1 = 1, t ∈ [t0, t0 + τ), η1 = 0, t ∈ (t2 − τ, t2) . (1169)

We obtain ∫
Rn

uε(x, t0)φ(x) dx =

∫ t2

t1

∫
Rn

uεv θ dx dt , (1170)

266We have not discussed this topic yet in this course.
267Alternatively, one can use the Fourier representation (1155) together with rules Fourier
Transform rules from lecture 34 and the Sobolev Imbedding Theorem, also lecture 34.

280



where θ is a smooth function compactly supported in (t0, t2) (and θ = η′1 in
(t0, t2)). As in (640) we can put the convolution in the last integral on vθ and
obtain ∫

Rn

uε(x, t0)φ(x) dx =

∫ t2

t1

∫
Rn

u(v θ)ε dx dt . (1171)

Now if ε → 0+, then (vθ)ε → vθ in S (Rn × (t1, t2) and hence the integral on
the right-hand side of (1171) converges to ⟨u, vθ⟩, which we will also write as∫ t2
t1

∫
Rn uv θ dx dt . Therefore the left-hand side of (1071) also converges as ε→

0+, and will slightly abuse notation by using the notation
∫
Rn u(x, t0)φ(x) dx for

the limit. For a general u ∈ S ′(Rn × (t1, t2) this expression is not well-defined,
but in our case we have shown that it can be naturally defined by∫

Rn

u(x, t0)φ(x) dx =

∫ t2

t1

∫
Rn

uvθ dx dt . (1172)

Recalling the definition of v above, we see that v depends not only on φ, but
also on t0. We will therefore write v = vt0 when we wish to emphasize the
dependence on t0. Using this notation, we have∫

Rn

u(x, t0)φ(x) dx =

∫ t2

t1

∫
Rn

uvt0θ dx dt . (1173)

We would like to conclude that right-hand side of this identity is uniformly
continuous in t0 even for t0 → t1, t0 > t1. Strictly speaking, this depends on
how exactly we define S (Rn × (t1, t2)) and its dual. We have not discussed
this point yet, as we take the obvious definition: consider the usual definition of
S (Rn×R and define S (Rn× (t1, t2)) by using the same norms for functions on
Rn× (t1, t2). With this definition the continuity of the right-hand side of (1173)
in t0 is easily checked. Similar arguments can also be used close to t2, if we
work in the opposite time direction. This proves statement (i) of the theorem.
Once we know that the left-hand side of (1173) is well-defined and continuous
in t0, we can formally use the characteristic function of t0, t (if t0 < t) as a test
function and obtain∫

Rn

u(x, t0)φ(x) dx =

∫
Rn

u(x, t) vt0(x, t) dx . (1174)

If u(·, t) = 0, we see that the left-hand side also have to vanish. Since we can
choose both t0 and φ we see that u ≡ 0, and the proof is finished.
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Lecture 70, 4/5/2011

So far we have studied the Schrödinger equation for “free particles”, when there
is no force acting in the particle. Let us now assume the particle moves in a force
field given by a potential V (such as the electric potential), so that Newton’s
law of motion for a classical particle is

ẍ = −∇V (x) in suitable units. (1175)

As proposed by Schrödinger, the equation describing a quantum particle in the
potential field V is, in suitable units,

iut +
1

2
∆u− V u = 0 . (1176)

Here and in the rest of this lecture we will keep the factor 1
2 in front of the

laplacian, as this form of the equation is more convenient for comparisons with
classical formulae for a newtonian particle.

Schrödinger noticed that equation (1175) is contained in (1176) as a certain
limiting case. Ever since 1926 this has of course been a standard part of courses
on quantum mechanics, and the correspondence between (1175) and (1176) has
been also studied by mathematicians in depth. However, if one sees these topics
for the first time, the connection of (1175) to (1176) may not be immediately
obvious. We will get to this topic soon, but for now let us mention some easy
general properties of solutions of (1176), and consider some special solutions.

The reader can prove the following statement as an easy exercise.

For sufficiently regular solutions u(x, t) of (??) with sufficient decay for x→∞
we have

d

dt

∫
Rn

|u(x, t)|2 dx = 0 , (1177)

and
d

dt

∫
Rn

(
1

2
|∇u|2 + V |u|2

)
dx = 0 . (1178)

The integral in (1178) represents the energy, with
∫
Rn

1
2 |∇u|

2 dx representing
the kinetic energy and

∫
Rn V |u|2 dx representing the potential energy.

Let us now consider some examples of solutions.

Example 1

Let us consider a special case when the potential V is given by

V (x) = ax = ajxj , (summation understood), (1179)
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where a = (a1, . . . , an) is a fixed vector. It turns out that in this case we
can still write the solutions explicitly in terms of solutions of the free equation
iut +

1
2∆u = 0. 268 Although V given by (1179) is very special, we note that a

general V looks locally, in a neighborhood of a given point x0 with ∇V (x0) ̸= 0,
approximately as (1179) for a suitable a (which can depend on x0, of course).

To calculate solutions of

iut +
1

2
∆u− axu = 0 (1180)

we can use Fourier transformation in x. Using rules for Fourier transformation
from lecture 34 (see (480) and (481)), we obtain for û = û(ξ, t)

ût − a∇ξû = −1

2
i|ξ|2û . (1181)

We note that the terms on the left represent a derivative of û in a fixed direction,
and setting

η = ξ + at, û(ξ, t) = v(η, t) , (1182)

we obtain

vt = −
1

2
i|η − at|2v . (1183)

The general solution of this equation is

v(η, t) = v0(η)e
−i|η|2 t

2−iaη
t2

2 −i|a|2 t3

6 , (1184)

where v0 is any function (which we will assume to be sufficiently regular and
with sufficiently fast decay to at ∞. Going back to the variable ξ and taking
the inverse Fourier transform, we obtain

u(x, t) = U(x+
at2

2
, t )e−iaxt−i|a|

2 t3

6 , (1185)

where U is a solution of the free equation iut +
1
2∆u = 0. In fact, one can

verify directly that (1185) solves (1180) for any solution U of the free equation.
Taking U to be a galilean boost of U0 (see lecture 67, but keep in mind that
our equation now has 1

2 in front of the laplacian, so we have to adjust some
coefficients), we can also write

u(x, t) = U0(x− bt+
at2

2
, t )ei(b−at)x−i|b|

2 t
2+iab

t2

2 −i|a|2 t3

6 . (1186)

If we think of U0 as the solution from Example 2 in lecture 67, for which not
much is going on on time scales quite smaller than 1

ε2 , we see that in (1186) the
wave packet moves according to the formula

x(t) = x(0) + bt− at2

2
. (1187)

268This calculation should be in the literature, but I did not find an exact reference.
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This is exactly what we would get from Newton’s law (1175) in the potential
field V = ax (which represents constant force −a) and initial velocity b. Note
the spatial gradient of the phase in (1186) is b− at, which is also the velocity of
our motion, confirming again the classical newtonian formula for this situation.

We see that for the simple situation V = ax equation (1176) used for certain
wave packets reproduces the motion law given by (1175). In the case of a general
V , if ∇V does not vanish and does not change much over most of the support
of the wave packet, it now looks very plausible that (1176) gives (1175) for
the motion of the wave packet, as the situation is locally close to the situation
described by the above exact solutions. This argument is of course not a rigorous
proof, but it sheds some light on what is going on. (Note that if the changes of
∇V over the support of the wave packet are not small, we can expect that the
wave packet might be significantly “deformed” by the differences in the force
over the area it occupies, and we do not expect to have simple formulae such
as (1185) in that case.)

Example 2

Consider a domain Ω ⊂ Rn and the following potential V = VΩ:

V (x) = 0 when x ∈ Ω, V (x) = +∞ when x /∈ Ω. (1188)

(We van consider V as a limiting case of Vm, where Vm = 0 in Ω and Vm = m
outside Ω.) It is clear from (1178) that any solution u of (1176) with V given
by (1188) must vanish outside Ω. Therefore the situation is equivalent to solving
the free Schrödinger equation in the domain Ω with the boundary condition
u|∂Ω = 0. In this case there are several types of interesting solutions. We will
start by looking at the behavior of the wave packets.

Let us first look at the special case when Ω is a halfspace

Ω = {x ∈ Rn, x1 > 0} . (1189)

In this case we can solve the equation by extending the initial condition u0 to
all Rn as an odd function of x1 and solving the equation in all space Rn with the
extended initial data as the initial condition in Rn. (It is the same idea we have
used in lecture 7 for constructing Green’s function for the half-space.) Let us
denote the extension of u0 and u respectively by ũ0 and ũ, where ũ0 is defined by
ũ0(x1, . . . , xn) = −u0(−x1, x2, . . . , xn) for x1 < 0. The condition that ũ is odd
on x1 is preserved by the time evolution. 269 If our initial data is a wave packet
moving towards the boundary (possibly at an angle), the extension there ũ0 will
represent two wave packets: the original one and its image under the extension,
which will approach the boundary from the other side. The restriction of ũ to

269Note that even when the original function u0 defined in Ω is smooth up to the boundary
and satisfies u|∂Ω = 0, the extended function ũ0 can have a jump in the second derivatives
across the plane {x1 = 0}. As singular behavior is not suppressed by the equation, this may
have non-local consequences for the solution, but let us ignore this issue for the moment.
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Ω gives the solution u of the original problem. Using this construction, we see
that the wave packets will be reflected from the boundary in a way similar to
billiard balls. (Of course, we should keep in mind that the wave packets will
disintegrate after some time.)

In a half-space the wave packet will hit the boundary only once and after being
reflected it will continue moving towards∞, before gradually disintegrating. In a
bounded domain Ω we expect that as long as a wave packet has not disintegrated
and the boundary is close to a half-plane on the scales comparable with the size
of the packet, it will be moving in the domain in a way similar to a billiard ball
with the speed proportional to its frequency, being reflected from the boundary
whenever it hits it. If we consider a non-smooth initial condition u0, the high-
frequency wave packets, which are responsible for the lack of smoothness, will
be moving around the domain very quickly, and we see that the smoothing
effects which we have seen for the whole space can no longer be counted on in
a bounded domain. 270 Next time we will consider some additional properties
of solutions in bounded domains.

270If we average suitable average in time, we can still see some smoothing effects, but the
situation is much more subtle than in the whole space.
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Lecture 71, 4/8/2011

We will still consider the situation in example 2 from the last lecture: we solve
the Schrödinger equation with potential V = +∞ outside Ω and V = 0 inside
Ω, for a domain Ω ⊂ Rn. Today we will assume that Ω is bounded, with smooth
boundary, and we will consider solutions which look different from the “wave
packets” we have considered in the last few lectures. They will look more like
“standing waves” known in theories of classical physics. Their interpretation in
terms of “particles” is less straightforward, and one would have to get into the
questions of interpretation of quantum mechanics to try to understand these
solutions in terms of “particles”.271 A newtonian particle corresponds to some
special solutions of the Schrödinger equation, but the Schrödinger equation de-
scribes a broader range of phenomena than what is described by newtonian
mechanics, and some of the phenomena do not have newtonian analogies.

Let us consider the eigevalues 0 < λ1 < λ2 ≤ λ3, . . .
272 of the laplacian in Ω

with the Dirichlet boundary conditions, i. e. the corresponding eigenfunctions
satisfy

−∆ϕk = λkϕk in Ω ,
ϕk|∂Ω = 0 .

(1190)

We will normalize the ϕk so that
∫
Ω
|ϕk|2 dx = 1 . We know that every complex-

valued function f in L2(Ω) can be written as

f =

∞∑
k=1

akϕk , (1191)

where ak ∈ C, the series converges in L2(Ω), and∫
Ω

|f |2 dx =
∑
k

|ak|2 . (1192)

Each ϕk can be used to write down an explicit solution of the Schrödinger
equation ut − i∆u = 0. It is

u(x, t) = ϕk(x)e
−iλkt . (1193)

The solution is obviously periodic in t, with period 2π
λk

. These are the “standing
wave” solutions. Any linear combination of such solutions is again a solution.

271Of course, we expect that every function can be written as a linear combination of wave
packets and the equations are linear, so that every solution can be thought of as a linear
combination of wave packets. (Vice versa, every wave packet can be thought of as a linear
combination of standing waves.) However, the obvious mathematical fact that a linear com-
bination of the solution of the Schrödinger equation is again a solution of the Schrödinger
equation does not have a simple analogy in the newtonian mechanics of a particle.
272The first eigenvalue λ1 is always simple, so we indeed have 0 < λ1 < λ2 ≤ .... We have
not proved it in this course so far. It is a classical fact which can be found in many books.
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We can use this to write down a formal solution of the initial-boundary value
problem

ut − i∆u = 0 in Ω× R,
u|∂Ω = 0 in ∂Ω× R,

u(x, 0) = u0(x) .
(1194)

We write
u0 =

∑
k

akϕk (1195)

as in (1192), and set

u(x, t) =
∑
k

akϕk(x)e
−iλkt . (1196)

Let us also denote

Um(x, t) =

m∑
k=1

akϕ(x)e
−iλkt (1197)

Assume u0 ∈ L2(Ω). Then the function Um is a smooth function in Ω × R,
which satisfies (1194) with u0 replaced by

U0m =

m∑
k=1

akϕk(x) . (1198)

Using the notation Um(t) for Um(·, t), we have for 1 ≤ m < m′

||Um′(t)− Um(t)||2L2 =
m′∑
m+1

|ak|2 , t ∈ R . (1199)

We see that Um is a Cauchy sequence in C(R,L2(Ω)), and converges in this space
to u. In particular u ∈ C(R,L2(Ω)) and ||u(t)||L2(Ω) = ||u0||L2(Ω) for each t.
Since each Um solves the fist equation in (1194), the function u also solves the
equation in distributions (in Ω× R).
Although the functions Um transparently vanish at ∂Ω× R, the situation with
the boundary condition for u given by (1196) with u0 ∈ L2 is more tricky.
Let us compare the situation with the heat equation, in which case we should
use the same formulae with e−iλkt replaced by e−λkt. In this case, even if the
initial condition u0 is only in L2, for any t > 0 the series

∑
akϕk(x)e

−λkt will
quickly converge to a smooth function vanishing at the boundary.273 However,
for the sums

∑
k akϕk(x)e

−iλkt is is not obvious in which sense the boundary
condition u0|∂Ω should be attained. The key is to take a good definition of
weak solutions, which will work with the right class of test functions which will
recover the boundary condition in some distributional sense. For example, one
can demand that

∫
R
∫
Ω
u(−φt − i∆φ) dx dt = 0 for each smooth φ = φ(x, t)

vanishing at ∂Ω × R, and compactly supported in t. Note the this definition

273In fact, it still requires some work to show this for a general smooth bounded domain,
but at least heuristically it looks very plausible.
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allows that the normal derivative of φ at ∂Ω×R does not vanish, and this can
be used to show that the weak solution satisfy some weak form of the Dirichlet
boundary condition.

With the right definitions, it is possible to prove the existence and uniqueness
of weak solutions to problem (1194) for u0 ∈ L2, and show that such solutions
are given by (1196). When u0 ∈ H1

0 (Ω), the situation is much simpler. This
condition can be characterized in terms of the coefficients ak due to the identity∫

Ω

|∇u0|2 =
∑
k

λk|ak|2 . (1200)

An L2(Ω) function is in H1
0 (Ω) if and only if

∑
k λk|ak|2 is finite. If u0 satisfies

this condition, than u(t) given by (1196) will satisfy it for each t, and in this
case the boundary condition u|∂Ω = 0 will be satisfied in terms of traces, see
lecture 24. The function u will be in C(R,H1

0 (Ω)) and the uniqueness in this
class can be proved quite easily by using the energy method from lecture 69.
In fact, one can also base the existence theory on the Galerking approximation
which we discussed in the context of the heat equations in lecture 58. Let
us however set these issues aside for now, and look at some properties of the
functions (1197) and (1196), accepting without a detailed proof the heuristics
that these should be the right solutions.

Just as the behavior of the solutions ϕke
−λkt is characterized by the exponential

decay in t, the behavior of ϕke
−iλkt is characterized by periodicity in t. In

dimension n = 1 the eigenvalues of the laplacian are of the form λk = κk2

for a suitable κ (as we assume that Ω is an open interval) and hence all the
functions ϕk(x)e

−iλkt are periodic with period T = 2π
κ (although this may not

be the shortest possible period). This means that for n = 1 the function u given
by (1197) will be periodic in t. This is a significant difference with the case
Ω = Rn. The explanation is that there is no decay mechanism in the equation,
there is only the dispersion, the fact that wave packets of different frequencies
move at different speeds. In the whole space this does lead to pointwise decay
and smoothing, as the fast wave packets escape to∞. In a bounded domain they
stay around and the situation is more subtle. Also, in Ω = Rn each wave packet
will eventually disintegrate. It is different in a bounded domain. In fact, in 1d
the solution is always periodic in t, so after an initial period of disintegration,
the wave packet will restore its “order”, and the process will periodically repeat
itself.274

When is the situation in higher dimensions?
In general, the sum of two periodic functions is not periodic, as one can see from
the elementary example

f(t) = sin t+ sin
√
2t . (1201)

274For more interesting properties of solutions in 1d see the paper “Dispersive Quan-
tization” by P. Olver, Amer. Math. Monthly 117 (2010) 599-610 , or its online version
http://www.math.umn.edu/∼olver/ w/qd.pdf
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Nevertheless, the behavior of this functions “repeats it self” with an error which
can be made as small as we wish, if we wait long enough. More precisely, for
each ε > 0 there exists L = L(ε) > 0 such that each interval I ⊂ R contains a
number T which is an ε-almost period, in the sense that

|f(t+ T )− f(t)| < ε , t ∈ R . (1202)

Functions with this property are called almost periodic,275 and can be character-
ized as the uniform limits of trigonometric polynomials.276 The trigonometric
polynomials themselves (such as (1202), or the functions t→ Um(x, t) in (1197)
for a fixed x and m are examples of quasi-periodic functions, which is a slightly
more restrictive class.

One can consider the same notions also for vector-values functions, including
Hilbert-space valued functions. For example, the functions t → Um(t) can be
considered as quasi-periodic L2− valued functions (and also as quasi-periodic
H1

0− valued functions). The general solutions of the Schrödinger equation in
a bounded domain (with homogeneous boundary conditions) is a uniform limit
of the quasi-periodic function Um(t) in the space C(R, L2(Ω)) if u0 ∈ L2(Ω) or
the space C(R,H1

0 (Ω)) if u0 ∈ H1
0 (Ω), and therefore are almost periodic. In

particular, the solution will repeat its behavior, up to a very small error in
the L2 norm (for u0 ∈ L2(Ω) or the H1

0 (Ω) norm (for u0 ∈ H1
0 (Ω)). In some

exceptional cases the general solutions can be periodic even in higher dimensions,
if the eigenvalues are integer multiples of some fixed number.277

It is also worth mentioning the analogy of the kernel (1104) when Rn is replaced
by Ω and the Dirichlet boundary condition is assumed. Using the notation δ
for the Dirac mass at 0, we can formally write for x, y ∈ Ω

δ(x− y) =
∑
k

ϕk(x)ϕk(y) . (1203)

Hence the analogy of (1104) for the problem (1190) is the kernel

K(x, y) =
∑
k

ϕk(x)ϕk(y)e
−iλkt . (1204)

The series is typically not convergent in a pointwise sense, but it can be defined
as a distribution. Questions about precise regularity properties of this distri-
bution can be quite subtle, depending for example on certain number-theoretic
properties of λk and t and the exact location of x, y in Ω.

275Strictly speaking, we should say “almost periodic in the sense of H. Bohr”. There are
other definitions, some some of which express the same idea using different norms and are not
equivalent. See e. g. the Wikipedia entry for Almost Periodic Functions.
276The proof is non-trivial.
277As an exercise you can determine the condition on a, b > 0 under which all solutions
of (1190) Ω = (0, a)× (0, b) ⊂ R2 are periodic.
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Homework assignment 2
due on Wednesday, April 27

Let a ∈ R and consider the operators in Rn:

Lau = −∆u+ 2a
∂u

∂x1
, (1205)

and
Mau = −∆u+ a2u . (1206)

1. Show that for a ̸= 0 the operator Ma has a unique fundamental solution 278

Va in S ′(Rn).

2. Show that Va is radially symmetric, i. e. it is a function of r = |x|.

3. Show that Ua = eax1Va is a fundamental solution of La.
Optional: Show that Ua is not uniquely determined by the requirements LaUa = δ
and Ua ∈ S ′(Rn), but that every solution u ∈ S ′(Rn) of Lau = 0 is a polyno-
mial. For a ̸= 0 and n ≥ 2 the solution Ua is the only fundamental solutions of
La in S ′(Rn) with the property that Ua(x)→ 0 as x→∞.

4. Calculate Ua and Va for n = 1.

5. Calculate Ua and Va for n = 3. (In this case it can still be calculated in
terms of elementary functions, which is not the case for general n.)

Hints for the calculation when n = 3:
Method 1: Let Va = v(r). Derive an ODE for v(r) and solve the ODE by using

substitution v(r) = w(r)
r .

Method 2: Use Fourier transformation to calculate Va. The formula for V̂a(ξ)
is easy, but the calculation of the integral in the Fourier inversion formula re-
quires some patience. Calculate the integral formally, disregarding that it is not
absolutely convergent. One can do the integral in polar coordinates, integrating
first of the sphere279, and then over the radius (using the residue theorem).

6∗ (Optional). You can also investigate the fundamental solution Va for complex
a. Show that the solution is still unique in S ′(Rn) when Re a ̸= 0. On the other
hand, for a = κi with κ ̸= 0 we do not have uniqueness. Find the limits of Va for
a = i+ ε as ε→ 0+ and for a = i− ε as ε→ 0−. Calculate the difference of the
two limits and its Fourier transformation, and show that the situation has some
similarity to the situation with the fundamental solution of the Schrödinger
equation we discussed in lecture 65, see (1104).280

278Recall that a fundamental solution of an operator L with constant coefficients is a distri-
bution satisfying Lu = δ, where δ is the Dirac mass at 0.
279and using the special property of S2 that

∫
S2 f(x1) dx = 2π

∫ 1
−1 f(x1) dx1

280There are also differences. For example, the difference of the two solutions in the present
example will be smooth.
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Lecture 72, 4/11/2011

Today we will continue our discussion of examples with

Example 3

The equation
iut +∆u− V (x)u = 0 in Rn × R (1207)

with compactly supported (or at least decaying) potentials V . This situation
is one of the main subjects of a large area of research sometimes referred to
as “Schrödinger scattering”, with many deep results281 Our goal here will be
mostly to outline some of the phenomena one can encounter here, without going
to rigorous proofs.

For simplicity we will assume that V is compactly supported. Let us first look
at a natural modification of the solutions considered in example 2. Let Ω be
a bounded domain as before. In example 2 we took V = +∞ outside Ω and
V = 0 in Ω. We modify this first to V = c outside Ω and V = 0 in Ω, and then
we subtract c from V (which amounts to replacing u in (1207) by u eict) so that

V = 0 outside Ω and V = −c in Ω. (1208)

This can be thought of as trying to constrain a quantum particle to the “box” Ω
by finite forces. We expect that, at least when c is large, some of the solutions

u(x, t) = ϕ(x)e−iλt (1209)

from the last lecture should persist, modulo some perturbation. It is hence
natural to consider the eigenvalue problem

−∆ϕ+ V ϕ = λϕ in Rn, with “suitable boundary conditions at ∞” (1210)

The choice of the boundary condition is an important point here. For example,
when λ > 0 and V ≡ 0, then (1210) has many solutions. Any ϕ for which the

Fourier transform ϕ̂ is a measure on the sphere {|ξ|2 = λ} is a solution, and
if the measure will have a smooth density with respect to the surface measure
on the sphere, the solutions will decay to 0 as x → ∞. It is reasonable to
expect that even when V ̸= 0, for large λ similar solutions will persist. These
solutions are important in their own right and we return to them later, but
solutions analogous to those from example 2 should be more localized, with
faster decay at∞. A natural “boundary condition” at∞ in the context of (1210)
is ϕ ∈ L2, since a quantum particle described by a wave function u0(x) with

281See, for example the paper “Schrödinger Semigroups” by B. Simon, Bull. AMS, Vol 7,
No. 3, 1982; the book “Geometric Scattering Theory” by R. Melrose (Cambridge Univ. Press,
1995); or textbooks of quantum mechanics (where the treatment is often not fully rigorous,
but heuristically illuminating).
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∫
Rn |u0(x)|2 dx <∞ can be thought of as being localized to some area of Rn282.
Therefore we wish to solve

−∆ϕ+ V ϕ = λϕ in Rn with ϕ ∈ L2(Rn). (1211)

What are the solutions? In one dimension we can take Ω = (−α, α) and calculate
the solutions explicitly. We find that for c > 0 we always have at least one
solution, and as we increase c we add additional solutions, but we have only
finitely many solutions for any finite c > 0.283 The eigenvalues λ for all these
solutions are always non-negative. (In fact in this one-dimensional case they are
strictly negative.) For c ≤ 0 there are no solutions ϕ ∈ L2(R). The situation
for n ≥ 2 is similar, but one cannot rely on explicit calculations to prove it,
of course, and the proofs are non-trivial. When our specific V is replaced by a
general compactly supported V which is, say, bounded, the conclusions are still
similar, but it may happen that there are no eigenvalues. (This would be the
case when c ≥ 0 in our example.)

Let us denote by ϕ1, . . . ϕm the finitely many solutions of (1211) and with the
corresponding eigenvalues λ1 < λ2 ≤ · · · ≤ . . . λm ≤ 0 .284 Any linear combina-
tion

u(x, t) =
∑
k

akϕk(x)e
−iλkt (1212)

solves (1207) with the initial condition

u0 =
∑
k

akϕk . (1213)

The solutions (1212) are quasi-periodic in t, similar to the solutions Um from the
last lecture, and are localized “near Ω” in some sense, decaying exponentially
fast to 0 as x→∞.

Similar conclusions hold for any bounded, compactly supported V in any di-
mension with the understanding that it can happen that m = 0 285 and that

282One also ask: does (1210) with V given by(1208) have a compactly supported solution?
It turns out that the answer is no, but with the methods we have studied so far this results is
not accessible. If V were analytic, we could use the fact that solutions of (1210) with analytic
V are analytic, which we have not really proved, but we have all the tools to prove it. All one
needs for that is to get a suitable estimate for the growth of the derivatives ∇kϕ with k, and
this can be accomplished by methods we studied in the first semester. However, when V is
not analytic, a new idea is needed.
283As c → ∞ and we look on the dependence of a given solution ϕ(x, c) on c (with ϕ(x, c)
varying continuously in c) and the normalization

∫
Rn |ϕ(x, c)|2 dx = 1, the functions ϕ(x, c)

will converge to eigenfunctions of −∆ in Ω. The situation in higher dimensions should be
similar in principle, but one has to be more careful with the exact formulation in domains
where eigenvalues can have higher multiplicity.
284In dimension n = 1 we have λm < 0.
285Under the assumption that V has compact support, this is the case when V ≥ 0. On the
other hand, if V is only bounded but not compactly supported, with relatively slow decay to
0 at ∞, one can have infinitely many eigenfunctions ϕk ∈ L2(Ω), with the eigenvalues λk ≤ 0
accumulating at 0.
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the decay corresponding the the eigenfunctions of the eigenvalue λ = 0 (if it
exists) will not be exponential.

The solutions ϕke
−iλkt above are called “bound states” in quantum mechanics.

Their main feature is that they do not disperse, they “stay around”, unlike the
solutions of the free Schrödinger equation, which disperse.

In some sense, the bound states represent particles which are “trapped” by the
potential V . One can show that a compactly supported potential V with V ≥ 0
does not admit such solutions - such potentials cannot trap a quantum particle,
although one easily sees that they can trap a newtonian particle with a positive
energy. (Think of an area surrounded by “walls”.286)

In addition to the bound states, equation (1207) has solutions which are similar
to the wave packets we looked at for the free equation in lectures 67, 68, and 70.
For simplicity assume again that n = 1 and that V is compactly supported. We
can consider a V that is given by (1208), but the same considerations are valid
for general bounded compactly supported V and, in fact, for bounded V with
sufficiently fast decay at ∞. 287

We imagine that we send a wave packet of frequency ξ from some location quite
far out on the left of V towards V . As we have seen in lecture 67, the speed of
the wave packet will be 2ξ (as we did not put 1

2 in front of ∆ in (1207). We
assume that the times involved in the following considerations are such that
for the free equation the wave packet would mostly keep its identity and its
dispersion would not yet be significant. What will happen to the wave packet
when it hits the potential V ? It is natural to expect that a part of it will pass
through the potential V and continue moving towards x = +∞, and a part of
it will be reflected back, and will be moving towards −∞. The frequency of the
reflected wave packet can be expected to be −ξ. (The “shape” of its amplitude
may be different from the original wave packet. For example, it can come in
“groups”, each representation a reflection from the potential “walls”.) This can
be somewhat visualized by solving the equation

−ψ′′ + V ψ = ξ2ψ (1214)

with a certain prescribed behavior for both large positive x and large negative
x. For large negative x the solution should be a superposition of the stream
of original particles, which we can represent as eiξx and the reflected particles,
which we represent as Re−iξx, where R = R(ξ) is the “reflection coefficient”.
For large positive x the solution should be given by Teiξx, where T = T (ξ) is
the transmission coefficient. Thus our boundary conditions for (1214) are

ψ(x) = eiξx +R(ξ)e−iξx, x << 0 , (1215)

and
ψ(x) = T (ξ)eiξx, x >> 0 , (1216)

286This is related to “quantum tunneling”, the fact that a quantum particle can jump through
a barrier even though it does not have enough energy to do it classically. Radioactive decay
can be often related to this effect.
287These assumptions can be relaxed still further.
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where R = R(ξ) and T = T (ξ) are to be determined. One way to produce
such solution is to continue the solution eiξx from the right to the left. This
continuation produces for large negative x a solution ae−iξx + beiξx. Dividing
this solution by b, we obtain ψ. The solution

u(x, t) = ψ(x)e−iξ
2t (1217)

of (1207) can be thought of as describing a stationary situation where particles
(or wave packets) at speed ξ are streaming from x << 0 and are passing through
the area where the potential produces forces. Part of the the particles passes
through the field, and part is reflected back. The motion of a single wave
packet of frequency ξ > 0 will of course not be a stationary situation, but the
above solution gives some idea about what will happen. The wave packet will
move towards V at speed 2ξ and what exactly happens when it hits V can be
complicated in the area where V is supported. Nevertheless, the net result of
the collision (“after the dust settles down”), is relatively simple: a wave packet
moving to the right at speed ξ and a wave packet moving to the left, with speed
−ξ. The shape of each of these wave packets can be different from the original
wave packet.288 The change of amplitude and phase-shift the the two resulting
wave packets are related the functions T (ξ) and R(ξ) .289 Of course, we still
must not forget that all the time the wave packets are disintegrating dues to
dispersion and radiating away small amounts of energy.

Let M be the finite dimensional subspace of L2(Ω) spanned by the eigenfunc-
tions ϕ1, . . . , ϕm describing the bound states and let Y be its orthogonal com-
plement. Denoting ψξ the functions defined by (1215) and (1216), one can from
“linear combinations”

∫
ψξφ(ξ) dξ where φ is smooth and compactly supported.

The functions from a dense subspace of Y . We emphasize that we now consider
ψξ also for ξ < 0, in which case the description of ψξ for ξ > 0 does not quite fit.
However, mathematically there is no problem with the definition for ξ < 0. All
this is best understood in terms of the spectral theory of the operator −∆u+V
on L2. The functions ϕk are eigenfunctions in the usual sense, and the functions
ψξ and ψ−ξ resemble some suitably generalized “eigenfunctions” associated with
the point ξ2 of the continuous spectrum of the operator, but we must be cau-
tious with such terminology since clearly ψ±ξ do not belong to L2. Now one
can expect that a general function u0 ∈ L2 can be written as

u0 =

m∑
k=1

akϕk +

∫
ψξb(ξ) dξ , (1218)

288For example, one can imagine that parts of the original wave packet will reflect several
times back and forth, producing “echos” in both direction.
289These functions themselves are very interesting and encode information about V . They
are studied in detail in Inverse Scattering where we wish to reconstruct V from how it re-
flects/trasmits waves. This is a very important problem which moreover plays a crucial
role in the theory of certain “completely integrable” equations, such as the KdV equation
ut + uux = uxxx. This connection is discussed in any book on Soliton Theory.
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for some ak and b(ξ), with∫
R
|u0|2 =

m∑
k=1

|ak|2 +
∫
|b(ξ)|2 dµ(ξ) , (1219)

where µ is a suitable measure. The solution of the Schrödinger equation (1207)
with the initial condition u(x, 0) = u0(x) will then be given by

u(x, t) =
m∑
k=1

akϕk(x)e
−iλkt +

∫
b(ξ)ψξ(x)e

−i|ξ|2tdξ . (1220)

The first term on the right-hand side, representing the “bound states”, is similar
to what we have seen in bounded domains. It will be quasi-periodic and will not
disperse. This is typical for a discrete spectrum. The second term is quite similar
to the formula (1155) for the solution of the free equation. It has some similar
features, we can think about it in terms of the wave packets which will eventually
disperse, except that the motion of the wave packets is more complicated than
for the free equation in Rn: they can partially reflect, stay “almost trapped”
by V and be only “leaking to ∞” relatively slowly290 etc. The behavior of such
solutions does not repeat itself even approximately if we wait sufficiently long,
and this can be linked to the continuous spectrum of the operator −∆ + V .
General initial data will lead to a combination of these scenarios. Part of the
initial data will be trapped in the bound states and the remainder will disperse.
Although above we had in mind mostly the 1d situation, the results can be
generalized to any dimension, with appropriate modifications.

We see that the behavior of solutions is very rich, and it would take a significant
effort to establish the necessary background in the spectral theory and to study
these effects rigorously.291 Unfortunately we do not have time to go further in
this direction. Nevertheless, I thought it was important to mention these results,
so that we can appreciate the complexity of behavior of solutions involved in
the Schrödinger equation.

290The so called quasi-stationary states, which appear for example when V ≥) by there is a
region with small values of V surrounded by high values of V (“walls”).
291And we are still only talking about V rapidly decaying at ∞. When this assumption is
dropped, still new phenomena emerge.
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Lecture 73, 4/13/2011

Our goal is to have a closer look at the connection between the Schrödinger
equation and classical motion laws for a newtonian particle. For that it is
convenient to formulate the laws governing the newtonian particle in term of
the Hamilton-Jacobi equations. If you have not seen this formulation of classical
mechanics before, do not worry, we will derive it as we proceed.

We start by recalling some facts about the linear transport equations of the
form

ut + a(x, t)∇u+ b(x, t)u = 0 , (1221)

where u = u(x, t) is the unknown real-valued function in the “space-time” Rn×R
(or its subset), a(x, t) = (a1(x, t), . . . , an(x, t)) is a given time-dependent vector
field in Rn, and b(x, t) is a scalar function. All the quantities are assumed to be
as regular as necessary to make our considerations valid.292The notation a∇u
means, as usual, aj

∂u
∂xj

(summation understood).

In the formulation (1221), the time variable t is singled out to have a somewhat
special role, as we think of (1221) as describing time evolution of u, and therefore
ut appears with coefficient 1. This will be natural in our context.293

Let us first look at the case b = 0

ut + a(x, t)∇u = 0 . (1222)

In this case the equation says that u is constant along the trajectories x = x(t)
given by the ODE

dx

dt
= a(x, t) . (1223)

These solution are called characteristic curves of (1222), or characteristics.
Equation (1222) simply says that the solution is constant along the charac-
teristics:

d

dt
u(x(t), t) = ut + a∇u = 0 when x(t) solves (1223). (1224)

This immediately suggests a method for finding a solution of (1222) for any
initial condition u(x, 0) = u0(x): on a characteristic curve passing through

292The question of finding the right setting for (1221) under minimal regularity assumptions
which still give existence and uniqueness of solutions is important and has been studied, see
for example DiPerna, R. J.; Lions, P. L.; Ordinary differential equations, transport theory and
Sobolev spaces, Invent. Math. 98 (1989), no. 3, 511–547, and also Ambrosio, L.; Transport
equation and Cauchy problem for BV vector fields. Invent. Math. 158 (2004), no. 2, 227-260.
293One can also consider a more symmetric situation in which the equation is ADU+B = 0 in
Rn+1, with A = (A0, A1, . . . , An) depending on x = (x0, x1, . . . , xn) and D = (∂0, ∂1, . . . , ∂n).
In a neighborhood of a point where the field A does not vanish we can always write such an
equation in the form (1222), as the reader can easily verify.
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x define u = u0(x). Uniqueness is also clear and is left to the reader as an
exercise.294

Let ϕt be the “flow map” of (1223), defined by the requirement that for any
fixed x ∈ Rn the curve t → ϕt(x) solves (1223)295 with the initial condition
ϕt(x)|t=0 = x. The solution of (1224) with the initial condition u(x, t) = u0(x)
can be written in terms of the flow map ϕt as

u(x, t) = u0([ϕ
t]−1(x)) . (1225)

The interpretation of (1221) is a simple modification of (1224). We again define
the characteristics by (1223) and solve

d

dt
u(x(t), t) + b(x(t), t)u(x(t), t) = 0 , t ∈ Rn. (1226)

If we are given u(x, 0) = u0(x) then we choose the solution with u(x(0), 0) =
u0(x(0)).

We see that existence an uniqueness theory is simple (if we have a good theory
for (1223), which is what we assume here). The study of more detailed properties
of solutions may not be easy (depending on the specific question we consider),
since the behavior of the solutions of (1223) can be complicated.

An important example of (1221) is the equation of continuity

ut +
∂

∂xj
(aju) = 0, (1227)

where aj = aj(x, t) is considered given.296 The equation is often written as

ut + div(au) = 0 . (1228)

We can think of u as a density of some material which moves according to the
velocity field a(x, t), in the sense that the “particle” of the material which is
located at x at time t moves at speed a(x, t). The flow map ϕt(x) defined above
than describes the trajectories of the particles. If we think about u as density
of particles which are moved by the map ϕt, then we have for every measurable
O ⊂ Rn ∫

ϕt(O)

u(y, t) dy =

∫
O
u0(x) dx (1229)

294We emphasize again that we assume a to be sufficiently regular. The question what is the
minimal regularity of a needed to get good existence and uniqueness of solutions of (1222)
with initial data u(x, 0) = u0(x) is non-trivial, and is discusses for example in the papers of
DiPerna-Lions and Ambrosio quoted above.
295We slightly abuse notation in that x in (1223) has a different meaning than x in t→ ϕt(x).
296In equations of fluid mechanics this equation appears as a part of a more complicated
system of equations with both u and a as unknowns, but here we consider a as given.
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for each t, which means that

u(ϕt(x), t) det∇ϕt(x) = u0(x) . (1230)

Equation (1227) can be thought of as an infinitesimal version of (1229). If we
take derivative of (1230) in t, we obtain (1227).

The precise statements one can prove is the following:

(i) If a and u0 are sufficiently regular, than (1227) with initial condition u(x, 0) =
u0(x) has a unique solution. This follows from our comments about the more
general equation (1221) above.

(ii) The solution is given by (1230). In view of the uniqueness part of (i), it
is enough to verify that u(x, t) given by (1230) satisfies (1227). This is just a
matter of a straightforward calculation297.

The property (1229) is transparent if we have (1230), but it can also be derived
directly from (1227). For that we use (1227) to show that for open sets with
smooth boundary the derivative of the left-hand side with respect to t vanishes.

Another derivation of (1227) is based on the identity

d

dt

∫
O
u(x, t) dx = −

∫
∂O

u(a · n) dx, (1231)

where O is any open set with smooth boundary and n is the outward unit normal
at the boundary. This identity expresses the idea that the change of “mass”
inside O can only be due to the flux of the material through the boundary.

Still another useful point of view is to view (1227) as a dual equation to (1222). If
v(x, t) solves (1222) and u(x, t) solves (1227), then we have, by direct calculation,

d

dt

∫
Rn

u(x, t)v(x, t) dx = 0 . (1232)

It is not hard to see that the meaning of this identity is essentially the same as
that of (1229).

The equation of continuity preserves the “total mass”:

d

dt

∫
Rn

u(x, t) dx = 0 , (1233)

assuming assuming of course that u is integrable (and that a is smooth and
bounded, say). This is a special case of (1229), and also of (1232) when we take
v ≡ 1.

297The key for the calculation is the formula d/ds|s=0 det(A+sB) = Trace (Adj(A)B), where
Adj(A) denotes the adjoint matrix of A. For a non-singular A we have Adj(A) = A−1 detA.
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In connection with Schrödinger equation, it is also important to look at equa-
tions of the form (1221) which preserve the L2 norm of u. In that case we
require that u2 satisfies the equation of continuity,

(u2)t + div(au2) = 0 , (1234)

which suggest that we should take

ut + a∇u+
1

2
(div a)u = 0 . (1235)

Any (sufficiently regular) solution of this equation will satisfy (1235), and there-
fore conserve the L2 norm. In general, if we wish to conserve the Lp norm, we
take

ut + a∇u+
1

p
(div a)u = 0 . (1236)

Note that for p → ∞ we obtain (1222), which does preserve L∞ norm, so
everything is consistent.

As the next tool for our analysis of certain the Schrödinger solutions, we intro-
duce the Burgers equation. In dimension n = 1 this is an equation for a scalar
function u = u(x, t) which reads

ut + uux = 0 . (1237)

Unlike other equations we have dealt with so far, this is a non-linear equation.
However in this case it is easy to understand the smooth solutions. (It is different
with weak solutions, where the problems are more subtle, but will not consider
the topic of weak solutions of (1237) in this course.) If we view (1237) as an
equation of the form (1222) with a = u, we see that it say that u is constant
along the characteristics given by u. This means that the speed (or slope) of each
characteristic curve is constant. This shows that a smooth solution of (1237)
with the initial value u(x, 0) = u0(x) satisfies

u(x+ u0(x)t, t) = u0(x) . (1238)

If u0 is, say, smooth and compactly supported, then equation (1238) defined
u uniquely on some time interval (0, T ), but when u0(x1) > u0(x2) for some
x1 < x2, the characteristic curves originating at t = 0 respectively at x1 and
x2 will eventually intersect, and we see that the equation cannot have a smooth
solution defined for all t.

The expression on the left-hand side of (1237) expresses the acceleration of
particles moving according to the velocity field u(x, t). The equation for the
particle trajectories is

dx

dt
= u(x, t) (1239)
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and hence
d2x

dt2
= ut + uux . (1240)

Equation (1237) then says that the particles are “free”, in the sense that there
are no forces acting on them. Therefore they move along straight lines, which
coincide with the characteristics.

All the above easily generalized to higher dimensions. In general dimension n
the unknown u is a vector field u(x, t) = u1(x, t), . . . , un(x, t) and the equation
is

∂ui
∂t

+ uj
∂ui
∂xj

= 0 , (1241)

which is often written as
ut + u∇u = 0 . (1242)

The expression ut+u∇u can again be interpreted as acceleration. The meaning
of the equation is the same as for n = 1. We can again think of “free particles”
moving along straight lines. As before, smooth initial data u0 can lead to a
singularity when two particles collide. Formula (1238) can be used without
change.
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Lecture 74, 4/15/2011

The Burgers equation and the linear transport equations we introduced last
time appear naturally in the context of the relation of the Schrödinger equation
and classical mechanics. We will now explain this connection. We start with
the following classical calculation.

The classical mechanics can be considered as a limiting case of the quantum
mechanics when the Planck constant h → 0. Therefore when studying the
relation between the two theories, it is natural to keep h in the equations. We
will therefore write the Schrödinger equation in the form

i~ut +
~2

2
∆u− V u = 0 . (1243)

We will look at particular solutions of (1243), representing certain wave packets.
Our goal is to show that in the limit ~→ 0 the equations of motion for the wave
packet are the equations of classical mechanics. The wave packet we will be
looking at are of the form.

u(x, t) = A(x, t)ei
S(x,t)

~ (1244)

This is the so-called WKB approximation (after Wentzell-Kramers-Brillouin),
develped shortly after the discovery of quantum mechanics.298 The functions A
and S are real-valued functions, and they depend of ~. In the connection with
the limit ~→ 0, we can think of A as a smooth suitably localized function which
is significantly away from 0 only in the region where we expect the particle to
be located. The function S determines the phase of u, and is chosen so that ∇S
represents the velocity of the particle.299 The important point is this: we think
of ~ as very small and therefore the function u oscillates rapidly. However, we
think of A and S as “nice functions” which are not rapidly oscillating. The rapid
oscillations in u are only those which are already transparent in its definition.
We do not expect any additional oscillation in A and S. Therefore, although u
rapidly oscillates, we assume we know more or less exactly what the oscillations
are. Substituting (1244) into (1243), we obtain

St +
1

2
|∇S|2 + V − 1

2
~2∆A = 0 (1245)

and

At +∇S∇A+
1

2
∆S A = 0 . (1246)

298For a different approach based on Wigner measures see a paper “Wigner Functions versus
WKB-Methods in Multivalued Geometrical Optiocs” by C. Sparber, P. A. Markowich, and
N. J. Mauser. (Thanks to F. Otto for pointing out this reference.)
299More precisely, we should talk about momentum rather than velocity, but we assume that
the mass of the particle is 1, so we do not really have to make a distinction in our situation
here. However, it is important to keep in mind that, in general, “velocity” is not really the
most natural quantity in quantum mechanics.
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These equations represent (1243) in the variables A,S. In the limit ~ → 0 we
formally obtain

St +
1

2
|∇S|2 + V = 0 (1247)

and

At +∇S∇A+
1

2
∆S A = 0 . (1248)

The important point is that equation (1247) for S is now decoupled from the
equation for A. Once S is known, equation (1248) is just a linear transport
equation of the type we discussed in the last lecture. It is of the form (1235),
and it says that A is transported along the characteristics given by ∇S in such a
way that

∫
Rn A

2 is preserved, or – more precisely – that A2 satisfies the equation
of continuity

(A2)t + div(∇S∇(A2)) = 0 . (1249)

Equation (1247) is more complicated. It has been know in Classical Mechanics
since 1830s, when it was discovered by W. R. Hamilton. It represents another
formulation of Classical Mechanics. It was later used by C. G. Jacobi as a tool
for finding solutions of a number of problems in classical mechanics in terms of
explicit integrals. 300

The connection between (1247) and the classical newtonian

ẍ = −∇V (x) (1250)

can be seen for example in terms of the Burgers equation we discussed last time.
We explain this in the next lecture.

In the context of (1250) we usually think in terms of trajectories determined by
its initial data: we are given x, and ẋ at t = 0 and solve (1250) to calculate the
trajectory x(t). In the context of the Hamilton-Jacobi equation (1247) one can
think of certain of families of particles and families of trajectories. We imagine
that at time t = 0 we have at each point x of the space Rn a particle with speed
∇S(x, 0), and that each of these particles moves according to (1250). At a later
time t we look again at a “general point” point x. There will be some particle
at that point, which arrived there from its initial position at time t = 0, which
was most likely different from x. What will be the speed of this particle? It
turns out it will be given by ∇S(x, t). This may not be immediately obvious,
but we will see that it follows easily from our discussion of the Burgers equation
last time.

300See for example the book “Mathematical Methods of Classical mechanics” by V. I. Arnold
for more details.
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Lecture 75, 4/18/2011

We are interested in the connection between the Hamilton-Jacobi equation (1247)
and the Newton law (1250). This can be established in many ways.301 We
will establish the connection “by hand”, without much discussion the under-
lying contact geometry, which is a very interesting topic in its own right. the
Hamilton-Jacobi equation is

St +
1

2
|∇S|2 + V = 0 . (1251)

Let us denote v = ∇S. We consider v as vector field in Rn× (t1, t2). By taking
the gradient of (1251), we obtain

vit + vjvj,i + Vi = 0, (summation understood). (1252)

The key point (which is at the root of all approaches to the problem) is the
elementary fact that

vi,j = vj,i (1253)

since v is a gradient. This implies that

vjvj,i = vjvi,j (1254)

or, in vector notation,

∇(1
2
|v|2) = v∇v . (1255)

This means that (1252) can also be written as

vt + v∇v = −∇V . (1256)

We have already seen in lecture 73 that

ẋ = v(x, t) (1257)

gives
ẍ = vt + v∇v (1258)

and hence (1289) is just a different form of

ẍ = −∇V (x) . (1259)

The difference is that we usually think about (1259) in connection with indi-
vidual trajectories. On the other hand, equation (1289) can be thought of as
an equation for a field of trajectories, which fill up the space, in the sense that
(locally) there is a trajectory through each point of the space.

301See for examples V.I. Arnold’s “Mathematical Methods of Classical Mechanics” for a
geometric approach using based on “contact geometry”, or R. Courant’s ”Partial Differential
Equations” for a related traditional approach based on determining the characteristics of the
equation as intersection of infinitesimally close hyper-planes.
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The vector field v which solves (1289) is easily determined from the initial con-
dition v(x, 0) and equation (1259). For each x ∈ Rn we solve (1259) with initial
position x and initial velocity v(x, 0). This gives us a curve t → ϕt(x) rough
each x ∈ Rn. Under reasonable assumptions on the initial velocity field v(x, 0)
and the potential V (x) the maps ϕt for a smooth family of diffeomorphisms of
Rn for t ∈ (t1, t2) ∋ 0. Now we define v(x, t) simply by

v(ϕt(x), t) =
d

dt
ϕt(x) , t ∈ (t1, t2) , x ∈ Rn . (1260)

We see that (1259) can be used to construct a local-in-time solution of (1289).
Vice-versa, if we have a solution of (1289), we can get solutions of ẍ = −∇V (x)
by solving ẋ = v(x, t).
Our original PDE is not (1289) but it is (1251). We will construct S solv-
ing (1251) with initial data S(x, 0) from the solution v of (1289) satisfying

v(x, 0) = ∇S(x, 0) . (1261)

The key point is to establish that if v solves (1289) and the vector field was
a gradient at t = 0, it will also be a gradient at any other time. For that we
will write the equation for the anti-symmetric part Ω of the gradient ∇v. The
equation for the gradient ∇v is

(∇v)t + v∇(∇v) + (∇v)2 = −∇2V , (1262)

where in (∇v)2 we square the matrix ∇v by matrix multiplication, and the first
two terms on the left represent the derivative of ∇v along the particle trajectory.
Let us write

∇v = Y +Ω , (1263)

where Y is the symmetric part of ∇v and Ω is the anti-symmetric part of ∇v.
Taking the anti-symmetric part of (1262), we obtain

Ωt + v∇Ω+ Y Ω+ ΩY = 0 . (1264)

For each trajectory this can be viewed as a first order equation

d

dt
Ω = A(t) Ω , (1265)

along the trajectory, where A(t)Ω = Y (t)Ω+ΩY (t). By standard ODE unique-
ness, of Ω(0) = 0, then Ω(t) = 0 for each t ∈ (t1, t2). We see that

If v(x, 0) is a gradient, then v(x, t) will be a gradient for each t ∈ (t1, t2).

It is now easy to check that the equations

∇S(x, t) = v(x, t), St +
1

2
|v|2 + V = 0, S(x, t)|t=0 = S(x, 0) (1266)

uniquely determine a solution of (1251) in Rn × (t1, t2) with initial condition
S(x, 0).
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We conclude that

Under natural assumptions on V and S0 = S0(x), equation (1251) has a unique
regular local-in-time solution satisfying S(x, 0) = S0(x). Moreover, the trajec-
tories of the ODE ẋ = ∇S(x, t) solve Newton’s equation (1259).

It is clear from the construction of the solutions of (1251) that – if we wish – we
can solve the equation only in a neighborhood of a given trajectory of (1259)
with the initial condition S0(x) given only in a neighborhood of the initial point
of that trajectory.

It is also easy to see that the solution may not be well defined for all t. This
can happen when two different trajectories intersect and we have conflicting
requirements for v(x, t) at the point of intersection. 302

Considerations similar to those above can be used to prove the following classical
result, which leads to an important method for integrating the equation of
motion (1259).
Assume that S = S(x, t;α) is family of solutions of (1251) depending smoothly
on a parameter α ∈ (α1, α2). Then the quantity

F =
∂S

∂α
(1267)

is a constant of motion along the trajectories of (1259) given by ẋ = ∇S(x, t;α).
The proof is simple: taking a derivative of (1251) with respect to α gives

Ft + v∇F = 0 (1268)

which is exactly what is claimed.

Let us illustrate the last statement by calculating the classical elliptical trajec-
tory of a single planet orbiting in a newtonian potential V = − γ

|x| . We assume

the orbit is in the plane x1, x2, and we will work in the polar coordinates given by
x1 = r cosϕ, x2 = r sinϕ. In these coordinates, the Hamilton-Jacobi equation
is

St +
1

2

(
∂S

∂r

)2

+
1

2

(
∂S

r∂ϕ

)2

+ V (r) = 0 . (1269)

We seek solution S in the form

S = f(r) +Mϕ− Et , (1270)

302It is possible to define various generalized notions of solution which are defined globally
and one can still prove uniqueness. (Uniqueness is a key point. The requirement that S is
Lipschitz and satisfies (1251) almost everywhere does not lead to uniqueness, and hence this
class of solutions is too broad.) The relation of these generalized solutions to equation (1259)
is related to variational principles in mechanics. There is a large literature on these topics, the
reader can consult for example the paper “Viscosity solutions of Hamilton-Jacobi equations”
by M. G. Crandall and P. L. Lions, Trans. AMS, 277, No.1, 1983, and the paper “A survey of
PDE methods in weak KAM theory” by L. C. Evans, Comm. Pure Appl. Math. LVII, 445-480,
2004.
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where M,E are parameters (representing the angular momentum and energy
respectively), and f(r) = f(r;M,E) is a function of r depending on the pa-
rameters M,E. Strictly speaking the function ϕ is not well-defined as a smooth
function in R2 \ {0}, but let us ignore this issue for now.303 Equation (1269)
gives

f(r) = const.±
∫ √

2E +
2γ

r
− M2

r2
dr . (1271)

The equation
∂S

∂M
= const. (1272)

gives

±
∫ M

r2√
2E + 2γ

r −
M2

r2

dr = −ϕ+ ϕ0 , (1273)

which is the equation of the trajectory. The integral can be evaluated and the
reader can verify that the curve r = r(ϕ) given by (1273) is, for a suitable range
of parameters, an ellipse.

We also have
∂S

∂E
= const. (1274)

and this gives the time dependence r = r(t).

The key for this method is to make a good guess for S, such as (1270). For
more examples the reader can check the book of V. I. Arnold quoted above.

303It can be justified for example by lifting everything to a covering space of R2 \ {0}, where
ϕ is well-defined, but let us not worry about these details at this stage.
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Lecture 76, 4/20/2011

Now that we have some understanding of the Hamilton-Jacobi equation, it is
easy to see that in the limit ~ → 0 wave packets moving according to (1243)
should closely follow trajectories given by Newton’s equation (1250). We con-
sider an initial condition u0 for the Schrödinger equation (1243) of the form

u0(x) = A0(x)e
i
S0(x)

~ , (1275)

where A0 is a smooth bump function supported in a neighborhood of a point
x0. We choose the initial phase function S0(x) to be S0(x) = ξx on the support
of A0. We can extend it to a smooth compactly function defined on all Rn,
but the values outside of the support of A0 will not be important to us, as long
as the function is smooth. We now solve the equation (1247) by the method
of characteristics we discussed in the last lecture. The smooth solution S(x, t)
may be defined only for some time interval (t1, t2) ∋ 0. For our purposes here
we do not need to solve the solution for x in all space Rn, we can find only find
the solution along the characteristic curves emanating from the support of A0.
These correspond to Newtonian trajectories starting in the points in the support
of A0 with speed ∇S0 = ξ. As long as none of these trajectories intersect, the
solution S(x, t) is well defined in the regionO ⊂ Rn×R swept by the trajectories.
Note that the behavior of S is quite local: we can define find S(x, t) in O just
from the values of S0 on the support of A0. (It can still happen that some
trajectory from outside of the support would intersect some of the trajectories
in O, but this effect is not important for in the first approximation which we
are considering here.) Having found S in O, we now turn to equation (1248)
for A. Since S is now given, this is merely a linear transport equation. Its
characteristics are exactly the characteristics we calculated when determining
S. We saw in lecture 73 that this means that A(x, t) is just transport of A along
the characteristics, modified so that |A|2 satisfies the equation of continuity

(A2)t + div(∇S(A)2) = 0 . (1276)

We see that A(x, t) can be thought of as the initial bump functions moved along
the newtonian trajectories in such a way that its L2 norm is preserved. The
exact solution of (1243) can be expected to be

u(x, t) = A(x, t) ei
S(x,t)

~ + error terms , (1277)

where the error terms approach 0 in the limit ~ → 0. This can be proved,
but we will not go into the proof at this point. Our goal was to illustrate the
rich structure of the Schrödinger solutions and the connection to newtonian
mechanics, and hopefully the above analysis sufficiently makes this point at
least at a heuristic level.

We now turn our attention to a more detailed look at the function S(x, t) and its
meaning. In the context of classical mechanics, the function S was introduced
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by R. W. Hamilton in 1827, with motivation coming originally from geometric
optics. We will now briefly explain the connection to optics and how it can be
used to understand the meaning of S.

In both optics and mechanics, the function S is related to variational princi-
ples. These principles describe physical laws in terms of minimization of certain
quantities, and S represents the optimal value of the quantity which is mini-
mized. Its derivatives, ∇S and St have obvious meaning: ∇S is the velocity304

and −St is the energy. The meaning of S itself is more subtle. Let us start by
a brief explanation of the role of a function similar to S in geometric optics.305

Let us consider some material in which light propagates. We assume that the
speed of propagation can depend on the position x. The dependence of the
speed on x is usually expressed in terms of the index of refraction n(x) and the
speed in the vacuum c, so that

speed of light at x =
c

n(x)
. (1278)

We imagine that light travels along curves usually called rays. The equation
for these curves can be derived from the following remarkable principle, often
callen Fermat’s principle.

For two points x, y on a light ray which are sufficiently close to each other, the
light ray minimizes the time light needs to travel from x to y.

A more precise formulation is the following. Let γ be any curve joining x and
y. The time T (γ) light needs to travel from x to y along γ is

T (γ) =

∫
γ

dl
c

n(x′)

=

∫
γ

n(x′)

c
dl , (1279)

where dl is the “length element” on the curve (the 1-dimensional Hausdorff
measure).306 If γ is the actual light ray joining x, y, and x, y are sufficiently
close, then

T (γ) = inf{T (γ), γ joins x and y} . (1281)

In terms of elementary Riemannian geometry, this can be formulated as follows.
Consider a metric given by

gij(x) =
n(x)

c
δij . (1282)

304We should really say momentum, but recall that we consider particles with unit mass.
305This topic is closely related to the wave equation which we will discuss later, but much
of the theory was developed independently of the wave equations, before Maxwell identified
light with the solutions of his equations of electromagnetism in 1860s.
306If we think of γ as map from [0, 1] into Rn, we can also write

T (γ) =

∫ 1

0

n(γ(s))

c
|γ′(s)| ds (1280)
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Then the light rays are exactly the geodesic curves of the metric gij . The
quantity T (γ) in (1280) is the distance of x an y in this metric. Let us write
T (x, y) for this distance, i. e.

T (x, y) = inf{T (γ), γ joins x and y} . (1283)

This quantity is defined for any x, y, even if they are not close and the minimizing
curve may not be unique.

The minimizing property (1280) has been known to mathematicians since the
17th century. The important discovery of W. R. Hamilton (around 1827) is that
the function T (x, y) contains in it all information about the system, and in can
be often used to derive effectively what we need.307 It is this function T which
is closely related to the function S we studied in the last few lectures. This may
not be immediately obvious, since T is a function of two variables the role of
which is symmetric, which is different from the function S(x, t) above. However,
we will see that T (x, y) can be used to generate functions of one variable similar
to S(x, t). When we adapt this procedure from optics to mechanics, we will get
exactly the function S(x, t).

307This is a special case of an important principle: if a model is governed by a variational
principle, e. i. some quantity is to be minimized, then the function giving the minimal values
in terms of the parameters of the problem is quite likely to have some significance.
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Lecture 77, 4/22/2011

We will further discuss the function T (x, y) introduced in the last lecture, (1283).
We assume the function n(x) involved is the definition of T is smooth and
positive, with 0 < ν1 ≤ n(x) ≤ ν2 in Rn for some ν1, ν2. With these assumptions
one can show that when x, y are sufficiently close, there exists a unique curve γ
minimizing (1283), and T (x, y) is smooth in both x, y away from the diagonal
x = y. In general, when x, y are not close, we may lose both uniqueness of
the minimizing path and the smoothness of T . Here we will not consider this
situation, and we will always assume that T is as regular as needed. The proof
of the statements above, such as the smoothness of T (x, y) for x, y close to each
other x ̸= y requires some work. It is a special case of results about geodesics and
the distance function which can be found in textbooks of Riemannian geometry,
and we will not go into it in this class. It is a technical point which of course
needs to be clarified at a certain stage, but for now I suggest that we accept
these properties without proof.308

We will write
∂T (x, y)

∂y
= η,

∂T (x, y)

∂x
= −ξ , (1284)

where we use the notation ∇x = ∂
∂x and ∇y = ∂

∂y . To see the meaning of ξ and

η, let us consider the minimizing curve γ joining x to y and let T (x, y) = d > 0.
Let us consider the surface Σ = {z, T (x, z) = d} in the neighborhood of the
point y. It is not hard to see that η ̸= 0, and hence Σ is smooth near y,
and has a tangent plane Ly at the point y. The key point now is that, in our
situation, Ly is perpendicular to η with resect to the usual scalar product. This
is immediate from the point of view of elementary Riemannian geometry, as
the metric defining T (x, y) is at each point a multiple of δij .

309 One can also
verify the statement η ⊥ Ly “by hand”, by “blowing up” the picture near y and
showing that if η and Ly were not perpendicular, you could find points z on Σ
close to y with T (x, z) < d. To see that, one moves along γ almost up to y, and
then, very close to y one moves towards Σ in a direction perpendicular to Ly,
reaching Σ over distance just slightly smaller than d. This of course requires a
calculation which would confirm the heuristics, and we leave this to the reader
as an exercise.310 Once we know that Ly is perpendicular to η, it is cleat that η
coincides with the derivative of T (x, y) along the minimizing curve γ at y, and
we see that ∣∣∣∣∂T (x, y)∂y

∣∣∣∣ = n(y)

c
, (1285)

308The proof is non-trivial and it leads to the consideration of geodesics which are infinites-
imally close to a given geodesics. Such geodesics are best described in terms of Jacobi fields.
If γε = γε(s) is a family of geodesics, with each of the geodesics parametrized by s, then
the Jacobi field of the family is X(γ(s)) = ∂

∂ε
|ε=0γε(s). The vector field satisfies a linear

differential equation along γ (the so called the Jacobi equation), which can be analyzed in
detail. The properties of T can be studied with the help of the Jacobi equation.
309In the geometry terminology, the metric is conformal to the Euclidian metric.
310If the metric gij defining the geodesics is not diagonal at y, then η will be perpendicular
to Ly with respect to the metric gij(y), and not necessarily with respect to δij .
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which is known as the eikonal equation. Sometimes it is written as∣∣∣∣∂T (x, y)∂y

∣∣∣∣2 =

(
n(y)

c

)2

. (1286)

In a similar way we have ∣∣∣∣∂T (x, y)∂x

∣∣∣∣ = n(x)

c
. (1287)

The meaning of ξ = −∂T (x,y)
∂x is similar to that of η. It is a vector of size

n(x)
c at the point x, pointing in the direction of the shortest path from x to

y. Equation (1286) can be used to find the equation for the geodesics (which
can of course be found also in many other ways). For that we take a derivative
of (1223) in y and get an equation for the characteristics, similarly to what we
did in lecture 75, see eqquation (1289). The geodesics (= the light rays) coincide
with the characteristics. We will look at this in more detail (and for slightly
more general equations) later. For now we will focus on different aspects of the
situation.

So far we have viewed (1284) as equations determining η and ξ for a given x, y.
We can also fix x and ξ, and consider them as equations for y and η, which again
brings us to the equation for geodesics. If both x is restricted to some plain L
and y is restricted to some plane L′, then equations(1284) can be thought as
describing some imaging process in which rays emanating from L at x at a given
angle (related to ξ) will reach L′ at y at an angle related to η. We see that we
can think of T (x, y) as describing some optical device.

As noticed by W. R. Hamilton, the above considerations have an analogy in
mechanics. To illustrate the analogy, let us first consider the simple situation
which you probably have encountered at some point in a physics class. Consider
that upper half-space O+ = {x3 > 0} is filled with an optical medium of the
index of refraction n1(x) and the lower half-space O− is filled with an optical
medium of index of refraction n2(x). If a light ray passes from the upper O+

to O−, and its angle with the normal (0, 0, 1) in O+ is α1 and the angle with
(0, 0,−1) in O− is α2, then

sinα1

sinα2
=
n2
n1

, (1288)

which is Snell’s law, discovered before Fermat’s principle.311 It is more or less
clear that this generalizes to the situation when the boundary between the two
media is a more general surface, if the angles are taken with respect to the
normals at the point where the ray passed through the boundary. 312

Let us now replace the light rays by streams of particles. We assume that
particles move in the presence of a potential V which has a constant value

311As an exercise you can derive Snell’s law from Fermat’s principle.
312It is a good exercise to formulate the precise statement and verify it from Fermat’s prin-
ciple.
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V1 in the O+ and a constant value V2 in O−. The energy of the particles is
E > max{V1, V2}. This is an idealized picture in which the force ∇V acts
only when the particle passes through the boundary, by giving the particle a
“kick” in the direction perpendicular to the boundary. In both O+ and O− the
particles move along straight lines as the force ∇V vanishes in those regions. If
the particle passes from O+ to O−, the component of the velocity parallel to the
normal of the dividing surface will change, whereas the other components will
remain unchanged. The trajectory will “bend”. One can calculate the angles of
the trajectories in O+ and O− respectively with the corresponding normals, as
in the case of Snell’s law. An easy calculation shows

sinα1

sinα2
=

√
2(E − V2)√
2(E − V1)

. (1289)

This can be easily checked also for the case when the boundary is a more general
smooth surface than a plane, although at this point we do not wish to use any
analogue of the Fermat’s principle to prove this at this point, as our goal is ulti-
mately to derive an analogy of Fermat’s principle in mechanics. We can simply
convince ourselves that for the purposes of this mechanical thought experiment
we can replace the boundary by the tangent plane at the point of impact. We
see that – at least in the above situation – the laws governing the mechanical
particles at energy E are the same as the laws of optics, if we choose the index
of refraction as

√
2(E − V ). This should generalize to general smooth poten-

tials V by the following argument. We can approximate V by staircase-like
piece-wise constant potentials of the form Vε(x) = χε(V (x)), where χε : R→ R
is a suitable step function with step ε.313 For such potentials the analogy with
optics works as above, and we expect that this property should be preserved in
the limit ε → 0. We therefore reach the remarkable conclusion, known already
to Euler314 around 1744, that

A particle of energy E in a potential field V (x)moves along the same trajectories
as the light rays in a material with index of refraction n(x) =

√
2(E − V (x)).

We have not really fully proved it, although our consideration above should be
convincing. We will soon have a more rigorous proof. The optical function
T (x, y) will have a mechanical analogy, which will explain the meaning of the
function S(x, t) we dealt with in previous lectures.

313For example,if [x] is the integer part of x, we can take χε(x) = ε[x
ε
].

314Euler studied the question in connection with the so called Maupertuis’ principle.
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Lecture 78, 4/25/2011

We have seen last time that the trajectories of a particle with energy E in the
presence of a potential V is the same as the trajectories of light in material with
index of refraction

√
2(E − V ). Let T (x, y) = T (x, y;E) be the correspond-

ing “optical function”, which we studied in the last lecture.315 Let x, y be a
sufficiently close to each other and let t > 0. At this stage we consider t as a
parameter the value of which will be specified later. The value of T (x, y) is the
infimum of ∫ t

0

√
2(E − V (z)) |ż(s)| ds (1290)

over the curves z : [0, t]→ Rn with z(0) = x and z(t) = y. We note that (1290)
is a curve integral along the curve z(s) written in a particular parametrization,
but its value is independent of the parametrization, the integral is “geometric”
in the sense that it only depends on the curve traced by z(t), and not on any
particular parametrization. We recall that for a, b > 0 we have

ab ≤ 1

2
a2 +

1

2
b2, with equality ⇐⇒ a = b (1291)

Hence we have ∫ t

0

√
2(E − V )|ż| ds ≤

∫ t

0

(E − V +
1

2
|ż|2) ds , (1292)

with equality if and only if |ż(s)| =
√
2(E − V (z(s))) for each s ∈ [0, t]. Now

instead of minimizing the left-hand side of (1292), we can try to minimize the
right-hand side, and see if we can find a minimizer which would satisfy |ż(s)| =√
2(E − V (z(s))) for each s ∈ [0, t]. Since E is fixed, minimizing the right-hand

side is the same as minimizing

I(z) =

∫ t

0

1

2
|ż|2 − V (z) ds . (1293)

The equation for the minimizers of I(z) is easily obtained from the condition

I ′(z)ζ =
d

dε
|ε=0I(z + εζ) = 0 (1294)

for each smooth ζ = ζ(s) with ζ(0) = ζ(s) = 0. We have

z̈ = −∇V , (1295)

which, quite luckily, is exactly the newtonian equation of motion. This is the
celebrated Hamilton’s principle:

315Note that now T does not have dimension of time, since the quantity which is integrated
along curves has the dimension of velocity.
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The newtonian trajectories passing from x to y in time t are exactly the critical
points316 of the integral I(z) in (1293).

Equation (1295) implies the energy conservation

1

2
|ż|2 + V = const. (1296)

along the trajectory. For a minimizer of (1293) to be also a minimizer of (1290)
for a given E, the condition for equality in (1291) gives

1

2
|ż|2 + V = E along the trajectory. (1297)

This will be satisfied if the constant in (1296) is exactly E. To achieve this, we
must choose the right t: it is clear that the energy of the minimizer of (1293)
should be high for small t and just above max{V (x), V (y)} for large t, so we
should be able to choose t so that the energy is exactly E. Therefore the
minimization of (1292) should be the same as the minimization of (1293) for a
suitably chose t, so that the energy along the trajectory is E.

For any x, y and t we can define

S(x, y, t) = inf

∫ t

0

1

2
|ż|2 − V (z) ds, z(0) = x, z(t) = y , (1298)

where the infimum is taken over all smooth curves z : [0, t] → Rn satisfying
the boundary conditions z(0) = x, z(t) = y. The function S is called action in
Mechanics, and plays a role similar to the function T (x, y) in optics. It contains
much of the information about the system. In comparison with optics we have
one more variable t, which stems from the fact that the energy is not fixed
and its value influences the mechanical “index of refraction”

√
2(E − V ). In

some sense, rather then having one optical system, we have a one-parameter
family of “optical systems” parametrized by E. So we should also have a one
parameter family of analogues of optical functions. The variable t is in some
sense dual to the variable E. The relation of T (x, y) = T (x, y;E) defined above
and S(x, y, t) can be seen from (1292), assuming we choose t so that in (1292)
we have equality:

T (x, y;E) = Et+ S(x, y, t), where t = t(x, y, E) or E = E(x, y, t) (1299)

In the case of the free particle (V = 0) we easily calculate

T (x, y;E) =
√
2E|x− y|, S(x, y, t) =

|x− y|2

2t
(1300)

316We will see later that if t is fixed and x, y are sufficiently close (for the given t) the critical
points are in fact minimizers
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and also

t = t(x, y, E) =
|x− y|√

2E
=
∂T

∂E
, E = E(x, y, t) =

|x− y|2

2t2
= −∂S

∂t
. (1301)

We will see that similar (and additional) relations are true in general, and that
S(x, y, t) satisfies the Hamilton-Jacobi equation as a function of either y (with
fixed x) or x (with fixed y). Moreover, we will also see that S(x, y, t) in some
sense generates the solutions S(x, t) we considered in lecture 75.
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Homework Assignment 3

due on Thursday, May 12, 2011

Show that the Schrödinger equation iut + ∆u = 0 in Rn × R has a bounded
smooth solution u(x, t) with the following properties.

1. supx∈Rn |∇ku(x, 0)| ≤ 10−8 for k = 0, 1, . . . , 104.

2. At some time t0 > 0 we have |u(0, t0)| ≥ 1000.

3. There exists T > 0 such that for each t ≥ T we have
supx∈Rn |∇ku(x, t)| ≤ 10−8 for k = 0, 1, . . . , 104.

Hint: use the fundamental solution and the fact that we can “run the equation”
both backwards and forwards.
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Lecture 79, 4/27/2011

We continue with investigating properties of the function S(x, y, t) defined last
time, see formula (1298). For now we will assume that in the range of x, y, t we
will be considering the infimum in (1298) is attained on a unique curve z(s) on
[0, t] satisfying the boundary conditions z(0) = x and z(t) = y. We first look at
some simple sufficient conditions under which this is the case. Let us set

I(z) =

∫ t

0

1

2
|ż|2 − V (z) ds . (1302)

The functional I will be considered on the set

Z = Z(x, y, t) = {z ∈W 1,2(0, t); z(0) = x, z(t) = y} . (1303)

The set Z is clearly affine, and hence the notion of convexity of I on Z makes
sense. We also define

Z0 = Z0(t) = {ζ ∈W 1,2(0, t) , ζ(0) = ζ(t) = 0} (1304)

We have for any z ∈ Z and any ζ ∈W 1,2(0, t)

d2

dε2
|ε=0 I(z + εζ) =

∫ t

0

|ζ̇|2 −D2V (z)(ζ, ζ) ds . (1305)

If we assume that
|D2V (z, z)(ζ, ζ)| ≤ c|ζ|2 ζ ∈ R (1306)

and recall that∫ t

0

|ζ̇|2 − c|ζ|2 ds ≥ ν
∫ t

0

|ζ̇|2 , ζ ∈ Z0 , when π2

t2 ≥ c+ ν ,317 (1307)

we see that I is convex on Z when t ≤ π√
c+ν

. In this case there will be a unique

minimizer of I in Z, which will also be the unique critical point of I in Z. The
condition I ′(z)ζ = 0 for each ζ ∈ Z0 gives the Euler-Lagrange equation

z̈ = −∇V (z) . (1308)

(We first get that the equation is satisfied in a weak sense, but if V is smooth one
sees easily that z is also smooth, by a bootstrapping argument, see lecture 40.)
Under assumptions (1306), (1307), and assuming V is smooth, the minimizing
trajectory z(s) = z(s, x, y, t) will depend smoothly on x, y, t. We will not go into
the proof of this statement at this point318 but we will assume in what follows
that S(x, y, t) can be differentiated as necessary.

317This can be seen for example from the Fourier series. It also follows from the variational
characterization of the first eigenvalue of the laplacian, but we have not discussed this topic
yet.
318Although the statement is heuristically very plausible, is not completely trivial to prove
it unless one approaches the proof in the right way.

317



For the minimizer z of I in Z(x, y, t) we will denote

p = ż(0), q = ż(t), E =
1

2
|ż|2 + V (z) . (1309)

In other words, the velocity of the minimizing trajectory at x is p = p(x, y, t),
the velocity of the minimizing trajectory at y is q = q(x, y, t), and the energy
(which is constant along the trajectory) is E = E(x, y, t).
With this notation, we have the following identities, the first two of which are
analogous to (1284), with the meaning of ξ and η explained in the discussion
following (1284).

∂S(x, y, t)

∂x
= −p , ∂S(x, y, t)

∂y
= q ,

∂S(x, y, t)

∂t
= −E . (1310)

Heuristically it is not hard to see why these identities should be true. Let z(s)
be the minimizing curve between x and y. Consider S(x, y + εh, t). We will
write the minimizer zε(s) for the trajectory between x and y + εh as

zε(s) = z(s) + εζ(s, ε) , (1311)

where ζ(0, ε) = 0 and ζ(t, ε) = h. Let ζ(s) = ζ(s, 0) = limε→0+ ζ(s, ε). In a full
proof we would have to prove the existence of this limit, but we will not go into
the details of this step. We note that formally we have

∂

∂ε
|ε=0(εζ(s, ε)) = ζ(s) . (1312)

We will again take this formal identity without proof. We have

S(x, y + εh, t) =

∫ t

0

1

2
|ż(s) + εζ̇(s, ε)|2 − V (z(s) + εζ(s, ε)) ds , (1313)

and taking ∂
∂ε at ε = 0, we obtain, using integration by parts and (1308),

∂S(x, y, t)

∂y
· h =

∫ t

0

żζ̇ −∇V (z)ζ ds = ż(t) · ζ(t) = q · h . (1314)

This shows that
∂S(x, y, t)

∂y
= q . (1315)

The first equation of (1310) can be obtained similarly.

For the last equation of (1310), let us note that

S(x, z(t+ τ), t+ τ) = S(x, y, t) +

∫ t+τ

t

1

2
|ż|2 − V (z) ds . (1316)

Taking ∂
∂τ of this identity, we obtain, using ∂S(x,y,t)

y = q,

|q|2 + ∂S(x, y, t)

∂t
=

1

2
|q|2 − V (y) , (1317)
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which implies the third equation of (1310).

Relations (1310) imply that for each fixed y the function (y, t) → S(x, y, t)
satisfies

St +
1

2
|∇yS|2 + V = 0 . (1318)

The function (x, t)→ S(x, y, t) satisfies

St +
1

2
|∇xS|2 + V = 0 . (1319)

We recall that when V = 0, the function S(x, y, t) is given by the explicit
formula (1300).

We note that formula (1298) will make sense under quite general assumptions
(e. g. when V is bounded from below and continuous) for all (x, y, t), so S(x, y, t)
can be defined globally. However, in general it may not be smooth, even when V
is smooth and all its derivatives are bounded. Roughly speaking, this is due to
the fact that the minimizing trajectories may not be unique for some (x, y, t).
The function still satisfies (1318) and (1319) in a suitable generalized sense.
The investigation of such possibly non-smooth solutions is the subject of the
theory of viscosity solutions, see a footnote in lecture 75 for references. The
important fact is that one can establish both existence and uniqueness in this
class of solutions. We will not pursue this topic here.

The functions S(x, y, t) can be viewed from many different angles. For example
the relations

∂S(x, y, t)

∂x
= −p , ∂S(x, y, t)

∂y
= q (1320)

can be thought of (under some assumptions) as a transformation

ϕt : (x, p)→ (y, q) . (1321)

These transformations (which can be defined in more general situations by re-
placing S(x, y, t) by quite general functions F (x, y)) have many remarkable
properties319 which are studied in symplectic geometry. The particle trajec-
tory (together with the velocity) of a particle starting at x with velocity x at
time t = 0 can be thought of as

(x(t), p(t)) = ϕt(x, p) . (1322)

The equations of motion

ẋ = p , ṗ = −∇V (x) (1323)

319For example, we have seen that a “gradient graph” {p = ∇f(x)} is mapped again in
a gradient graph {q = ∇g(y)}. As an exercise, you can also check that the transformation
preserves volume. (In fact, it takes the differential form dpi ∧ dxi into the differential form
dqi ∧ dyi, with the summation convention understood.)
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can be though of as an infinitesimal version of this transformation.

The function S(x, y, t) can be also used to generate other solutions of the
Hamilton-Jacobi equation. For example, let us consider the equation

Ft +
1

2
|∇F |2 + V = 0, (x, t) ∈ Rn × [0, t1) (1324)

with the initial condition F (x, 0) = F0(x). (In previous lectures we wrote this
equation with S instead of F , but in this lecture we use S for the function
S(x, y, t) above.)
Let us set

F (x, t) = inf
y∈Rn

(S(y, x, t) + F0(y)) (1325)

For each fixed y the function (x, t) → M(y, x, t) = S(y, x, t) + F0(y) satisfies
equation (1324), and hence F in (1325) can be viewed as the infimum of a family
of functions which already satisfy the equation. We say that F is an envelope
of the family. It is easy to see that F should satisfy the equation: assuming the
infimum is attained at y(x, t) and that y(x, t) can be differentiated in (x, t), we
have

F (x, t) = M(y(x, t), x, t) ,
Ft(x, t) = My(y(x, t), x, t)yt(x, t) +Mt =Mt ,

∇xF (x, t) = My(y(x, t), x, t)∇xy(x, t) +Mx =Mx ,
(1326)

where we used My(y(x, t), x, t) = 0, which is valid at the point of minimum
in y.320

We also note the behavior of S(x, y, t) as t → 0. It is quite similar to that of
the explicit formula (1300) for the case V = 0. In particular S(x, y, t) → ∞ as
t → 0+ for x ̸= y, while S(x, x, t) = 0 for each t > 0. In view of this it is clear
from (1325) that at t → 0+, the infimum over y is achieved at a point y(x, t)
which approaches x as t → 0, and that F (x, t) → F0(x) as t → 0+. Also, the
condition My(y(x, t), x, t) = 0 gives

q = −∇yS(y, x, t) = ∇F0(y), y = y(x, t) , (1327)

which means that the velocity of the trajectory starting at y is ∇F0(y).

In the special case V = 0 we obtain, using (1300), that the solution of

Ft +
1

2
|∇xF |2 = 0, (x, t) ∈ Rn × (0, t1), F (x, 0) = F0(x) (1328)

is given for t > 0 by

F (x, t) = inf
y

(
|y − x|2

2t
+ F0(y)) , (1329)

320We note that for this it is enough to have a critical point instead of the minimum and the
notion of envelope can be extended to this situation.
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which is known as Hopf’s formula, after Eberhard Hopf. This formula de-
fined F for all t > 0, but we have not investigated in what sense the equation
Ft +

1
2 |∇xF |

2 = 0 is satisfied after after ∇F may become discontinuous (when
characteristics corresponding to different values of ∇F meet). This topic has
been studied in detail, see for example the textbook “Partial Differential Equa-
tions” by L. C. Evans for an exposition.

In the above we viewed the function S(y, x, t) as a function of x with y as a
parameter. In the formula (1325) the exact nature of the parameter y was not
very important, one can use a similar procedure for any family of solutions
ϕ(x, t, α) of (1324). Here α = (α1, . . . , αm) is a parameter, and for each fixed α
the function x → ϕ(x, t, α) is assumed to satisfy equation (1324). Assume we
have such a family of solutions. We wish to investigate under which conditions
we can generate all solutions (1324), at least locally, from this family, somewhat
similarly to how we generated F (x, t) above from S(y, x, t). In that case the
role of α was played by y.
Let F (x, t) be a smooth solution of

Ft +
1

2
|∇F |2 + V = 0 . (1330)

Let us try to express the derivatives Fi = Fxi in terms of the derivatives
ϕxi(x, α). At a fixed (x, t) we consider the equations for α

F1(x, t) = ϕx1(x, t, α)
F2(x, t) = ϕx2(x, t, α)

. . .
Fn(x, t) = ϕxn(x, t, α)

(1331)

As (x, t) is fixed, this is just a system of n equations for the unknown α. If
the equations are to be uniquely solvable for all possible values of Fi(x, t) at
least locally, in a neighborhood of some given solution, we clearly should have
n unknowns (α1, . . . , αn), and Jacobian of the mapping α → {ϕxi(x, α)}ni=1

should be non-singular. The Jacobian is

{ϕxiαj (x, t, α)}ni,j=1 . (1332)

An n− parameter family ϕ(x, t, α) = ϕ(x, t, α1, . . . , αn) of solutions of (1330)
such that the matrix (1332) is non-singular at each point is called a complete
integral of the equation (1330). We will see that – at least locally – a general
solution of (1330) can be expressed in terms of complete integrals.
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Lecture 80, 5/2/2011

Let ϕ(x, t, α) = ϕ(x, t, α1, . . . , αn) be a complete integral of (??), as defined at
the end of the last lecture. For a fixed (x, t), we consider the map

α→ ∇xϕ(x, t, α) . (1333)

The matrix ϕxiαj is the Jacobi matrix of this mapping, and by our assumptions
it is non-singular. By the Implicit Function Theorem this means that for α ∈ Rn
and p = ∇xϕ(x, t, α) the mapping (1333) is a diffeomorphism of a neighborhood
of α onto a neighborhood of p. (We recall that (x, t) is fixed at this point.) In
what follows we will assume that all the relevant quantities take values in these
neighborhoods, so that the map (1333) can be inverted. For typical complete
integrals which can be found “in practice” these neighborhoods can be quite
large, but they do not always coincide with the whole space Rn, and therefore
in specific examples this issue has to be kept in mind.

Assume that F is a solution of (1330). For each (x, t) we solve (1331) for α, so
that we find α as a function of (x, t). We can write α = α(x, t).

We should comment on notation. When we consider α as a function of (x, t) and
we write expressions such as ∇xϕ(x, α), there is a danger of confusion. Does this
expression mean that we first differentiate for a fixed α and only then consider α
as a function of (x, t), or do we differentiate the function x→ ϕ(x, α(x, t))? Will
use the notation ϕx(x, α) for the former situation and the notation ∇x(ϕ(x, α))
for the latter situation in case this ambiguity might lead to a confusion. With
this convention we can write ∇x(ϕ(x, α)) = ϕx(x, α)+ϕα(x, α)αx. The notation
∇xϕ(x, α) can be used in both ways, and we will only use it when there is no
danger of confusion.
We note that we can use (1330) to infer that, in a addition to ∇xF = ∇xϕ(x, α)
we also have Ft(x, t) = ϕt(x, t, α). (Recall that for each fixed α the function
(x, t) → ϕ(x, t, α) solves (1330).) Hence all the derivatives of F (x, t) at (x, t)
are “matched”:

Ft(x, t) = ϕt(x, t, α) ,
F1(x, t) = ϕx1(x, t, α) ,

. . .
Fn(x, t) = ϕxn(x, t, α) .

(1334)

As (x, t) varies, α becomes a function of (x, t), as already discussed. Although

we matched the derivatives of ϕ and F the values of the functions themselves,
F (x, t) and ϕ(x, t;α(x, t), are not necessarily matched. To match those, we need
to use a trivial augmentation of the complete integral: from the n− parameter
family for solutions ϕ(x, t, α1, . . . , αn) we obtain (n + 1)-parameter family of
solutions

ϕ(x, t, α1, . . . , αn) + α0 = ϕ(x, t, α) + α0 . (1335)

As indicated, α still denotes the n−tuple (α1, . . . , αn), without α0. We can use
α0 to match F (x, t) and ϕ(x, t, α) + α0 simply by setting

F (x, t) = ϕ(x, α(x, t)) + α0(x, t) . (1336)
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In other words, for each fixed (x, t) the system (1334) determining α is aug-
mented by the additional eqaution

F (x, t) = ϕ(x, t, α) + α0 . (1337)

We can think about it in the following way. We wish to use the augmented
complete integral ϕ(x, t, α) + α0 to match the function F and all its derivatives
with ϕ and its derivatives in x, t at each point. We have n + 2 conditions: the
values of the functions, n spatial derivatives and the time derivative. We have
n+ 1 parameters at our disposal, which seems to be one too few. However, we
have relation (1330) between the time derivative of F and the spatial derivatives,
so the n+2 conditions are not independent - there is one relation between them.
Hence n+1 is exactly the right number of parameters. Therefore, at each point
we can uniquely solve the system of equations (1334) augmented by (1337). The
last equation is of course in some sense trivial, which is why we did not include
α0 in the definition of the complete integral.

Considering now α = α(x, t) and α0 = α0(x, t) as functions of (x, t) we can take
derivatives of (1337) with respect to xi and t (this time also differentiating α
and α0) and compare the result with (1334). We obtain

α0t + ϕαk
αkt = 0 , (1338)

and
α0xi + ϕαk

αkxi = 0 , (1339)

where in both equation summation over k = 1, . . . , n is understood. The way
we arrived at these equations is the following: we assumed we have a solution
F (x, t) and the complete integral ϕ(x, t;α) and from that we found the functions
αk(x, t), k = 0, 1, . . . , n. We can now reverse this procedure: we can start with
the complete integral ϕ(x, α) and if we solve equations (1338) and (1339), the
formula (1336) will give us a solution F (x, t). In this point of view the complete
integral can be viewed as a function generating a suitable change of variables.
The change of variables is given by

p = ϕx(x, t, α), β = −ϕα(x, t, α) , (1340)

and we consider these equations as determining a transformation (which depends
on t)

(x, p)→ (α, β) (1341)

In particular, for a given t, if α, β is given, then x, p are given. The equa-
tions (1338) and (1339) can be re-written in terms of α and β as

α0t − βkαkt = 0 , (1342)

together with
α0xi − βkαkxi = 0 . (1343)
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These equations are considered together with (1340). Roughly speaking, our
goal is to eliminate β from (1340), (1342),and (1343), and express α as a func-
tion of (x, t). Equations (1342) and (1343) are best understood in terms of
differential forms and contact geometry.321 We will not go into these topics
at this point, but we note the following: equations (1342), and (1343) are
purely “geometrical” in the sense that if αk(x, t), βk(x, t) is a solution and we
then αk(x

′(x, t), t′(x, t)), βk(x
′(x, t), t′(x, t)) is again a solution for any diffeo-

morphism
(x, t)→ (x′(x, t), t′(x, t)) . (1344)

Also, note that they are independent of the choice of V in the equation we
started with. We can in fact write down many solutions of (1342) and (1343)
as follows: let f = f(α1, . . . , αn) be any smooth function. Then for any smooth
functions α1(x, t), . . . , αn(x, t) the function

α0(x, t) = f(α1(x, t), . . . , αn(x, t))
α1(x, t)
. . .
αn(x, t)
β1(x, t) = fα1(α1(x, t), . . . , αn(x, t))
. . .
βn(x, t) = fαn(α1(x, t), . . . , αn(x, t))

(1345)

The verification that these solve (1342) and (1343) is a matter of simple appli-
cation of the chain rule. (In some sense, all “generic” solutions look like that,
at least locally, but we will not discuss the details - they are not necessary for
our purposes here.)
The equations for β(x, t) in (1345) can be used to eliminate β from (1340).
Substituting for beta from (1345), we obtain from the second equation in (1340)

fαk
(α) = −ϕαk

(x, t, α) , k = 1, 2, . . . , n . (1346)

The equation says that α is a critical point (for fixed (x, t) of the function
α→ f(α) + ϕ(x, t, α). If this equation can be uniquely solved for α, we obtain
the desired expression for α as a function of (x, t), and (1336) together with
the first equation of (1345) then give a solution F (x, t) of (1324). (Note that
the situation is somewhat similar to (1325), with α playing the role of y and
f(α) playing the role of S0(y).) The initial condition F (x, 0) is related to the
choice of f . It should be emphasized that in many cases we do not expect
that (1346) will be solvable of α globally, but only locally, in some open set. In
that case F (x, t) will also be defined only locally. The important point about

the transformations (1340) given by (1340) is that the variable α is not just a
function of x, it can “mix” both x and p.

321In terms of differential forms, equations (1342) and (1343) have a simple meaning: we
search for integral sub-manifolds of the field of hyper-planes in the (2n+1)-dimensional space
α0, α1, . . . , αn, β1, . . . , βn given by the one-form dα0 − βkdαk.
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We will not go too much further in this direction - we have only scratched
the surface of the large area of contact geometry and the systematical study of
transformations of differential equations. Both these topics were initiated by the
work of S. Lie around 1872. The interested reader can consult for example the
book “Applications of Lie Groups to Differential Equations” by Peter Olver, or
the paper “A Brief History of Contact Geometry and Topology” by H. Geiges,
Expositiones Mathematicae 19 (2001), 25-53.

One can obtain some information about the functions α(x, t) by elementary
means. We have seen – see (1252) – that we have

(ϕi)t + ϕj(ϕi)j + Vi = 0 . (1347)

and also (since ϕ(x, t, α) solve (1324) for any fixed α)

ϕit + ϕjϕij + Vi = 0 , (1348)

where we write fi, fij for fxi and fxixj respectively, and we use the convention
discussed before (1334) concerning whether or not the notation implies differ-
entiating α(x, t) in ϕ(x, t, α). Carrying out the differentiation in (1347) and
subtracting (1348), we obtain

ϕiαk
αkt + ϕiαk

ϕjαkxj = 0 . (1349)

Since the matrix ϕiαk
is non-singular by our assumptions, we infer that

αkt + ϕjαkxj = 0 , k = 1, . . . , n , (1350)

which is the same as

αkt + Fjαkxj = 0 , k = 1, . . . , n . (1351)

This means that the parameters αk = αk(x, t) are constant along the charac-
teristics of the solution F (x, t). The same is true for α0 = α0(x, t), and one can
easily establish by calculating α0t + Fiα0xi = 0.

The fact that αk(x, t) are constant along the characteristics of the solution
F (x, t) means that each given characteristic of F (x, t) is also a characteristic of
the solution (x, t) → ϕ(x, t, α) for some fixed α, which depends on the charac-
teristic. Using the statement concerning (1267) in lecture 75, we see that the
quantities

βk = −ϕαk
(x, t, α(x, t)) (1352)

are also constant along the characteristics of F (x, t).

We note that the above consideration also imply that once we know the complete
integral ϕ(x, t, α), we can determine the characteristics (and hence also the
newtonian trajectories) as follows. We again consider the equations

p = ϕx(x, t, α), β = −ϕα(x, t, α) , (1353)
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and consider these equations as determining a t− dependent transformation

(x, p)←→ (α, β) (1354)

If we keep α, β on the right-hand side constant and vary t the variables (x, p) on
the left-hand side will move along a curve (x(t), p(t)), where x(t) is a newtonian
trajectory and p(t) = ẋ(t) is its velocity. The initial point x(0), p(0) of the tra-
jectory can be chosen by varying the constants α, β. We see that the knowledge
of the complete integral of the Hamilton-Jacobi equation enables us to calculate
the trajectories. The calculation of the elliptic orbits of the planetary motion
in lecture 75 was a special case of these principles.

The method of finding the complete integral of the Hamilton-Jacobi equation
remains since its invention by Jacobi in 1830s one of the most powerful methods
for expression solutions of the newtonian (or lagrangian) equations of motion
by means of integrals.

We mention some examples.

An example of a complete integral is given by (1270), (1271), with E,M playing
the role of αa, α2. Note that the variables E,M “mix” both x and the velocity p.
If we only consider changes of variables in the coordinate x, one cannot achieve
the simplification.

For the free equation St +
1
2 |∇S|

2 = 0 we can write down a complete integral
in more than one form. For example we have

ϕ(x, α) = α · x− 1

2
|α|2t. (1355)

Another possibility is a version of the function S(x, y, t) we considered before

ϕ(x, t, y, s) =
|x− y|2

2(t− s)
, (1356)

Where y plays the role of α. Here we have the extra parameter s which can be
used instead of the parameter α0 above in augmenting the integral.

In dimension n = 1 we only need one parameter to obtain a complete integral,
and it can be taken to be the energy E. One seeks S(x, t) in the form

S(x, t, E) = −Et+ f(x,E) , (1357)

The equation for f is
1

2
(f ′)2 = E − V , (1358)

from which we get

f(x,E) = ±
∫ √

2(E − V (x)) dx . (1359)
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The role of α1 is played by E. The equation

β1 =
∂S

∂E
= −t±

∫
dx√

2(E − V )
= const. (1360)

gives the trajectory x(t).

In general, it is difficult to find complete integrals for systems in dimension
n ≥ 2 in a closed form. Having such an integral means that we can find the
equations for trajectories in a closed form, which is of course difficult in general.
One can prove that a complete integral always exists at least locally, but one
can rarely find it in a closed form.

We will briefly mention the general first-order equations

F (x, u,∇u) = 0 (1361)

where u = u(x1, . . . , xn) and F is smooth function on Rn×R×Rn. The partial
derivatives uxi are traditionally denoted by pi and we also write p = ∇xu. With
this notation, the equation is often written as

F (x, u, p) = 0 . (1362)

These equations are best understood in terms of the contact geometry we al-
ready mention above. Here we will restrict ourself to some simple considerations,
which nevertheless should give a good idea about the nature of the equation.
Overall, the situation is quite similar to the more special Hamilton-Jacobi equa-
tions such as (1324) which we considered in previous lectures. One difference
is that in the form (1362) the role of all the variables is the same, there is no
distinguishes variable such as the variable t in (1324). The key to understanding
the equation is again in the equations for pi obtained by differentiating (1362).
(There is again some geometry behind these equations, which we will not dis-
cuss.) Taking ∂

∂xi
of (1362), we obtain

0 = Fxi + Fuuxi + Fpjpjxi = Fxi + Fupi + Fpjpixj . (1363)

This equation shows that the information about pi propagates along integral
curves of the vector field bi(x) = Fpi(x, u(x), p(x)). let us assume that a solution
u is given. Let x(s) be a curve with

dxi
ds

= Fpi = Fpi(x, u(x), p(x)) = bi(x) . (1364)

Along the curve we have, from (1368)

dpi
ds

= −Fxi − Fupi . (1365)

To close the equations, we need an equation for u along the curve (1369). The
equation is

du

ds
= uxi

dxi
ds

= piFpi . (1366)
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We have the system

dxi
ds

= Fpi ,
dpi
ds

= −Fxi − Fupi,
du

ds
= piFpi . (1367)

These equations define an ordinary differential equation for the triple (x, u, p).
Assume that Σ is an n− 1-dimensional surface in Rn and that the values of u, p
are given for each point x ∈ Σ, so that F (x, u, p) = 0 on Σ. The Cauchy problem
for (1362) consists in finding an extension of u from Σ to a neighborhood of Σ so
that F (x, u, p) = 0 is satisfied in the neighborhood. If for some x ∈ Σ the vector
Fpi is tangent to Σ, then dp

ds and du
ds are given on one hand by the values of u, p

on the surface, and on the other hand by (1367). The two requirements may
not be consistent, in which case the Cauchy problem is not solvable. Therefore
we will consider the Cauchy problem only for the situation when the vectors Fpi
are transversal (not tangent) to Σ at any point. In this case the ODE (1367)
will give us a system of curves x(s), u(s) in Rn×R parametrized by the points of
Σ. In a neighborhood of Σ these curves will fill up an n− dimensional surface,
and one can show that in some neighborhood of Σ this surface is a graph of a
function solving F (x, u, p) = 0. The details of the proof are quite similar to the
local existence proof for (1251), which we did in lecture 75, and we omit the
details. The procedure also shows that the solution is unique, as at each step is
fully determined by the data, there are no “free parameters”.

Above we assumed that the data on Σ were both u and p. If only u is given,
we can still calculated the derivatives in the directions tangential to Σ, which
gives us n − 1 coordinates of p, but it does not give us the derivative in the
direction normal to Σ. That has to be determined from the equation. At
each point x ∈ Σ we know all the tangential components of p and hence the
equation F (x, u, p) = 0 should can be used to get information about the normal
component of p. The normal component may not be determined uniquely by
the equation - we may have several solution. (This happens for example for the
simple eikonal equation |∇u|2 = 1.) If this happens, the solution of the Cauchy
problem is not unique, and if we wich to recover uniqueness, the choice of the
normal derivative at of u at Σ has to be specified.

The notion of the complete integral is similar to that we have discussed for the
Hamilton-Jacobi equation (1324). A function ϕ(x, α) with α = (α1, . . . , αn) is
a complete integral of (1362) if it solves the equation in x for each fixed α, and
the matrix

ϕa1 ϕa1x1 . . . ϕa1xn

ϕa2 ϕa2x2 . . . ϕa2xn

. . . . . . . . . . . .
ϕan ϕanx1 . . . ϕanxn

(1368)

is non-singular. The last condition comes about as follows. Assume we are given
a solution u(x) and we wish to match it with the complete integral. At each

328



point x we wish to find α so that

u(x) = ϕ(x, α)
ux1

(x) = ϕx1
(x, α)

. . .
uxn

(x) = ϕxn
(x, α) .

(1369)

We have n+1 quantities on the right-hand side, but they satisfy equation (1362),
and therefore we expect that we will need n parameters to match them with
the right-hand side, for suitable α. Matrix (1368) is the Jacobian matrix of the
map

α→


ϕ(x, α)
ϕx1(x, α)

. . .
ϕxn(x, α)

 (1370)

which we wish to be invertible, at least locally. Hence the condition that the
matrix be non-singular. Most of the consideration which we did for the complete
integral of the Hamilton-Jacobi equation (1324) can be extended the above more
general situation, but we will not pursue this topic at this point.
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Lecture 81, 5/4/2011

Today we start discussing the wave equation

utt −∆u = 0, (1371)

and also its non-homogeneous version

utt −∆u = f(x, t) . (1372)

The function u will be assumed to be a scalar function on some subset of the
space-time Rn × R, with x ∈ Rn and t ∈ R.

Historically, equation (1371) might have been the first PDE studied in some
detail. It appeared in a 1747 paper by d’Alembert, who arrived at it in con-
nection with vibrations of strings. In this context, we imagine that a string
vibrates (with small amplitude) around its equilibrium state in the direction
perpendicular to the string. The quantity u(x, t) denotes the displacement from
the equilibrium at location x and time t. For the usual strings, such as guitar
strings, for example, u(x, t) really is a vector in the plane perpendicular to the
string, but we can consider the idealized situation in which the string vibrates
only in one direction, in which case the function u can be considered as a scalar
function. This is the case we will consider.322 The equation arises in many other
situations. For example, it described the propagation of small-amplitude sound
waves in air (and other media). In this case u(x, t) represents the density (or, al-
ternatively, the pressure) at the point x at time t. The wave equation also plays
an important role in the analysis of Maxwell’s equations of electrodynamics. It
is through this connection that the analysis of the wave equation (together with
Maxwell’s equations) and the group of transformations which leaves it invari-
ant, lead to profound changes in the foundations of Physics, culminating with
the special theory of relativity (A. Einstein, 1905) and the general theory of
relativity (A. Einstein, 1915).

There are many ways in which the equation can be arrived at. Let us consider
for example the derivation based on Hamilton’s principle which we discussed in
lecture 78. We consider small oscillations of a string, with u(x, t) having the
same meaning as described above. The variable x parametrizes the string, we
assume x ∈ Ω = (a, b). We allow a = −∞ and b = ∞ as a possibility. The
boundary condition at a, b are u(a, t) = u(b, t) = 0. 323 In the case a = −∞
we can simply assume that u(x, t) = 0 for sufficiently large negative x. A-priori
it is not clear that this is a good assumption - for the heat equation or the
Schrödinger equation the assumption would not work,324 but we will see that

322There is not much loss of generality, since the “general vibrations” can be thought of as
superpositions of the vibrations in given planes.
323Other conditions can also be considered. For example u(a, t) = 0 can be replaced by
ux(a, t) = 0.
324When f = 0, it would imply that the solution vanishes identically.
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it works well for the wave equation. (If we were unaware of this, a reasonable
formulation of the boundary condition at x = ±∞ would be to demand that u
decays to 0 “sufficiently fast” as x→ ±∞.)

In our derivation below we will not much use that x is one-dimensional, we can
also think about x ∈ Rn (or a subdomain Ω of Rn with u = 0 at the boundary
of Ω, for example). For n = 2 we can think of vibrations of a drum. Note that
both the string and the drum are under some tension when at rest. This is an
important point. One can also consider vibrations of a rod or a plate, but these
are not described by the wave equation.325

Considering a prescribed motion u(x, t) (not necessarily a “real motion”), where
∇u is small, the quadratic part of the kinetic energy at time t is given by

Ekinetic =

∫
Ω

1

2
ρ |ut(x, t)|2 dx , (1373)

where ρ denotes the density of the string/membrane. In principle ρ can be a
function of x, but we will mostly consider the case when ρ is constant.

We turn to the potential energy. The terminology in the derivation below will
correspond to the case of the string, n = 1, but some of the considerations
can be made in any dimension, if the terminology is changed accordingly. The
potential energy will be coming from the elastic energy stored in the material
of the string due to tension. Since there is some tension in the string even when
the string is at rest, our potential energy at time t will really be the increase of
the potential between the rest state u = 0 and a state u(x, t) at time t. In other
word, we will take

Epotential =
Elastic energy
when u = u(x, t)

− Elastic energy
when u = 0

. (1374)

We imagine that the change in the elastic energy comes from the slight increase
of length of the string when in the state u(x, t). If the change of length is δl
and the tension of the string is P , we have,

Epotential = P δl + higher order terms.326 (1375)

We have

δl =

∫
Ω

(
√
1 + |∇u(x, t)|2 − 1) dx =

∫
Ω

1

2
|∇u(x, t)|2 dx+ higher order terms .

(1376)

325The right equation in this case is utt +∆2u = 0.
326If n ≥ 2, then P should be thought of as a kind of stress tensor. If the tension is isotropic
(no preferred directions) then P can be still considered as a scalar (representing the tensor
Pδij)and δl in the formula should be interpreted as the increase of area. If the tension is not
isotropic, then P must be considered as a tensor and the formulae become more complicated.
In the isotropic case when P can be considered as a scalar, its dimension is energy per unit
area.
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Hence

Epotential = P

∫
Ω

1

2
|∇u(x, t)|2 dx+ higher order terms . (1377)

When the spatial derivatives of u are small, the higher order terms can be
neglected, and we can take

Epotential = P

∫
Ω

1

2
|∇u(x, t)|2 dx . (1378)

By Hamilton’s principle, the real motion will correspond to u(x, t) for which the
integral

I(u) =

∫ t2

t1

Ekinetic−Epotential dt =

∫ t2

t1

∫
Ω

1

2
ρ|ut(x, t)|2−

1

2
P |∇u(x, t)|2 dx dt

(1379)
is at a critical point among the functions u with fixed u(x, t1), u(x, t2) and the
prescribed behavior at x→∞ (or at the boundary of Ω, if a bounded domains
is considered). 327 In other words, the real motion u(x, t) satisfies

I ′(u)φ =
d

dε
|ε=0I(u+ εφ) = 0 , (1380)

for each smooth φ compactly supported in Rn × (t1, t2). It is easy to see, using
the same calculation as in lecture 21 (see (283) and (284)) that this means that

ρ utt = P∆u . (1381)

When ρ is constant, the equation can be brought to the form (1371) by setting
x =

√
ρ
P x

′. Also, equation (1381) is often written in the form

utt = c2∆u , (1382)

with

c =

√
P

ρ
. (1383)

When c is constant and (1382) is considered in a bounded domain Ω, with, say,
the Dirichlet boundary condition at ∂Ω, one can express the general solution in
terms of the eigenfunctions ϕk of the laplacian, see (1190), as

u(x, t) =
∑
k

[ak cos(
√
λk ct) +

bk

c
√
λk

sin(
√
λk ct)]ϕk(x) , (1384)

where – at least formally –∑
k

akϕk(x) = u(x, 0),
∑
k

bkϕk(x) = ut(x, 0) . (1385)

327We note that I(u) is not bounded below on the class of u(x, t) we are considering, and
hence we cannot say that I attains its minimum in that class.
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We see that the vibration of a string/membrane can be thought of as a super-
position of harmonic oscillations with frequencies

ωk =
√
λkc =

√
λkP

ρ
. (1386)

For the case of a string of length L, we known λk = π2k2

L2 and hence

ωk =

√
P

ρ

πk

L
. (1387)

We can also see from (1384) that a general solution almost periodic, similar to
what we have seen for the solutions of the Schrödinger equation in lecture 71.

The formulae (1384) and (1385), together with basic results about convergence
in L2 and in H1

0 for the series (1385) also give a solution of the boundary-
initial-value problem consisting of finding a solution of (1382) with u|∂Ω = 0
and satisfying the initial conditions u(x, 0) = u0(x), ut(x, 0) = u1(x). We leave
the details for the reader as an exercise.

We could also consider the Neumann boundary condition ∂u
∂ν = 0 at ∂Ω (in

which case we use the eigenfunction with the Neumann boundary condition),
or the more general mixed conditions considered in the first semester for the
elliptic problems. The results will be quite similar to the case of the Dirichlet
boundary conditions.

We see that one of the main features of the solutions of (1382) with constant c
in a bounded domain, under quite general boundary conditions, is the almost
periodicity. This is similar to what we saw for the Schrödinger equation in
lecture 71.

The above calculations do not reveal the finite speed of propagation of distur-
bances for the solutions of (1371). This is one of the most important features
of the wave equation which we have not seen in other equations we have con-
sidered, with the exception of the first order equations (such as the transport
equations considered in lecture 73, or the Hamilton-Jacobi equations considered
in lecture 75.

The finite speed of propagation is easily seen in dimension n = 1 for Ω = R,
when we can find in a simple way the general solution. We work with (1371),
when c is normalized to 1. Letting ξ = x− t and η = x+ t, and recalling that
n = 1, equation (1371) becomes

uξη = 0 . (1388)

Assume that u is a distribution satisfying (1388). Wring the equation as

∂

∂η
uξ = 0 , (1389)
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we see that there exists a distribution a(ξ) in the variable ξ so that

uξ = a(ξ) , (1390)

where we also denote by a(ξ) the distribution on R2 defined by

< a,φ >=

∫
R
< a,φ(·, η) > dη . (1391)

Choosing any distribution A of one variable such that A′ = a, we see that

∂

∂ξ
(u−A(ξ)) = 0 . (1392)

This means that there is a distribution B(η) of one variable such that

u−A(ξ) = B(η) . (1393)

Hence the distribution satisfying (1388) is of the form

u = A(ξ) +B(η) , (1394)

where A,B are distributions in one variable. It is clear that if u is given by a
locally integrable function, then both A and B are given by locally integrable
functions. Going back to the original variables x, t, we see that the general
solution of

utt − uxx = 0 , (x, t) ∈ R× R (1395)

is given by
u(x, t) = A(x− t) +B(x+ t) , (1396)

where A,B are arbitrary functions or distribution (depending on our regularity
requirements) in one dimension.

Let us now consider the natural initial-value problem (“Cauchy problem”) for (1395),
which is the following: given u0 : R → R and u1 : R → R, find u : R × R → R
satisfying (1395), with

u(x, 0) = u0(x), ut(x, 0) = u1(x) . (1397)

This problem is an analogue of the finite-dimensional problem of finding the
trajectory of a particle with given initial position and velocity.
We have not specified any regularity requirements concerning u, u0, u1. It
is enough to assume that all quantities involved are distributions. Substitut-
ing (1396) into (1438), we obtain

u0(x) = A(x) +B(x), u1(x) = −A′(x) +B′(x) . (1398)

Let U1 be a distribution in R with U ′
1 = u1 (which is determined modulo a

constant). Then (1439) gives

A =
1

2
(u0 − U1), B =

1

2
(u0 + U1) , (1399)
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where U1 is only given up to a constant. Hence

u(x, t) =
1

2
(u0(x− t) + u0(x+ t)) +

1

2
(−U1(x− t) + U1(x+ t)) , (1400)

and we see that the ambiguity of the constant involved in the definition of U1

does not cause any problems, as the expression does not change if we change U1

be a constant.

Formula (1400) shows that the “initial disturbance” u0, u1 propagates with
speed 1. If both u0 and u1 are supported in an interval [α, β], then the solution
u(x, t) at time t is supported in the interval [α−|t|, β+ |t|]. The solutions of the
form A(x− t) and B(x+ t) are called traveling waves. They represent profiles
moving at speed 1 or −1 respectively. Unlike the solutions of the Schrödinger
equation, the solutions of the 1-dimensional wave equation exhibit no disper-
sion. The “wave packets” represented by A(x − t) and B(x + t) preserve their
form, they do not disintegrate. In terms of the Fourier variables we have

A(x− t) = 1

2π

∫
R
Â(ξ)ei(ξx−ξt) dx , (1401)

and recalling the discussion of the wave packet in lecture 68, we see that the
dispersion relation is ω(ξ) = ξ. Hence the group velocity is dω/dξ = 1, indepen-
dent of ξ. In a similar way, the dispersion relation for the wave packet B(x+ t)
is ω(ξ) = −ξ and the group velocity is −1, independent of ξ. We emphasize
that the “no dispersion” picture applies only to spatial dimension n = 1. In
dimensions n ≥ 2 the solutions of the wave equation do exhibit some dispersion.

The finite speed of propagation can also be proved by working with energy and
its flux in space-time. The proof is the same for all n ≥ 1. We consider solutions
u(x, t) of (1371) in Rn. We assume that u(x, t) is as regular as needed for the
calculations below. We set

e = e(x, t) =
1

2
(u2t + |∇u|2), qj = qj(x, t) = −utuxj

. (1402)

A direct calculation shows that utt −∆u = 0 implies

et + qj,j = 0 . (1403)

The quantity e represents energy density, and the vector q represents energy
flux. Identity (1403) describes how the the energy density evolves with time.

Lemma

Assume that u satisfies utt−∆u = 0 and that u(x, 0), ut(x, 0) vanish in Bx0,R =
{x, |x− x0| < R}. Then u(x, t) = 0 for all (x, t) with |x− x0| < R− |t|.

Remark
Although in our proof we will assume that u is “sufficiently regular”, the state-
ment remains true if we only assume that u is a distribution. The precise
formulation is as follows. If u is a distribution satisfying utt −∆u = 0, then
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(i) The distributions u(·, t) and ut(·, t) are well-defined for each t.
(ii) If the distributions u(·, 0) and ut(·, 0) vanish in Bx0,R, then the distribution
u vanishes in the set {(x, t) , |x− x0| < R− |t|}.
One can compare this statement to the uniqueness theorem for the Schrödinger
equation from lecture 69, except that we can only assume that u is a distribution
(and not necessarily a tempered distribution).

Proof in the case when u is sufficiently regular

For regular u the statement can be proved by a simple application of (1403).
Assume x0 = 0 without loss of generality and define for 0 < t1 < R define

O = {(x, t) , 0 < t < t1, |x| < R− t} ⊂ Rn × R (1404)

Let ν = (ν1, . . . , νn, ν0) be the outward unit normal at ∂O (defined everywhere
except for the (n − 1)−spheres {(x, t1) , |x| = R − t1} and {(x, 0) , |x| = R}.
The key point is the inequality

eν0 + qjνj ≥ 0 (1405)

on the “slanted boundary” {(x, t) ∈ ∂O , |x| = R− t}, which is easily seen from
the Cauchy-Schwartz inequality. In addition to (1405), we also have (q, e) = 0
on the “lower lid” {(x, t) ∈ ∂O , t = 0} of O and (q, e) · ν = e on the “upper
lid” {(x, t) ∈ ∂O , t = t1} of O.
Identity (1403) shows that ∫

∂O
qjνj + eν0 = 0 , (1406)

and by the above observations about the integrand we see that (q, e) ·ν vanishes
at the boundary, implying that e = 0 on the “upper lid” {(x, t) ∈ ∂O , t = t1}.
This is true for any t1 ∈ (0, R), and we see that the first derivatives of u
in O vanish. Hence u is constant in O and since u = 0 on the “lower lid”
{(x, t) ∈ ∂O , t = 0} of O, it has to vanish everywhere in O. The proof for t < 0
is analogous. This finishes the proof of the statement when u is “sufficiently
regular”.

When we only know that u is a distribution, we can proceed as follows. Let
ϕ = ϕ(x) be a mollifier in x, with ϕε(x) = ε−nϕ(x/ε) as usual. We define

uε = u ∗′ ϕε , (1407)

where ∗′ denotes the convolution in x only. As an exercise, you can show that
uε is smooth. Moreover, assuming that u(·, 0) and ut(·, 0) are well-defined, it is
cleat that uε(·, 0) and uεt(·, 0) vanish in Bx0,R−ε. Applying the above calculation
to uε with R replaces by R− ε, we obtain the result.

The only remaining issue is to show that u(·, t) and ut(·, t) are well-defined under
our assumptions as distributions. This can be seen from the identity∫

Rn

uε(x, t0)φt(x, t0)− uεt(x, t0)φ(x, t0) dx =

∫ ∞

t0

∫
Rn

uε(φtt −∆φ) dx dt

(1408)
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once we know that we have enough test functions φ compactly supported in
Rn × [t0,∞) such that φt(x, t0) and φ(x, t0) can be chosen as arbitrary smooth
compactly supported functions of x, with φtt−∆φ compactly supported in Rn×
(t0,∞). The existence of such test function will follow from our consideration
about the Cauchy problem for general n. (The case n = 1 follows quite easily
from (1400)).
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Lecture 82, 5/6/2011

In lecture 13 we saw that the equation

∆u = f (1409)

in Rn is invariant under the symmetry group of the Euclidean space. This means
that for any symmetry

T : x ∈ Rn → Tx = Qx+ b (1410)

where Q is an orthogonal matrix and b ∈ Rn, the laplacian commutes with the
natural action of T on functions. The action of T on functions is usually defined
by

(Tu)(x) = u(T−1x) . (1411)

The statement that the laplacian commutes with this action means that

∆Tu = T∆u (1412)

for any sufficiently regular function (or, in fact, any distribution). We can also
write simply

∆T = T∆ . (1413)

Let us now consider the situation for the wave equation, which we will write as

∂2u

c2∂t2
−∆u = f (1414)

One sets
x0 = ct (1415)

and

� =
∂2

∂x20
− ∂2

∂x21
− · · · − ∂2

∂x2n
. (1416)

so that we can write (1414) as

�u = f . (1417)

We will use the notation x = (x0, x1, . . . , xn). (In (1414), when we write u =
u(x, t), we use x for (x1, . . . , xn) and so, strictly speaking, we have a slight
conflict of notation, but we will see that it will not create problems.)

We are interested in finding the transformations

T : x ∈ Rn+1 → Qx+ b ∈ Rn+1 , with Q a regular (n+ 1)× (n+ 1) matrix
(1418)
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which commute with the wave operator (1416).

�T = T � . (1419)

It is clear that the condition (1419) will impose restriction only on Q, the
translation b can be arbitrary.

Let us look at this question in a slightly more general context. We consider an
operator

L = aij
∂2

∂xi∂xj
, (1420)

where {aij} is a regular symmetric matrix and summation over repeated indices
is understood. Let us consider a regular matrix Q and the corresponding linear
mapping x→ Qx. For a function u = u(x) we will denote Qu the function x→
u(Q−1x). We are interested in characterizing the matrices Q which commute
with L in the sense that

LQu = QLu (1421)

for each sufficiently regular function u. (We could also demand this for each
distribution u, it would not make a difference.) As in (1413) we will write

LQ = QL (1422)

when (1421) is true for each u.

We will use the standard notation (x, y) for the canonical scalar product, i. e.

(x, y) = xiyi . (1423)

Lemma

With the notation introduced above, the following conditions are equivalent

(i) LQ = QL

(ii) The quadratic form x → (A−1x, x) is invariant under Q, in the sense that
(A−1Qx,Qx) = (A−1x, x) for each x.

(iii) The quadratic form x → (Ax, x) is invariant under Qt (the transpose ma-
trix), in the sense that (AQtx,Qtx) = (Ax, x) for each x.

(iv) QAQt = A .

The proof is elementary and is left to the reader as an exercise. The reason
that A−1 appears in a natural way is obvious if we start distinguishing the
upper and lower indices, writing vector coordinates with upper indices, co-vector
coordinates with lower indices, and summing over repeated indices only when
one of them is an upper index and the other is a lower index. (This is the full
Einstein convention.) In this notation we should write

x = (x0, x1, . . . , xn), (1424)
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so that coordinates have upper indices. The partial derivatives of a function

∂u

∂xi
= ui (1425)

are co-vectors, and should be treated as lower indices. The operator L should
be written as

Lu = aij
∂2u

∂xi∂xj
= aijuij , (1426)

with upper indices in aij . This correspond to the quadratic form on co-vectors
(ξ0, ξ1, . . . , ξn) given by

L(ξ) = aijξiξj (1427)

which appears naturally when we take the Fourier transformation

L̂u(ξ) = −aijξiξj û(ξ) = −L(ξ)û(ξ) . (1428)

(The Fourier variables ξ are “dual” to x. As x are vectors, ξ must be considered
as co-vectors, so that the expression ξ · x in eiξ·x is dimension-free.)

On the other hand, aij does not define any natural form on the xi as these
have upper indices. To be able to act on xi in accordance with the full Einstein
convention rules, we must “lower the indices” of aij to aij , which corresponds
to taking the inverse matrix. The dual role of the Fourier variables is also seen
from the formulae

Q̂u = Qtû, L̂Qu(ξ) = −L(ξ)û(Qtξ) , Q̂Lu(ξ) = −L(Qtξ)û(Qtξ) (1429)

which immediately imply the equivalence of (i) and (iii) in the above lemma,
although this proof probably cannot be considered as elementary proof. (The
elementary proof mentioned above is based only on the chain rule and a simple
manipulation of matrices.)

For any given A as above the set of all Q satisfying one of the equivalent con-
ditions of the lemma form a group. These groups have been studied in detail in
geometry. The A relevant for the wave equation is

A =


1 0 . . . 0
0 −1 . . . 0
. . . . . . . . . . . .
0 0 . . . −1

 (1430)

and the corresponding group of matrices Q is called the Lorentz group. (Note
that in this case we have A = A−1.)

Let us look at the Lorentz group in more detail in the 1 + 1 dimensional space-
time R1+1, in which case it is usually denoted by O(1, 1). We have four obvious
elements of O(1, 1), the matrices(

±1 0
0 ±1

)
. (1431)
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From the point of view of the wave equation these transformations tell us that
that if u(x0, x1) solves the wave equation, then u(±x0,±x1) also solves the wave
equation. This is not a surprise. Less obvious transformations in O(1, 1) are
given by the following matrices

Q(α) =

(
coshα sinhα
sinhα coshα

)
, α ∈ R . (1432)

We note that
Q(α1)Q(α2) = Q(α1 + α2) (1433)

and we see that the matrices Q(α) , α ∈ R form a group, often denoted by
SO+(1, 1). As an exercise you can show that the group O(1, 1) has four con-
nected components, one of them being SO+(1, 1) and the other three being(

1 0
0 −1

)
SO+(1, 1),

(
−1 0
0 1

)
SO+(1, 1),

(
−1 0
0 −1

)
SO+(1, 1).

(1434)
The situation is somewhat analogous with the orthogonal group O(2), which
has two components: the component SO(2) parametrized by

R(α) =

(
cosα − sinα
sinα cosα

)
, α ∈ R . (1435)

and the component (
1 0
0 −1

)
SO(2). (1436)

The group SO+(1, 1) is from many points of view the most interesting part of
O(1, 1).

The reader can check that writing x = Q(α)x′, going back to the original
variables (x1, t) and (x′1, t

′), and setting v = c tanhα we obtain the classical
expressions

x1 =
x′1 + vt′√
1− v2

c2

, t =
t′ +

vx′
1

c2√
1− v2

c2

, (1437)

Returning to the notation x = (x0, x1) = (ct, x1), and defining x → x′ by
x = Q(α)x′, the reader can also verify that the action of Q(α) on the general
solution (see (1396))

u(x) = A(x1 − x0) +B(x1 + x0) (1438)

is

Qu(x) = A(x′1−x′0)+B(x′1 +x′0) = A((x1−x0)eα)+B((x1 +x0)e
−α) (1439)
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We see that the new solution is still a composition of the right-moving and
left-moving wave packets (as it must), but the energy of the right-moving wave
packet increased (and it became more focused, with higher frequencies), whereas
the energy of the left-moving wave packet decreased (and it became de-focused,
with lower frequencies). At the same time, both wave packets still move at
speed c.

The Lorentz group of the space Rn+1 is denoted by O(1, n). It has again four
connected components. The connected component containing identity is de-
noted by SO+(1, n). It obviously contains the rotations in the (x1, . . . , xn)
variables (which do not “mix” x0 with (x1, . . . , xn)) and the transformations
generated by matrices (1432) in the (x0, x1) plane, which “mix” x0, x1 while
leaving x2, . . . , xn unchanged. (The latter symmetries are sometimes called
Lorentz boosts.) These two types of transformations generate the whole group
SO+(1, n), and hence, in some sense, there is no new type of symmetries in com-
parison to what we have seen in dimension 1+1 and rotations in Rn. However,
the two types of symmetries - rotations and boosts - interact in a non-trivial
way, and therefore the group structure of SO+(1, n) is interesting.328

So far we have viewed the Lorentz group as a convenient tool to generate new
solutions of the wave equation from the old ones. Historically, the significance
of the Lorentz group for the Theory of Relativity and our understanding of
the notions of space and time appeared in a context which is related to the
above considerations, although the main point was not in the mathematics itself,
but rather in its interpretation in the context of experimental observations of
phenomena described by Maxwell’s equations (which are very closely related to
the wave equation).

The equations of classical mechanics are invariant under galilean coordinate
transformations

t = t′, x = x′ + vt′ . (1440)

Here we think of (x, t) as a “stationary” coordinate system,329 and (x′, t′) as a
system which moves with respect to the stationary system at a constant speed v.
The notions of time and space are at first assumed to be the same “obvious”
notions which have been used already by Newton. Assume we have some scalar
physical quantity u(x, t) which satisfies the wave equation

∂2u

c2∂t2
−∆u = 0 (1441)

in the stationary system (x, t), with c a constant independent of (x, t). The
observer in the system (x′, t′) can follow the same quantity u, but u will now

328In fact, as a group SO+(1, n) can be identified with the identity component of the group
of symmetries of the n−dimensional hyperbolic space. This can be seen by considering the
action of SO+(1, n) on the hyperboloid x20 − x21 − . . . x2n = 1.
329The notion of “stationary” is only relative, even in classical mechanics, and we use this
term only to make the description easier.
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depend on the coordinates (x′, t′). The quantity u expressed in the coordinates
(x′, t′) will be a new function u′ of (x′, t′), which is related to the original function
u(x, t) by

u′(x′, t′) = u(x′ + vt′, t′) . (1442)

The equation satisfied by u′ in the (x′, t′) coordinates will be(
∂

c∂t′
− vk

c

∂

∂x′k

)2

u′ −∆x′u′ = 0 , (1443)

which is different from the wave equation (1441). By observing the quantity u
in the system (x′, t′), we will be able to determine v and see that the coordinate
system (x′, t′) is in motion. For example, in dimension n = 1 the general solution
of (1443) will be

u′(x′, t′) = A(x′ − (c− v)t′) +B(x′ + (c+ v)t′) , (1444)

and we see that when v ̸= 0 the wave packets traveling in one direction have a
different speed from the wave packets traveling in the opposite direction. The
stationary system (x, t) will have a special status among all the systems obtained
from it by galilean transformations, in that it will be the only system where u
satisfies the wave equation. (In dimension n = 1, it will be the only system
where the wave packets have the same speed in both directions.) The situation
just described arises for example when we observe oscillations of a long string
while moving along the string at constant speed. In that case we will see exactly
the solutions described by (1444).

Not so long after Maxwell found the complete equations of electrodynamics in
1865, it was realized that a similar situation should occur with Maxwell’s equa-
tions. By watching carefully various electromagnetic phenomena, one should be
able to identify among all the systems related by galilean transformations the
one system which is “truly at rest”. The experiments are not easy due to the
smallness of the ratio v/c for velocities v available for the experiments and the
speed of light c. During 1880s physicists designed ingenious experiments which
were sufficiently accurate. However, the conclusion from these experiments con-
tradicted the prediction about the existence of a special system at rest. There
were no terms equivalent to the term with vk/c in equation (1443). It appeared
as if the right equation in any (inertial) system was exactly the wave equation,
as if the transformation between the systems (x, t) and (x′, t′) was not given
by (1440), but rather by (1437) (assuming the motion was along the x1−axis
and the transformation of the coordinates x2, x3 was trivial: x2 = x′2, x3 = x′3.)
As the coordinate system is not intrinsic (it is always somewhat artificially
chosen by the observer), this required a careful re-examination of many notions
about coordinate systems and time, which had been up to then taken for granted
without much analysis, based on some intuitively plausible expectations. The
conclusion from these investigation330 is that the correct transformation be-

330formulated in a definite form in 1905 in the famous paper “On the Electrodynamics of
Moving Bodies” by A. Einstein, available online at
http://www.fourmilab.ch/etexts/einstein/specrel/specrel.pdf
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tween inertial coordinate system is indeed (1437). Moreover, the laws of the
Classical Mechanics have to be adjusted so that they become invariant under
these transformations too, rather than under (1440).

Our next task will be to derive the fundamental solution of the wave equation
and representation formulae for general solutions.
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We start our study of the fundamental solutions of the wave equation by estab-
lishing some useful technical fact about distributions. We will see that in higher
dimensions the fundamental solutions of the wave equation are distributions
which are not given by locally integrable functions, and the technical points
which we now establish give a quite transparent way to express the various
formulae we will be dealing with.

Let Ω ⊂ Rn be an open set and

ϕ : Ω→ R (1445)

be a smooth function. Let u ∈ D ′(R) be a distribution. When can

u ◦ ϕ ∈ D ′(Ω) (1446)

be well-defined in a natural way? Some assumptions are clearly needed. For
example, when ϕ takes on a constant value c on a set E ⊂ Ω of non-zero measure
and u is a locally integrable function which is not well-defined at c, then u ◦ ϕ
is not well-defined.

Assume for a moment that u is sufficiently regular and let φ ∈ D(Ω). We
have the following formula, which is a special case of the more general co-area
formula331.∫

Ω

u(ϕ(x))|∇ϕ(x)|φ(x) dx =

∫
R
u(y)

∫
ϕ−1(y)

φ(x) dHn−1(x) dy (1447)

where Hn−1 is the (n−1)−dimensional Hausdorff measure, and ϕ−1(y) denotes
the set {x ∈ Ω, ϕ(x) = y}. If ∇ϕ does not vanish in Ω, we can write∫

Ω

u(ϕ(x))φ(x) dx =

∫
R
u(y)

∫
ϕ−1(y)

φ(x)
1

|∇ϕ(x)|
dHn−1(x) dy . (1448)

Here and below we use the convention that an integral of any function over an
empty set is always 0. Letting

φ̃(y) =

∫
ϕ−1(y)

φ(x)
1

|∇ϕ(x)|
dHn−1(x) , (1449)

and considering the map
φ→ φ̃ , (1450)

formula (1448) suggests defining u ◦ ϕ by

< u ◦ ϕ, φ >=< u, φ̃ > (1451)

for any distribution u ∈ D ′(R). For this definition to work, we need to verify
that φ→ φ̃ is a continuous map from D(Ω) into D(R). This can be seen from
the following formula

331See for example the book “Geometric measure theory” by H. Federer, Theorem 3.2.12
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Lemma
In the situation above, let L : D(Ω)→ D(Ω) be defined by

Lφ = div

(
∇ϕ
|∇ϕ|2

φ

)
. (1452)

Then
d

dy
φ̃ = L̃φ . (1453)

Proof

For any smooth v : R→ R we have∫
R
−v′φ̃ =

∫
Ω

−∇v(ϕ(x)) · ∇ϕ(x)
|∇ϕ(x)|2

φ(x) dx =

∫
Ω

v(ϕ(x))Lφ(x) dx , (1454)

which proves the statement of the lemma.

Using the lemma it is not hard to show that under our assumptions on ϕ the
map φ→ φ̃ continuously maps D(Ω) into D(R). We leave this to the reader as
an exercise.

Remark: Formulae (1448) and (1449) do not look very “intrinsic”, in the follow-
ing sense: the left-hand side of (1448) depends on Ω with the Lebesgue measure
and the map ϕ. However, the right-hand looks much more “metric” - the def-
inition of both Hn−1 and ∇ϕ uses quite more than the Lebesgue measure and
ϕ. The function φ̃ can be defined in a more intrinsic way as

φ̃(y) =
d

dy

∫
Ω∩{ϕ<y}

φ(x) dx . (1455)

This definition involves only the same objects as on the left-hand side of (1447).
An alternative way332 to show that (1455) is (under our assumptions) a smooth
function of y is by a suitable change of variables. First, we note that writing ϕ
as a finite sum of functions with small support, we can assume without loss of
generality that φ is supported in some ball B where the gradient ∇ϕ is “almost
constant”. In B we can introduce new coordinates x′1, . . . , x

′
n so that x′1 = ϕ

(in B). In the new coordinates we obtain

φ̃(y) =

∫
B

φ(y, x′2, . . . , x
′
n)A(y, x

′
2, . . . , x

′
n) dx

′
2 . . . dx

′
n , (1456)

for some suitable smooth function A (which is related to the Jacobian of the
transformation x→ x′.

332See for example Section 6.1 of the book “The Analysis of Linear Partial Differential
Operators I” by L. H”ormander, Springer 1983.
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We see that formula (1451) indeed gives a good definition of the distribution
u ◦ ϕ. Moreover, is is easy to see that the definition agrees with the usual
meaning of u ◦ϕ when u is a locally integrable function. It is also easy to check
that the usual formulae remain valid. For example, one has

∇(u ◦ ϕ) = (∇u)(ϕ(x))∇ϕ . (1457)

Example 1

Let us use the usual notation δ for the Dirac mass on R (located at 0). Then
δ ◦ ϕ, which also will be written simply as δ(ϕ(x)) is the measure dHn−1/|∇ϕ|
restricted to the surface ϕ−1(0).

Example 2

Using the same notation as in Example 1, the distribution δ′(ϕ(x)) can be
identified with the distribution ∇ϕ

|∇ϕ|2∇(δ(ϕ(x))). It can also be identified with
∂

(ϕx1 )∂x1
δ(ϕ(x)) as long as ϕx1 ̸= 0.

Let us now return to the study of the fundamental solutions of the wave equa-
tion. We will use the notation

� =
∂2

∂t2
−∆ =

∂2

∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n
. (1458)

The equation for the fundamental solution is

�u(x, t) = δ(x, t) , (in Rn × R) (1459)

where δ = δn+1 is the Dirac at 0 mass in Rn × R . One can also consider the
initial-value problem

�u(x, t) = 0 in Rn × R ,
u(x, 0) = 0
ut(x, 0) = δ(x), with δ = δn, the Dirac mass in Rn.

(1460)

which – as we will see – is closely related to (1459), although the solutions
obviously cannot be identical (with one giving δ and one giving 0 as the right-
hand side). We recall the remark in lecture 81 that for a distribution u(x, t)
satisfying �u = 0 in Rn × R the distributions u(x, 0) and ut(x, 0) are well-
defined, see (1408).

Another natural initial-value problem is

�u(x, t) = 0 in Rn × R ,
u(x, 0) = δ(x) with δ = δn, the Dirac mass in Rn.
ut(x, 0) = 0,

(1461)
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The Fourier transform of a tempered distribution in the space-time Rn × R
will be denoted by û, and the Fourier variables will be denoted by (ξ, τ), with
ξ = (ξ1, . . . , ξn), so that we have

û(ξ, τ) =

∫
Rn×R

u(x, t)e−iξx−iτt dx dt . (1462)

For distributions this identity is only formal, and we define û by formula (686)
from lecture 47.

By the uniqueness lemma in lecture 82 and the remark after it we know that the
solutions of problems (1460) and (1461) respectively are unique. On the other
hand, equation (1459) has many different solutions, as the equation �u = 0 in
Rn × R has many different solutions. This can be seen for example by looking
at the equation for the Fourier transform. In the Fourier variable the equation
�u = 0 becomes

(−τ2 + ξ21 + · · ·+ ξ2n)û = 0 . (1463)

Any measure µ supported on the “light cone”

C = {(ξ, τ) , τ2 − ξ21 − · · · − ξ2n = 0} (1464)

is provides a solution û = µ of (1463) and if the distribution µ is tempered, its
inverse Fourier Transform gives a solution of the free equation �u = 0.

Above we considered Lorentz transforms Q in Rn ×R and use the notation Qx
with x = (x0, x1, . . . , xn). We now slightly change our convention and will write

Q : Rn × R→ Rn × R, (x, t)→ Q(x, t) . (1465)

The action of Q on functions is defined again by

Tu(x, t) = u(Q−1(x, t)) . (1466)

This extends naturally to distributions by

< Tu, φ >=< u, T−1φ > , (1467)

where we have used | detQ| = 1, which is satisfied for any Lorentz transforma-
tion. We will also use the term Lorentz transformation for the transformation
T on the distributions and can identify it with the matrix Q.

It is easy to see that for the Dirac mass δ = δ(x, t) in Rn × R we have

Tδ = δ (1468)

for any Lorentz transformation, and since we also have T� = �T , the solutions
of (1459) are invariant under Lorentz transformations: if u is a solution, so is
Tu.
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One can also consider the question whether the problem (1460) or the prob-
lem (1461) are invariant under Lorentz transformations. It is quite easy to see
that then cannot be invariant under the full Lorentz group, but it makes sense
to consider the invariance under the subgroup O+(1, n) of Lorentz transforma-
tions consisting of the transformations preserving the direction of time. As an
exercise, you can consider this problem, which is not as obvious as the invariance
of (1459). We will return to this question later.

We can add additional conditions on the solution which will enforce uniqueness
for (1459). Natural cases to consider are

(i) u vanishes for t < 0. (More precisely, the distribution u vanishes in the open
set Rn × (−∞, 0).)
In this case the solution u is uniquely determined by the uniqueness lemma in
lecture 81 and the remark following it. We will denote this unique solution by
G+. Strictly speaking, we have not yet proved that G+ exists, but we will see
shortly that this is indeed the case. We note that since (1432) is invariant under
the Lorentz group and condition (i) is invariant under its subgroup O+(1, n)
consisting of the Lorentz transformation which preserve the direction of time,
we must have

TG+ = G+, T ∈ O+(1, n) . (1469)

Note that the uniqueness lemma also implies that G+ must vanish outside the
convex hull of the positive light cone

C+ = {(x, t) , t2 − x21 − · · · − x2n = 0 , t ≥ 0}. (1470)

We will use the notation

C̃+ = convex hull of C+ = {(x, t) , t2 − x21 − · · · − x2n ≥ 0 , t ≥ 0} . (1471)

We will see later that for n = 3, 5, . . . the support of G+ is exactly C+, which
is not obvious at this point. For n = 1, 2, 4, 6, . . . the support of G+ is C̃+.

(ii) u vanishes for t > 0.

This situation can be mapped into (i) by using use the transformation u(x, t)→
u(x,−t). The solution (if it exists) must be unique and will be denoted by G−.
We have

G−(x, t) = G+(x,−t), TG− = G−, T ∈ O+(1, n) . (1472)

The solutions G+ and G− can be combined to obtain additional natural solu-
tions.

(iii)

G =
1

2
(G+ +G−) (1473)
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This is a solution of (1459) which is invariant under the full Lorentz group and
is supported in C̃ = C̃+ ∪ C̃−. One can show that these properties determine
G uniquely.333

One can also consider the function

K = G+ −G− . (1474)

As �G+ = �G−, we have
�K = 0 . (1475)

Also, K is supported in the C̃ and is invariant under O+(1, n). We will see
later that K is the (unique) solution of (1460). Once we know that K is a
solution of (1460), it is easy to see that the time derivative Kt of K is a solution
of (1461).334

In addition to the four functions G+, G−, G,K there are other distinguished
solutions of (1459), such as the so-called Feynman propagators used in the
quantum field theory. We will encounter them later, they will appear naturally
in connection with some of the methods used to calculate the fundamental
solutions above.

We now turn to the task of calculating some the above solutions. The calcu-
lations are all classical and can be found in a number of textbooks. There are
several methods which can be used. We mention the following.

(a) Fourier transformation in x .

(b) Fourier transformation in (x, t) .

(c) Analytical continuation from fundamental solution of the euclidean laplacian
∂2

∂t2 + ∂2

∂x2
1
+ · · ·+ ∂2

∂x2
n

.

(d) Reduction to an ODE by the use of the Lorentz invariance.

(e) The method of spherical averages (in odd dimensions) combined with the
method of descent for even dimensions.

We will first briefly consider the Fourier transform in x. For this method we
will write

δ(x, t) = δ(x)δ(t) (1476)

333It can be done with the tools which we have, but it is somewhat more difficult than the
uniqueness in (i) or (ii).
334The only part of this statement which is not immediate is (Kt)t(x, 0) = 0. To see this,
we note that – assuming K solves(1460) – we have Ktt(x, 0) = ∆K(x, 0) = ∆0 = 0.

350



and consider take the Fourier transform of (1459) in x. Let ũ(ξ, t) be the Fourier
transform of u in x. Equation (1459) gives

ũtt(ξ, t) + |ξ|2ũ(ξ, t) = δ(t) . (1477)

To calculate G̃+, we solve (1477) with the “boundary condition” ũ(ξ, t) = 0 for
t < 0. One can easily find the (unique) solution. It is given by

ũ(ξ, t) =

{
sin(|ξ|t)

|ξ| t ≥ 0 ,

0 t < 0 .
(1478)

This gives the spatial Fourier transformation of G+.

The space-time Fourier transformation ofG+ must obviously be equal to 1
−τ2+|ξ|2

away from the set {−τ2 + |ξ|2 = 0}. If one solves the ODE (1477) (taking into
account the condition that ũ(ξ, t) vanishes for t < 0) by using Fourier transfor-
mation in t, one obtains

Ĝ+(ξ, τ) = p.v.
1

−τ2 + |ξ|2
− iπ sign τ δ(τ2 − |ξ|2) . (1479)

In a similar way

Ĝ−(ξ, τ) = p.v.
1

−τ2 + |ξ|2
+ iπ sign τ δ(τ2 − |ξ|2) . (1480)

We also note that – taking the spatial Fourier transformation of the prob-
lem (1460) – we obtain the initial-value problem

ũtt(ξ, t) + |ξ|2ũ(ξ, t) = 0 , t ∈ R ,
ũ(ξ, 0) = 0 ,
ũt(ξ, 0) = 1 .

(1481)

The solution is

ũ(ξ, t) =
sin(|ξ|t)
|ξ|

, t ∈ R . (1482)

We see that the solution of (1460) coincides with G+ for t ≥ 0. Denoting by
θ(t) = ξ[0,∞)(t) the Heaviside function, we can express that by the identities

G+(x, t) = K(x, t)θ(t) , G− = K(x, t)(−θ(−t)) . (1483)

This is an illustration of the Duhamel’s principle which we discussed in some
detail in lecture 53 in connection with the heat equation. Relations (1483) also
imply

G(x, t) =
1

2
K(x, t)sign (t) . (1484)
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We see from this that K is invariant under the subgroup O+(1, n) of the Lorentz
group.

One can see this from looking at the Fourier transform of K, which can be
calculated from (1479), (1480), and (1474) as

K̂(ξ, τ) = −2πi sign τ δ(τ2 − |ξ|2) . (1485)

We now discuss the Fourier inversion of the distribution (1482). We will assume
t > 0. Letting ρ = |ξ|, we have

u(x, t) =
1

(2π)n

∫
Rn

sin ρt

ρ
eiξx dξ . (1486)

Note that Example 1 in lecture 48 shows that for n = 1 we have u(x, t) =
1
2ξ(−t,t)(x) =

1
2 (θ(x− t) + θ(x+ t)) , as one can also obtain from our discussion

of the case n = 1 in lecture 81, see (1400). If you have done the optional part of
homework 2, you will also notice that the case n = 3 is easy: in that case u(x, t)
will be the rotationally invariant measure of the sphere of radius r = t whose
total mass is t. This can also be written as u(x, t) = 1

4πtδ(t−|x|). Independently
of the relevant part in the homework assignment 2, you can check the last result
simply by calculating the Fourier transform of u(x, t) in the variable x, it is not
a hard calculation.

For general n = 1, 2, . . . we can still calculate the inversion (1486) in a relatively
straightforward way. If we do not use additional tricks, the calculation is perhaps
a little tedious, but we outline the main points, just to illustrate that a direct
calculation is possible in this case. The function ũ(ξ, t) is a smooth function of ξ
in Rn, but it has slow decay as |ξ| → ∞, and the integral (1486) is not absolutely
convergent. We can regularize it by adding a factor e−ερ to the integrant, and
calculate the integral

uε(x, t) =
1

(2π)n

∫
Rn

sin ρt

ρ
e−ερeiξx dξ . (1487)

By the symmetry considerations in lecture 50, we know that the function uε(x, t)
is radially symmetric in x, and it is enough to calculate it at x = (r, 0, . . . , 0)
for r ≥ 0. By a slight abuse of notation, let us write uε(r, t) for the value of uε
at such an x (and a given t). Let us write a general ξ ∈ Rn as

ξ = ρη, ρ ≥ 0, η ∈ Sn−1. (1488)

We have

uε(r, t) =
1

(2π)n

∫ ∞

0

∫
Sn−1

sin ρt

ρ
e−ερeirρη1ρn−1 dη dρ (1489)

We will rewrite this as

uε(r, t) =
1

(2π)n

∫
Sn−1

∫ ∞

0

sin ρt eirρη1−ερρn−2 dρ dη . (1490)
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We note that for n = 2 the integral ρ can be evaluated explicitly, as the factor
ρn−2 then disappears. We can achieve a similar effect for general n ≥ 2 by
writing

uε(r, t) = (−1)
n−2
2 ∂n−2

t

1

(2π)n

∫
Sn−1

∫ ∞

0

sin ρt eirρη1−ερ dρ dη , n = 2, 4, . . .

(1491)
and

uε(r, t) = (−1)
(n−3)

2 ∂n−2
t

1

(2π)n

∫
Sn−1

∫ ∞

0

cos ρt eirρη1−ερ dρ dη , n = 3, 5, . . .

(1492)
The integrals over ρ can now be evaluated explicitly by writing
sin ρt = 1

2i (e
iρt − e−iρt), and cos ρt = 1

2 (e
iρt + e−iρt). We obtain

uε(r, t) = (−1)
(n−2)

2 ∂n−2
t

1

(2π)n

∫
Sn−1

1

2i

(
1

−it− irη1 + ε
− 1

it− irη1 + ε

)
dη

(1493)
for n = 2, 4, . . . , and

uε(r, t) = (−1)
(n−3)

2 ∂n−2
t

1

(2π)n

∫
Sn−1

1

2

(
1

−it− irη1 + ε
+

1

it− irη1 + ε

)
dη

(1494)
for n = 3, 5, . . . . To evaluate the integral over the sphere, we note that for a
general function f = f(η1) we have∫

Sn−1

f(η1) dη = |Sn−2|
∫ 1

−1

f(η1)(1− η21)
(n−3)

2 dη1 (1495)

Note that when n is odd, then the term (1 − η21)
(n−3)

2 is a polynomial. For n
even we can write∫

Sn−1

f(η1) dη = |Sn−2|
∫ π

0

f(cosα)(sinα)n−2 dα , (1496)

which can be written as a curve integral over the unit circle in the complex
plane, which can be evaluated by the residue theorem. Moreover, the integrals
in (1494) and (1495) need to be evaluated only modulo polynomials of order
< n− 2 in t, due to the presence of the time derivative in the formulae. There
is still some calculations to be made, and at some point we have to take the
limit ε → 0, but it is clear that in principle we can obtain the formulae for
the solution G+ from this direct calculation. As an exercise you can finish the
calculation in the cases n = 2 and n = 3, which are quite easy. We will obtain
the final formulae for the solutions by a different method, and therefore we will
not pursue the above calculations further.

Let us now turn to the method (c) of the analytical continuation from the
fundamental solution of the (n+ 1)−dimensional laplacian.
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Let us consider the operator

La = − ∂2

a2∂t2
− ∂2

∂x21
− · · · − ∂2

∂x2n
. (1497)

The wave operator corresponds to taking a = i, but we will start with a real.
We know what the Green’s function of La is when a = 1. A simple change of
variables gives the Green’s function for general a ∈ R , a ̸= 0 as

Ga(x, t) = aG1(x, at) (1498)

For n ≥ 2 we have

Ga(x, t) = cn
a

(a2t2 + |x|2)n−1
2

, cn =
1

(n− 1)|Sn|
. (1499)

We have
LaGa = δ(x, t) , a ∈ R \ {0} . (1500)

We note that Ga (considered as distribution) can be analytically continued to
the complex domain in the half-plane

O = {a ∈ C , Re a > 0} . (1501)

The precise meaning of this is that for each test function φ ∈ D(Rn × R) the
complex-valued function

a→
∫
Rn×R

Gaφ (1502)

can be analytically extended from (0,∞) to O. The operator La is transparently
defined for a ∈ C \ {0}, with analytical dependence on a.

We have, by definition,∫
Rn×R

GaLaφ = φ(0) , a ∈ (0,∞) (1503)

and by analyticity this must be true also for a ∈ O. For each fixed a ∈ O the
function Ga is locally integrable, with similar regularity properties and decay
at ∞ as G1. In the analytic continuation above we of course must not cross the
imaginary axis (which is the boundary of O). However, we can hope to define

Gi = lim
a→i,a∈O

Ga , (1504)

assuming the limit exist in the sense that

< Gi, φ >= lim
a→i, a∈O

< Ga, φ >= lim
a→i, a∈O

∫
Rn×R

Gaφ (1505)

exists for each test function φ. Moreover, if the map φ→< Gi, φ > (which we
now assume is well defined) turns out to be continuous on D(Rn × R), it will
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have to be a fundamental solution of the wave equation. We recall that the
wave equation has many fundamental solutions, and at this stage it is not clear
which of them will be singled out by the above procedure, if it works. However,
we can easily see that Gi cannot be any of the solutions discussed above, as we
have to have

Gi(x, 0) = cn
i

|x|n−1
. (1506)

The calculations are simple for n = 2, as in this case the functions
Ga, a ∈ O, |a − i| ≤ 1/2 are uniformly locally integrable. As an exercise, you
can show that for n = 2 the distribution Gi is well-defined and is given by a
locally integrable function

Gi(x, t) =


1

4π
√
t2−|x|2

, t2 > |x|2
i

4π
√

−t2+|x|2
, t2 < |x|2 (1507)

Although we know that it is a fundamental solution of the (2+ 1)−dimensional
wave equation by the above procedure of analytic continuation in which we
have enough regularity to pass easily to the limit in this case, it is still a good
exercise335 to check directly that �Gi = δ(x, t). Since the wave equations is
linear and has real coefficients, it is easy to see that, in this case with n = 2

� ReGi = δ, � ImGi = 0 . (1508)

The function ReGi coincides with the solutionG defined by (1473). From (1483)
and (1486) we see that for n = 2 in we have

G+(x, t) =

{
1

2π
√
t2−|x|2

, t ≥ |x| ,
0 elsewhere .

(1509)

We can also define the function G−i by an analogous procedure. It clear that
G−i = Gi (complex conjugate) and G+ = 1

2 (Gi +G−i).

It is interesting to check what is happening with the functions Ga in terms of
the space-time Fourier transformation. By taking the Fourier transform, the
equation LaGa = δ becomes

(
τ2

a2
+ ξ21 + · · ·+ ξ2n)Ĝa = 1 . (1510)

Formally this gives

Ĝa(ξ, τ) =
1

τ2

a2 + ξ21 + · · ·+ ξ2n
. (1511)

For a = i or a = −i this expression is ambiguous, due to the strong singularities
near the zero of the denominator, but when a ∈ O, the formula defines a locally

335which may not be easy if we do not go about the calculation in the right way
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integrable function. For example, we can take a ∈ O with 1
a2 = −1 + iε with a

small ε > 0, which gives

Ĝa =
1

iετ2 − τ2 + ξ21 + · · ·+ ξ2n
. (1512)

In the limit ε → 0+ this regularization is equivalent to the so-called Feynman
regularization

ĜF, ε =
1

iε− τ2 + ξ21 + · · ·+ ξ2n
, (1513)

which is used in the quantum field theory. (Note that, unlikeGa for Re a > 0, the
approximation GF,ε is Lorentz invariant.) The solution Gi which we calculated
above for n = 2 is therefore the so-called Feynman propagator.

The problem of regularization of the expression

1

−τ2 + |ξ|2
(1514)

is related to the composition u◦ϕ of distributions we discussed earlier, see (1451).
We define

ϕ(ξ, τ) = −τ2 + ξ21 + · · ·+ ξ2n . (1515)

The function ϕ maps Rn × R onto R, and its gradient (ϕτ , ϕξ1 , . . . , ϕξn) does
not vanish in Rn×R \ {(0, 0)}. Hence for any distribution of R the distribution
u ◦ ϕ is well-defined in Rn × R \ {(0, 0)}. (Eventually we will want to extend
u ◦ ϕ to Rn ×R, but let us ignore this issue for the moment.) In particular, we
can take for u various regularizations of the expression

u(y) =
1

y
, (1516)

which we discussed in lecture 46. The natural choices are

u1(y) = p.v.
1

y
, u2(y) = lim

ε→0+

1

y + iε
, u3(y) = lim

ε→0+

1

y − iε
. (1517)

We can now consider the distributions Ak = uk ◦ ϕ , k = 1, 2, 3 . They are at
first defined only in Rn × R \ {(0, 0)}, but it is easy to show that they can be
extended uniquely to Rn×R when n ≥ 2. Their inverse Fourier transformations
give different fundamental solutions of the wave equation. The solution given
by A1 is the solution G in (1473), and the solutions given by A2, A3 correspond
to the solutions Gi and G−i (or Feynman propagators) obtained either by the
Feynman regularization (1513), or by the analytical continuation above. We
will not have the time to prove all these statements, but they are perhaps worth
mentioning.

We will now calculate the solution obtained by the analytical continuation for
n = 3. In this case we have

Ga(x, t) =
a

4π2(a2t2 + |x|2)
, (1518)
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where we have used (755) to evaluate (n−2)|Sn−1| for n = 3. Writing a = i+ ε
for a small ε > 0, we have

Gi+ε =
i+ ε

4π2((−1 + ε2)t2 + |x|2 + 2iεt2)
. (1519)

Letting ϕ(x, t) = −t2 + |x|2, formula (1519) suggests that Gi (defined by the
limit (1504)) is well-defined and that Gi = A2 ◦ ϕ, where the distribution A2 is
defined in (1517). In other words, we should have

Gi(x, t) =
i

4π2
p.v.

1

(−t2 + |x|2)
+

1

4π
δ(t2 − |x|2) . (1520)

It is not hard to show that the distribution (1520), originally defined in R3 × R \ {0},
extends to R3 × R and that it indeed coincides with the limit (1504).

As in the case n = 2, we have

� ReGi = δ, � ImGi = 0 , (1521)

and the function ReGi coincides with the solutionG defined by (1473). From (1483)
and (1486) we infer that for n = 3 in we have

G+(x, t) =

{
1
2π δ(t

2 − |x|2) , t ≥ 0 ,
0 elsewhere .

(1522)

Recall that we have discussed the interpretation of δ ◦ ϕ in Example 1 (follow-
ing (1457)). You can verify that, in the case n = 3 we are now considering, we
can also write

G+(x, t) =

{
δ(t−|x|)
4π|x| , t ≥ 0 ,

0 elsewhere .
(1523)

The distribution G+
i defined by (1522) or (1524) can be interpreted as a measure

supported on the positive light cone C+ (defined by (1470)). The measure is
invariant under the Lorentz transformations which preserve the time direction
(the group O+(1, 3)).

Let f be a smooth function in R3 × R which vanishes for t < t0. The (unique)
solution of the Cauchy problem

�u = f(x, t) in R3 × R, u(x, t) = 0 for t < t0 (1524)

can be written, in the case n = 3 we are considering, as

u(x, t) = (G+ ∗ f)(x, t) =
∫
R3

f(x+ y, t− |y|)
4π|y|

dy . (1525)

The integral (1525) is sometimes called the retarded potential of f .
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The Cauchy problem

�u = 0 in R3 × [t0,∞), u(x, t0) = 0, ut(x0, t0) = u1(x) (1526)

can be solved by using (1525) with

f(x, t) = u1(x)δ(t− t0) . (1527)

The equivalence of (1529) and (1524) with f given by (1530) is a form of
Duhamel’s principle mentioned earlier. In the case of (1529) we obtain

u(x, t) =
1

4π(t− t0)

∫
|y|=t−t0

u1(x+y) dy = (t−t0)
1

|Sx,(t−t0)|

∫
Sx,(t−t0)

u1(y) dy .

(1528)
Finally, the solution of the Cauchy problem

�u = 0 in R3 × [t0,∞), u(x, t0) = u0(x), ut(x0, t0) = 0 (1529)

can be written as
u(x, t) = vt(x, t) , (1530)

where v(x, t) is given by replacing u1 by u0 in (1531).

Let us look in more detail at the space-time Fourier transform of Gi. When
n = 3 the operator L1 defined by (1497) is the four-dimensional laplacian. It
has the special property that its fundamental solution is mapped by the Fourier
transform on a multiple of itself. More precisely, for n = 3 we have (see (743)
and (750))

Ĝ1(ξ, τ) = (2π)2G1(ξ, τ) . (1531)

For a > 0 this implies

Ĝa(ξ, τ) = (2π)2aG1/a(ξ, τ) , (1532)

and by analytic continuation we have this for a ∈ O. Taking the limit a →
i, a ∈ O, obtain, for the case n = 3 we are considering

Ĝi(ξ, τ) = (2π)2iG−i(ξ, τ) . (1533)

From (1486),(1522), and (1485) we also obtain, in the case n = 3 we are con-
sidering

K(x, t) =
1

2π
sign t δ(t2 − |x|2) , (1534)

and
K̂ = −(2π)2iK . (1535)

We have seen that the method of analytical continuation can be quite effective.
In fact, one can use it to calculate the fundamental solutions in any dimension.
Here we will not carry out the calculations for n ≥ 4, but we can refer the
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reader to Theorem 6.2.1 in the book “The Analysis of Linear Partial Differential
Operators I” by L. Hörmander, Springer 1983, where the calculations are done
(in a slightly different way) for general n.

Even without calculation we can easily reach the following important conclu-
sion. In dimensions n = 3, 5, . . . the analytical continuation Gi will be purely
imaginary everywhere, except possibly at the light cone. This suggests that the
fundamental solution G should be supported exactly at the light cone. This
is what we have seen above for n = 3. On the other hand, in dimensions
n = 2, 4, . . . the analytical continuation Gi will be real in the “solid cone” C̃,
suggesting that the support of the fundamental solution G will be all the “solid
cone” C̃. This is what we have seen above for n = 2. We will confirm all this
by another method.

Let us try to find the formula for the solution G in general dimension by ex-
ploiting the Lorentz invariance. Let us set

q = t2 − x21 − · · · − x2n . (1536)

We know that G must be supported in the “solid light cone” C̃, and that it is
invariant under the full Lorentz group. Moreover, there requirements and the
condition �G = δ determine G uniquely. If G was a function, the invariance
under the Lorentz group and the condition on the support of G would easily
imply that

G(x, t) = f(t2 − x21 − · · · − x2n) = f(q) (1537)

for some function
f : R→ R, f = 0 on (−∞, 0). (1538)

If we only know that G is a distribution (invariant under the Lorentz group and
supported in C̃), can we infer that there exists a distribution f on R (vanishing
in (−∞, 0)) such that G = f ◦q? It is a good (and non-trivial) exercise to answer
this question, but we can try to side-step it as follows. We can try to find a
distribution f such that f ◦ q gives a fundamental solution with the required
properties. If such f can be found, then by uniqueness of G, we know that the
assumption G = f ◦ q is justified.336

Let us then seek G in the form G = f ◦ q. We have to have �G = 0 in
Rn × R \ {(0, 0)}. An easy calculation shows that for a smooth function f this
would mean

4f ′′(q)q + 2(n+ 1)f ′(q) = 0 , f = 0 in (−∞, 0) (1539)

We can only assume that f is a distribution, but we have seen above that
f ◦ q is still well-defined. Moreover, the usual chain rule formula remains valid.

336On the other hand, if it turned out that no function of the form f ◦ q can satisfy our
requirements, we could not conclude that G does not exist without having a rigorous proof
that G has to be of the form f ◦ q.
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Therefore our task is to the distributions in R satisfying (1539) (where q is
considered as a coordinate in R), keeping in mind that they do not have to be
represented by functions. In other words, we have to find the distributions f on
R supported in [0,∞) such that∫

R
f(s)(4(sφ(s))′′ − 2(n+ 1)φ′(s)) ds = 0 , φ ∈ D(R) . (1540)

In the class of distributions f vanishing on (−∞, 0) we can uniquely define the
operation of taking the primitive function

∫
f of f (also called anti-derivative)

by
(
∫
f)′ = f . (1541)

We will write∫
f = f (−1) ,

∫ ∫
f = f (−2) , . . . and f = f (0), f ′ = f (1), f ′′ = f (2), . . .

(1542)

Lemma

Consider the class of the distributions on R vanishing on (−∞, 0). Let k be
an integer. Then f satisfies (1540) if and only if f (k) satisfies (1540) with n
replaced by n+ 2k.

Proof

By simple integration by parts it is clear that f ′ satisfies (1540) with n replaced
by n+ 2 if and only if∫

R
f(s)((4sφ′(s))′′ − (2(n+ 1)φ′(s))′) ds = 0 , φ ∈ D(R) . (1543)

The proof will be finished if we show that this is equivalent to (1540). Clearly (1540)
implies (1543). Assume now that (1543) is satisfied and let φ ∈ D(R) be given.
We can find a smooth function ψ supported in (−∞, x0] for some x0 ∈ R such
that ψ′ = φ. The function ψ may not be in D(R), but since it vanishes in
(x0,∞) and f is supported in [0,∞) we can apply (1543) with ψ replaced by
ψη, where η ∈ D(R) is such that η = 1 in (−1, x0 + 1). This gives (1540) and
the proof is finished.

The solutions of (1540) are easy to determine in (0,∞). In that interval the
equation implies that f is smooth and, by standard ODE methods we obtain
that

f(s) = as−
(n−1)

2 + b, s > 0 (1544)

for some a, b ∈ R. A more subtle point is to determine the solutions in a open
interval containing 0. This is however easy for large negative n. When n is large

negative, then f(s) = a(s+)
−n−1

2 (where s+ is the positive part of s, defined
as s for s ≥ 0 and 0 for s ≤ 0) will solve (1540) in R. If solutions of a different
form existed, one would also have non-trivial solutions supported at 0. These
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would have to be finite combinations of the Dirac mass and its derivatives. It
is easy to check that for n large negative such solutions do not exist. (They do
exist for n positive!). Therefore, for n large negative the space of solutions is
1− dimensional, with

f(s) = a(s+)
−n−1

2 (1545)

where a is a constant. By the lemma above, the space of solutions is one-
dimensional for any n.

If we determine f by the above procedure, we know that the distribution f(q)
will be well-defined and (n − 1)− homogeneous in Ωn+1 = Rn × R \ {(0, 0)},
with �f(q) = 0 in that set. One can look more closely at the definition of f(q)
and check that it is in fact a well-defined distribution on Rn×R. Alternatively,
one can use the following lemma.337

Lemma

Let u be a distribution in Rn \ {0}. Assume u is a−homogeneous for some
a > −n. Then u can be uniquely extended to an a−homogeneous distribution
in Rn.

Proof

We first construct a suitable “partition of unity” (often called the Littlewood-
Paley partition), which is often used in Harmonic Analysis. Let ψ ∈ D(Rn)
with ψ = 1 in a neighborhood of 0. Consider the function ϕ(x) = ψ(x2 )− ψ(x).
(Clearly ϕ vanishes near 0.) For any integer k define ϕk(x) = ϕ(2kx). Then the
series

∑
k ϕ(x) consists only of a fixed finite number of non-zero terms for each

x ∈ Rn \ {0}, and
∑
k ϕk(x) = 1 for each x ∈ Rn \ {0}. For each φ ∈ D(Rn) we

define the extension ũ by

< ũ, φ >=
∑
k

< u, ϕkφ > . (1546)

The key point is that, using the a−homogeneity of u we can write (with slight
abuse of notation)

< u, ϕkφ >=

∫
u(x)ϕ(2kx)φ(x) dx =

∫
2−k(n+a)u(y)ϕ(y)φ(2−ky) dy , (1547)

the function ϕ(y)φ(2−ky) can be estimated in D(Rn) uniformly for k ≥ 0, and
we can take the sum over k ≥ 0, due to the factor 2−k(n+a) and the assumption
n+ a > 0. We leave the rest of the proof to the reader as an exercise.

The lemma shows that f(q) can be considered as a well-defined distribution in
Rn × R, which moreover is −(n− 1)−homogeneous. This means that �f(q) is
337See Theorem 3.2.3 in L.Hörmander’s book “The theory of linear partial differential oper-
ators I” for a more general statement (with a different proof).
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a well-defined distribution which is −(n + 1)−homogeneous. Moreover, �f(q)
is supported at (0, 0). It is easy to see that this means that �f(q) is a multiple
of the Dirac mass δ = δn+1.

We have determined the solution G up to a multiplicative factor. To determine
it exactly, we can proceed for example as follows. It not not hard to see that
the solution G+ satisfies (formally)∫

Rn

G+(x, t) dx = t , t > 0. (1548)

In view of (1473) this means that∫
Rn

G(x, t) dx =
|t|
2
, t ∈ R . (1549)

Let us assume that in Rn × R we have G(x, t) = fn(q). Formally this means
that∫

Rn

fn(t
2 − |x|2) dx = |Sn−1|

∫ ∞

0

fn(t
2 − r2)rn−1 dr = t/2 t > 0 . (1550)

By the lemma above we have

fn+2 = cnf
′
n . (1551)

We can write (for t > 0)

t
2 = |Sn+1|

∫∞
0
fn+2(t

2 − r2)rn+1 dr =
|Sn+1|
|Sn−1| |S

n−1|
∫∞
0
cn
(
− d

2rdrfn(t
2 − r2)

)
rn+1 dr =

|Sn+1|
|Sn−1|cn

n
2 |S

n−1|
∫∞
0
fn(t

2 − r2)rn−1 dr = |Sn+1|
|Sn−1|cn

n
2
t
2 = πcn

t
2

(1552)
We infer that

fn+2 =
1

π
f ′n . (1553)

We know that

f1(s) =
1

4
θ(s) , (1554)

where θ is the Heaviside function, defined by θ(s) = 1 for s > 0 and θ(s) = 0
for s < 0.

We also know that

f2(s) =

{ 1
4π

√
s
, s > 0 ,

0 s < 0
. (1555)

The three equations (1551),(1553) and (1554) determine G = fn(q) is any di-
mension. For example, for odd dimensions we have
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n = 2k + 1 =⇒ G(x, t) =
1

4πk
δ(k−1)(t2 − |x|2) . (1556)

In a similar way

n = 2k =⇒ G(x, t) =
1

πk−1
f
(k−1)
2 (t2 − |x|2) , (1557)

where f2 is given by (1555).

Note that in each case the solution is −(n − 1)−homogeneous (and note also
that n − 1 = n + 1 − 2). The Heaviside function θ(s) can be considered as
0−homogeneous, the Dirac mass δ(s) as (−1)−homogeneous, its derivative δ′(s)
as (−2)−homogeneous, etc. So, in some sense, the situation is quite similar to
the laplace operator: in that case the fundamental solution is (a multiple of)
the right power of |x|2 which makes it solution −(n−2)−homogeneous. For the
wave operator we have a similar heuristics if we replace |x|2 by t2 − |x|2 (as is
natural in view of the Lorentz invariance). In dimensions n = 1, 2 the analogy
is straightforward. In dimensions n ≥ 3 we must interpret the “naive” formula

((t2 − |x|2)+)−
n−1
2 correctly.338

For practical calculations with the fundamental solutions (1556) and (1557), it
is useful to keep in mind formulae such as

f (k)(t2 − r2) =
(

∂

2t∂t

)k
f(t2 − r2) =

(
−∂
2r∂r

)k
f(t2 − r2) . (1558)

As an exercise you can consider the following question about sound propagation
in general dimension. Assume that the propagation of sound is described by
the linear wave equation �u = f(x, t), where u is for example the deviation of
pressure from some rest value, and f(x, t) describes a “sound source”. Assume
we have a sharply localized source of sound which can be modeled as f(x, t) =
δ(x)g(t), where g is smooth, compactly supported in (t1, t2) and δ = δn is the
Dirac mass in Rn. Consider the problem

�u = g(t)δ(x) in Rn × R , u = 0 for t < t1 , (1559)

and determine the function t→ u(x, t) for a given x ̸= 0. You will see that only
in dimension n = 3 the signal at x, given by u(x, t) will be “undistorted”, in the
sense that t→ u(x, t) will be, in some sense, a (scaled and delayed) copy of g(t).
In all other dimension t → u(x, t) will be a non-trivial transformation of g(t).
In dimensions n = 3, 5, . . . the signal will not have “echoes” (which is related to
the fact that the fundamental solution G+ is supported on the light cone C+).
On the other had, we will see echoes in even dimensions, when the support of
the fundamental solution G+ is the full “solid light cone” C̃+, see (1471).

338There is more than one way to do it - in addition to the heuristics mentioned above, one
can also consider analytical continuation in n, for example. For more details see Theorem
6.2.1 in the book of L. Hörmander quoted earlier.
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In our discussion above we only very briefly mentioned the method of spherical
averages, which enables one to obtain quite quickly good representation formulae
for solutions. In fact, it may be the quickest and also the most elementary ways
to arrive at the representation formulae for solutions. The method can be found
for example of the textbook “Partial Differential Equations” by L. C. Evans,
and also in the textbook with the same title by F. John.
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