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1.1 Examples of fluid flows

Let us consider a few examples of phenomena studied in fluid mechanics.

Example 1

We consider a ball of radius R moving in a fluid of density ρ at speed U . The
problem is to determine the force F on the body caused by the “resistance of
the fluid”. (Often the force is called the “drag force”.) We will soon see that the
problem is somewhat undetermined, we need to know more about the fluid1 to
determine F precisely. In fact, even the definition of F itself is not as straight-
forward as it might seem: the force F can depend on time (even when U does
not), so we really have in mind some “average force”. For now let us disre-
gard these complications. We will discuss them later. The problem of finding
a formula for F was already considered by Newton in Principia Mathematica
(published in 1687). He gives a formula

F = cρR2U2 , (1.1)

where c is constant. Modulo some adjustments (to be discussed later) the for-
mula works surprisingly well, especially given our incomplete description of the
fluid. At the same time, there are many subtle points related to it and the
modifications which make it more precise.

Example 2
Consider a flow of fluid of density ρ in a pipe of radius R. We define the average
flow velocity U in the pipe

U =
volume of fluid which passed through the pipe in time T

πR2 (= area of the section of the pipe) T
. (1.2)

Let the pressure at the beginning of the pipe be P1 and the pressure at the end
of the pipe be P2, and let L be the length of the pipe. We let

P ′ =
P1 − P2

L
(1.3)

be the drop of pressure per unit length. Can we determine U in terms of
P ′, R and ρ? There are similar complications as in the previous problem: we
should know more about the fluid, the quantities U,P ′ should be considered as

1For example, one should distinguish compressible and incompressible fluids and consider
the viscosity of the fluid.
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some time averages, etc. Nevertheless, one has the so-called Darcy-Weischbach
formula2

U = c

√
P ′R

ρ
, (1.4)

where c is a constant. Similar to Newton’s formula (1.1), this formula needs
some adjustments in certain regimes, but given the incompleteness of the data
and the complicated nature of the flow inside a pipe3, it works surprisingly well.

Example 3
Most of you probably saw the following experiment. Create a jet of air flowing
upwards (against the direction of gravity), for example by blowing into a straw.
Place a ping-pong ball in the jet. The ping-pong ball will be “floating in the
air”, staying roughly at the center of the jet at a certain distance upwards
from the origin of the jet, perhaps with some oscillations. The configuration is
quite stable. Even if we tilt the jet slightly away from the vertical direction,
the ball will still float, it will not fall down. It is easy to understand that the
jet should produce some force in the upward direction, due to the drag force
from Example 1. But how can we explain that the configuration is stable? For
example, if instead of a jet of air we will have a jet of sand in vacuum, we do
not expect that the configuration would be stable.

The formulae (1.1),(1.4), and the stability effect in Example 3 are not easy to
understand from the “first principles”, mostly because they are related to the
phenomena of turbulence.

1.2 Dimensional Analysis

One can approach problems in fluid mechanics from several angles. In the next
few lectures we will derive the basic equations of fluid mechanics, and in principle
the phenomena in the examples above should be possible to explain by solving
the equations (with relevant boundary conditions). However, in many cases this
turns out to be unrealistic, even if we have large computers at our disposal. The
behavior of fluids in the regimes relevant for the above examples is simply too
complicated for us being able to track everything which is going on in the fluid.

When finding relevant solutions of the full equations describing a problem is
unrealistic, it is often useful to adopt a phenomenological approach. We do
not try to derive our formulae “from the first principles”, but from “rougher”
considerations4. A good example is provided by dimensional analysis, which we
will now illustrate in the context of equation (1.1).

2Perhaps known already in 1770s to A. Chezy.
3Here we have in mind the regime of turbulent flows, which includes most pipe flows we

encounter “in practice”.
4Often the “rough considerations” can be quite robust, and survive a paradigm shift con-

cerning the first principles. This may be the case even with the Fluid Mechanics. We do not
really know whether the standard equations of fluid mechanics (which we will soon derive)
lead (in some approximation) to formulae (1.1) in very turbulent regimes, even though it is
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Assume that in the situation of Example 1 we can express the force F in terms
of ρ,R, U . In other words, we assume that

F = ϕ(ρ,R, U) (1.5)

for some function ϕ : R3 → R. Seemingly there is not much we can say
about ϕ at this level of generality, but we can invoke an important principle:
equation(1.5) should be independent of the choice of basic units. Let us look
in more detail at what we mean by this. When we say that the radius of the
ball is R, we implicitly assume that we have chosen a unit of length and that
this unit of length fits R−times into the radius of the ball. So R is not really
just a number, it also implicitly includes some choice of the unit of length. To
emphasize this we can write

R = rL , (1.6)

where L is our unit of length and r is a “pure number”. We apply similar
considerations to other quantities involved in (1.5). When the unit of length is
fixed, we have to fix a unit of time to give a meaning to U . Assuming the unit
of time is T , we can write (in dimension 3)

U = u
L

T
, (1.7)

where u is again a pure number. To include density and force, we also need a
unit of mass. Let us call it M . We can then write

ρ = ϱ
M

L3
(1.8)

and

F = f
ML

T 2
, (1.9)

where ϱ and f are pure numbers. We see that in our situation we need to specify
three independent units to express formula (1.5). We chose L, T,M , and the real
physical quantities ρ,R, U, F are then expressed in terms of the pure numbers
ϱ, r, u, f . Formula (1.5) then means that, with our choice of units L, T,M , we
have

f = ϕ(ϱ, r, u) . (1.10)

So far we have nothing surprising, we have just gone in some detail over what
we really mean by (1.5). The key point is the following principle:

(P) Relations between physical quantities should be independent of the choice
of the basic units.

more or less universally assumed. In fact, we do not even know if the standard equations have
good solutions in such regimes. In the unlikely case that the standard equations would not
have good solutions, or would not lead to (1.1), we would have to admit that the equations
are inadequate and may need some adjustment, which would certainly be a paradigm shift.
Formula (1.1) would survive such a shift. Similar considerations apply to formula (1.4).
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In our situation this means the following. We have chosen the basic units to
be L, T,M . However, this choice is quite arbitrary. Somebody else looking at
this problem might choose the basic units of length, time and mass differently,
say as L′, T ′,M ′, and instead of the “pure numbers” ϱ, r, u, f , they will work
with the “pure numbers” ϱ′, r′, u′, f ′, defined analogously. The above postulate
says that these two quadruples of pure numbers should both satisfy the same
equation:

f = ϕ(ϱ, r, u), and f ′ = ϕ(ϱ′, r′, u′). (1.11)

It is clear that this requirement puts a very strong restriction on the function ϕ.
To see what it is explicitly, let us write

L = λL′, T = τT ′, M = µM ′ , (1.12)

where λ, τ, µ > 0. Then

ϱ′ =
µ

λ3
ϱ, r′ = λ r, u′ =

λ

τ
u, f ′ =

µλ

τ2
f , (1.13)

and (1.11) gives

ϕ(
µ

λ3
ϱ, λ r,

λ

τ
u) =

µλ

τ2
ϕ(ϱ, r, u) , µ, λ, τ > 0. (1.14)

Setting
µ

λ3
= α, λ = β,

λ

τ
= γ, (1.15)

we can re-write (1.14) as

ϕ(αϱ , βr , γu ) = αβ2γ2ϕ(ϱ, r, u) , α, β, γ > 0, (1.16)

which means that

ϕ(ϱ, r, u) = ϱ r2u2ϕ(1, 1, 1) = cϱ r2u2, ϱ, r, u > 0 , (1.17)

with c = ϕ(1, 1, 1). This gives (1.1).

Exercise

Use dimensional analysis to derive formula (1.4). 5

Remark* 6

The above considerations can be generalized as follows: assume that we have
some physical quantities X1, . . . , Xn which depend onm basic units A1, . . . , Am.
Let us think of X1, . . . , Xn as numbers representing the quantities for a given
choice of units. Then a new choice of units

Aj → A′
j , Aj = λjA

′
j , λj > 0, j = 1, . . . ,m (1.18)

5Note that the pressure is defined as force per unit area.
6In general, statements with ∗ are optional and not essential for following the course.
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can be though of as a scaling transformation

Xj → X ′
j = λ

αj1

1 λ
αj2

2 . . . λαjm
m Xj , j = 1, . . . , n , (1.19)

on the n−tuple X1, . . . , Xn, where the exponents αjk are given by the rela-
tions between Xj and the basic units. Letting X = (X1, . . . , Xn), and λ =
(λ1, . . . , λm) ∈ Rm

+ , we can think of (1.19) as the action of the multiplicative
group Rm

+ on Rn, and write it schematically as

X → λ ·X = X ′ . (1.20)

According to postulate (P), a physically meaningful relation

ϕ(X) = ϕ(X1, . . . , Xn) = 0 (1.21)

between the quantities should be invariant under the above group action:

ϕ(X) = 0⇐⇒ ϕ(λ ·X) = 0, λ ∈ Rm
+ . (1.22)

Heuristically it is clear that this should put restrictions on ϕ. Under some non-
degeneracy assumptions one can show that in the situation above one can define
l = n−m quantities π1 = π1(X), . . . , πl = πl(X) which are “dimensionless”, in
the sense that λ · πj = πj , j = 1, . . . , l, and a function ψ = ψ(π1, . . . , πl) such
that

ϕ(X1, . . . , Xn) = 0 is equivalent to ψ(π1, . . . , πl) = 0. (1.23)

Variants of this statement are known as the π−theorem, formulated in general
terms by E. Buckingham7. At this stage we need not to go into the details of
this statement in its full generality. We will soon see some additional elementary
examples.

7Buckingham, E. (1914) ,”On physically similar systems; illustrations of the use of di-
mensional equations”. Physical Review 4 (4), 345-376. See also the Wikipedia entry for
“Buckingham π− theorem”.
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Last time we talked about some phenomenological formulae, based on ap-
proaches where we do not try to describe the fluid motion in detail. Today
we start describing a more fundamental approach based on imagining the fluid
as a continuum which is deformed by smooth transformations. (An even more
fundamental approach would be to start from the atomic picture of the fluid,
but we will not pursue this direction here, we will not go beyond the continuum
description.)

We will first be dealing with kinematics, which can be thought of as pure de-
scription of motion, without the consideration of the causes of motion, such as
the forces. It essentially sets up a system for keeping track of the motion.

2.1 Eulerian and Lagrangian description of fluid motion

We assume that our fluid is contained in a domain8 Ω ⊂ R3. The domain can be
unbounded, such as Ω = R3 (all space) or Ω = {x ∈ R3, x3 > 0} (half-space),
or bounded, such as Ω = Br = {x, |x| < r}. The motion of the fluid in Ω is
described by a velocity field u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) in Ω. The value
of u at the point x ∈ Ω and time t is the velocity at which the “fluid particle at
x” moves at time t. Of course, the notion of the fluid particle at x is somewhat
problematic from the atomistic point of view9, but here we are dealing with a
continuum model. The question of justifying the continuum model from the
atomistic point of view is of great importance, but we will not pursue it here.
We will take the continuum model for granted.
The velocity field u will be usually assumed to be smooth (in both x and t), and
well–defined up to the boundary ∂Ω, which is assumed to be smooth. In fact,
most of the time we will assume that u is smooth in Ω× [t1, t2], where [t1, t2] is
a closed time interval relevant for our considerations.
If we assume that no fluid passes through the boundary of the domain Ω and Ω
is stationary, then we have the restriction

u(x, t)n(x) = 0, x ∈ ∂Ω , (2.1)

where n(x) = (n1(x), n2(x), n3(x)) is the unit normal to the boundary. In fact,
in viscous fluids10 a good boundary condition for stationary “containers” Ω is

u(x, t) = 0 , x ∈ ∂Ω . (2.2)

8By definition, a domain is a connected open set.
9For example, we implicitly assume that at each point of space there is some fluid particle.

10The precise meaning of viscosity will be defined later, but for now we can say that these
are the fluids with some internal friction. All fluids one encounters in “everyday life” are
viscous, even though the viscosity can be very small.
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If the boundary ∂Ω is not stationary, the equations (2.1) and (2.2) have to be
changed to

u(x, t)n(x, t) = v(x, t)n(x, t), x ∈ ∂Ωt (2.3)

and
u(x, t) = v(x, t), x ∈ ∂Ωt (2.4)

respectively, where ∂Ωt indicates that the domain may be time-dependent (but
does not have to be so), and v(x, t) is the velocity of the point x ∈ ∂Ωt at time t.

From the velocity field u(x, t) we can reconstruct the trajectory of each particle
by solving the ODE

ẋ =
dx

dt
= u(x, t), x(0) = α (2.5)

Here α is the position of the particle at time t = 0. The position of the particle α
at time t will be denoted by ϕt(α). Sometimes we will also use the notation α =
x0, or even α = x, when there is no danger of misunderstanding11. Assuming
that Ω is stationary, for each t ∈ R the mapping α→ ϕt(α) is a diffeomorphism
of Ω and, in fact, if u(x, t) is smooth up to the boundary, it is a diffeomorphism
of Ω, the closure of Ω. We note that ϕt maps the interior of Ω into itself and
the boundary ∂Ω into itself. In particular, in this model the fluid particles from
the interior of Ω never reach the boundary ∂Ω, and the fluid particles from ∂Ω
never leave ∂Ω.
The particle trajectories are given by

t→ ϕt(α) . (2.6)

The trajectory (2.6) passes through α at t = 0.

The description of the fluid motion in terms of the velocity field u(x, t) was
introduced by L.Euler around 1757, and is called the Eulerian description. The
description in terms of the diffeomorhisms ϕt is called the Lagrangian descrip-
tion. The two descriptions are related through equation (2.5), which can be also
written as

ϕ̇t(α) = u(ϕt(α), t) , (2.7)

where, as above, ϕ̇t(α) = d
dtϕ

t(α).

In this description of fluid motion we still in principle track what is going on
with each “fluid particle” in the continuum model. In comparison with the
atomistic model, the simplification should be that the field u(x, t) is smooth.
We imagine that behind each “fluid particle” in the continuum model there is
some averaging process involving a very large number of atoms of fluid, and we
do not have to track the motions of these individual atoms. That should be

11Of course, one can write x0 in place of α in (2.5), but writing x instead of α in (2.5) would
not be good notation.
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the source of a tremendous reduction in the number of “degrees of freedom”
which we need to track. This will happen if the distances over which u(x, t)
and some of its derivatives change significantly are much longer than atomistic
scales, which indeed seems to be the case. Still, in turbulent flows the field
u(x, t) changes very rapidly in both x and t, and for many common flows (such
as the flow of air around a car going at 60 mph) it is so complicated that the full
description of the field u(x, t) is challenging even for the largest computers12

2.2 Acceleration

From Newton’s formula force=mass × acceleration it is clear that ac-
celeration of the fluid particles will play an important role. The formula for
acceleration is straightforward in the Lagrangian description:

The acceleration along the particle trajectory t→ ϕt(α) is simply

ϕ̈t(α) =
d2

dt2
ϕt(α). (2.8)

Denoting the acceleration of a particle at point x at time t by a(x, t), we can
write (2.8) as

a(ϕt(α), t) = ϕ̈t(α) . (2.9)

In the Eulerian description we can calculate the acceleration by taking the time
derivative of equation (2.5). We obtain

ẍ(t) =
d2

dt2
x(t) =

d

dt
u(x(t), t) =

∂u

∂t
(x(t), t) +

∂u

∂xj
(x(t), t)ẋj(t) , (2.10)

where we have used summation convention of summing over repeated indices.
For example the expression yjzj means

∑3
j=1 yjzj . Expressing ẋ(t) from (2.5),

denoting ut =
∂u
∂t and using the notation u∇ = uj

∂
∂xj

, we can write

ẍ = ut + u∇u , (2.11)

where the expression on the right-hand side is evaluated at the point x(t) and
time t, or

a(x, t) = ut(x, t) + u(x, t)∇u(x, t) . (2.12)

2.3 Free particles

We can use the formula for the acceleration to write down the equation of a fluid
consisting of “free particles”, with no interaction between them. Such fluids of
course do not exists in the physical world, it is only a mathematical idealization,

12In practice this is addressed by additional averaging. The images of calculated fields of
flows around cars which you have undoubtedly seen are in reality not the snapshots of the
whole field u(x, t), but rather of some of its averages. The calculation of u(x, t) itself remains
often beyond our possibilities.
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but if we think in terms of a very fine dust of very small density set in a slow
motion, and observing it during a time interval when no dust particles collide,
then we can get a good picture.

The Lagrangian description is simple: the particles do not interact, and therefor
each particle moves at a constant speed:

ϕt(α) = α+ tv(α) , (2.13)

where we labeled the particles by their position at time t = 0 (the label α is the
same as the position at time t = 0), and v(α) is the velocity of the particle with
the label α. As an exercise, you can prove that when the vector field α→ v(α)
is smooth and vanishes outside large ball, then there exist a time interval (t1, t2)
with t1 < 0 < t2 such that (2.13) defines a diffeomorphism of R3 for t ∈ (t1, t2).

In the Eulerian description, the vanishing of the acceleration a(x, t) gives

ut + u∇u = 0 . (2.14)

This is the Burgers equation. It is a non-linear equation, but because of the free-
particle interpretation and the explicit solution in the Lagrangian description,
we can understand the solutions quite well. If u(x, 0 = v(x) with v(x) smooth
and vanishing outside a bounded set, then u(x, t) is given by

u(x+ v(x)t, t) = v(x) (2.15)

in some time interval t ∈ (t1, t2), where t1 < 0 < t2 are such that x→ x+ tv(x)
is a diffeomorphism of R3 for t ∈ (t1, t2). When x′ + t v(x′) = x′′ + t v(x′′) = y
for some x′ ̸= x′′, then the smooth solution u(x, t) cannot be continued up
to time t, as (2.15) gives two conflicting requirement for the value of u(y, t),
corresponding to the situation that two particles with different velocities reach
the point y at time t. We have here an example of a situation where a solution of
a locally-in-time well-posed nonlinear evolution equation can break down after
some time.13

2.4 Equation ft + u∇f = 0.

Equation (2.14) is closely related to the linear transport equation

ft + u(x, t)∇f = 0 , (2.16)

where the vector field u(x, t) is considered as known and f = f(x, t) is the
unknown. The equation just says that the function f is constant along the
trajectories of the vector field u(x, t). If ϕt(α) represent the Lagrangian de-
scription of the trajectories given by the vector field u(x, t), then the solutions
f(x, t) of (2.16) satisfy

f(ϕt(α), t) = f(α, 0) , (2.17)

13The questions if the solution can in some meaningful sense be continued beyond the
singularity has been studied in detail, see for example the book “Shock waves and reaction
diffusion equations” by J. Smaller or a more recent book on hyperbolic conservation laws by
C. Dafermos.
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which can be used to determine f if the initial condition f(x, 0) is known.
For example, of Ot is a region “moving with the fluid”, that is Ot = ϕt(O0),
then the function f(x, t) = χOt

(x) (the characteristic function of Ot) should
in some sense satisfy (2.16). (Some caution is needed as χOt is not classically
differentiable. We will not go into details at this point. It is however clear
that (2.17) is satisfied.)

2.5 The equation of continuity

The density ρ(x, t) of the fluid is defined by the requirement∫
O
ρ(x, t) dx = mass of the fluid contained in O at time t. (2.18)

If the Lagrangian trajectories are known, then ρ(x, t) is determined by ρ(x, 0)
(and vice versa) from the formula

ρ(ϕt(α), t) det∇ϕt(α) = ρ(α, 0) (2.19)

which follows from definition (2.18) of ρ and the substitution formula∫
O
ρ(ϕt(α), t) det∇ϕt(α) dα =

∫
ϕt(O)

ρ(x, t) dx . (2.20)

Formula (2.19) should be compared with formula (2.17). The Eulerian descrip-
tion counterpart of (2.19) is the continuity equation

ρt + div(ρu) = 0 , (2.21)

where

div u =
∂uj
∂xj

, (2.22)

with the summation convention understood. We will derive this equation di-
rectly in the Eulerian coordinates, but it can be also obtained directly from (2.19)
by differentiating in t.14

14It is a good exercise to do this calculation. If you have not differentiated determinats
before, it may look complicated, but it is worth learning how to handle this calculation.
Do it first at t = 0. We remark that the differentiation of (2.19) gives (2.21) in the form
ρt + u∇ρ+ ρ div u = 0, which is equivalent to (2.21) for sufficiently regular functions.

10



3

9/12/2011
We continue to discuss the equation of continuity. The Eulerian description
version (2.21) can be easily derived directly in the Eulerian description, without
relying on (2.19). Let us consider an arbitrary smooth domain O ⊂ Ω, and let
us consider the quantity

d

dt

∫
O
ρ(x, t) dx =

∫
O
ρt(x, t) dx . (3.1)

(We assume that ρ(x, t) is sufficiently regular.) This quantity represents the
instantaneous rate of increase of mass of the fluid in O. Any change in mass of
the fluid in O can only be a result of a flux of the fluid through the boundary ∂O
of the region O. The instantaneous rate of flow of mass through ∂O is clearly

−
∫
∂O

ρun dx = −
∫
∂O

ρ(x, t)u(x, t)n(x) dx (3.2)

where n = n(x) is the outward unit normal to the boundary, un is the scalar
product of u and n (which is a function of x, so we can also write u(x, t)n(x) =
uj(x, t)nj(x) ), and dx denotes the natural surface measure on ∂O. The expres-
sions (3.1) and (3.2) have to be equal:∫

O
ρt(x, t) dx = −

∫
∂O

ρ(x, t)u(x, t)n(x) dx . (3.3)

Recalling the Gauss formula∫
∂O

v(x)n(x) dx =

∫
O
div v(x) dx , (3.4)

which is valid for any sufficiently regular vector field v, we see that we can
rewrite (3.3) as ∫

O
ρt(x, t) dx+

∫
O
div(ρu)(x, t) dx = 0 . (3.5)

Since the domain O was arbitrary, we see that

ρt + div(ρu) = 0 . (3.6)

The equation of continuity is “dual” to the transport equation ft+u∇f = 0. 15

If f = f(x, t) is a function compactly supported in Ω for each t satisfying the

15In general, a (formal) L2− dual L∗ of an operator L (in our case L = ∂
∂t

+ u(x, t)∇ is
defined by ∫ ∫

Lφψ dx dt =

∫ ∫
φL∗ψ dx dt , (3.7)

where φ(x, t), ψ(x, t) are smooth, compactly supported functions. (The formula is written for
complex-valued functions, with ψ denoting the complex conjugate.)
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transport equation and if ρ = ρ(x, t) satisfies the continuity equation (for the
same vector field u(x, t)), then an easy calculation shows (see also (3.10) below)

d

dt

∫
Ω

ρf dx = 0 , (3.8)

where we use the shorthand notation
∫
Ω
ρf dx =

∫
Ω
ρ(x, t)f(x, t) dx.

To illustrate the meaning of (3.8), we can consider the following special case.
Let O be a (smooth) domain, and let Ot describe its motion with the flow. In
other words, using the Lagrangian description (2.7), we have Ot = ϕt(O). Let

f(x, t) = χOt(x) . (3.9)

Then we can think of f(x, t) as a solution of the transport equation (2.16)
(or (2.17)). Strictly speaking, the function f is not smooth and therefore one
must be somewhat careful in interpreting the equation. This is a relatively
minor technical detail which nevertheless must be taken care of in a rigorous
treatment, but we will ignore it for now. For this choice of f , equation (3.8)
says that the mass of fluid in Ot, given by

∫
Ot
ρ(x, t) dx does not change with t,

which is of course to be expected from the definition: the “fluid particles” in Ot
are always the same.

If η(x, t) is any sufficiently regular function (not necessarily satisfying the conti-
nuity equation), and f(x, t) is compactly supported in Ω (for each t) and satisfies
the transport equation (2.16), then at any time t we have

d

dt

∫
Ω

ηf dx =

∫
Ω

(ηtf + ηft) dx =

∫
Ω

(ηtf − ηu∇f) dx =

∫
Ω

(ηt + div(ηu))f dx .

(3.10)
Taking f(x, t) = χOt(x) as above, we obtain

d

dt

∫
Ot

η(x, t) dx =

∫
Ot

(ηt + div(ηu)) dx =

∫
Ot

ηt +

∫
∂Ot

ηun dx , (3.11)

which is a useful formula for following quantities associated with “moving vol-
umes”.

Example.

Let us consider the motion of free particles described by the Burgers equa-
tion (2.14). We assume for simplicity that Ω = R3 and that u is smooth van-
ishes outside a bounded set. (In particular, we consider the motion only during
a times interval (t1, t2) when there are no collisions between the particles.) Let
ρ(x, t) be the density of the particles. The total kinetic energy of the particles
is given by ∫

Ω

ρ(x, t)
|u(x, t)|2

2
dx . (3.12)
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We expect that it will not change with time. This is obvious in the Lagrangian
description (2.13). You can check by a direct calculation in the Eulerian variable
that the time derivative of (3.12) vanishes. It can be also deduced from (3.8),
since the function f(x, t) = |u(x, t)|2/2 satisfies the transport equation. In fact,
we can replace |u|2/2 by b(u) = b(u(x, t)), where b is any function on R3. For
the free particles the conservation of energy (and the more general quantities
given by b(u)) can be localized to the “moving volumes”: if f(x, t) is a solution
of the transport equation, then

d

dt

∫
ρ(x, t)b(u(x, t))f(x, t) dx = 0 . (3.13)

This can again be seen from (3.8), since the function b(u(x, t))f(x, t) satisfies
the transport equation. Taking b(u) = u (the reader can check that there is no
problem with vector-valued b(u)), we obtain the conservation of momemtum

d

dt

∫
ρ(x, t)u(x, t)f(x, t) dx = 0 . (3.14)

Of course, these properties of the motion of the free particles are not very deep
and are to be expected, but going through these calculation is a good exercise
in checking our formulae and in making sure that they express what we expect.

3.1 Vorticity

What makes the motion of fluids interesting is that they are easily deformed.
The deformation of course arises when not all points move in the same way. We
will look at this effect more closely in a small neighborhood of a fluid particle
trajectory y(t). We assume ẏ(t) = u(y(t), t). Let us look at the motion of
particles close to y(t). For that purpose it is useful to follow the deformations
in a system of coordinates moving with the point y(t) (at speed v(t) = ẏ(t) =
u(y(t), t) ). We will denote these coordinates by x̃. We have, for each t,

x̃ = x− y(t) (3.15)

The velocity field in the coordinates x̃ is

ũ(x̃, t) = u(x̃+ y(t), t)− v(t) = u(x̃+ y(t), t)− u(y(t), t) , (3.16)

and the particle trajectories in the x̃ coordinates are given by

d

dt
x̃(t) = ũ(x̃, t) . (3.17)

By the construction, we have ũ(0, t) = 0. Dropping the tildes, we see that we
can reduce the study of the deformations of the fluid in a neighborhood of a
given fluid particle (moving with the fluid) to the study of the deformations
generated by

ẋ = u(x, t) , (3.18)
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where the field u(x, t) now satisfies u(0, t) = 0 and we are interested in tra-
jectories close to 0. In the first approximation it is reasonable to look at the
linearization:

ẋ = ∇u(0, t)x , (3.19)

which we will write as
ẋ = A(t)x , (3.20)

where A(t) is the 3 × 3 matrix ∇u(0, t). We will now consider the special case
when A(t) = A is a constant matrix. We are therefore dealing with the simple
constant-coefficient linear system

ẋ = Ax . (3.21)

The solutions of the system are given by

x(t) = etAx0 , (3.22)

where x0 = x(0). We wish to understand how the map x → etAx deforms the
space. We will first consider two special cases:

Case I: A is anti-symmetric (aij = −aji).
Case II: A is symmetric (aij = aji).

This decomposition is relevant for our considerations concerning deformations
since the anti-symmetric matrices generate the tangent space to the special
orthogonal group SO(3) at the identity, and the symmetric matrices generate a
normal space to SO(3) at the identity.

In suitable orthogonal coordinates, every anti-symmetric matrix looks like

A =

 0 −a 0
a 0 0
0 0 0

 . (3.23)

In this case the map x → etAx represents the rotation by angle at about the
x3−axis:

etA =

 cos at − sin at 0
sin at cos at 0
0 0 1

 (3.24)

The fluid moves as a rigid body and is not deformed.

In suitable orthogonal coordinates, every symmetric matrix looks like

A =

 λ1 0 0
0 λ2 0
0 0 λ3

 . (3.25)
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In this case the map x → etA represents stretching or compression along the
coordinate axis, depending on the sign of λj .

etA =

 etλ1 0 0
0 etλ2 0
0 0 etλ3

 . (3.26)

When A ̸= 0, this represents a real deformation of the fluid.

The general matrix A can be written as A = Asym +Aasym and we can think of
etAx as a result of applying succesively small rotations eτAasym and small “pure
deformations” eτAsym , as in the Trotter formula

et(A+B) = lim
n→∞

(
e

t
nA e

t
nB
)n

. (3.27)

We see that it is the symmetric part of A which is responsible for the real
deformation, whereas the anti-symmetric part only rotates the fluid as a rigid
body.

The case when A = A(t) is similar: if A(t) is anti-symmetric for each t, then
the solution of (3.21) represents a rigid rotation. The symmetric part of A(t)
will be responsible for the deformations. This shows that when looking at the
deformations of the fluid, the decomposition of ∇u(x, t) into the symmetric and
anti-symmetric part should play an important role.
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Last time we looked at the matrix ∇u(x, t) (where ∇, as always, means ∇x),
and we saw that its symmetric part and and its anti-symmetric part each has
a definite geometric meaning related to respectively the deformation or the
rotation of infinitesimal volumes of fluid. In dimension n = 3 the anti-symmetric
matrices can be identified with vectors by the formula

Ax = a× x , (4.1)

where × denotes the cross product. We can also write

a = (a1, a2, a3)←→ A =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 , (4.2)

or

Aik = ϵijkaj and aj =
1

2
ϵijkAik , (4.3)

where ϵijk is the Levi-Civita symbol, defined as ϵijk = 1 when ijk is an even
permutation of 123, ϵijk = −1 when ijk is an odd permutation of 123, and
ϵijk = 0 otherwise.16

In view of the above identification of the anti-symmetric matrices and vectors
in dimension n = 3, we can identify the anti-symmetric part of the matrix ∇u
with the vector

ω = curlu = ∇× u, or (curlu)i = ϵijk∂juk = ϵjikuj,k . (4.4)

The vector field ω is called vorticity, and plays an important role in the study
of fluid motion.

Note that the normalization is such that for v(x) = a× x we have curl v = 2a.
The vector curlu taken at a point x represents the axis of rotation for the
infinitesimal rotation generated by the anti-symmetric part of ∇u(x), the rate
of rotation being 1

2 | curlu|.

The reader can check the following formulae17:

16In this notation the cross product is (a × x)i = ϵijkajxk. Note that it is important
to verify that these formulae work the same in any orthogonal coordinate system with the
right orientation. This amounts to verifying that ϵijk is a (pseudo-)tensor, which means that
qilqjmqknϵlmn = ϵijk for any matrix {qij} ∈ SO(3). This is an example of the geometric
counter-part of the principle we used in the first lecture that the physical formulae should
be independent of the choice of units. In a similar way, formulae with a geometric meaning
should be independent of the choice of coordinates.

17For verifying some of them the identity ϵijkϵilm = δjlδkm − δjmδkl is useful.
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curl∇f = 0 , (4.5)

div curlu = 0 , (4.6)

curl curlu = −∆u+∇ div u , (4.7)∫
R3

(
| curlu|2 + |div u|2

)
dx =

∫
R3

|∇u|2 dx , ∇u ∈ L2(R3). (4.8)

We can see from (4.8) or (4.7) that a vector field in R3 vanishing near ∞ can
be reconstructed from ω = curlu and div u.

For incompressible fluids we have div u = 0 and hence the equations

curlu = ω, div u = 0 . (4.9)

These equations are the same as the equations for static magnetic fields gener-
ated by steady electric currents. If we denote the magnetic field by B and the
current by J , then the equations are

curlB = µ0J, divB = 0 , (4.10)

where µ0 is the magnetic constant, which can be taken µ0 = 1 in a suitable
system of units. Therefore if you have seen pictures of magnetic fields around
electrical wires, it can help you to imagine what u is if you know ω in (4.9).

The symmetric part of the matric ∇u will also play an important role. It is
known as the deformation tensor, and in the literature it can be denoted by D,
or by S, or by eij . For example, in the last notation we write

eij =
1

2
(ui,j + uj,i) . (4.11)

You can verify that∫
R3

eijeij dx =
1

2

∫
R3

(
|∇u|2 + | div u|2

)
dx , ∇u ∈ L2(R3) . (4.12)

Therefore in R3 the tensor eij also determines u uniquely if we assume suitable
decay at ∞.18

4.1 The Cauchy Stress Tensor

We now begin the study of the dynamics and the relevant forces acting in the
fluid. In a continuum the forces are usually described by “fields”. The simplest

18In fact, if eij = 0, then u(x) = Ax+ b for some anti-symmetric matrix A. Intuitively this
should be clear: if eij = 0 then there is no real deformation, and hence u is a velocity field of
a rigid motion. A rigorous proof requires some thought, if you have not seen it before. It is a
good (non-trivial) exercise.
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example is a vector field f(x, t), which represents a force density: the total force
due to the field f(x, t) on any subdomain O ⊂ Ω (at time t) is∫

O
f(x, t) dx . (4.13)

For example, the force due to gravity is decribed by the field

f(x, t) = −ρ(x, t)g (4.14)

where ρ is the density of the fluid, and g is the vector of the acceleration due to
gravity.19

In addition to the “external” forces such as (4.14), the description of which is
more or less obvious, we have to describe the macroscopic effect of the forces
due to the interaction of the atoms of the of the fluid20 we are considering. The
basic assumption here is that the range of these forces is very small, and in the
continuum description we have in mind here it can be taken to be zero. That
means that if we think of a (smooth) domain O ⊂ Ω, then the net result of the
interatomic forces acting on O can be thought of as a result of a force density
acting only on the boundary of ∂O of O. We postulate that the i−th component
of the net force with which the complement of O acts on O through ∂O is given
by ∫

∂O
τij(x)nj(x) dx , (4.15)

where τij = τij(x) is a two-tensor21 ( ∼ matrix field) in Ω and n = (n1, n2, n3)
is the outward unit normal to ∂O. If a time-dependent situation is considered,
the tensor τ can also depend on t, of course. The tensor τ is called the Cauchy
stress tensor.

Strictly speaking, the above reasoning concerning the nature of the interatomic
forces justifies immediately only the assumption that the force is given by∫

∂O
ϕ(x, n(x)) dx (4.16)

where ϕ(x, n) is a vector-valued function of x ∈ Ω and n ∈ R3, |n| = 1 with
suitable transformation properties so that the expression of the force is inde-
pendent of the choice coordinate system. It may not be instantaneously obvious
that the expression ϕi(x, n) should be linear in the vector n. However, starting
from the expression (4.16) one can actually derive that – under some natural
assumptions – the dependence on n must be linear as in (4.15). We will not

19We wrote g as being independent of x, t, which is adequate for scales much smaller than
the planetary scales. However, in general we can have g = g(x, t).

20or elastic body
21We are always working in orthogonal frames and therefore we do not have to distinguish

between covariant and contravariant tensors.
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pursue this here, but we recommend the reader to think about this - it is a good
exercise.22

We will now derive the conditions under which a continuum with Cauchy stress
tensor τ and a force density f is in equilibrium. We recall that in the simpler
situation of a rigid body on which we act by forces F (1), . . . , F (m) at the points
x(1), . . . , x(m) respectively the equilibrium conditions are

a) the total force is zero

F (1) + · · ·+ F (m) = 0 , (4.17)

and

b) the total moment of force is zero

F (1) × x(1) + · · ·+ F (m) × x(m) = 0 . (4.18)

Note that once (4.17) is satisfied, then (4.18) is independent of the choice of the
coordinate system.

In the situation with the continuum we are considering, the analogue of (4.17)
is ∫

O
f dx+

∫
∂O

τ · n = 0, for each smooth O ⊂ O ⊂ Ω , (4.19)

and the analogue of (4.18) is∫
O
f × x dx+

∫
∂O

(τ · n)× x dx = 0, for each smooth O ⊂ O ⊂ Ω , (4.20)

where we used an index-free notation for simplicity and keep in mind that f, τ, n
depend on x. Using the notation

(div τ)i =
∂τij
∂xj

(4.21)

we know from the Gauss theorem that∫
∂O

τ · n =

∫
O
div τ (4.22)

and hence (4.19) gives
div τ + f = 0 . (4.23)

In a similar way, we can write the surface integral in (4.20) as∫
∂O

ϵijkτjlnlxk dx =

∫
O
ϵijk

∂

∂xl
(τjlxk) =

∫
O
ϵijk

(
∂τjl
∂xl

xk + τjk

)
. (4.24)

22Perhaps moderately difficult if you are new to Continuum Mechanics.
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Using (4.21) and substituting −fj for ∂τjl
∂xl

, we see that (4.20) gives∫
O
ϵijkτjk = 0 , for each smooth O ⊂ O ⊂ Ω . (4.25)

This clearly means τ is symmetric, i. e.

τij = τji in Ω . (4.26)

Hence the conditions for equilibrium are given by (4.23) and (4.26).

We have worked under the assumption that the continuum is at equilibrium,
which may at first seem somewhat restrictive. The key point here the classical
d’Alembert’s principle: even if a system is in motion, it can be considered as
being in equilibrium if we take into account the inertial forces due to accelera-
tion.
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5.1 Cauchy stress tensor in fluids

By definition, an ideal fluid is a continuum in which the Cauchy stress tensor
always has the form

τij = −p δij , (5.1)

where p can be a function of x and t. We emphasize that this is assumed to be
correct even when the fluid is in motion. We will see later that in most “real
fluids” there is an additional stress which arises when the fluid moves, the so
called viscous stress. This will be discussed in some detail later, but we can
state even at this point that this additional stress arises only when the fluid
moves. For a fluid which is at rest, the Cauchy stress is always given by (5.1).
The function p is called the pressure, and its physical dimension is force per
unit area, or ML−1T−2 in terms of the units of mass, length and time.

The above definition expresses the observation that the fluids cannot resist any
“shear stresses”23 (unlike, say, elastic bodies). In the ideal fluids this property
is extended to the dynamical regime.24

In the real fluids the pressure is related to the other thermodynamical quantities,
the main ones being (in addition to p) the density ρ, and the temperature T , 25

and we typically assume relations such as p = p(ρ, T ).26 Sometimes the models
disregarding T and assuming only p = p(ρ) 27, which is often considered for
compressible fluids, can work quite well.

For many fluids it is reasonable to make the assumption that they are incom-
pressible.28 In this case the Lagrangian mappings ϕt we considered in lecture
2 satisfy det∇ϕt = 1 in Ω for each t, and the velocity field u(x, t) satisfies the
constraint

div u = 0 in Ω. (5.2)

23A typical situation when a shear stress arises is the following: glue a cube of a material
to a surface and then act on it by a force parallel to the surface. See also the Wikipedia entry
for Shear Stress.

24This produces some unrealistic effects, as we will see, but the model still gives a good
picture for many phenomena.

25In more complicated fluids one also has to consider additional quantities such as concen-
tration of various components, for example.

26These relations are often written in a form which does not satisfy the principle (P) from
Lecture 1. For example, one often writes (for simplified models) p = p(ρ), whereas what one
really means is p

p0
= ϕ( ρ

ρ0
) where p0 and ρ0 are some normalized values of the pressure and

density respectively, which may depend on the choice of units.
27see the previous footnote
28Incompressible fluids which are homogeneous ( = the same at each point) have constant

density, i. e. ρ(x, t) = ρ0 = const. in Ω. One can also consider incompressible fluids with
non-constant density, such as a mixture of water and, say, ethanol, with concentration which
depends on x. In these notes we will mostly concentrate on the former situation with ρ = const.
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In this model the pressure depends only on the inertial forces (and the external
forces, if present and are not div-free), and it is simply whatever is necessary
so that the equations of motion keep the constraint. The situation is similar
to what we have when a particle moves while being restricted to a ideally rigid
circle. In that case the forces on the particle which are perpendicular to the circle
have always exactly the right size to keep the particle on the circle. The pressure
in incompressible fluids is similar. It arises as a result of the incompressibility
constraint and is unrelated to other thermodynamical quantities. (The density
ρ will not be a thermodynamical quantity either.) In fact, in the incompressible
model the pressure is typically not even uniquely defined, it is only defined for
each time up to a constant. We can change p(x, t) to p(x, t) + f(t) without
any effect on anything else. When dealing with issues arising in this context,
it is useful keep in mind that all real fluids are compressible, and that the
incompressible model is really an idealized limiting case of the situation when
the dependence of p on ρ is very “steep”. It is a similar idealization as the
concept of a rigid body.

One drawback of the incompressible model is that it becomes unrealistic when
the pressure becomes negative. While typical real fluids can withstand large
positive pressures without much compression, the situation is different for neg-
ative pressures. For example, at low pressure water begins to boil even at the
room temperature, and does not “resists” the negative pressures in a way which
is predicted by the incompressibility condition. In many situations the pressure
is of the form

p = patm + p′ , (5.3)

where patm is the atmospheric pressure and p′ is not negative enough for the
above effect to become significant. In those cases the incompressible model
works well. In other cases the additional thermodynamical effects of the low
pressure have to be taken in account, such as in the phenomenon of cavitation,
which can become a serious concern in pumps, turbines, propellers and other
devices which create flows where the pressure becomes low.

The incompressible model has other drawbacks which we may mention later as
we get into details of certain phenomena, but overall it works very well in many
situations and is widely used. It is as with other mathematical models: they
work well in the situations for which they were designed, but one should know
their limitations.

5.2 Hydrostatics

Hydrostatics deals with fluids which are not moving and – unlike hydrodynamics
(dealing with the moving fluids) – it is quite simple. Assuming the density of
the forces is f(x) = (f1(x), f2(x), f3(x)) and the stress tensor is τij = −p(x)δij ,
the equilibrium equations (4.23) become

∇p = f . (5.4)
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This means that the non-moving fluid can be at equilibrium only when the
(volume) forces acting on it are potential forces (i. e. arise as a gradient of a
function). For incompressible fluids the situation is particularly simple. In that
case the pressure is uncoupled from the other quantities describing the state of
the fluid, and if f = ∇ϕ, the solution of (5.4) is trivial: we simply set

p = ϕ+ const., (5.5)

where the constant can be arbitrary. (It can be fixed by demanding that the
pressure has a specific value at some point in the fluid, for example.)

Let us consider some simple examples

Example 1 (Incompressible fluid in a constant field of gravity.)

Assuming that the fluid occupied a domain Ω and f = −ρ0ge3 (with e3 =
(0, 0, 1)), the solution of (5.4) clearly is

p = −ρ0gx3 + const. , (5.6)

confirming the well-known elementary formula. If a body O is submerged into
the fluid, the resulting force due to the pressure on the body will be

F =

∫
∂O
−p(x)n(x) dx = |O| ρ0g e3 , (5.7)

where |O| denotes the volume of O. This is the Archimedes’ principle, which
can also be seen without calculation, by replacing the immersed body O with
the fluid and using the fact that the fluid can be at rest when we do that.

Example 2 (Incompressible fluid in a closed container undergoing acceleration.)

Let us assume we have an ideally rigid container Ω which is closed and com-
pletely filled with incompressible fluid of constant density ρ0. Assume the
boundary of the container moves as

x→ x+ b(t) , (5.8)

where b(t) = (b1(t), b2(t), b3(t)) is any (sufficiently regular) function of time.29

How will the fluid move? The answer is simple: the motion of the fluid will be
given again by(5.8). In other words, the container and the fluid in it will move
together as a rigid body. There will be no mixing of the fluid. This is easily
seen if we view the situation from the coordinate system of the container. In
that system the container is stationary and the fluid is subject to inertial forces
of the form

f = −b̈(t)ρ0 . (5.9)

29You can imagine that we shake the container, but only by translational motions, with no
rotations.
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Equation (5.4) can be easily solved (in the coordinate system moving with the
container) for each t by letting

p(y, t) = −yj b̈j(t)ρ0 + c(t) , (5.10)

where c(t) is any function of t, and y are the coordinates in the system of the
container. The fluid is incompressible, and therefore the pressure will have no
visible effect on it.

Examples 1 and 2 can be used to explain the following experiment.30 Assume
that you are standing in bus which is going at relatively high speed and you
hold in your hand a party balloon filled with helium. To be precise, you hold a
string to which the balloon is attached and the balloon floats in the air, pulling
slightly up on the string. If the driver steps on the breaks and you manage
to stay in your position, how will the balloon move? For the purpose of this
experiment it is reasonable to assume that the air is incompressible.31

Example 3 (Exponential atmosphere)

Let us assume the force of gravity on air is given by the force density −ρ(x)ge3,
where ρ(x) is the air density, and g is the acceleration due to gravity, which is
assumed to be constant. Let us assume that the air is at constant temperature
and follows the ideal gas law which in this situation predicts

p

p0
=

ρ

ρ0
, (5.11)

where p0, ρ0 are respectively the pressure and the density at a reference position,
which we will take to be the surface x3 = 0. Assume the air is not moving. How
will p and ρ depend on x3?

We see from equation (5.4) that p can only depend on x3. Hence, using (5.11),
we see that p = p(x3), ρ = ρ(x3) and

p0
ρ0
ρ′ = −ρ g . (5.12)

Elementary integration now gives

p(x3) = p0 e
− ρ0

p0
gx3 . (5.13)

5.3 The equations of motion

Let us now consider the equations of motion for ideal fluids, for which we already
know all the forces acting in it. By d’Alembert’s principle, the equation motion

30I thank to David V., a high-school student in Prague for bringing this experiment to my
attention.

31If you think about this situation using Examples 1 and 2 above, you will see that the
balloon will move in backwards.
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are obtained if we add the inertial forces to the equilibrium equations (4.23).
The inertial forces are given by

−ρ(x, t)a(x, t) , (5.14)

where a(x, t) is the acceleration, which can be expressed in terms of u(x, t)
by (2.12). We obtain

ρut + ρu∇u+∇p = f , (5.15)

where f = f(x, t) describes “external forces”. For incompressible fluids we have
div u = 0. If ρ is constant, ρ = ρ0, then we get a closed system of equations

ρ0ut + ρ0u∇u+∇p = f(x, t) , (5.16)

div u = 0 (5.17)

for the unknown functions u(x, t), p(x, t). These are the incompressible Euler’s
equations, derived by L. Euler around 1757.

When the fluid is compressible, we can add the equation of continuity (3.6) to
the equation (5.15), but we still need one more equation to close the system,
as now both p(x, t) and ρ(x, t) are unknown. The simplest way to close the
system is to assume a thermodynamical relation p = p(ρ). This way we get the
so-called isentropic Euler’s equations

ρut + ρu∇u+∇p = f , (5.18)

ρt + div(ρu) = 0 , (5.19)

p = p(ρ) . (5.20)

This is a good model in many cases, although it sometimes oversimplifies tem-
perature effects.32 We also remark that – as we already mentioned in a previous
footnote (page 21) – writing p = p(ρ) does not conform to the principle (P) from
lecture 1, and one should really write p = p0ϕ(

ρ
ρ0
). We will follow the custom

and write p = p(ρ), even though that one should really write p = p0ϕ(
ρ
ρ0
) to

have the principle (P). Similar practice is sometimes referred to as saying that
we assume that the equations are already “non-dimensionalized”.

To get a feeling for the system (5.18)-(5.20), we will derive its linearization
about the trivial solution ρ = ρ0, p = p0 = p(ρ0), u = 0 representing a fluid at
constant density at rest, with no forces acting on it. We assume that the trivial
solution is perturbed to a smooth solution close to it as

ρ0 → ρ = ρ0 + εη +O(ε2), (5.21)

p0 → p = p0 + p′(ρ0)εη +O(ε2), (5.22)

u = 0 → u = εv +O(ε2) , (5.23)

f = 0 → εf . (5.24)

32The temperature is not present in the above equations, so that we really assume that either
the temperature is constant (one extreme case) or that the processes are “locally adiabatic”,
with no heat exchange between the fluid particles (the other extreme case).
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where O(ε2) represents terms of order ε2. An easy calculation shows that in the
limit ε→ 0 we get the following equations

ρ0vt + p′(ρ0)∇η = f (5.25)

ηt + ρ0 div v = 0 . (5.26)

Taking the divergence of the first equation and subtracting from it the time
derivative of the second equation we obtain

−ηtt + c2∆η = div f (5.27)

with
c =

√
p′(ρ0) . (5.28)

This is the wave equation for waves with speed of propagation c. Once we
know η (from solving (5.27)), we can calculate v from (5.25). The linearized
equations are a good approximation for propagation of sound in a regime when
the non-linear effects of the full equations can be neglected, which is practically
any sound which we can comfortably listen to.33 At this point this should be
taken as an empirical statement. A rigorous mathematical investigation of the
relation between the solutions of the linearized equations and system (5.18)–
(5.20) is non-trivial.34

33The sound level in the usual units of dB is defined as 20 log10(
q
qref

), where q measures

the size of the oscillations of the pressure and qref = 2 · 10−5 Pa in the SI unit system. From
this you can see that the amplitude of the pressure oscillations in usual sounds is small. The
velocity v of the particles of air will be of the order q

ρ0c
, which is also very small (as opposed

to the speed of propagation c).
34Moreover, the “real equations” may not be exactly (5.18)– (5.20), as the derivation of this

model already involved some idealized assumptions about the behavior of air.
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6.1 Helmholtz decomposition

Let us now look at the linearization of the incompressible model (5.16)–(5.17)
at u = 0. We assume that an incompressible fluid of constant density ρ0 in
a container Ω is at rest and we apply infinitesimally small forces f(x, t) to it.
The domain Ω is assumed to be smooth and bounded for simplicity. We also
consider the boundary condition

u(x, t)n(x) = 0 at ∂Ω . (6.1)

The linearization of (5.16)–(5.17) is

ρ0vt +∇p = f(x, t) (6.2)

div v = 0 , (6.3)

together with the boundary condition v(x, t)n(x) = 0. If the initial velocity
u(x, 0) vanishes, then at time t = 0 this equation (with v = u) is valid exactly
for (5.16)–(5.17), as the term u∇u vanishes at t = 0 in that case. We look
at (6.2) for a fixed time, say t = 0. The right-hand side of (6.2) is a general
(“sufficiently regular”) vector field in Ω. Each term on the left-hand side is
special: the vector field g = ρ0vt is div-free and satisfies the boundary condition
g n = 0 at ∂Ω. The vector field ∇p is a gradient field. Only the field g will
be responsible for accelerating the fluid. The field ∇p has no visible effect on
the fluid, due to the assumption of incompressibility. In some sense, the fluid
will decompose the general force f for us into two special forces: a gradient
force ∇p and a div-free force g satisfying the boundary condition g n = 0. This
decomposition is known as the Helmholtz decomposition.

The situation is quite similar to the following finite-dimensional scenario. As-
sume we have a plane Σ ⊂ R3 and a particle with coordinates x which is
constrained to the plane. The constraint is assumed to be ideally rigid. Within
the plane Σ the particle can move freely. Assume the particle is at rest and let
us act on it by a force F which can be any vector in R3. We can decompose
the force as

F = F⊥ + F || , (6.4)

where F⊥ is perpendicular to Σ and F || is parallel to Σ. The force F⊥ has
no effect on the particle, it is exactly countered by the forces responsible for
the constraint. The force F || will cause the particle to accelerate in the plane
Σ, with the acceleration a|| satisfying ma|| = F ||, where m is the mass of the
particle. In the context of (6.2), the role of F is played by f , the role of F⊥ is
played by ∇p, and the role of F || is played by ρ0vt.
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The above analogy is even more complete: we can introduce a scalar product
of the vector fields in Ω as

(f, g) =

∫
Ω

fg dx =

∫
Ω

fi(x)gi(x) dx. (6.5)

Let us now take a smooth div-free vector field g satisfying g n = 0 at ∂Ω, and a
gradient field ∇φ, where φ is any smooth function. We have

(g,∇φ) =
∫
Ω

g∇φ =

∫
∂Ω

(g n)φ−
∫
Ω

(div g)φ = 0 . (6.6)

In other words if we let

X = {g : Ω→ R3, g is smooth, div g = 0 and g n = 0 at ∂Ω} (6.7)

and
Y = {∇φ, φ : Ω→ R is a smooth} , (6.8)

then these two linear spaces are perpendicular to each other with respect to the
scalar product (6.5). Let us denote, as usual, by L2(Ω,R3) the Hilbert space
of functions which is obtained by taking the completion of the smooth vector
fields in Ω with respect to the norm ||f || =

√
(f, f). Let X be the closure of

X is L2(Ω,R3), and let Y be the closure of Y in L2(Ω,R3). Then clearly X is
perpendicular to Y , by the continuity of the scalar product. In fact, we have
the following result:

Theorem 1 (Helmholtz decomposition)

L2(Ω,R3) = X ⊕ Y . (6.9)

In addition with the easy statement that X is perpendicular to Y , this contains
the less obvious claim that every f ∈ L2(Ω,R3) can be written as a sum f = g+
h, with g ∈ X and h ∈ Y , exactly as suggested by the behavior of incompressible
fluids in (6.2). This is in complete analogy with the obvious decomposition
R3 = Σ⊕ Σ⊥ in the example with F above.

We will not go into the proof of the theorem,35 but we will mention a method
for calculating the decomposition. Assume for simplicity that f is smooth. The
domain Ω is also assumed to be smooth. Assuming f = g+∇φ and taking div,
we obtain ∆φ = div f , with the boundary condition n∇φ = nf at ∂Ω. We solve
this problem for φ and then set g = f −∇φ.
The problem of finding the decomposition f = g +∇φ can be also formulated
as a variational problem: Minimize the functional φ→

∫
Ω
|f −∇φ|2 dx over the

space of all functions φ with ∇φ ∈ L2(Ω).

35The proof follows from standard considerations in the theory of the Laplace equation.
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This is again similar to the example with F above, where one can find the
decomposition (6.4) by minimizing H → |F −H|2 over H ∈ Σ⊥.

All the above remains true, in one form or another, for unbounded domains,
although one has to adjust the exact definitions of the spaces. The definitions
above are not satisfactory for unbounded domains since they do not guarantee
that all the integrals converge.

6.2 Transport of vector fields

We start with some definitions from elementary differential geometry, which will
be very useful for the description of some laws of fluid motion.

Let v = v(x) be a vector field in Ω and let ϕ : Ω→ Ω be a diffeomorphism. The
push forward ϕ∗v of v by ϕ is defined by

ϕ∗v(x) = ∇ϕ(ϕ−1(x)) v(ϕ−1(x)) , (6.10)

or, equivalently,
ϕ∗v(ϕ(x)) = ∇ϕ(x)v(x) . (6.11)

The meaning of the definition can be illustrated by considering the one-parameter
group of diffeomorphisms ψt generated by the vector field v. Recall that ψt(α)
is the solution of ẋ = v(x) with x(0) = α. Since v(x) is independent of t, we
have ψt ◦ ψs = ψt+s. The notation ψt = exp tv is often used in this situation.
(Warning: the Lagrangian maps ϕt we discussed in lecture 2 do not form a
one-parameter group of diffeomorphisms in general, since the generating vector
field u(x, t) may depend on t.)

If ψt is a one-parameter group of diffeomophisms and ϕ is a given diffeomor-
phism, then ϕ◦ψt◦ϕ−1 is clearly also a one parameter family of diffeomorphisms.
As an execise, you can check the formula

exp (tϕ∗v) = ϕ ◦ ψt ◦ ϕ−1 , (6.12)

which gives a good idea about the geometric meaning of ϕ∗v.

Another way to look at the situation is to consider ϕ as a change of coordinates.
If x = (x1, . . . , xn) are the original coordinates and y = ϕ(x) are the new
coordinates, then the coordinates vi of a vector field in the old coordinates will
transform as to

wi = vj
∂yi

∂xj
, (6.13)

where the value of wi is taken at y and the values of the quantities on the
right-hand side are taken at x. This is the same as (6.11). We have used
the convention of writing contra-variant vectors with upper indices, which one
should do once working with general coordinates.
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Consider now two vector fields u, v. The Lie bracket w = [u, v] of the two vector
fields is defined by

wi = ujvi,j − vjui,j . (6.14)

In the orthodox notation we should really write the vector fields with upper

indices and wi = uj
∂vi

∂xj − vj ∂u
i

∂xj , but for our purposes here it is acceptable to
use the notation in (6.14). An important property of the Lie bracket, which can
be verified by direct calculation, is

ϕ∗[u, v] = [ϕ∗u, ϕ∗v] . (6.15)

One way to look at this formula is that it shows that the Lie bracket is a
“geometric object”, independent of the choice of any general coordinates given
by y = ϕ(x).

The Lie bracket measures how far the fields u, v are from “commuting” in the
sense the the derivatives u∇ and v∇ commute, or in the sense the one parameter
groups θs = exp su and ψt = exp tv commute. As an exercise, you can check
the following formula36

ψ−t ◦ θ−s ◦ ψt ◦ θs(x) = x+ st[u, v](x) +O(|s|3 + |t|3) , (6.17)

which also gives a good idea about the nature of [u, v] (and also implies (6.15)).
In fact, it can be shown that if [u, v] = 0, then the left-hand side of (6.17)
vanishes, and the one-parameter groups θs, ψt commute (so that we have a
commutative two-parameter group of diffeomorphisms).37

36It may require some patience. The most direct way to prove the formula is the following.
We note that the Taylor expansion gives

θs(x) = x+su(x)+
s2

2
u∇u(x)+O(|s|3) , ψt(x) = x+tv(x)+

t2

2
v∇v(x)+O(|t|3) , (6.16)

where we used formula (2.12) for the second time derivative. This means

ψt ◦ θs(x) = x+ su(x) +
s2

2
u∇u(x) +O(|s|3) +

+tv(x+ su(x) +
s2

2
u∇u(x) +O(|s|3)) +

+
t2

2
(v∇v)(x+ su(x) +

s2

2
u∇u(x) +O(|s|3)) +O(|s|3 + |t|3) .

In this expression we can drop a number of terms which only contribute O(|s|3 + |t|3) and
obtain

ψt ◦ θs(x) = x+ su(x) +
s2

2
u∇u(x) + tv(x+ su(x)) +

t2

2
v∇v(x) +O(|s|3 + |t|3)

= x+ su(x) +
s2

2
u∇u(x) + tv(x) + stv∇u(x) +

t2

2
v∇v(x) +O(|s|3 + |t|3) .

Continuing this procedure by two more steps, we obtain the result.
37The proof is not hard but we will not pursue it at this point. We may return to this topic

later.
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Consider a fluid flow with velocity field u(x, t) in some domain Ω, and assume its
Lagrangian description is given by ϕt(α), see lecture 2, section 2.1. Let v = v(x)
be a fixed vector field (independent of t). Consider the time-dependent vector
field

v(x, t) = ϕt∗v(x) . (6.18)

Lemma 1

With the notation introduced above, the vector field v(x, t) given by (6.18)
satisfies the equation

vt + [u, v] = 0 . (6.19)

Vice versa, if a smooth vector field v satisfies (6.19) and v(x, 0) = v(x), then
v(x, t) is given by (6.18).

Proof

The first statement can be verified by taking the time derivative of (6.18). To
prove the second statement, assume that v(x, t) satisfies (6.19) with the initial
condition v(x, t) = v(x). In the class of the smooth vector fields where we are
working, equation (6.19) is of the form vt + u∇v + A(x, t)v = 0 for a suitable
matrix A(x, t). The solution of this equation reduces to integration of ODEs
along the characteristics (given by the fluid particle trajectories t→ ϕt(α)) and
hence the solution is unique. At the same time, formula (6.18) already provides
a solution. Due to the uniqueness, our solution v(x, t) has to coincide with the
one provided by the formula.

The equation (6.19) can be considered as a vector field analogue of the transport
equation (2.16) and formula (6.17) can be considered as a vector field analogue
of (2.17).
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7.1 Evolution of vorticity and the Helmholtz law

Let us consider the momentum part of Euler’s equations (compressible or in-
compressible) in the form

ut + u∇u+
∇p
ρ

= f(x, t) . (7.1)

In the compressible case we assume p = p(ρ), in the incompressible case we
assume ρ = ρ0 = const.
We can write

(u∇u)i = ujui,j = uj(ui,j − uj,i) + ujuj,i . (7.2)

By inspecting the definitions in lecture 4 (see e. g. (4.4)), and denoting ω = curlu
as usual, we see that (7.2) is the same as

u∇u = ω × u+∇ |u|
2

2
. (7.3)

We also note that in the compressible case we can write

∇p
ρ

=
p′(ρ)

ρ
∇ρ = ∇P (7.4)

where P (x, t) = P̃ (ρ(x, t)), with P̃ being a primitive of the function ρ→ p′(ρ)
ρ .

Hence we can write

ut + ω × u+∇
(
|u|2

2
+ P

)
= f , compressible case (7.5)

and

ut + ω × u+∇
(
|u|2

2
+

p

ρ0

)
= f , incompressible case. (7.6)

We now recall the standard formula

curl(a× b) = −a∇b+ b∇a+ adiv b− b div a , (7.7)

which can be easily checked from the definitions in lecture 4. For example, you
can use (4.4) together with

ϵijkϵilm = δilδkm − δjmδkl (7.8)

to obtain (7.7). Formula (7.7) can also be written in terms of the Lie bracket

curl(a× b) = [b, a] + a div b− b div a . (7.9)
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Let us now assume that the force f(x, t) is potential, in the sense that

f(x, t) = ∇ϕ(x, t) (7.10)

for a suitable scalar function ϕ(x, t). 38 We can take curl of (7.5) and use (7.9)
(keeping in mind that divω = 0) to obtain

ωt + [u, ω] + ω div u = 0 , compressible case. (7.11)

In the same way we obtain from (7.6) and the constraint div u = 0

ωt + [u, ω] = 0 , incompressible case. (7.12)

The last equation is familiar to us from Lemma 1 in lecture 6. From the lemma
we can therefore obtain the following fundamental result.

Theorem (Helmholtz’s vorticity law)39

If ω(x, t) is the vorticity of an incompressible fluid of constant density moving
in a potential force field, ϕt is the Lagrangian description of the motion, and
ω0(x) = ω(x, 0) is the vorticity at time t = 0, then

ω(x, t) = ϕt∗ω0 (x) . (7.13)

In other words, the vorticity “moves with the fluid”.

This result has a number of consequences which we will discuss in some detail
as we proceed. At the moment let us see what is the consequence of (7.11) for
the compressible fluids. Recalling the equation of continuity ρt + div(ρu) = 0,
it is easy to check that (7.11) implies(

ω

ρ

)
t

+ [u,

(
ω

ρ

)
] = 0 . (7.14)

We see that in the compressible case the vector field ω
ρ moves with the flow (as

long as ρ > 0 and the flow remains sufficiently regular, of course).

Remark∗

The above calculations are based on traditional vector analysis formulae, such
as (7.7) and (7.3). There are “more geometric” formulae one can work with.
For example, let ũ be the one-form ui dxi (as opposed to the vector field ui

∂
∂xi

).

We can identify u∇u with Luũ− d( |u|2
2 ) , where Lu is the Lie derivative in the

38We have seen in lecture 6 that such forces have no effect on the motion of an incompressible
fluid, as they are completely resisted by the incompressibility constraint.

39The original 1858 paper of H. Helmholtz is in the Journal für die reine und angewandte
Mathematik, vol. 55, pp. 25-55. An English translation, “On integrals of the hydrodynamical
equations which express vortex motion”, was published in Philosophical Magazine, vol. 33,
pp. 485-512 (1867).
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direction of u, which acts on one-forms by (Lua)i = uj ∂ai∂xj + ∂uj

∂xi aj . Euler’s
equation (with potential forces) can be written as

ũt + Luũ+ dπ = 0 , (7.15)

where π is a suitable function. Taking the exterior derivative d of the equation
and using dLu = Lu d one obtains

(dũ)t + Lu(dũ) = 0 , (7.16)

which says that the differential two-form dũ is transported with the flow. In
dimension three, once a volume element is given, we can identify two-forms and
vector fields, and this way we arrive at the same results about the vorticity
transportation as obtained above.
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8.1 Potential flows of ideal fluid

We saw last time that in ideal incompressible fluid (with only potential forces
acting on it) the vorticity “moves with the flow”, according to formula (7.13).
Note that the law is completely “local”, in that for its validity for a given fluid
particle it is only important that the force f(x, t) is potential in any small neigh-
borhood of the fluid particle. Even when when the boundaries of the domain
occupied by the fluid change with time, the law is still valid. In particular the
law implies that if the vorticity of the initial velocity field u(x, 0) vanishes, it
will vanish for all times unless there is some non-potential forcing term f(x, t)
in the equation (7.1).40 For simply connected domains the condition curlu = 0
is equivalent to

u(x, t) = ∇h(x, t) = ∇xh(x, t) (8.1)

and by the Helholtz law, if this is true at any time, it will be always true (unless
non-potential volume forces act on the fluid. We will see later that the condition
that the domain be simply connected can be in fact easily removed41, and the
condition (8.1) is preserved in time in without any constraints on the topology
of the domain (as long as the forcing term f(x, t) acting on the fluid is potential,
of course). This can be also seen in other ways, for example by checking that
a) formula (8.1) provides a solution and b) the solutions are unique.

The potential flows (8.1) (combined with the fact that they are preserved by the
time evolution) offer some good insights into the nature of the ideal incompress-
ible fluids. We will see shortly that in some cases the behavior of this model
does not correspond to what we see in the real (almost) incompressible fluids,
such as water.

We will consider potential flows (8.1) in a time-dependent domain Ωt ⊂ R3. We
start by the obvious observation that the condition

div u = 0 (8.2)

implies
∆h(x, t) = ∆xh(x, t) = 0 in Ωt (8.3)

for each time t. In other words, the function h(x, t) has to be harmonic in x for
each time t. The boundary condition at the (possibly moving) boundary ∂Ωt is

u(x, t)n(x, t) = v(x, t)n(x, t) , x ∈ ∂Ωt , (8.4)

40Note that the law is much more “local” than this statement: for general flows, if a “fluid
particle” has zero vorticity at some time t1 and curl f(x, t) = 0 at the particle for any time,
then the particle will always have zero vorticity as it moves.

41e. g. by Kelvin’s reformulation of the Helholtz law, which we will discussed soon.
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where n(x, t) is the normal to the boundary ∂Ωt at time t, and v(x, t) is the
(prescribed) velocity of the boundary. (We assume that the motion of the
boundary is given.) In terms of h(x, t) this means

∂h

∂n
= v(x, t)n(x, t) , x ∈ ∂Ωt . (8.5)

Equation (8.3) together with the boundary condition (8.4) represent the well-
known Neumann boundary-value problem for the Laplace equation in the do-
main Ωt. This problem has to be solved for each time. The time only plays
a role of a passive parameter. We know from the theory of the Laplace equa-
tion that the Neumann problem is uniquely solvable (modulo constants) under
natural assumptions.42 Let us assume that h(x, t) is a solution.

We claim that u(x, t) = ∇h(x, t) satisfies the Euler equation (5.16) with

p

ρ0
= −ht −

|∇h|2

2
(8.6)

and f = 0. 43 This is immediately seen from the form (7.6) of the equation: in
our case ω = 0 and ut = ∇ht, and (7.6) becomes

∇
(
ht +

|∇h|2

2
+

p

ρ0

)
= 0 , (8.7)

which is obviously satisfied if p is given by (8.6). As usual in incompressible fluid,
we can change the pressure by an arbitrary function of time without affecting
the motion.

We can reach the following conclusions concerning the potential solutions of the
form u(x, t) = ∇h(x, t):
1. The solutions are uniquely determined by the motion of the boundary. If
v(x, t)n(x, t) = 0 then u(x, t) = 0.

2. The response to the motion of the boundary is instantaneous. If the boundary
starts moving in the sense that v(x, t)n(x, t) ̸= 0 at some point, the fluid almost
everywhere in Ωt starts moving.44 If the motion of the boundary stops, the fluid
will also immediately stop moving everywhere.

3. If we move the boundary a certain way during a time interval (0, t1) and then
we retrace the same motion of the boundary backwards during a time interval

42For example, for bounded Ωt the right-hand side in (8.5) must satisfy
∫
∂Ωt

v(x, t)n(x, t) =

0, which is obviously true in our situation.
43In fact, as we have ∆u=0, the fields u(x, t) = ∇h(x, t) and p given by (8.6) even satisfy the

Navier-Stokes equations describing the simplest viscous fluids (which we will discuss soon).
However, (8.5) is usually not a good boundary condition for the viscous fluids.

44If a harmonic function h is non-constant, then it is analytic and its gradient ∇h can only
vanish on a small set. The set is closed in Ωt and has to have measure zero, for example. In
fact, it typically contains only isolated points, although in some degenerate cases it can be
larger.
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(t1, t2), at time t = t2 each fluid particle will be exactly where it was at time
t = 0.

To summarize, we can say that “the degrees of freedom” of an ideal incompress-
ible fluid with no initial vorticity are only at the boundary of the fluid. The
degrees of freedom of the interior of the fluid can only be “activated” if we act
on the fluid by non-potential forces. In the absence of these and in the absence
of vorticity at time t = 0, the degrees of freedom in the interior of the fluid
remain “locked” and the motion of the fluid is completely determined by the
motion of the boundaries. If the motion of the boundaries is given, there is no
dynamics, in that the motion is completely determined only by the constraint of
incompressibility. (Strictly speaking, we proved this only for simply-connected
domains, but it remains true in general.)

These conclusions are useful for example in the study of the motion of the rigid
bodies in ideal fluids (a topic which we may return to later). In particular,
they show that the (unknown) motion of finitely many rigid bodies moving
in an ideal fluid with no initial vorticity is described by a finite-dimensional
dynamical system, which may seem surprising at first.

8.2 d’Alembert’s paradox

Let us consider a bounded body O with smooth boundary submerged in an ideal
incompressible fluid which we imagine fills the whole space R3. (For simplicity
you can assume thatR3\O is simply connected, but it is not necessary.) Assume
at time t = 0 both the fluid and the body are at rest. We then start acting by
a force on the body, so that it will start moving. (There is no force acting on
the fluid other than the one caused by the motion of the body.45) Assume that
a regime is achieved such that O moves at a constant speed, say, v. (We can
consider the motion of O as given, applying whatever forces necessary to the
body to achieve this.) If there have been no non-potential forces in the fluid,
the flow will be potential:

ũ(x, t) = ∇h̃(x, t). (8.8)

Let us view the situation after the constant speed v of the body is achieved in
the coordinate frame moving with the body. In this frame the body is stationary
and the velocity field of the fluid is u = ũ− v, and is independent of time. The
flow is still potential:

u(x) = ∇h(x) . (8.9)

45One can consider potential forces, such as gravity, and you can check that they will not
change any of the considerations below, except possibly for the effects due to the Archimedes
principle we considered in lecture 5. To eliminate these, one can assume that the density of
O is the same as the fluid.
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Let U = −v. The function h satisfies

∆h(x) = 0 in R3 \ O , (8.10)

∂h

∂n
= 0 at ∂O , (8.11)

lim
x→∞

∇h(x) → U . (8.12)

The pressure is (up to a constant)

p = −ρ0
|u|2

2
= −ρ0

|∇h|2

2
. (8.13)

Let us calculate the force F = (F1, F2, F3) on the body due to the fluid. It is
given by

F =

∫
∂O
−p n dx , (8.14)

where n = (n1, n2, n3) is the outward unit normal to O. To evaluate the inte-
gral (8.14), let us consider the tensor

Tij = ρ0uiuj + pδij = ρ0hihj − ρ0
|∇h|2

2
δij , (8.15)

where we use the notation hi =
∂h
∂xi

. The tensor Tij describes locally the trans-
port and transfer of momentum in the fluid. We note that

Tij,j =
∂Tij
∂xj

= 0 , (8.16)

due to the Euler equation. One can also check that, regardless of Euler’s equa-
tion, (

hihj −
|∇h|2

2
δij

)
,j

= 0 (8.17)

for any harmonic function h.46 For large radii R let us set

ΩR = BR \ O . (8.18)

Due to the boundary condition un = 0 at ∂O and (8.16), we have

Fi =

∫
∂BR

Tijnj . (8.19)

We will evaluate this integral in the limit R→∞. Let us consider the expansion
of h at ∞

h(x) = Ux+ c+
a0
|x|

+ aj
∂

∂xj

1

|x|
+O(R−3) . (8.20)

46The tensor in (8.17) is known as the energy-momentum tensor of the harmonic function
h and is known to be div-free. You can either check it directly, or you can verify that the
condition d

dε
|ε=0

∫
|∇xh(x+εξ(x))|2 dx = 0 for each compactly supported smooth vector field

ξ leads to (8.17).
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Then
∇h(x) = U + a0

x

|x|3
+O(R−3) . (8.21)

Substituting this expression in (8.19) and letting R→∞, we obtain

F = 0 . (8.22)

This means that when the body does not accelerate, there is no drag or lift on
the body in an ideal incompressible fluid in the situation we have considered. 47

This result was discovered in 1752 by d’Alembert, and is often called d’Alembert
paradox.48 It had been puzzling for some time because the inner friction in
air and water is very small, so in some sense both air and water are quite
close to ideal fluids. A good explanation was given around 1904 by L. Prandtl,
and his explanation is almost universally accepted today, although its rigorous
mathematical proof remains far out of reach. We will discuss it later when we
introduce viscosity.

47Among other things, it means that airplanes could not fly in an ideal incompressible fluid.
48Compressibility does not save the situation, at least for subsonic flows, when the speeds do

not exceed the speed of sound in the fluid. Nevertheless, it should be noted that a compressible
fluid always has “its own degrees of freedom”, even when no vorticity is present. Potential flows
are not “slaved” to the motion of the boundaries as in the incompressible case. For super-sonic
flows one has new effects and drag due to shock waves is possible even for potential flows. We
will not go into a discussion of these topics here. In general, the effects due to compressibility,
while sometimes not important for practical purposes (such as in flows around cars), are
mathematically significant in that – from the point of view of the PDE theory – they can
change the nature of the equations. For example, it is known that compressible flows of ideal
compressible fluids typically develop singularities, in a way somewhat similar to what we have
seen for free particles in lecture 2. On the other hand, the question about the existence of
singularities in incompressible flows is open and is generally considered difficult.
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9.1 Kelvin’s circulation theorem

Let us consider an ideal fluid in a domain Ω, either incompressible with constant
density ρ = ρ0 or compressible with p = p(ρ). The domain can depend on time,
so we can also write Ω = Ωt if needed. Let u(x, t) be the velocity field of the
fluid and let ϕt be the corresponding Lagrangian maps, as in lecture 2. Let us
consider a time-dependent closed curve γt in Ω which “moves with the fluid”,
i. e.

γt = ϕt(γ) , (9.1)

where γ is some closed curve in Ω at time t = 0. We will assume that γ is
a smooth curve with no self-intersections and is given by a map s ∈ [0, 1] →
γ(s) ∈ Ω, with γ(0) = γ(1). It is natural to parametrize the curves γt by s as
follows

γt(s) = γ(s, t) = ϕt(γ(s)) . (9.2)

We will consider the circulation of the field u(x, t) along γt, given by the curve
integral ∮

γt

u(x, t) dx =

∫ 1

0

ui(γ(s, t), t)γ
′
i(s, t) ds , (9.3)

where γ′(s, t) = ∂
∂sγ(s, t) .

In 1869, motivated by the Helmholtz theorem (published in English in 1867),
Kelvin proved the following result:

Theorem (Kelvin)

In the situation above, assume that the force field f in the incompressible Euler
equations (5.16)–(5.17) or the compressible barotropic Euler equations (5.18)–
(5.20) is such that f

ρ is potential. Then

d

dt

∮
γt

u(x, t) dx = 0 . (9.4)

Remark

We will see that the Helmoltz law can be obtained by applying this result to
the special case when γ are suitable infinitesimally small circles. In that sense,
the Helmholtz law is a localized version of Kelvin’s theorem.

Proof of the theorem

The proof is by straightforward calculation. We have

d

dt

∮
γt

u(x, t) dx =

∫ 1

0

d

dt
[ui(γ(s, t), t)γ

′
i(s, t)] ds . (9.5)
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We calculate, using Euler’s equation

d

dt
[ui(γ(s, t), t)γ

′
i(s, t)] = (ut + u∇u)γ′ + u

∂2

∂s∂t
γ (9.6)

= −∇Fγ′ + ∂

∂s

|u|2

2
, (9.7)

where the values of the functions are taken at (γ(s, t), t), and F (x, t) is a suitable
function corresponding to − p

ρ0
+ potential of f

ρ0
in the compressible case and

to −P + potential of fρ in the incompressible case, with P as in (7.4). Since∮
γt

∇F (x, t) dx = 0,

∫ 1

0

∂

∂s

|u(γ(s, t), t)|2

2
ds = 0 , (9.8)

the proof is finished.

The curve γt moving with the flow can be considered as a limiting case of a
divergence-free vector field moving with the flow.49 Let us look at this analogy
in more detail, first at some fixed time, so that we drop t from the notation. Let
be γ is any closed curve. Let us think of it as an electric wire with an electric
current J passing through it. The idea of an infinitely thin wire with a steady
electric current is of course an idealization. In reality the wire has some finite
thickness, say, ε > 0, and the current in it is a vector field J(x) which can be
defined for x ∈ R3, with J(x) = 0 outside the wire. The current will satisfy
div J = 0 in R3. We can even imagine that J(x) depends smoothly on x, even
though the derivatives within the wire will be large, of order 1

ε . (This may not
be the case for real wires, but that is not our concern at the moment.) In this
sense we can think about a closed curve as of a limiting case of a div-free vector
field.50 In this picture the curve integral∮

γ

u(x) dx (9.10)

is replaced by ∫
R3

u(x)J(x) dx =

∫
R3

ui(x)Ji(x) dx . (9.11)

We have the following variant of Kelvin’s theorem, which – as we will see – is
suitable for generalizations.

49This idea is generalized in many directions in Geometric Measure Theory, where it is
formalized in the notion of current. See for example the book “Geometric Measure Theory”
by H. Federer.

50Starting from a closed curve γ(s) parametrized by s ∈ [0, 1], with γ(0) = γ(1), one can
define such a field as follows: let φ(x) be a smooth function in R3 supported in the unit ball
with

∫
R3 φ = 1. Set φε(x) = ε−3φ(x/ε), so that φε is the usual mollifying function. Now

define

vε(x) =

∫ 1

0
φε(x− γ(s))γ′(s) ds . (9.9)

You can check that vε is supported in an ε− neighborhood of the curve, div vε = 0, and it
has other expected properties.
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Kelvin’s Theorem, version 2

Let u be as in Kelvin’s theorem, and let v(x, t) be a divergence-free field com-
pactly supported in Ωt and satisfying

vt + [u, v] + v div u = 0 . (9.12)

Then
d

dt

∫
Ωt

u(x, t)v(x, t) dx = 0 . (9.13)

Remark

1. It is easy to check that the equation (9.12) preserves the condition div v = 0
and the compact support of v. For incompressible flows (when div u = 0)
the field v is just transported with the flow (in analogy with the transport of
the curve γt above). If the flow is compressible, the pure transport equation
vt + [u, v] = 0 does not preserve div v = 0 and the term v div u restores the
preservation of this condition, so that the analogy with the transport of the
curve γt is kept.

2. Unlike the Helmholtz law or the first formulation of Kelvin’s theorem, ver-
sion 2 of Kelvin’s theorem is suitable for a generalization to viscous fluids, as
we will see later.

Proof

We write
d

dt

∫
Ωt

u(x, t)v(x, t) dx =

∫
Ωt

utv + uvt dx , (9.14)

express ut and vt from the equations, and integrate by parts to see the terms
in last integral in (9.14) either vanish or cancel each other, somewhat similarly
to (9.6)–(9.8).

We will now derive Helmholtz’s law from Kelvin’s theorem. For that we recall
the Stokes formula. Let Σ ⊂ R3 be a smoothly embedded two-dimensional disc
(with no self-intersections) and let γ = ∂Σ be its boundary, which is assumed
to be a smooth curve without self-intersections. We choose a unit normal n(x)
to Σ and an orientation of γ so that the orientation of γ with respect to n is
positive.51 If u is a smooth vector field defined in a neighborhood of the closure
of Σ then ∮

γ

u dx =

∫
Σ

n curlu dx , (9.15)

51Roughly speaking, if we stand on Σ in the direction of n(x), then we see the orientation
of γ as counter-clockwise.
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where the integral over Σ is with respect to the usual surface measure.52

Assume now that we have diffeomorphism from another surface Σ̃ to Σ,

ϕ : Σ̃→ Σ . (9.17)

In fact, for our purposes here we can assume that ϕ is defined in a neighborhood
of the closure of Σ̃, and is an orientation-preserving diffeomorphism of this
neighborhood and a neighborhood of a closure of Σ. The boundary of Σ̃ is γ̃,
the normal to Σ̃ is ñ, and they are oriented so that ϕ preserves the orientation.
If f is any smooth vector field defined in a neighborhood of the closure of Σ,
then we have the “change of variables” formula∫
Σ

n(y)f(y) dy =

∫
Σ̃

[Cof∇ϕ(x)n(x)]f(ϕ(x)) dx =

∫
Σ̃

n(x)[Adj∇ϕ(x)f(ϕ(x))] dx ,

(9.18)
where, as usual, the matrix Cof A is the transpose of A−1 detA = AdjA .53 Let
us now apply (9.18) to the Lagrangian map ϕ = ϕt and f(y) = ω(y, t). We
obtain ∫

Σ

n(y)ω(y, t) dy =

∫
Σ̃

n(x)[Adj∇ϕt(x)ω(ϕt(x), t)] dx . (9.19)

At the same time, from Kelvin’s theorem and (9.15) we see that∫
Σ

n(y)ω(y, t) dy =

∫
Σ̃

n(x)ω(x, 0) dx . (9.20)

Therefore ∫
Σ̃

n(x)[Adj∇ϕt(x)ω(ϕt(x), t)] dx =

∫
Σ̃

n(x)ω(x, 0) dx . (9.21)

This argument is valid for any Σ as above, and hence Σ̃ can be any disc in Ω at
time t = 0. We see that

Adj∇ϕt(x)ω(ϕt(x), t) = ω(x, 0) , (9.22)

which, taking into account (2.19), is easily seen to be equivalent to the Helmholtz
law that the vector field ω

ρ moves with the flow.

52This is of course more elegantly formulated in terms of differential forms: identifying u
with the one-form ui dx

i, we can write (9.15) as∫
γ
u =

∫
Σ
du , (9.16)

where du is the exterior derivative of u.
53In term of differential forms, this formula just says

∫
Σ̃ ϕ

∗β =
∫
Σ β for any two-form β,

where ϕ∗β is the pull-back of β. The form (9.18) of this formula can be easily inferred from
the identity (Aa×Ab) = (Cof A)(a× b) which is true for a, b ∈ R3 and any 3× 3 matrix A.
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10.1 The Biot-Savart law

Today we will mostly have in mind incompressible fluid in the whole spaceR3 .54

Let us imagine a flow with a smooth velocity field u(x, t) which “decays to zero
as x → ∞.” As we shall see, one has to be somewhat careful about the exact
rate of decay, since in incompressible fluids certain disturbances can propagate
with infinite speed and this can immediately create some action at infinity even
when the initial velocity field is compactly supported. This effect is relatively
harmless and mostly of technical interest in the mathematical investigations of
the equations, but it is useful to keep it in mind. As before, we let

ω = curlu (10.1)

be the vorticity. As the flow is incompressible, we have

div u = 0 . (10.2)

The equation for ω is (see lecture 7)

ωt + [u, ω] = 0 . (10.3)

It is often useful to view ω in (10.3) as the primary unknown quantity, and u as
a quantity expressed in terms of ω, by a suitable operator ω → u = U(ω), and
think of (10.3) as

ωt + [U(ω), ω] = 0 . (10.4)

We will discuss the operator ω → u in some detail. Given ω the equations for u
are

curlu = ω in R3 , (10.5)

div u = 0 in R3 , (10.6)

u → 0 at ∞. (10.7)

the For simplicity we can assume that ω is smooth and compactly supported.
The equations determine u uniquely: if both curlu and div u vanish, then u =
∇h for some harmonic function h and from (10.7) and the Liouville theorem
we see that u = 0 in that case.55 We also note that when ω solves (10.3) for

54Generalizations to domains with boundaries are possible, and at some point these will
also be of interest to us, but today we consider only the case of the whole space.

55If R3 is replaced by a bounded domain Ω then the condition (10.7) should be replaced by
the condition un = 0 at ∂Ω. If Ω is simply connected, then u is again uniquely determined
from Ω. However, for general domains this may no longer be the case, and the system might
have non-trivial solutions. For smooth bounded domains the space of solutions will be finite-
dimensional, with the dimension coinciding with the first Betti number of the domain (by the
Hodge theory). It is clear from (7.6) that these solutions will also satisfy the steady Euler

equation, with p = ρ0
|u|2
2

.
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some smooth bounded velocity field u and ω(x, 0) is compactly supported, than
ω(x, t) will also be compactly supported. Therefore the condition that ω be
compactly supported is kept during the evolution, if a good solution exists. In
the equations (10.5)–(10.8) the time only plays a role of a passive parameter,
and hence we can temporarily drop t from our notation. Under our assumptions
the solution of(10.5)–(10.7) is straightforward. Taking curl of (10.5) and using
the formula curl curl = −∆+∇div, we obtain

−∆u = curlω (10.8)

and we can express u in terms of the Newton potential

G(x) =
1

4π

1

|x|
(10.9)

as

u(x) =

∫
R3

G(x− y) curlω(y) dy . (10.10)

Integrating by parts and letting

K(x) = −∇G(x) (10.11)

we can also write

u(x) =

∫
R3

K(x− y)× ω(y) dx . (10.12)

This is the Biot-Savart law.

Sometimes it is useful to write the solution u in terms of a vector potential A
as

u = curlA (10.13)

with

A(x) =

∫
R3

G(x− y)ω(y) dy . (10.14)

As an easy exercise, you can check that formulae (10.13) and (10.14) are equiv-
alent to (10.12) (under our assumptions).

We note that the formulae make sense for any vector field ω, but produce the
solution of (10.5)–(10.7) only when divω = 0, which is a necessary condition for
the solvability of (10.5)–(10.7), due to the identity div curl = 0. For a general
ω, not necessarily div-free, and u given by the formulae above we obtain

curlu = curl curlA = −∆A+∇divA = ω +∇(G ∗ divω) , (10.15)

where we use the usual notation for convolution, f ∗g (x) =
∫
R3 f(x−y)g(y) dy .

When divω = 0, we obtain curlu = ω. We note that for general ω the expression
ω+∇G ∗ divω is exactly the div-free part of the Helmholtz decomposition of ω
which we discussed in lecture 6.
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If ω is supported in a ball BR, then outside BR the field u will be potential, as
curlu = 0 in OR = R3 \BR and every closed curve in OR bounds a surface. In
other words, we will have u = ∇h in OR, where h is a harmonic function in OR.
That correspond to the fact that if the vorticity is compactly supported, then
the motion of the fluid near infinity will be potential - the fluid near infinity
does not have its independent degrees of freedom and only passively reacts to
what is going on in the regions where the vorticity is active. Therefore, in some
sense, the field u at near infinity is not of primary interest, it is not where the
action is. Nevertheless, it is still interesting to look at some of its features as it
is related to some quantities which are conserved by Euler’s equations.

We first consider the rate of decay of u to zero. Its expansion at ∞ can be
obtained in various ways. The most direct one is to use in (10.14) the Taylor
expansion

G(x− y) = G(x)−Gi(x)yi +
1

2
Gij(x)yiyj + . . . (10.16)

For y is BR and |x| > 2R the series is easily seen to converge.56 Then

Ak(x) = G(x)ak +Gi(x)aik +Gij(x)aijk + . . . , (10.19)

where

ak =

∫
R3

ωk dy, aik =

∫
R3

yiωk(y) dy, aijk =
1

2

∫
R3

yiyjωk(y) dy, . . .

(10.20)
The condition divω = 0 has important consequences for these coefficients.
Roughly speaking, the symmetry properties of the coefficients are the same
as if they were coming from a current defined by a closed loop, as discussed in
lecture 9. If ω would correspond to a closed curve γ(s) (with γ(0) = γ(1)), we
would have

ak =

∫ 1

0

γ′k(s) ds, aij =

∫ 1

0

γi(s)γ
′
j(s) ds, aijk =

∫ 1

0

γiγjγ
′
k ds, . . .

(10.21)
In this case we see easily the following relations

ak = 0, aij = −aji, aijk = ajik, aijk + akij + ajki = 0 , . . . (10.22)

The relations (10.22) are valid also for the coefficients (10.20), for any compactly
supported ω with divω = 0. For example, the condition ak = 0 follows from

0 = −
∫
R3

(divω)f dy =

∫
R3

(ω∇f) dy (10.23)

56In fact, as noticed by Legendre around 1782, one can write this expansion in a more subtle
way using

1

|x− y|
=

1

|x|
1√

1− 2 xy
|x|2 +

|y|2
|x|2

(10.17)

and the Taylor expansion (or the Newton formula) for

(1− z)−
1
2 (10.18)

but we will not need this form of the expansion.
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by taking f = xk. For the other conditions we use

0 = −
∫
R3

(divω)f1f2 . . . fm dy =

∫
R3

ω∇(f1f2 . . . fk) dy (10.24)

and use various coordinate function xkj for fj .
57

We see that the first term on the right-hand side in (10.19) vanishes and we
conclude that we will have

u(x) = O(|x|−3) , x→∞. (10.25)

In fact, it is not difficult to calculate the leading term of u at ∞ directly. One
has

u(x) = ∇(M∇G(x)) +O(|x|−4) , x→∞ , (10.26)

with

M =
1

2

∫
R3

y × ω(y) dy . (10.27)

In magnetostatics this vector would be called the magnetic moment. The pic-
tures of the field ∇(M∇G(x)) for M = e3 can be found in many textbooks of
electromagnetism.

With some more work one can get

u(x) = ∇(M∇G(x)) +∇(Tr (C∇2G(x))) +O(|x|−5) , x→∞ (10.28)

where C is the symmetric part of the matrix

cij =
1

3

∫
R3

yi (y × ω(y))j dy . (10.29)

The reason why we look at these expansions in some detail is that (12.27)
and (10.29) are related to quantities which are conserved in the evolution by
Euler’s equations, as we will soon see.

Remark∗

Some of the above calculation can be also done in the following way, which is
related to formula (10.15). Let us assume

ω = curl b (10.30)

for a compactly supported field b, not necessarily divergence free. Such rep-
resentation is possible for any compactly supported ω with divω = 0. For

57Another way to see (10.21) is from the Fourier transform. If v is a div-free field in Rn

which is integrable, then its Fourier transform v̂ is continuous and satisfies ξj v̂j = 0 pointwise.
It is not hard to see that in these circumstances we have v̂(0) = 0, which gives the condition
ak = 0 above.
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example, we can smoothly extend the function h discussed in the paragraph be-
fore (10.16) from OR to R3 and set b = u−∇h. Different (and more geometric)
constructions are possible. For the potential A given by (10.14) we can write

A = G ∗ ω = G ∗ (curl b) = curl(G ∗ b) . (10.31)

Then

u = curlA = curl curl(G∗b) = −∆(G∗b)+∇div(G∗b) = b+∇(G∗div b) = b+∇(Gi∗bi) .
(10.32)

We note that we can write

∇(Gi ∗ bi) =
∫
R3

∇(b(y)∇xG(x− y)) dy , (10.33)

and we see that the field near∞ (outside the support of b), is a linear combina-
tion of the various shifts of the elementary fields ∇(M∇G). Formulae (10.26)
and (10.28) can be also derived from this last formula (and probably with less
work, although some calculation is still needed to relate b to M and C defined
respectively by (12.27) and (10.29)).

10.2 The pressure near ∞
Let us consider the incompressible Euler equation

ut + u∇u+
∇p
ρ0

= 0, div u = 0 (10.34)

in the whole space R3. Let us take ρ0 = 1 in what follows to simplify notation.
Let us assume that at time t = 0 the velocity field u(x, 0) is compactly supported
and let us calculate ut(x, t) near ∞, where clearly ut(x, 0) = −∇p(x, 0). We
need to calculate p. The equation for p is obtained by taking div of the first
equation in (10.34). This gives

−∆p = div(u∇u) = ∂2

∂xi∂xj
(uiuj) , (10.35)

where we used that div u = 0. Using again the expansion (10.16), we obtain for
large x

p(x) = G(x)a+Gi(x)ai +Gijaij + . . . (10.36)

with

a =

∫
R3

f(y) dy, ai =

∫
R3

yif(y) dy, aij =

∫
R3

yiyjf(y) dy , (10.37)

where

f =
∂2

∂yi∂yj
(uiuj) . (10.38)
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Integrating by parts, one sees that a = 0 and ai = 0 and typically (unless u is
very special) aij ̸= 0 at least for some i, j. Therefore we expect

p ∼ O(|x|−3), ∇p ∼ O(|x|−4) , (10.39)

and hence at time t = 0
ut ∼ O(|x|−4) . (10.40)

For later times the support of u will no longer be compact, but one can expect
that the term u∇u will decay quite fast to zero as x → ∞, so that the above
considerations are still valid at the level of the main term O(|x|−4). Therefore we
still expect that ut ∼ O(|x|−4) (and generically not better) as long as a smooth
solution exists. In fact, the decay of u∇u is sufficiently fast even with assuming
only that the vorticity is compact to reach the same conclusion. Therefore when,
say, the initial vorticity is compact, we expect that the equation can change the
field u(x, t) for x near ∞ only at the orders O(|x|−4) or higher. Therefore the
leading term ∇(M∇G) should be conserved by the evolution. This leads us to
the consideration of the conservation laws for the equations, a topic which we
will address next time.
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11.1 The classical conservation laws for a particle system

In an classical isolated system of particles of finitely many particles (possibly
interacting with one another) in the whole space R3 the following quantities are
known to be conserved, under some natural assumption of frame invariance, see
the remark about the symmetries below. The number of particles is denoted by
m.

1. The total momentum of the system

P =
∑

p(i) =
∑

m(i)v(i) , (11.1)

where m(i) is the mass of the i−the particle, v(i) is its velocity and p(i) =
m(i)v(i) (no summation) is its momentum.

2. The total angular momentum of the system

L =
∑

x(i) × p(i) , (11.2)

where x(i) is the position of the i−th particle.

3. The total energy of the system

E =
∑ 1

2
m(i)|v(i)|2 + V (x(1), x(2), . . . x(m)) , (11.3)

where V (x(1), x(2), . . . x(m)) represents the potential energy of them parti-
cles when the i−th particle has position x(i). (This function has to satisfy
some natural assumptions to obtain the conservation laws, see below.)
For example, when the interaction between the particles is only due to the
newtonian gravity, we have

V =

m∑
i, j = 1
i ̸= j

− κ m(i)m(j)

|x(i) − x(j)|
, (11.4)

where κ is the gravitational constant.

We will se later that these conservation laws are closely related to some natural
assumptions about the symmetries of the system.58 The conservation of the

58It is easy to come up with mathematical examples of V for which the conservation of
momentum and angular momentum fail. However, these examples would violate the symme-
try properties which we usually implicitly assume when talking about an isolated system of
particles.
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momentum is related to the translational symmetry (if x(i)(t) is a solution and
a is a fixed vector in R3, then x(i)(t)+a is also a solution). The conservation of
the angular momentum is related to the symmetry of the system under rotations
(if x(i)(t) is a solution, and Q ∈ SO(3), then Qx(i)(t) is also a solution). Finally
the conservation of energy is related to the translation invariance in t (if x(i)(t)
is a solution and t0 ∈ R, then x(i)(t− t0) is again a solution).

11.2 Analogy between fluids and a system of particles

A fluid filling all space can be considered as continuum version of finite particle
system in which the interaction between the particles generates the pressure.
The incompressible fluid can be thought of as a limit example when the potential
energy between the particles is finite only for volume-preserving deformations.59

Let us think of a situation that the fluid is at rest until time t1, then between
times t1 and t2 > t1 a force with a smooth compactly supported volume density
f(x, t) acts on the fluid, and after time t2 the fluid is “left alone”, and evolves
by the Euler equation with zero right-hand side. In what follows we will assume
that all solutions involved in our considerations are smooth. This is known
to be the case for a short time period after t2, but it is open whether long-
time smooth solutions exists for incompressible fluids, and it is known that for
compressible fluids singularities can form in finite time, somewhat similarly to
what we saw for the free particles in lecture 2, although the situation is not
as straightforward and proofs can be quite harder. In the consideration below
we will always assume that the solutions we are dealing with are sufficiently
regular.

Let us have a look at the analogies of the conservation laws corresponding
the conservation of momentum, angular momentum, and energy for the finite
particle systems.

11.3 Conservation of momentum in fluids

The natural analogue of the momentum (11.1) is∫
R3

ρ(x, t)u(x, t) dx (11.5)

59It should however be borne in mind that this limit procedure may be non-trivial to justify
mathematically. In fact, it is not completely trivial even in finite dimensions, when for a
finite system of particles we want to impose a constraint, such as that distances between the
particles are fixed and therefore they form a rigid body. The heuristics of “almost imposing”
this constraint by, say, rods with high but finite stiffness is good for many purposes. However,
we have to keep in mind that when considering the dynamical behavior of the system, the
rods with high finite stiffness will lead to high-frequency oscillations, in which some energy
can possibly accumulate. The situation with the incompressible fluids is similar. If we think
of them as a limit of compressible fluids, we have to keep in mind that the degrees of freedom
responsible for the compressibility can undergo fast oscillations (known as acoustic waves in
this context, which make the limit procedure to incompressible fluids mathematically non-
trivial.
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in the compressible case and ∫
R3

ρ0u(x, t) dx (11.6)

in the incompressible case. (For simplicity we will only consider the homoge-
neous incompressible fluids for which the density is constant.) We expect these
quantities to be constant after time t2, when there are no longer any exterior
forces acting on the fluid. This is true, as we shall see shortly, although one
has to be somewhat careful in the incompressible case, as based on the last
lecture (formula (10.26) we can expect that the integral in (11.6) may not be
convergent.

In fact, consideration about momentum conservation can be “localized” and
taken as a basis for another derivation of the equations of motions (= Euler’s
equations) in a way which is different from our derivation in lecture 5, in the
sense that it postulates the local momentum conservation and derives the equa-
tions of motion from this postulate. This way we of course do not prove the
momentum conservation from the equations, but rather we derive the equations
from the momentum conservation. This approach is important and therefore
we look at it in some detail.

Consider a compressible or incompressible fluid, and let us look at the tensor
(depending on x, t)

Tij = ρuiuj + δijp , (11.7)

which we already considered in lecture 8. The part δijp is minus the Cauchy
stress tensor in the fluid, and given a (non-moving) domain O in the region
occupied by the fluid, it represents the forces acting on O by the fluid outside
of O, this time with a sign such that the forces can be thought of as causing a
loss of momentum of O. The term∫

∂O
p n dx (11.8)

represents the rate of loss of momentum of O due to these forces. Another way
momentum in O can be lost is that particles carrying momentum move out of
O. The rate of this loss is easily seen to be given by the integral∫

∂O
(un)ρ u dx . (11.9)

The integral ∫
∂O

Tijnj (11.10)

represents the sum of (11.8) and (11.9), and therefore it represents the total
rate of loss of the momentum in O. On the other hand, the integral

∂

∂t

∫
∂O

ρu dx (11.11)
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represents the gain of momentum in O. In the absence of other forces, the
gain (11.11) and the loss (11.10) must balance each other and we have

∂

∂t

∫
O
ρu+

∫
∂O

Tn = 0 . (11.12)

Integrating by parts in the second term on the left-hand side of (11.12) and
using the fact that O can be chosen arbitrarily (as long as it is smooth), we
obtain

(ρu)t + div T = 0 , (11.13)

where, as usual,

(div T )i =
∂Tij
∂xj

. (11.14)

If volume forces f(x, t) are present, similar considerations give

(ρu)t + div T = f(x, t) . (11.15)

Vice versa, if (11.13) is satisfied, we have the local momentum conservation in
the sense of (11.12). Therefore we see that the local momentum conservation
is really equivalent to (11.13). For incompressible fluids it is easy to check
that (11.15) is the same as (5.16). Therefore (5.16) implies the local conservation
of momentum in the sense above.

For compressible fluids the equation (11.15) is of a slightly different form than (5.18).
However, it is easy to see that

(ρu)t + div T − ρut − ρu∇u−∇p = u(ρt + div(ρu)) (11.16)

and the last term vanishes whenever the equation of continuity is satisfied, which
is always the case of fluid motion. So we see that the local conservation of mo-
mentum is equivalent to the equation of motion (5.18) also in the compressible
case (assuming the equation of continuity is satisfied).

The conservation of the total momentum is obtained from (11.13) by integrating
over x. This presents no problem in the compressible case, where in the situation
which we described in our thought experiment in section 11.2 the velocity field
will be compactly supported (which we are now claiming without a proof 60). In
this case the integration of (11.15) immediately gives the conservation of (11.5).

In the compressible case the velocity field u(x, t) will typically not be integrable.
One can define the non-convergent integral

∫
R3 ρ0u(x, t) dx in various ways and

obtain the conservation law. One way to do it is to use vorticity. Assume that
v(x) is a smooth compactly supported vector field (not necessarily div-free).
Then one has ∫

R3

x× curl v(x) dx = 2

∫
R3

v(x) dx . (11.17)

60The proof is not hard but we will not pursue it at this point. However, we saw the finite
speed of propagation of disturbances for the linearized equations in lecture 5.
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Let us therefore look at the evolution of the quantity∫
R3

x× ω(x, t) dx (11.18)

in the situation described in our thought experiment in section 11.2. For simplic-
ity we replace f by ρ0f in what follows. Taking curl of the Euler equation (5.16)
and using (5.17) we obtain, similarly as in lecture 7

ωt + [u, ω] = curl f . (11.19)

Hence

∂

∂t

∫
R3

x×ω dx+
∫
R3

x×[u, ω] dx =

∫
R3

x×curl f dx = 2

∫
R3

f(x, t) dx . (11.20)

As an exercise, you can check that, when ω is compactly supported (which is
our case here), then ∫

R3

x× [u, ω] dx = 0 . (11.21)

Therefore we obtain

∂

∂t

1

2

∫
R3

x× ω dx =

∫
R3

f(x, t) dx . (11.22)

This shows that, in the thought experiment described above, the quantity

1

2

∫
R3

x× ω dx (11.23)

will be conserved after time t2, and its value (after t2) will be∫ t2

t1

∫
R3

f(x, t) dx dt (11.24)

which can be thought of as the total impulse applied to the fluid. Therefore the
quantity (11.23) should represent the total momentum of the fluid.61 We note
that it is the same quantity as that giving the leading order term for u at large
distances, see (10.26), (12.27). Therefore the leading order term of the large
distance behavior is a conserved quantity, and depends only on the total impulse
given to the fluid (assuming the fluid was initially at rest). We emphasize that
this assumes the incompressibility of the fluid and that the density is constant.
We also remark that due to the identities (10.22) the conservation of (11.23) is
equivalent to the conservation of

∫
R3 xjωk(x) dx for j, k = 1, 2, 3.

61In fact, as an exercise you can prove the following: consider a smooth radial compactly
supported function φ with φ = 1 in a neighborhood of the origin, let ω be compactly supported
div-free vector field, and let u be obtained from ω by the Biot-Savart law (10.12). Then

lim
ε→0

∫
R3

uφε dx =
1

2

∫
R3

x× ω(x) dx . (11.25)

We see that in our situation the integral
∫
R3 u dx, though not absolutely convergent, can be

defined for example in this way.

54



11.4 Conservation of the angular momentum in fluids.

The angular momentum is ∫
R3

x× ρu dx . (11.26)

The meaning of this integral is clear when u is compactly supported, as will be
the case for the compressible fluids in our thought experiment above. In this
case its conservation can be proved by a direct calculation, which in the end
relies on the fact the tensor Tij defined by (11.7) is symmetric.

In the incompressible case the integral (11.26) is not convergent. We can however
replace it by

1

3

∫
R3

x× (x× ω) dx (11.27)

which can be shown to be a conserved quantity, with a calculation similar
to (11.20), and the identity∫

R3

x× (x× curl v(x)) dx = 3

∫
R3

x× v(x) dx (11.28)

playing the role of (11.17). Due to identities (10.22) the vector (11.27) is pro-
portional to

∫
R3 |x|2ω dx or to

∫
R3 x(xω) dx. From (10.28) we see that the

second term in the asymptotics of u does not contain information about these
quantities.
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12.1 Conservation of energy in fluids

Let us first consider the incompressible case. In this case the only form of
energy of the fluid we have to deal with (in the model we consider) is the kinetic
energy.62 The kinetic energy is given by

E =

∫
R3

1

2
ρ0 |u(x, t)|2 dx . (12.1)

We note that when u = O(|x|−3) as x → ∞ (as we expect in our thought
experiment from section 11.2), then the integral is clearly convergent. To see
that E is conserved, we consider the identity

∂t

(
ρ0
|u|2

2

)
+ div

[
u

(
ρ0
|u|2

2
+ p

)]
= f(x, t)u , (12.2)

which can be obtained by multiplying the Euler equation (5.16) by u. This
identity shows what is happening locally with the density of kinetic energy

ρ0
|u|2
2 . Assuming that f = 0 (no outside forces) and integrating (12.2) over a

fixed volume O, we obtain

∂t

∫
O
ρ0
|u|2

2
=

∫
∂O

(
−(un)ρ0

|u|2

2
− (un)p

)
dx . (12.3)

The first term on the right expresses the rate of change of the energy in O due
to particles carrying energy arriving and leaving O, whereas the second term
represents the rate of change change of the energy in O due to forces generated
by the pressure. (Recall that in the ideal fluids these are the only forces due to
the interaction between the fluid particles.) In our thought experiment in section
11.2 we expect u = O(|x|−3) and ∇p = O(|x|−3) 63. This means that (12.2)
can be integrated over R3, and when f = 0 we obtain that E is constant, as
expected.

We can also check what happens with the energy in a volume “moving with the
fluid”, i. e. Ot = ϕt(O), with the usual meaning of ϕt, see lecture 2. Using (3.11)
and (12.2) with f = 0, we obtain

∂t

∫
Ot

ρ0
|u|2

2
dx =

∫
∂Ot

−(un)p dx . (12.4)

62This is similar for finite systems of particles when the interaction energy V in (11.3) is
replaced by rigid constraints. For example if distances between the particles are fixed and the
particles form an ideal rigid body, there is no interaction energy, and the kinetic energy is
conserved (assuming there are no outside forces acting on the body, of course). On the other
hand, in the case when the particles are connected by rods of great but still finite stiffness,
one has to consider the potential energy related to the deformations of the rods to obtain the
energy conservation.

63when f ̸= 0; for f = 0 we expect p = O(|x|−4) as discussed in lecture 10.
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This is exactly what we should expect, since this time there is no transport of
the fluid particles through the boundary of Ot.

Let us now turn to the compressible case. In this case we also have to include
the potential energy related to the volume changes of the fluid. We assume a
relation p = p(ρ) between the density and the pressure.64 We also emphasize
that in what follows we assume that the solutions are sufficiently regular. It
is known that the compressible Euler equations can generate singularities from
smooth initial data, and for some singularities the conservation of energy can
be violated once a singularity is reached.
The kinetic energy is naturally given by∫

R3

ρ
|u|2

2
dx . (12.5)

The potential density should be given by

F (ρ(x, t)) dx , (12.6)

where F expresses the energy due to compression of a unit volume of the fluid
of density ρ. To calculate F in terms of the function p(ρ), we expand the unit
volume of fluid to the whole space and calculate how much energy this will
generate. If during the expansion the original unit volume expanded to volume
V , the density will be ρ

V and the pressure will be p( ρV ). The work done by an
infinitesimal expansion V → V + dV is p( ρV ) dV . Hence

F (ρ) =

∫ ∞

1

p(
ρ

V
) dV =

∫ 1

0

p(sρ)
ds

s2
=

∫ ρ

0

ρ p(σ)

σ2
dσ . (12.7)

Note that this assumes that the function p(ρ)
ρ2 is integrable. 65 From (12.7) one

can see that

F ′(ρ) =

∫ ρ

0

p′(σ)

σ
dσ , (12.8)

so that F ′ can be identified (modulo a constant) with the function P in (7.4).
One can also see from (12.7) that

ρF ′ − F = p . (12.9)

The energy conservation can be seen from the identity(
ρ
|u|2

2
+ F (ρ)

)
t

+ div

[
u

(
ρ
|u|2

2
+ ρF ′(ρ)

)]
= f(x, t)u , (12.10)

64In other words, the fluid is assumed to be barotropic.
65The case p(ρ) = cρ is sometimes also considered. In this case one can define F from

equation (12.9) below, and there is an interpretation to fit this case into the picture considered
above via a suitable re-calibration procedure. We will not go into the details.
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which can be obtained by multiplying the Euler equation (5.18) by u and suit-
ably re-grouping the terms, taking into account the equation of continuity (5.19).
Identity (12.10) can also be re-written, using (12.9), as(

ρ
|u|2

2
+ F (ρ)

)
t

+ div

[
u

(
ρ
|u|2

2
+ F (ρ) + p

)]
= f(x, t)u , (12.11)

and we see that the situation is in fact quite similar to the incompressible case:

the term u(ρ |u|2
2 + F (ρ)) expresses the transport of energy due to motion of

the fluid and the term u p expresses the changes of energy due to the forces
associated with the pressure. When f = 0 and we consider a domain Ot which
moves with the fluid, we obtain, in a similar way as in the incompressible case

∂t

∫
Ot

(
ρ
|u|2

2
+ F (ρ)

)
dx =

∫
∂Ot

−(un) p dx , (12.12)

which again agrees with the assumption that the only forces by which the fluid
particle interact with each other are due to the pressure.

12.2 Conservation of helicity

Consider again the situation described in 11.2. The quantity∫
R3

uω dx =

∫
R3

uiωi dx (12.13)

is called helicity. It is a conserved quantity, which can be seen easily from our
second version of Kelvin’s circulation theorem, see (9.13). We can use (9.13)
with v = ω, and we see that (12.13) is a conserved quantity. The helicity is
a topological quantity in that is does not change if change ω to ω̃ = ψ∗ω for
a diffeomorphism ψ (assumed to approach the identity at ∞), and also change
u to ũ, calculated from ω̃ using the Biot-Savart law. Helicity is related to the
mutual entanglement of the integral lines of the vorticity field. We will not
study this quantity in the near future, but we list it here for completeness.

12.3 First observations about the incompressible fluid motion

Let us consider an incompressible fluid in a bounded domain. We can think
about a closed large rigid box Ω completely filled with an incompressible fluid.66

We assume that at time t = 0 the vorticity field is ω. The velocity field is
determined from the equations

curlu = ω, div u = 0, in Ω and un = 0 at ∂Ω , (12.14)

66Our considerations will be quite rough, so we do not have to pay attention to issues like
the possible lack of smoothness of the boundary at the edges of the box. In any case, we can
consider that the edges are smoothed out.
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where n is the unit normal to the boundary as usual. (So far we have only
studied this system in R3 in lecture 10, but the situation in Ω is not significantly
different for our purposes in connection with the situation we will consider.)

When considering the fluid in the box Ω rather than in R3, we will not have the
conservation of the total momentum or the total angular momentum.67 These
global conservation laws do not seem to be important for the local study of the
fluid in the areas of the high vorticity, as the components of the densities x×ω
and x × (x × ω) can change sign and therefore the value of their integrals do
not put significant restrictions on the vorticity field. Therefore we will not lose
much in a situation when these conservation laws are not valid.

In Ω we consider a circle

a(s) = (r cos s, r sin s, 0) , s ∈ [0, 2π) . (12.15)

(We assume that Ω is sufficiently large so that all our constructions will fit into
it.) In addition to the circle, let us also consider a second circle

b(s) = (0, r + r cos s,−r sin s) , s ∈ [0, 2π) . (12.16)

Note that the two circles are “linked” as in a way similar to two links in a
chain. Let us now imagine that a current of unit size passes through circle a in
the direction of the derivative a′(s). We now smooth the current to a smooth
div-free vector field A supported in a tube of radius ε with center a, similar to
what we discussed in lecture 9 in connection with formulae (9.10), (9.11). We
assume that the integral lines of the field A are again circles. The support of the
field A is a solid torus (= a doughnut shape), with the curve b passing through
its opening. We now take a smooth volume-preserving diffeomorphism ψ0 of Ω
and deform the whole configuration quite a bit, so that we create some “waves”
on the torus, both in the x3 direction, and the directions perpendicular to it.
(This deformation is done to destroy the symmetries of the field A, so that the
evolution becomes more chaotic. The field A itself represents a nice “vortex
ring” and its evolution can be quite regular, at least until it hits the boundaries
of Ω several times – we will discuss the motion of such vortex rings later. For
now we can say that under the Euler evolution the undeformed vorticity field
A will move up the x3 axis, perhaps with some secondary “inner motions” in
it, and as long as it stays away from ∂Ω.) Let us assume that r ∼ 20 and
ε ∼ 1 and let us denote the deformed field A by ω. The motion starting with
the vorticity field ω will not be simple, and it may look quite chaotic. Strictly
speaking, we do not know for how long the equations of motion can be solved,
it is conceivable that the solution will develop a singularity in finite time.68 Let

67the angular momentum is conserved when Ω is a ball, though.
68The opinions as to whether or not solutions of incompressible Euler’s equation can develop

a singularity do not seem to be uniform. In the 1980s and 1990s several authors reported
evidence for singularities in numerical simulations, but in some cases the interpretation of these
calculations had to be re-evaluated after a higher resolution calculation did not support the
conclusion, and in other cases there is still no uniform agreement as to what the calculations
say. The difficulties in the numerics are significant. In fact, the 3d incompressible Euler
equation may be one of the hardest equations to solve numerically with some reliability.
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us nevertheless assume that a smooth solution exists during the relatively long
time interval we are interested in.

We note that for any closed curve Γ which can be deformed to the curve b
without crossing the support of ω we will have∮

Γ

u dx = 1 . (12.17)

This follows from the formula (9.15) applied to a surface Σ with ∂Σ = Γ − b,
such that ω vanishes on Σ.

Assume that at time t = 0 we dye the support of ω dark red. We know from
the Helmholtz theorem that at a later time t the support of the vorticity field
ω(t) will be exactly where the dye is at t. How will the dye be distributed after
a sufficiently long time? We know that the volume of the red region has to be
constant and the density of the dye at each point is also constant. However,
can the motion deform the red region into some fine structures in such a way
that from a distance all the fluid will look light red and only if we look closer
we will see that the seemingly uniform light red color is actually caused by a
distribution of some fine structures obtained by a complicated deformation of
the original support of ω? We do not really know. There appears to be no
obvious obstacle to such a scenario, although the conservation of energy does
put some constraints on the possible fine structures, see the comments about
“folding” following (12.27) below.

We can make some interesting conclusions from the Helmholtz and the Kelvin
laws. For example, let us take the curve γ(s) = ψ0(a(s)), the deformation of the
original circle a by the diffeomorphism ψ0 above. Let us assume that |A| = 1
on the circle a. Let l be the length of the curve γ. We have

l =

∫ 2π

0

|γ′(s)| ds . (12.18)

We note that

ω(γ(s)) = ∇ψ0(a(s))
a′(s)

2πr
(12.19)

We imagine that the derivatives of ψ0 are of order unity, so that

l ∼ 2πr , (12.20)

where by ∼ we have in mind an equality modulo a multiplicative factor relatively
close to 1, such as 2 or 1

2 . It is quite plausible that after some time the length
lt of the curve

γt = ϕt(γ) , (12.21)

where ϕt is the usual Lagrangian map (see lecture 2) is much larger than l. We
have

lt =

∫ 2π

0

|(γt)′(s)| ds =
∫ 2π

0

|∇ϕt(γ(s))γ′(s)| ds . (12.22)

60



By Helmholtz’s law we have

∇ϕt(γ(s))γ
′(s)

2πr
= ω(ϕt(γ(s)), t) (12.23)

and therefore

the average size of ω(ϕt(γ(s)), t) (with respect to s) ∼ lt

l
. (12.24)

We see that there is a potential for a significant growth of ω during the evolution.

Let us now fix some time t and consider any curve C which can be obtained by
a continuous deformation of the curve ϕt(Γ) (with the same meaning of Γ as
above) outside of the support of ω(x, t). By Kelvin’s theorem we have∮

C

u(x, t) dx =

∮
Γ

u(x) dx = 1 . (12.25)

Denoting by |C| the length of the curve C, we see that

the average velocity |u(x, t)| along the curve C will be at least 1
|C| . (12.26)

If |C| can be taken small, which means that the (deformed) torus ϕt(K), where
K being the support of ω, is “pinched” in at least one place, than the velocity u
will be quite large near the pinched area of the deformed torus. This illustrates
the effects of the “vorticity stretching” which will discuss some more next time.

In all these considerations we must keep in mind the energy conservation. Ba-
sically, we can summarize what we know about the vorticity field ω at time t in
the following.

1. ω = ϕ∗ω for some volume preserving diffeomorphism ϕ. (Of course, ϕ =
ϕt, our Lagrangian map from lecture 2.)

2. Energy conservation. If u is the velocity field generated by ω, and u is the
velocity field generated by ω, then∫

Ω

|u|2 dx =

∫
Ω

|u|2 dx . (12.27)

The energy conservation (12.27) does put constraints on ϕ. For example, let us
assume that ω will keep the form of a tube around a curve, except that the curve
will become much longer and the tube will become much thinner (to preserve the
volume). “Most” long thin tubes we would draw without energy considerations
will have too much energy. To conserve energy, one possibility is that sections of
our long thin tube will “fold”, such as when a curve makes a sharp 180 degrees
turn and runs back to an existing section in the opposite direction for a while.
This way we can make long thin tubes and conserve energy at the same time.
Of course, if some scenario is consistent with 1 and 2 above, it does not mean
that it can be realized by some actual solutions of the equations, but some signs
of the folding mentioned above are seen in the real solutions.
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13.1 Vorticity stretching

Last time we saw the potential for the growth of the vorticity field ω(x, t) during
the evolution by Euler’s equations. The possible stretching effect is already
apparent in the Helmholtz law

ω(ϕt(x), t) = ∇ϕt(x)ω(x, 0) . (13.1)

The matrix A = ∇ϕt(x, t) satisfies detA = 1, and, as for any matrix with
positive determinant, we can write it as

A = QB (13.2)

where Q is a rotation (Q ∈ SO(3)) and B is a symmetric positive-definite
matrix. In a suitable coordinate frame we have

B =

 λ1 0 0
0 λ2 0
0 0 λ3

 , (13.3)

where
λ1 ≥ λ2 ≥ λ3 > 0, λ1λ2λ3 = 1 . (13.4)

It is very plausible that after a relatively long evolution, the largest eigenvalue λ1
will be typically quite large, and therefore the ω1 component (in the frame we are
considering) will be significantly magnified by (13.1). Therefore, unless the first
eigenvector e1 of B (which depends on (x, t)) stays practically perpendicular to
ω(x, 0), the vorticity will be stretched. The reversibility of the equation implies
that there will be solutions where the stretching does not happen at least for
some periods of time: if we take a solution which stretches the vorticity and run
in backward, we do not get expect stretching effect in the backward solution.
However such solutions without the stretching seem to be quite exceptional,
somewhat similarly to the solutions of the equations of motion for molecules of
a mixture of two gases which “unmix” the two gases. Such solutions must exist
(we just run backward the solutions which mix), but we can see them only for
very carefully prepared initial data. For “generic” data the molecules of the
two gases do not “unmix”. In a similar way, we expect that for the “generic
smooth data”, the solutions of the Euler equations will stretch the vorticity.
Statements in this direction are notoriously hard to prove rigorously and for
Euler’s equation there are no rigorous results of such form, although numerical
simulations and observations of fluids seem to support the discussed scenarios.

The potential for the stretching effect can also be seen directly from the vorticity
equation (7.12). Let us write the equation in the form

ωt + u∇ω = ω∇u . (13.5)
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The term on the left is the “material derivative” of the vorticity: we follow a
fixed particle of the fluid, observe its vorticity as a time-dependent vector, and
take the time derivative. Often the notation

D

Dt
=

∂

∂t
+ u∇ (13.6)

is used, so that we can write (13.5) as

Dω

Dt
= ω∇u . (13.7)

Let us now look at the term ω∇u. Let us write (at a given point (x, t))

∇u = S +A , (13.8)

where Sij =
1
2 (ui,j + uj,i) is the symmetric part of ∇u and Aij =

1
2 (ui,j − uj,i)

is the anti-symmetric part of ∇u. By the definition of ω, we have Ay = 1
2 ω× y

and therefore Aω = 0. Hence we can write

ω∇u = (∇u)ω = (S +A)ω = Sω . (13.9)

The matrix S is sometimes called the deformation matrix. (In some texts it is
denoted by D, and it can be also denoted by eij .) Equation (13.7) can now be
written as

Dω

Dt
= Sω , (13.10)

where S = S(t) is the deformation matrix at the position of the moving particle
we are following. For the vorticity vector ω(t) of the moving particle this is just
the ODE

d

dt
ω(t) = S(t)ω(t) . (13.11)

For any given particle this equation is not “closed”, as S(t) can depend on
the whole field ω(x, t), and not just on the single vector ω(t). If we consider
S(t) as given, then of of course (13.11) gives the evolution of ω(t). The matrix
S(t) is symmetric, and its trace vanishes, due to the incompressibility condition
div u = 0. Therefore, for any given time t we have, in a suitable coordinate
frame (depending on t)

S =

 λ1 0 0
0 λ2 0
0 0 λ3

 (13.12)

where
λ1 + λ2 + λ3 = 0 . (13.13)

Assuming the coordinate frame is chosen so that

λ1 ≥ λ2 ≥ λ3 , (13.14)
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we can now repeat the considerations following (13.3) at the “differential level”.
After some time we expect λ1 to be generically quite large, and therefore ω(t)
will be stretched in the e1 direction (which may depend on time, of course).

For the special case when the velocity field u(x, t) is linear in x, the solutions
of (13.11) provide examples of exact solutions of Euler’s equations. (They may
not be very physical when considered in all space R3, due to their linear growth
as x → ∞, but locally they are of interest and illustrate some aspects of the
vorticity stretching.) Assuming

u(x, t) = S(t)x+
1

2
ω(t)× x (13.15)

the full vorticity equation (13.5) becomes exactly (13.11). Hence the field (13.15)
will solve the Euler equations (for a suitable pressure) if and only if (13.11)
is satisfied. The time-dependent matrix S(t) can be arbitrarily chosen, and
then (13.11) can be solved for ω, after choosing an initial condition ω(0) =
ω0. For example, we can choose S(t) to be a constant diagonal matrix of the
form (13.12), and obtain

ω(t) =

 eλ1tω01

eλ2tω02

eλ3tω03

 . (13.16)

Equation (13.11) can also be used for some heuristics concerning the possible
blow-up scenarios for the solutions of Euler’s equations. If we know the vorticity
field ω(x, t), we can calculate the velocity field u(x, t) from the Biot-Savart law
and then calculate the matrix S at all points. From (4.8) and (4.12) we see that∫

R3

2|S|2 dx =

∫
R3

|ω|2 dx . (13.17)

So if we compare the sizes of S and ω in the space L2, we can say

||ω|| ∼ ||S|| in L2 . (13.18)

We can now speculate about a situation which would most likely lead to a
finite-time blow-up for an initially smooth solution in the following terms:

1. It might perhaps be possible that for some solutions we not only have
||ω|| ∼ ||S|| in L2, but also |S(t)| ∼ |ω(t)| at some moving particle.

2. In addition, it might perhaps be even possible that at this particle the
direction of the eigenvector of S(t) corresponding to the largest eigenvalue
and the direction of ω(t) are always aligned to the degree that not only
|S(t)ω(t)| ∼ |ω(t)|2, but in fact

d

dt
|ω(t)| ∼ |ω(t)|2 . (13.19)
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The solution of the equation

ẏ = cy2, y(0) = y0 (13.20)

is
y(t) =

y0
1− cty0

(13.21)

and blows up at time T = 1
cy0

with blow-up rate ∼ 1
T−t .

Therefore, if it is possible for some solutions to really achieve the necessary
alignments, these solution will blow-up at some finite time T with the blow-up
rate

sup
x
|ω(x, t)| ∼ 1

T − t
. (13.22)

In fact, to have the blow-up, the alignments do not have to be so perfect, it is
enough to achieve

d

dt
|ω(t)| ≥ c|ω(t)|1+ε (13.23)

for some ε > 0. The solution of

d

dt
y = cy1+ε , y(0) = y0 (13.24)

is
y(t) =

y0

(1− εcyε0t)
1
ε

(13.25)

and it blows up at time T = 1
εcyε0

at rate ∼ 1

(T−t)
1
ε
. Note that the smaller the ε

is, the longer it takes the equations to blow up, and the higher the power in the
blow-up rate is. Therefore we can say that the slower the blow-up is, the higher
the power in the blow-up rate is. This may look counter-intuitive at first, but
it actually makes a lot of sense: in a slower blow-up a solution has to build up
the size more gradually, and therefore it has to be large longer before it finally
reaches ∞.

The above considerations suggest that the lowest power in the and possible
blow-up rate of supx |ω(x, t)| in Euler’s equations is at least

∼ 1

T − t
. (13.26)

The stretching mechanism we described is not strong enough to produce faster
blow-up rates (which - as explained above - would have a lower power) such as

∼ 1

(T − t)1−δ
(13.27)

for any δ > 0. There is a rigorous results, due to Beale-Kato-Majda69 which
confirms this expectation. Let us formulate it in the context of a known existence
result about the solutions of Euler’s equations.

69J. T. Beale, T. Kato and A. J. Majda, Remarks on the breakdown of smooth solutions
for the 3-D Euler equations, Comm. Math. Phys., 94(1984), 61-66.
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Let ω0 be a smooth, compactly supported div-free field. Consider the initial
value problem

ωt + [u, ω] = 0 in R3 × [0, T ) . (13.28)

ω(x, 0) = ω0(x), x ∈ R3 , (13.29)

where at each time the velocity field u is obtained from ω(x, t) by the Biot-
Savart law (10.12) and we require that at each time the vorticity field maintains
its fast decay at ∞. (In fact, we can demand that ω stays compactly supported
in x.)
We have the following result:

Theorem

In the situation as above we have the following results

1. A smooth solution70 (with fast decay of ω as x→∞) of problem (13.28), (13.29),
if it exists, is unique.

2. There always exists some positive time T > 0 such that a smooth solution
with fast decay of ω at∞ exists in R3× [0, T ). (If the support of ω0 is compact,
then the support of ω(x, t) will be compact for each t ∈ [0, T ).)

3. (Beale-Kato-Majda criterion)
If a smooth solution in R3 × [0, T ) with fast decaying vorticity cannot be con-
tinued beyond T , then ∫ T

0

sup
x
|ω(x, t)| dt = +∞ . (13.30)

At this point we will not go into the proof of these results. The interested
readers can consult the book “Vorticity and Incompressible Flow” by A. Majda
and A. Bertozzi for details.

Note that the criterion (13.30) is in agreement with our heuristic expectations
concerning the possible blow-up rates, see (13.26), (13.27).

70The full smoothness can be relaxed to “sufficient regularity”. The problem of finding
optimal low-regularity classes of solutions in which uniqueness remains valid is difficult.

66



14

10/7/2011

14.1 Two-dimensional incompressible flows

So far we have considered the fluids in three space dimensions. It is also useful to
consider two-dimensional flows. In reality it is quite hard to realize purely two
dimensional flows in practice, but there are some situations where fluid flows are
nearly two-dimensional, and therefore the study of the idealized situation where
the flow is exactly two-dimensional is useful. Also, from the purely mathematical
point of view, it is interesting to see what happens in dimension 2. The situation
is quite simpler than for the 3d flows, especially for the incompressible flow on
which we will focus our attention. At the same time, there are still various
non-trivial phenomena and many open problems.

We will consider a domain Ω ⊂ R2 with smooth boundary and divergence-free
vector fields u in Ω satisfying the boundary condition

un = 0 at ∂Ω, (14.1)

where n is the outward unit normal. The whole picture can be of course imbed-
ded in three dimensions by considering the domain

Ω̃ = Ω×R (14.2)

with the normal ñ = (n1, n2, 0) and the vector field

ũ(x) =

 u1(x1, x2)
u2(x1, x2)

0

 . (14.3)

The vorticity of ũ is

ω̃ = curl ũ =

 0
0

u2,1 − u1,2

 , (14.4)

where, as usual, ui,j is used to denote the partial derivative ∂ui

∂xj
. It is therefore

natural to define the vorticity in two dimensions as the scalar

ω = u2,1 − u1,2 . (14.5)

As in dimension three, the condition curlu = 0 is necessary and sufficient for
the field u to be locally expressible as a gradient of a scalar function, u = ∇φ.
The condition

div u = u1,1 + u2,2 = 0 (14.6)
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can be written as

curl

(
u2
−u1

)
= 0 , (14.7)

and hence we can locally write

u =

(
−ψ,2
ψ,1

)
. (14.8)

Under our assumptions and with the boundary condition un = 0 this is possible
even globally71. To see this, we recall that a necessary and sufficient condition
for the existence of a function ψ with

∇ψ =

(
u2
−u1

)
(14.9)

is that ∮
γ

u2 dx1 − u1 dx2 = 0 (14.10)

for every closed smooth curve γ ⊂ Ω. In what follows we will assume that Ω is
a smooth domain with finitely many boundary components. If div u = 0, the
condition (14.10) will be satisfied when∮

Γj

u2 dx1 − u1 dx2 = 0 (14.11)

for every bounded connected component Γj of ∂Ω. This translates to∫
Γj

un = 0 , (14.12)

which is automatically satisfied when un = 0.

We see that with the boundary condition (14.1) we have the representation (14.8)
even globally.72

The function ψ is called the stream function. It can be represented as

ψ(x) =

∮
γa,x

u2 dx1 − u1 dx2 =

∫
γa,x

un dx (14.13)

where a is some given point in Ω, γa,x is a curve in Ω joining a and x, and n is a
vector perpendicular to γa,x oriented so that the orientation of the pair of vectors
γ′a,x(s), n (with n taken at γa,x(s)) is positive. The conditions div u = 0 in Ω
and un = 0 at ∂Ω guarantee that the definition is independent of a particular
choice of γa,x.

71under reasonable assumptions on Ω, see below
72Under our assumptions that Ω is smooth with finitely many boundary components. This

assumption can be still further relaxed, but this is not important for our purposes here.
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The stream function can also be understood in terms of the vector potential of
the field ũ. Letting

Ã =

 0
0

−ψ(x1, x2)

 , (14.14)

we have
ũ = curl Ã . (14.15)

Remark
Let Xh be the space of the smooth vector fields of the form (14.3) and let Xv

be the space of the smooth vector fields of the form (14.14). It is easy to see
that the operation v → curl v maps Xh into Xv and vice versa.

We can easily check that
ω = curlu = ∆ψ . (14.16)

The representation (14.8) is often written as

u = ∇⊥ψ (14.17)

or
ω = J∇ψ (14.18)

where

J =

(
0 −1
1 0

)
. (14.19)

We note that the integral lines of u 73 are the connected components of the
level sets

{ψ = c} , (14.20)

at least when we avoid various degenerate situations by assuming that ∇ψ ̸= 0
on {ψ = c}. (By Sard’s theorem this assumption is satisfied for almost every
c when u is smooth.) If we apply these observation to the case Ω = R2 and a
compactly supported u (with div u = 0), we see that almost all integral lines of
u are smooth closed curves and, in some sense, the vector field u is a “continuous
linear combination” of currents in closed loops which we discussed in lecture 9,
just before (9.10). In dimension three such simple picture cannot be true, but
some of the properties the simple fields obtained as continuous sums of loops
(such as the relations (10.22)) survive the passage to general div-free fields.

The Euler equations (5.16),(5.17) remain the same in dimension two, and the
same is true about Kelvin’s circulation theorem (lecture 9). However, there is
a significant simplification in the vorticity equation and the Helmholtz law.

Let us first look at the vorticity equation for the natural 3d extensions ũ and ω̃
defined by (14.3), (14.4). In lecture 13 we discussed the stretching term ω∇u

73also called the streamlines in our context
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for the 3d flows. It is easy to see that for our special fields ũ and ω̃ of the
form (14.3) and (14.4) we have

ω̃∇ũ = 0 . (14.21)

This means that there is no vorticity stretching. In the 2d notation, the equation
for the scalar ω = curlu is

ωt + u∇ω = 0 , (14.22)

which is the transport equation (2.16) we discussed in lecture 2. This means
that the scalar ω is transported with the flow given by u(x, t). In terms of the
Lagrangian maps ϕt introduced in lecture 2, we have

ω(ϕt(x), t) = ω(x, 0) . (14.23)

As simple as this looks, it still leads to non-trivial behavior of solutions which
is not completely understood, even though the problems are at a different level
than in dimension three, where we cannot answer even the basic question about
the existence of the solutions. In dimension two we know that the solutions
exist (this is not surprising if we combine (13.30) and (14.23)), but there are
many open problems about their behavior over long time intervals.

The equation (14.22) is of course non-linear since u depends on ω. For example,
in all space Ω = R2 we can write down explicitly the 2d analogue of the Biot-
Savart law we discussed in lecture 10 in dimension three. In the 2d situation
the problem

curlu = ω, div u = 0 in R2, u(x)→ 0 as x→∞ , (14.24)

can be solved in a way similar to (10.14), by using equation (14.16). Letting

G(x) =
1

2π
log |x| , (14.25)

we can write
ψ = G ∗ ω (14.26)

and
u = ∇⊥ψ = K ∗ ω, K = ∇⊥G . (14.27)

This is the 2d Biot-Savart law.

We introduce the notation

{ψ, ω} = −ψ,2ω,1 + ψ,1ω,2 = det(∇ω,∇ψ) . (14.28)

(The bracket {ψ, ω} is a special case of the so-called Poisson bracket.) The
incompressible Euler equation can then be written as

ωt + {ψ, ω} = 0 . (14.29)
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The boundary condition un = 0 at ∂Ω is equivalent to the condition that ψ
be constant on each connected component Γj of the boundary ∂Ω (with the
constant depending on the component). In other words

ψ|Γj = cj . (14.30)

Under some special conditions the constants cj can be preserved under the
Euler’s equations (in the absence of forces), but in general this may not be the
case. The natural constants of motion in this context are

γj =

∫
Γj

∂ψ

∂n

which can be identified with ∫
Γj

uidxi .

From (14.29) and the boundary condition (14.30) one can also see that the
equation has many steady states. The steady states are determined by

{ψ, ω} = 0 , (14.31)

which says that ω is locally constant along the level sets of ω. In a neighborhood
of a point a ∈ Ω with ∇ψ(a) ̸= 0 this means that ω = Fa(ψ) for some function
Fa. If ω = F (ψ) everywhere in Ω for some function F , and ψ satisfies (14.30),
then ψ gives a steady-state solution of (14.29). There are many such solutions,
as the function F can be chosen. For example, any eigenfunction of the laplacian

∆ψ = −λψ, ψ|∂Ω = 0 (14.32)

gives a steady state solution of Euler’s equation. (We emphasize that we assume
that the dimension is two.)

14.2 Zhukovski’s Theorem

There is a classical result concerning the lift force produced by ideal incom-
pressible flows around a wing which we should mention in connection with 2d
flows. Let us consider a connected compact set K ⊂ R2 and assume that its
complement Ω = R2 \K is also connected and has smooth boundary.74 We can
think of the set K as a wing profile. Let us consider steady flows u in Ω which
satisfy the following conditions:

1. The vector field u is smooth in Ω (up to the boundary).

2. At the boundary ∂Ω we have un = 0, where n the unit normal of ∂Ω.

3. limx→∞ u(x) = U , where U ∈ R2 is a given vector.

74The assumptions imply that the situation is a deformation of the case when K is a disc.
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4. curlu = 0, div u = 0 in Ω.

We wish to calculate the force F on the wing profile K produced by the flow.
We saw in lecture 8 75 that in dimension n = 3 and in the case when Ω is
simply connected, our assumptions imply that F = 0. The same will be true,
by the same proof, in any dimension if we know that u = ∇h for some smooth
function h. The assumptions 1-4 above do not imply that u = ∇h, however.
For example, when K is a disc and u = ∇⊥ log |x| it is clear that there is no
function h in Ω such that u = ∇h. (This is of course due to the fact that Ω is
not simply connected, in any domain Ω1 ⊂ Ω which is simply connected, we do
have u = ∇h1 for some function h1 defined in Ω1.)
We aim to show that under the assumptions 1-4 above a flow u which is not of
the form u = ∇h in Ω can generate a “lift force” on the profile K.

Let us consider a curve γ(s) = R cos s+ R sin s where R is sufficiently large so
that γ ⊂ Ω. We note that the only obstacle to the field u being a gradient flow
in Ω is a possible non-zero value the curve integral

Γ =

∮
γ

u dx. (14.33)

We can write u = ∇h in Ω if and only if Γ = 0.

If Γ ̸= 0, we can consider the field

ũ = u− Γ

2π
∇⊥ log |x| . (14.34)

Clearly ∮
γ

ũ dx = 0 (14.35)

and since curl∇⊥ log |x| = 0, we see that

ũ = ∇h̃ (14.36)

for some function h̃ in Ω. The function h̃ will satisfy ∆h̃ = in Ω. By (14.34) we
have

u = ũ+
Γ

2π
∇⊥ log |x| = ∇h̃+

Γ

2π
∇⊥ log |x| , (14.37)

and hence for some a ∈ R we can write

u = U+a∇ log |x|+ Γ

2π
∇⊥ log |x|+O(|x|−2) = U+

ax

|x|2
+

Γx⊥

2π|x|2
+O(|x|−2), x→∞ .

(14.38)
Repeating the calculation from lecture 8, we can substitute the expression (14.38)
into formula (8.19) and let R→∞ to obtain

F = −ΓJU (14.39)

75See the section on d’Alembert’s paradox
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where J is rotation by π/2, i. e.

J =

(
0 1
−1 0

)
. (14.40)

The expression (14.39) for the force is known as Zhukovski theorem or Zhukovski
formula. 76 Note that the assumption n = 2 is crucial. The formula gives some
idea about the origin of the lift force, but the 3d picture is more complicated.
Even in the 2d picture, mathematically it is not quite obvious how a circulation
Γ ̸= 0 can be established. In view of Kelvin’s circulation theorem, viscosity has
to play an important rôle.77

76After N. E. Zhukovski who derived it around 1906.
77The 3d picture of the flow around wings was anticipated already in early 1890s by F. W.

Lanchester and is more complicated. You can see some of the typical pictures if you type
“trailing vortices” into a search engine. A mathematical analysis of these flows has been
achieved only at the level of certain approximations.
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Homework Assignment 1 due October 26

Do one or both of the following problems:

Problem 1

Consider a ball of incompressible fluid of constant density ρ and radius R in
the otherwise empty space R3. The fluid is at rest, its velocity field vanishes at
each point. Assuming that gravity acts according to Newton’s law, 78 calculate
the pressure p due to gravity in the fluid at the center of the ball in two ways:

1. Assume that p = f(κ, ρ,R), where κ is the gravitational constant, show that
the requirement that f be independent of a specific choice of units determines
f uniquely up to a multiplicative constant. In other words, use dimensional
analysis. (Hint: Use the same methodology which was described in lecture 1.)

2. Use the equations of hydrostatics (lecture 5) to calculate the pressure explic-
itly.

Problem 2

A rigid ball of radius R and density ρ is suspended (by a long thread of negligible
thickness) in the middle of a very large tank of an ideal incompressible fluid of
density ρ0 < ρ. Until time t = 0 everything is at rest. At time t = 0 the ball is
released from the suspension and starts descending towards the bottom of the
tank (due to the gravitational force). Assuming that the tank is all of R3, find
the formula for the velocity of the ball at time t > 0.

(Hint: Use lecture 8 and the following formula: let U = (U1, U2, U3) be a vector

in R3. Then the function h(x) = (Ux)(1 + R3

2|x|3 ) describes a potential flow

around a ball of radius R with velocity U at ∞.)

78This means that a masses two point masses m1 and m2 which are at distance r from each
attract one another by a force of size κm1m2

r2
, where κ is the gravitational constant.
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15.1 Point Vortices

Let us first consider a very simple class of solutions of the 2d incompressible
Euler equation in all space R2. We will consider the vorticity form (14.22) of
the equation we derived in lecture 14,

ωt + u∇ω = 0 . (15.1)

where u is given by (14.27). Let r = |x|, and let us consider any smooth
compactly supported function ω which is radially symmetric, i. e.

ω = ω(r) . (15.2)

We let

γ =

∫
R2

ω dx . (15.3)

It is easy to see that ω will be a steady-state solution of (15.1): the stream
function ψ given by (14.27) will clearly also be radially symmetric, ψ = ψ(r),
and the field u = ∇⊥ψ is tangential to the circles {x, |x| = r}. As an exercise
in the theory of the Laplace equation, you can check that if the support of ω
is contained in {x, |x| ≤ R}, than for |x| > R the stream function ψ is given
exactly by

ψ(x) =
γ

2π
log |x| . (15.4)

The pressure p will be also radially symmetric and will satisfy the equation

p,r =
|u|2

r
. (15.5)

Note that the pressure is an increasing function of r. It means that if it is
fixed at ∞, its value at x = 0 can get low. This family of solutions is easy to
understand: the force field generated by the centrifugal force acting on the fluid
particles is a gradient field and can be balanced by a suitably chosen pressure.
We can consider a family of such solutions with a fixed γ, where the support of
ω shrinks to one point. For example, we can set for ε > 0

ωε(x) =
1

ε2
ω(
x

ε
) , (15.6)

and let ε → 0. Note that the corresponding stream functions ψε will converge
locally uniformly in R2 \ {0} (together with all their derivatives) to the stream
function (15.4). The limit solution can be thought of as

ω = γδ, ψ =
γ

2π
log |x| , (15.7)
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where δ is the Dirac function. This solution represents an idealized situation
where all the vorticity is concentrated at just one point. Note that the velocity
field

u = ∇⊥ψ (15.8)

is not locally square integrable near x = 0. This means that the kinetic energy
of the field u is infinite in any neighborhood of 0. 79

It is worth recalling that the following quantities are conserved for the 2d in-
compressible Euler equation:

1

2
ρ0

∫
R2

|u(x, t)|2 dx (kinetic energy) (15.9)∫
R3

xω(x, t) dx (15.10)

This is the 2d version of the integral
∫
R3 x×ω(x, t) dx and is related to the (possi-

bly not absolutely convergent) integral ρ0
∫
R2 u(x, t) dx which should define the

total momentum of the fluid. The conservation of
∫
R2 xω(x, t) dx means that

the “center of mass” of the measure ω(x, t) dx is preserved during the evolution.∫
R2

|x|2ω(x, t) dx (15.11)

This is the 2d version of the integral
∫
R3 x×(x×ω(x, t)) dx and is related to the

(possibly not absolutely convergent) integral ρ0
∫
R3(x×u(x, t)) dx which should

define the total angular momentum of the fluid.∫
R2

ω(x, t) dx total vorticity (15.12)

In dimension 3 the analogue is not
∫
R3 ω dx (which vanishes for any div-free

field ω with sufficiently fast decay at ∞, see lecture 11), but rather the integral∮
C
u dx =

∫
Σ
ω n, where C is a curve around a vortex, Σ is a surface bounded

by the curve, and n is a suitably oriented normal to the surface Σ.
These conservation laws can be used to get some idea about the stability of
the radial solutions we have been considering in the case when ω ≥ 0. If we
assume a vortex solution with a radial non-negative vorticity ω = ω(r) which is
concentrated near the origin and satisfies

∫
R2 ω = γ is slightly perturbed away

from a radially symmetric profile to a new function ω̃ ≥ 0 we see from the
above conservation laws that “most of the mass” ω̃ will stay close to the origin
in the evolution and therefore the solutions with a radial, non-negative, and
compactly supported vorticity should be relatively stable under perturbations.
At this moment we leave this statement at a heuristic level, we will not go into
precise definitions.

79We will not address here the question in what sense (if any) the solution satisfies the Euler
equation across the origin. The usual weak formulation of the steady incompressible Euler
equation for a div-free vector field u in R2 is that

∫
R2 uiujφi,j = 0 for each smooth div-free,

compactly supported vector field φ. However, in this definition needs that u be locally square
integrable, so it does not apply directly to the singular solution we are considering here.
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Let us now consider two vortices, one given by a vorticity function ω(1) which
is supported near a point x(1) and radial with respect to it, and one given by
ω(2) which is supported near x(2) and radial with respect to it. We let

γ(j) =

∫
R2

ω(j) dx , j = 1, 2 , (15.13)

and
ω = ω(1) + ω(2) . (15.14)

We also let u(j) be the velocity field generated by ω(j) and

u = u(1) + u(2) . (15.15)

We now consider the evolution of this vorticity field under Euler’s equation. Let
us calculate the time derivative ωt (at the moment of time when the evolution
is started) from the equation of motion (15.1). We have

ωt = −u∇ω = −(u(1)+u(2))∇(ω(1)+ω(2)) = −u(1)∇ω(2)−u(2)∇ω(1) , (15.16)

as the terms u(j)∇ω(j), j = 1, 2 vanish (at the moment of time when the evolu-
tion started). We see that the vortex (1) is moved by the velocity field generated
from vortex (2) and vice versa. At later times the quantity u(j)∇ω(j) = 0 may
not be exactly zero, but we can think of the limiting situation when each of the
vortices is supported at one point. In this case we have

u(1)(x(2)) =
γ1
2π
∇⊥
x(2) log |x(1) − x(2)| , u(2)(x(1)) =

γ2
2π
∇⊥
x(1) log |x(1) − x(2)| .

(15.17)
Therefore we expect that the point vortices will move according to the system
of ODEs

d

dt
x(1) =

γ2
2π
∇⊥
x(1) log |x(1) − x(2)| , (15.18)

d

dt
x(2) =

γ1
2π
∇⊥
x(2) log |x(1) − x(2)| . (15.19)

It is natural to expect that even when the initial vorticity is not concentrated
at the two points but it is smooth and slighly “smeared” around these points
(while staying close to them), the evolution will still be similar to the case
described by the ODEs (15.18), (15.19) for some time, which will become larger
as we focus the support more and more to the two points. This has been proved
rigorously by C. Marchioro and M. Pulvirenti (for any number of vortices, under
natural assumptions) , but the proof is not easy.80 The system of ODEs we get
for any finite number m of vortices of strengths γ1, . . . , γm with trajectories
x(1)(t), . . . , x(m)(t) is an obvious generalization of (15.18), (15.19):

d

dt
x(j)(t) =

∑
k ̸=j

u(k)(x(j)) , (15.20)

80See the paper Marchioro, C., Pulvirenti, M., Vortices and localization in Euler flows.
Comm. Math. Phys. 154 (1993), no. 1, 49-61.
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where
u(k)(x) =

γk
2π
∇⊥
x log |x− x(k)| . (15.21)

As an exercise, you can solve the system (15.18), (15.19) explicitly in the case
when γ1 = γ2 and in the case when γ1 = −γ2 respectively. In the former case
the vortices move along a circle, whereas in the latter case they are translated
at a constant speed in the direction perpendicular to the segment joining them.

The conservation laws (15.9)– (15.12) give conserved quantities also for the point
vortex motion. The corresponding quantities are∑

j ̸=k

γjγk
2π

log |x(j) − x(k)| , (energy, not including the infinite
“self-energy” of the vortices)

. (15.22)

∑
k

γkx
(k) , (15.23)

∑
k

γk|x(k)|2 , (15.24)

∑
k

γk , (conserved trivially) . (15.25)

These conservation laws are particularly useful when all γk have the same sign.
In that case one can see from the conservation laws that during the evolution
the vortices will always stay in some bounded region and will never collide. This
is no longer the case when γk can have different signs. The conservation laws are
of course also helpful for integrating the equations. The equations are always
integrable81 when the number of vortices does not exceed three.82 Systems of
four or more vortices may no longer be integrable.83

Point vortices can also be considered a bounded domain Ω. In that case the
stream function is given by

ψ(x) =
∑
k

γkG(x, x
(k)) (15.26)

where G is Green’s function of the Laplacian in Ω, with a suitable boundary
condition. In simply connected domains one can take G(x, y) = 0 when x ∈ ∂Ω.

In some cases one can use symmetries to replace Ω by the whole space at the cost
of introducing auxiliary vortices in the complement of Ω. (This is sometimes
called the method of images, and you probably saw it in the theory of the
Laplace equation.) For example, if we have one vortex x = (x1, x2) in the half-
space Ω = {x, x2 > 0}, we can add a vortex of the opposite sign at the point
x∗ = (x1,−x2) and calculate the motion of the pair x, x∗ in R2. The resulting
motion of x will be a translation at a constant speed parallel to the boundary.

81In the sense of Hamiltonian systems - we will discuss these notions later.
82This is a classical result going back to the 19th century.
83Results in this direction are not so old.
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16.1 Vortex filaments

The point vortices we considered last time can also be thought of in the 3d
picture. Let us first consider a smooth 2d solution given by a smooth compactly
supported radially symmetric function ω = ω(r) with r =

√
x21 + x22, similar

to (15.2). It is natural to think of this solution also in the 3d picture, in which
the vorticity field ω(x) is given by

ω(x) =

 0
0

ω(x1, x2)

 =

 0
0

ω(r)

 . (16.1)

In the 3d picture we can calculate the velocity field u = (u1, u2, u3)
84 from the

Biot-Savart law (10.12), i. e.

u(x) =
1

4π

∫
R3

y − x
|y − x|

× ω(y) dy . (16.2)

This formula should of course reproduce the 2d formulae from the last lecture
(such as (15.4)) if we write u = (u1(x1, x2), u2(x1, x2), 0).

85 The 3d solu-

84Our notation is somewhat loose in that we do not systematically distinguish between

the “row vectors” such as u = (u1, u2, u3) and the “column vectors”, such as a =

 a1
a2
a3

.

Sometimes it is useful to make a distinction between the two notations (e. g. when co-variant
and contra-variant vectors need to be carefully distinguished), but in our situation here the
distiction will not play an important role, and we sometimes use both notations intergangeably.

85This is related to the “method of descent” which is sometimes used to calculate lower-
dimensional fundamental solutions from the higher-dimensional ones. In the case here we are
really dealing with the method of descent applied to the Laplace equation. Its 3d fundamental
solution is G3(x) = 1

4π|x| and it can be used to calculate its 2d fundamental solution by

considering the potential of a uniform distribution of a charge along the x3 axis. The integral
for the corresponding potential

u(x1, x2) =

∫ ∞

−∞

dx3

4π
√
x21 + x22 + x23

is divergent, but this can be easily fixed. For example, we note that the integrals for the
partial derivative

ux1 (x1, x2) =
1

4π

∫ ∞

−∞

−x1dx3
(x21 + x22 + x23)

3
2

is convergent, and similarly for ux2 (x1, x2). Alternatively, one can calculate∫ L

−L

dx3

4π
√
x21 + x22 + x23

=
1

2π
log

1√
x21 + x22

+ log 2L+ o(1), L→ ∞

and subtract the constant log(2L) as L → ∞ to recover the 2d fundamental solution
G2(x1, x2) =

1
2π

log 1√
x21+x

2
2

.
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tion u(x), sometimes referred to as a columnar vortex is quite interesting, in
spite of its apparent simplicity. For example, just as we looked at the lineariza-
tion of the compressible Euler equations around the trivial solution (0, ρ0) in
lecture 5 and obtained the wave equation (5.27), we can linearize the incom-
pressible Euler equation about a smooth columnar vortex solution u(x) above,
and obtain a linear equation for the perturbations. At this point we will not
pursue this calculation (made first by Kelvin in 1880 86), but we can mention
that the linear equation for the perturbation is more complicated than the wave
equation and shows the possibility of various types of “vibrations” of the vor-
tex and “wave-like” disturbances propagating away from the vibrating vortex,
at various speeds. Some of the complexity of the behavior of solutions 3d in-
compressible Euler is revealed already at this linearized level. In fact, some
important natural questions about this linearized system remain open to this
date. We may revisit this topic later, but today we will look at different solution
obtained by a more serious modification of the columnar vortex.

Let us denote

Γ =

∫
ω(x1, x2) dx1 dx2 , (16.3)

which can be thought of as the strength of the vortex. If we shrink the support
of ω to one point (e. g. as in (15.6)), we get a limiting solution which can be
though of as solution in which the vorticity is concentrated in a line, which
in our case here coincides with the x3-axis. In analogy with the picture of an
electric wire we discussed in lecture 9, we can imagine that all the “current”
represented by ω passes through an infinitely thin wire represented by the line.

What happens when we change the line in this picture to a closed curve? Let
us consider a closed smooth curve

γ : [0, L]→ R3, γ(0) = γ(L) . (16.4)

We assume that the curve has no self-intersections and that it is parametrized by
length, i. e. |γ′(s)| = 1. Let us now think of a “vorticity current” of strength Γ
passing through the curve γ. (We can think in terms of formula (9.9) in lecture
9 and the limit case ε → 0.) The velocity field generated by the “vorticity
current” of strength Γ in the curve γ is given by the Biot-Savart law:

u(x) =

∫ L

0

K(x− γ(s))× γ′(s) ds = 1

4π

∫ L

0

γ(s)− x
|γ(s)− x|3

× γ′(s) ds . (16.5)

In analogy with the 2d point vortices we discussed in the last lecture, it is natural
to study the velocity field u(x) near the curve γ. Let us consider a point x which
is close to the curve γ, at distance r > 0 from in, say, with r small. It is not
hard to see from the expression (16.5) that for r → 0 the magnitude |u(x)| of
the velocity field at x grows as ∼ 1

r , similarly to what we have in the case of a
rectilinear vortex. In the case of the rectilinear vortex the velocity field does not

86Lord Kelvin, Vibration of a columnar vortex, Philos. Mag. 10: 155, 1880.
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move the vortex. The fluid circulates around it at high speed, but the line of the
vortex itself is not moved. In some sense, the velocity at the line itself vanishes,
and the rectilinear vortex is at rest. How does this picture change when the line
of the vortex is bent? The precise calculation is not quite easy, due to the fact
that it is more or less clear that, similarly to the rectilinear case, the trajectories
of the velocity field circle around the vortex curve and “at the leading order”
do not seem to move it. The difficulty of course is that the velocity field u(x)
does not really have a well-defined limiting value as x approaches the curve γ.
Strictly speaking, for x ∈ γ the value u(x) is not well-defined.

The correct solution of this problem consist in regularising the curve into a
smooth vector field ω (e. g. by using formula (9.9)) calculating the velocity
field across the support of ω, and isolating the part of the velocity field which
“moves ω”. Such calculations were done still in the 1860s by Kelvin, although
a fully rigorous justification was achieved only much later.87

Here we do only a rough (and not quite rigorous) calculation, which nevertheless
gives some idea about what one can expect. We will attempt to calculate the
value u(x) for x ∈ γ. For this purpose we will assume that the surve γ is
parametrized by a length parameter s ∈ [−L/2, L/2), with

γ(0) = 0, γ′(0) = e1, γ′′(0) = κe2 , (16.6)

where κ denotes the curvature of the curve at x = 0, and e1 = (1, 0, 0), e2 =
(0, 1, 0). These assumptions can be made without loss of generality, as the
general case can be reduced to the one above by a suitable choice coordinates. 88

The Biot-Savart law (16.5) gives the following formal expression for u(0)

u(0) =
Γ

4π

∫ L/2

−L/2

γ(s)× γ′(s)
|γ(s)|3

ds . (16.7)

Let us take some small (but fixed) number l > 0 and split the integral (16.7) as∫ L/2

−L/2
. . . ds =

∫
|s|>l

. . . ds+

∫ l

−l
. . . ds . (16.8)

It is clear that the contribution from the integral
∫
|s|>l . . . ds (which is clearly

well-defined) is a bounded vector. To calculate the integral
∫ l
−l . . . ds with a

precision up to a well-defined bounded vector, it is clearly enough to consider
the first two non-zero terms of the Taylor expansion of γ as s = 0,

γ(s) ∼ se1 +
1

2
κs2e2 (16.9)

87See, for example, Fraenkel, L.E., On Steady Vortex Rings of Small Cross Section in an
Ideal Fluid, Proc. of the Royal Society of London, Series A, Vol. 316, No. 1524 (1970), 29-62.

88We recall that when we parametrize a curve by length, then |γ′(s)|2 = γ′(s) γ′(s) = 1,
and this implies that γ′(s) γ′′(s) = 0.
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With these approximations we can write

u(0) =
Γ

4π

∫ l

−l

(se1 +
1
2κs

2e2)× (e1 + κse2)

|s|3
+ Γ [a well-defined bounded vector]

(16.10)
We have

(se1 +
1

2
κs2e2)× (e1 + κse2) =

1

2
κs2e3 , (16.11)

and therefore

u(0) =
Γ

4π
κe3

∫ l

−l

ds

2|s|
+ Γ [a well-defined bounded vector] . (16.12)

The integral in (16.12) is of course divergent (and equal +∞), suggesting that
an infinitely thin vortex filament with some curvature will try move at an infi-
nite speed, which means that the motion of such a filament is not really well-
defined. 89 We therefore have to replace the infinitely thin filament by a filament
of a small but finite radius which we will denote by ε > 0. We can then write,
with some approximation

u(0) =
Γ

4π
κe3

∫ l

10ε

ds

s
+ Γ [a well-defined bounded vector] , (16.13)

as the contribution from the integration
∫ 10ε

−10ε
. . . ds is replaced by∫

|y|≤10ε

y × ωε(y)
|y|3

dy , (16.14)

where ωε is the vector field obtained by a regularization of the current thought
γ, e. g. by formula (9.9). Now the integrant in (16.14) can still be of size ε−4 (as
one can see from (15.6), for example) and we integrate over an area of volume
ε3, so there is still potential for divergence. However, we note that the ε−1 part
of the integral vanishes, due to cancelations between the contributions from y
and −y. So our final conclusion is that

u(0) =
Γ

4π
κe3 log

l

ε
+ Γ [a well-defined bounded vector] . (16.15)

We see that the velocity of the filament will be large for small ε, as we already
expect. The [well-defined bounded vector] from (16.15) is not easy to determine
exactly, but we can remove this term by considering the limiting regime of weak
filaments. A weak filament is a filament with a small total flux of vorticity Γ.
If we choose Γ = Γε so that

Γ

4π
log

l

ε
= 1 (16.16)

89Note however that the divergence is quite mild. The Biot-Savart kernel K(x) is −2-
homogeneous, and if it were −2+ε homogeneous for some ε > 0, the integral we would obtain
in place of (16.12) would be convergent.
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we see that the second term on the right-hand side of (16.15) converges to 0 as
ε→ 0, and in the limit ε→ 0 we can then write

u(0) = κe3 . (16.17)

Now in the coordinate choice given by (16.6) the vector e3 coincides with the
binormal90 b of the curve γ at the point x = 0. The above calculation applies
to every point of the curve and therefore we see that the weak vortex filaments
normalized by (16.16) should move by

u(x) = κ(x)b(x), x ∈ γ , (16.18)

where κ(x) is the curvature of γ at x and b(x) is the binormal vector of γ at
x. It turns out that equation (16.18) (which was during the last 100 years or so
derived independently several times by various authors,91 and is called binor-
mal curvature flow) has remarkable properties. It turns out to be completely
integrable and equivalent to the cubic non-linear Schrödinger equation.92 Our
derivation above was not very rigorous. One can do more careful calculations,
but it remains an open problem if the 3d Euler equation has solutions which
would “shadow” the solutions of (16.18). (This can only be viable as long as
the solutions of (16.18) exist as embedded curves.) We should emphasize that
this can be possible only in the limit of weak vortex filaments, the behavior of
vortex filaments of a finite strength is not really compatible with (16.18), due
to effects such as vorticity stretching (which we discussed in lecture 13).

90given by b = [tangent]×[normal]
91See, for example,
L. S. Da Rios, Sul moto di un filetto vorticoso di forma qualunque, Rend. del Circolo Mat.

di Palermo 22 (1906), 117135 and 29 (1910), 354-368.
Arms, R.J., Hamma, F.R., Localized-induction concept on a curved vortex and motion of

an elliptic vortex ring, Phys. Fluids 8, 553–559, 1965
92See H. Hasimoto, A Soliton on a vortex filament, Journal of Fluid Mechanics, Volume 51,

Issue 03, pp 477 – 485, 1972.
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17.1 Axi-symmetric solutions

We will now look at a special class of solutions where some of the calculations
from the last lecture can be done in more detail.

We say that a vector field u in R3 is axi-symmetric if in a suitable Cartesian
coordinate frame x1, x2, x3 we have

u(Rx) = Ru(x) (17.1)

for each x ∈ R3 and each rotation R about the x3 axis.

If u(x, t), p(x, t) is a smooth solution of Euler’s equation in R3 × [0, T ) with
u(x, 0) = u0(x), then it is easy to see that ũ(x, t) = Ru(R−1x, t), p(R−1x, t) is a
solutions of Euler’s equation with ũ(x, 0) = Ru0(R

−1x), and therefore we expect
that the class of axi-symmetric vector fields is preserved under the evolution by
Euler’s equations.93 Strictly speaking, to prove this rigorously we need to apply
some uniqueness result about the solutions of Euler’s equations, such as the
Theorem in lecture 13, and therefore some assumptions are needed.94 At this
stage we will not go into technicalities concerning this point and we will take
for granted that axi-symmetric initial data lead to an axi-symmetric solution.

We recall that the cylindrical coordinates r, θ, z are given by

x1 = r cos θ, x2 = r sin θ, x3 = z . (17.2)

We consider the natural orthogonal frame er, eθ, ez in these coordinates, where
the cartesian coordinates of the vectors er, eθ and ez are given by

er = (
x1
r
,
x2
r
, 0), eθ = (−x2

r
,
x1
r
, 0), ez = (0, 0, 1) , r =

√
x21 + x22 .

(17.3)
In the cylindrical coordinates we will write

u = u(r) er + u(θ) eθ + u(z) ez , (17.4)

and – if there is no danger of confusion – also

u =

 u(r)

u(θ)

u(z)

 , (17.5)

93Here we have in mind the incompressible Euler equation, but the statement remains true
also for the compressible equations, with the obvious requirement that the initial density
should also be axi-symmetric.

94For example, we can assume that we work in the class of solutions with fast decay of
vorticity as x→ ∞.
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or
u = (u(r), u(θ), u(z)) . (17.6)

A field of the form (17.4) is axi-symmetric if the coordinates u(r), u(θ), u(z)

depend only on r, z and not on θ, i. e.

u(r) = u(r)(r, z), u(θ) = u(θ)(r, z), u(z) = u(z)(r, z) . (17.7)

The component u(θ) of u is called the swirl, and the field (17.7) with u(θ) = 0
are called axi-symmetric fields with no swirl. An axi-symmetric u = u(x) has
no swirl if and only if any plane containing the x3-axis is invariant under the
flow of u.

We note that for smooth axi-symmetric solutions we can apply Kelvin’s Circu-
lation Theorem (lecture 9) to see that the quantity ru(θ)(r, z) is conserved along
particle trajectories under the evolution by Euler’s equation. In particular, the
condition of “no swirl” is conserved under the evolution by Euler’s equation,
under quite general assumptions.

In what follows we will always assume that the components v(r), v(θ), v(z) of all
the vector fields depend only on r and z. We will not consider any fields with
the components in the cylindrical coordinates depending on θ.

We recall some simple formulae. The equation ω = curlu for a axi-symmetric
vector field u with no swirl looks in the cylindrical coordinates as follows:

curl

 u(r)

0
u(z)

 =

 0

−u(z),r + u
(r)
,z

0

 =

 0
ω(θ)

0

 . (17.8)

For a vector field A = A(θ)(r, z) eθ we have

curlA = curl

 0
A(θ)

0

 =

 −A(θ)
,z

0
1
r (rA

(θ)),r

 . (17.9)

We see that the operation v → curl v takes the axi-symmetric fields with no swirl
to the axi-symmetric fields of the form w(θ)(r, z) eθ (which can be considered
as “pure swirl” axi-symmetric fields) and vice versa. It is worth noting the
similarity of (17.8) with the formula (in cartesian coordinates)

curl

 u1(x1, x2)
u2(x1, x2)

0

 =

 0
0

u2,1(x1, x2)− u1,2(x1, x2)

 =

 0
0

ω(x1, x2)


(17.10)

and the similarity of (17.9) with the formula (in cartesian coordinates)

curl

 0
0

A3(x1, x2)

 =

 A3,2(x1, x2)
−A3,1(x1, x2)

0

 . (17.11)
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The equation div u = 0 for an axi-symmetric field u with no swirl is

div

 u(r)

0
u(z)

 =
1

r
(ru(r)),r + u(z),z = 0 . (17.12)

This can be written as
(ru(r)),r + (ru(z)),z = 0 . (17.13)

Just as in (14.7) and (14.8) this means that

ru(r) = −ψz, ru(z) = ψ,r , (17.14)

for a suitable function ψ = ψ(r, z). In other words, u(r)

0
u(z)

 =

 −ψ,z

r
0
ψ,r

r

 = curl

 0
ψ
r
0

 . (17.15)

The function ψ(r, z) is called the stream function (for the axi-symmetric flow
with no swirl), and similarly to the 2d situation in lecture 14, the level sets
{ψ = const.} are the integral lines of the vector field u (in any of the planes
θ = const .) Combining (17.8) and (17.15) we obtain an expression for ω(θ) in
terms of ψ, which can be thought of of an analogue of formula (14.16):

ω(θ) = −
(
ψ,r
r

)
,r

− ψ,zz
r

= −ψ,rr
r

+
ψ,r
r2
− ψ,zz

r
. (17.16)
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18.1 Hill’s spherical vortex

We first write the incompressible Euler equation for axi-symmetric solutions in
the cylindrical coordinates. The equation of continuity div u = 0 is

(ru(r)),r
r

+
u
(θ)
,θ

r
+ u(z),z = 0 (18.1)

and the equations (5.16) (when f = 0 and ρ0 = 1) are

u
(r)
,t + (u∇)u(r) − (u(θ))2

r
+ p,r = 0 (18.2)

u
(θ)
,t + (u∇)u(θ) + u(r)u(θ)

r
+
p,θ
r

= 0 (18.3)

u
(z)
,t + (u∇)u(z) + p,z = 0 , (18.4)

where we use the notation

(u∇)h = u(r)h,r + u(θ)
h,θ
r

+ u(z)h,z (18.5)

for any scalar function h. As an exercise, you should analyze where the various
terms in this system come from. Note for example that (18.2)– (18.4) only

differs from the equations in cartesian coordinates by the term − (u(θ))2

r in the

first equation and the term u(r)u(θ)

r in the second equation. There is also the

difference that the derivative in the direction eθ is ∂
r∂θ and not just ∂

∂θ , which
is however natural since we normalize the vector eθ to unit length. For axi-
symmetric vector fields with no swirl we have u(θ) = 0 and all the quantities
depend only on r and z. In this case the system simplifies to

u
(r)
,t + u(r)u(r),r + u(z)u(r),z + p,r = 0 (18.6)

u
(z)
,t + u(r)u(z),r + u(z)u(z),z + p,z = 0 , (18.7)

together with the equation of continuity

(ru(r)),r
r

+ u(z),z = 0 . (18.8)

Recalling formula (17.8), we obtain from (18.6)– (18.8)(
ω(θ)

r

)
,t

+ u(r)
(
ω(θ)

r

)
,r

+ u(z)
(
ω(θ)

r

)
,z

= 0 . (18.9)
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This means that the quantity ω(θ)

r moves with the flow. The situation is al-
most the same as in dimension two, where (the scalar) ω moves with the flow.
Equation (18.9) can also be understood from the Helmholtz law that vortic-
ity moved with the flow. The volume of the domain in R3 described by the
coordinates (r′, θ′, z′) with r ≤ r′ ≤ r + dr, θ′ ∈ [0, 2π), z ≤ z′ ≤ z + dz is
2πrdrdz. The vorticity field ω at each point is a multiple of eθ, and the La-
grangian map ϕt preserves the volume and satisfies ϕt(Rx) = Rϕt(x) for all
rotations R about the x3−axis. Putting these constraints together, we see that

the Helmoltz law (7.13) implies that ω(θ)

r moves with the flow, which gives an-
other confirmation of (18.9). Note that when a fluid particle moves from small
radii to large radii in this setting, we will observe some stretching of vorticity,
as discussed in lecture 13.

We will now consider solutions of (18.9) which are independent of time (steady
solutions). Recalling the definition of the stream function (17.15) together with
equation (17.16), we see that a steam function ψ = ψ(r, z) defines a steady
solution of (18.9) if and only if the quantity

ω(θ)

r
= −1

r

(
ψ,r
r

)
,r

− ψ,zz
r2

= −ψ,rr
r2

+
ψ,r
r3
− ψ,zz

r2
. (18.10)

is constant along the streamlines

ψ = const. (18.11)

We will use the notation
R =

√
r2 + z2 . (18.12)

We now consider a ball Ba of radius a centered at the origin. Let

Ωa = R3 \Ba , (18.13)

where Ba denotes the closure of Ba.

Let us first consider a potential flow in Ωa with velocity tangent to ∂Ωa and
∂Ωa and U = (0, 0,−V ) with V > 0 as x → ∞. By Problem 2 of homework
assignment 1 we know that the potential h of this flow is

h(x) = (Ux)

(
1 +

a3

2R3

)
= (Ux)

(
1 +

a3

2(r2 + z2)
3
2

)
. (18.14)

the velocity field in Ωa is given by

u = ∇h . (18.15)

Clearly the flow is axi-symmetric with no swirl in Ωa and therefore it must be
given by a stream function ψ = ψ(r, z), see (17.15). As an exercise you can
calculate the stream function, starting from (18.14) and (18.15). The result is

ψ = −1

2
V r2(1− a3

R3
) . (18.16)

88



Note that ψ < 0 in Ωa with the exception of the x3-axis (where ψ = 0) and
ψ = 0 at the boundary of Ωa. You can also check that formula (18.10) gives
ω(θ) = 0 in Ωa, as it should be the case.

To the steady flow (18.16) in Ωa we now try to match a steady flow in Ba, with
the same velocity at ∂Ba as that of (18.16). As we have seen, in a steady flow
the quantity (18.10) must be constant along the streamlines ψ = const. and the
simplest way to achieve that is to have (18.10) constant everywhere in Ba. In
other words, we would like to have

−ψ,rr +
ψ,r
r
− ψ,zz = Cr2 in Ba , (18.17)

for some C ∈ R. To be able to match the solution to the solution (18.16) in Ωa,
the boundary ∂Ba should be a streamline (in the r, z-plane), and therefore we
complement (18.17) by the boundary condition

ψ|∂Ba = 0 . (18.18)

It turns out the solution to (18.17), (18.18) can be written down explicitly:

ψ(r, z) = Ar2(1− R2

a2
) , A =

Ca2

10
. (18.19)

The functions (18.19) and (18.16) both vanish at ∂Ba. Can we choose the
constant A so that the gradients of the functions on ∂Ba coincide? From the
specific form of the functions we see that a necessary and sufficient condition
for this is

d

dR
|R=a A(1−

R2

a2
) =

d

dR
|R=a −

1

2
V (1− a3

R3
) . (18.20)

A straightforward calculation now gives

A =
3

4
V . (18.21)

Hence the function

ψ(r, z) =


−1

2V r
2(1− a3

R3 ) , R ≥ a

3
4V r

2(1− R2

a2 ) , R < a ,

(18.22)

represents a steady solution with a continuous velocity field. The vorticity is
discontinuous across the boundary ∂Ba. This solution is called Hill’s vortex.95

If we change coordinates so that the fluid at x → ∞ is at rest, we see that
the solution represents a spherical axi-symmetric vortex (with no swirl) moving
through an otherwise vorticity-free fluid at constant speed V . The vortex carries
with it the fluid within the sphere, the fluid outside the sphere does not travel
with the vortex, its motion is the same as if the vortex was replaced by a sphere.

95Hill, M. J. M., Phil. Trans. Roy. Soc. London, A, Vol. 185, p. 213, 1894.

89



Hill’s vortex can be thought of as an limiting case of a “vortex ring” solution. A
typical vortex ring solution is also axi-symmetric with no swirl and consists of a
vorticity area of a shape of a solid torus traveling along the x3-axis. Existence of
such solutions has been proved rigorously.96 One extreme case of such solutions
would be when the vorticity is supported at a circle obtained by rotating a point
about the x3 axis, but – as we have already seen in lecture 16 – such a circle with
a non-zero “vorticity current” would have to move at infinite speed, and hence
does not really exists as a solution. However, there are solutions “nearby”, when
the circle is modified to have a non-zero thickness, see the paper by Fraenkel
mentioned in a footnote in lecture 16. If we imagine deforming a solid torus into
a ball from which a very thin tube about the x3-axis was removed, and then
taking the radius of the removed tube to zero, we can think of Hill’s vortex as
such a limiting case. Solutions in a neighborhood of Hill’s vortex have been also
studied.97

96Fraenkel, L. E., Berger, M. S., A global theory of steady vortex rings in an ideal fluid,
Acta Math. 132 (1974), 13-51.

97Amick, C. J., Turner, R. E. L., A global branch of steady vortex rings. J. Reine Angew.
Math. 384 (1988), 1-23.
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19

10/26/2011

19.1 Vortex rings - some calculations

We now revisit the calculations we did in lecture 16 in the special case of vor-
tex rings. We consider a vorticity field ω(x) in R3 which is expressed in the
cylindrical coordinates as

ω = ω(θ)(r, z)eθ = ω(θ)(r, z)

 − sin θ
cos θ
0

 . (19.1)

We assume that in the (r, z) coordinate domain r ≥ 0, z ∈ R the support
of the function ω(θ)(r, z) is located in a small disc Oε of radius ε centered at
(r0, z0) with r0 > 0. Such a vorticity field represents a vortex ring of radius
approximately r0, thickness 2ε, and the strength of the “vortex current”

Γ =

∫
ω(θ)(r, z) dr dz . 98 (19.2)

From formula (16.15) we expect that the evolution by Euler’s equation will
result in the ring moving up along the x3-axis at speed which is given, modulo
a bounded error, by Γ

4πr0
log l

ε , where l is some fixed length (roughly of order

r0).
99 However, the derivation of (16.15) was really rigorous. We will now

indicate how one can carry out a more careful calculation. Similar calculations
are classical, going back to a 1867 note by Kelvin, with later contributions by
many other authors, see for example the 1969 paper by Fraenkel cited in a
footnote in lecture 16.

Let u be the velocity field given by ω by the Biot-Savart law (10.12) and let A be
the vector potential of u, given by (10.14). We know from lecture 17 (see (17.9)
and (17.15)) that for axi-symmetric fields u with no swirl the potential A is
related to the axi-symmetric stream function ψ by

A =

 0
A(θ)

0

 =

 0
ψ
r
0

 . (19.3)

To calculate A, it is enough to evaluate A(θ) at the points x with cylindrical
coordinates (r, 0, z) . We will use formula (10.14), i. e. (in cartesian coordinates)

A(x) =

∫
R3

ω(y)

4π|x− y|
dy . (19.4)

98Note that we also have Γ =
∮
C u(r) dr + u(z) dz where u is the velocity field generated

by ω and C is any curve encircling the support of ω(θ)(r, z) once in the clock-wise direction.
99In fact, the more precise calculation we will outline shows that one should take l = 8r0.
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Letting (r′, θ′, z′) be the cylindrical coordinates of y, by elementary trigonometry
we can write

|x− y| =
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2 . (19.5)

Hence (19.4) can be written as

A(x) =

∫ ∞

−∞

∫ ∞

0

∫ 2π

0

ω(θ)(r, z)

4π
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

 − sin θ′

cos θ′

0

 r′dθ′ dr′ dz′ .

(19.6)
We let

A(r, r′; z, z′) =
∫ 2π

0

r′

4π
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

 − sin θ′

cos θ′

0

 dθ′ .

(19.7)
Clearly ∫ 2π

0

r′ sin θ′ dθ′√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

= 0 (19.8)

and therefore we have

A(r, r′, z, z′) =

 0
A(θ)(r, r′, z, z′)

0

 , (19.9)

with

A(θ)(r, r′, z, z′) =

∫ 2π

0

r′ cos θ′ dθ′

4π
√
r2 − 2rr′ cos θ′ + r′2 + (z − z′)2

. (19.10)

Hence we have
A(x) = A(θ)(r, z)eθ(x) , (19.11)

with

A(θ)(r, z) =

∫ ∞

−∞

∫ ∞

0

A(θ)(r, r′, z, z′)ω(θ)(r′, z′) dr′ dz′ . (19.12)

The axi-symmetric stream function ψ(r, z) of the field u is then, from (19.3),

ψ(r, z) =

∫ ∞

−∞

∫ ∞

0

rA(θ)(r, r′, z, z′)ω(θ)(r′, z′) dr′ dz′ . (19.13)

Defining a differential operator L by

Lψ = −ψ,rr
r

+
ψ,r
r2
− ψ,zz

r
(19.14)

and recalling from lecture 17 (see (17.16)) that

Lψ = ω(θ) , (19.15)
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we see that formula (19.13) inverts the operator L (with certain natural bound-
ary conditions given by our setup), and hence the function rA(θ)(r, r′, z, z′) is
really the Green function of the operator L. We now express A(θ)(r, r′, z, z′)
somewhat more explicitly. Let us set

r − r′

r′
= x,

z − z′

r′
= y (19.16)

Then

A(θ)(r, r′, z, z′) =
1

2π
√
1 + x

∫ π

0

cos θ′ dθ′√
2(1− cos θ′) + x2+y2

1+x

(19.17)

Letting

F (s) =

∫ π

0

cos θ dθ√
2(1− cos θ) + s

, (19.18)

we can write

A(θ)(r, r′, z, z′) =
1

2π
√
1 + x

F

(
x2 + y2

1 + x

)
. (19.19)

Substituting for x, y from (19.16), we see that the Green function for the oper-
ator L above is

rA(θ)(r, r′, z, z′) =

√
rr′

2π
F

(
(r − r′)2 + (z − z′)2

rr′

)
(19.20)

and the stream function ψ(r, z) is given by

ψ(r, z) =

∫ ∞

−∞

∫ ∞

0

√
rr′

2π
F

(
(r − r′)2 + (z − z′)2

rr′

)
ω(θ)(r′, z′) dr′ dz′ . (19.21)

The velocity field u will now be given by (17.15).

The function F cannot be expressed in terms of elementary functions, but it
can be expressed in terms of certain classical special functions known as the
complete elliptic integrals. These are defined as

K(k) =

∫ π
2

0

dφ√
1− k2 sin2 φ

, E(k) =

∫ π
2

0

√
1− k2 sin2 φdφ , (19.22)

and they were studied in much detail during the 19th century.100 In the classical
monograph “Hydrodynamics” by Horace Lamb (Cambridge 1932), Art. 161 you

100The subject of elliptic functions is an important classical area. The name “elliptic” comes
from their appearance in integrals expressing the length of an arc of an ellipse. However, their
“real significance” is in their connection to the cubic curves (also called “elliptic curves”).
See for example the book “Elliptic Functions” by K. Chandrasekharan (1985), or “Elliptic
Function” by A. Caley (1895). Much of modern research in this area is related to the number-
theoretic aspects of the corresponding curves.
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can find several ways to express ψ in (19.21) in terms of K and E, including a
formula due to Maxwell (who studied it in connection with magnetic fields).

Here we will only derive a few important properties of F which can be obtained
by simple calculations. Setting φ = θ

2 and using cos θ = cos2 φ−sin2 φ in (19.18),

F (s) =

∫ π
2

0

1− 2 sin2 φ√
sin2 φ+ σ2

dφ , σ2 =
s

4
, (19.23)

or

F (s) =

∫ π
2

0

1 + 2σ2√
sin2 φ+ σ2

dφ− 2

∫ π
2

0

√
sin2 φ+ σ2 dφ , σ2 =

s

4
. (19.24)

The leading term in the expression (19.4) as s→ 0 is

f(σ) =

∫ π
2

0

dφ√
sin2 φ+ σ2

. (19.25)

Clearly f(σ)→ +∞ as σ → 0. To obtain a more precise estimate, we write

f(σ) =

∫ π
2

0

cosφdφ√
sin2 φ+ σ2

+

∫ π
2

0

(1− cosφ) dφ√
sin2 φ+ σ2

. (19.26)

The first integral in (19.26) can be written as∫ 1

0

dt√
t2 + σ2

=

∫ 1
σ

0

dt√
t2 + 1

= log
1

σ
+log(1+

√
1 + σ2) = log

1

σ
+log 2+O(σ2) , σ → 0 .

(19.27)
The second integral in (19.26) can be approximated as∫ π

2

0

1− cosφ

sinφ
dφ+O(σ2 log

1

σ
) = log 2 +O(σ2 log

1

σ
) , σ → 0 . (19.28)

For the second integral in (19.24) we can write∫ π
2

0

√
sin2 +σ2 dφ = 1 +O(σ2 log

1

σ
) . (19.29)

Hence we have

F (s) =
1

2
log

1

s
+ log 8− 2 +O(s log

1

s
) , s→ 0+ . (19.30)

Moreover, the estimate for F ′(s) obtained by formally taking a derivative of (19.30)
is also correct.101

101In fact, it is not hard to check that one has an expansion

F (s) =

(
log

1

s

)(
a0 + a1 s+ a2s

2 + . . .
)
+

(
b0 + b1 s+ b2s

2 + . . .
)
. (19.31)

The above calculation determines a0 = 1
2
and b0 = log 8− 2. Similar calculations “by hand”

can be done to determine higher order terms, if necessary. The expansion can also be obtained
from the theory of the elliptic integrals (19.22).
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With these approximations for F , one can now go back to (19.21) and use
it when ω(θ) is approximately uniformly distributed of the disc Oε. In view

of (18.9), the most natural ω(θ) considered in Oε is such that ω(θ)

r is constant.
With some additional work we get a formula for the speed of propagation of the
vortex ring obtained by Kelvin in 1867:

V =
Γ

4πr0

(
log

8r0
ε
− 1

4

)
+ o(ε) , ε→ 0+ . (19.32)

It should be emphasized that the solutions we have considered do not really
precisely keep their shape as they move, the o(ε) part of the velocity field can in
general slightly change the shape of the vortex (while keeping all the conserved
quantities constant, of course). One can however construct precise vortex ring
solutions which solve Euler’s equations and are exactly translated along the x3
axis at constant speed, see for example the paper of Fraenkel we quoted in a
footnote in lecture 16.

95



20
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20.1 Some general properties of Euler steady-states

i) Natural appearance of tori102

Let u be a steady-state solution103 of the incompressible Euler equations (5.16)
in R3 with zero forcing term (f = 0). We assume that the density ρ0 of the fluid
is constant. We will assume (without loss of generality) ρ0 = 1. As usual, we
denote by ω the vorticity field, i. e. ω = curlu. One useful form of the equation
for the steady-state follows from (7.6):

∇
(
|u|2

2
+ p

)
= u× ω . (20.1)

Another useful form follows from (7.13)

[u, ω] = 0 . (20.2)

Both these equations can give some insights into the structure of the steady
state solutions. Let us first look at (20.1). We will use the notation

H =
|u|2

2
+ p . (20.3)

This is the “Bernoulli quantity” (which becomes ρ0
|u|2
2 + p if we “restore” ρ0).

As (u × ω)u = 0 and (u × ω)ω = 0, we see from equation (20.1) that H is
constant along the particle trajectories and along the vorticity lines.

Let us consider a situation when

H → c0 as x→∞ (20.4)

for some constant c0. Let J be the range of the function H. Under the assump-
tion (20.4) the set J is a bounded interval, non-trivial when H is not identically
constant. Let us consider the level sets

Σc = {x ∈ R3, H(x) = c} . (20.5)

By Sard’s theorem, for almost every c ∈ J the set Σc has the property that

∇H(x) ̸= 0, x ∈ Σc . (20.6)

102See
Arnold, V., I., On the topology of three-dimensional steady flows of an ideal fluid. Prikl.

Mat. Meh. 30 183–185 (Russian); translated as J. Appl. Math. Mech. 30 1966 223-226.
103As usual, a steady-state solution is a solution which does not depend on the time t. In
other words u = u(x), p = p(x).
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Let us denote by Jreg the set of such c, and let us also denote J ′
reg = Jreg \ {c0}

Assuming the solution u, p is smooth, we see that for each c ∈ J ′
reg the set Σc

is a compact smooth oriented surface (with possibly more than one connected
component). At each point x ∈ Σc the vector fields u and ω are tangent to
Σc and hence can be considered as vector fields on Σc. From (20.2) and the
condition ∇H ̸= 0 in Σc we see that u and ω form a basis of the tangent
space of Σc at each point of Σc. The only connected orientable compact two-
dimensional manifold for which such fields can exist is the torus. Hence, under
our assumptions, each connected component of Σc is a torus. The tori will
be invariant under the flow generated by u and also under the flow along the
vorticity lines given by ω. Equation (20.2) gives us another look at the situation.
Let ϕt be the flow generated by u and let ψs be the flow generated by ω. The
condition [u, ω] = 0 means that the two flows commute: ϕtψs = ψsϕt, see (6.17).
Let us take x ∈ Σc and consider the map

ϑ : R2 → Σc , ϑ(s, t) = ψsϕt(x) . (20.7)

Clearly ϑ is locally a diffeomorphism, and therefore globally is has to be a
covering of Σc. Moreover, the set

Λ = {(s, t) ∈ R2 , ϑ(s, t) = x} (20.8)

is a discrete subgroup of R2 and

Σc ∼ R2/Λ . (20.9)

Since Σc is compact, we see that Λ has to be a lattice of rank two, and (20.9)
gives another confirmation that Σc is a torus. Moreover, we see that the map ϑ
provides coordinates on the torus in which the flow by both u and ω is linear.
The reader can identify the corresponding tori in the Hill’s vortex we considered
in lecture 18. (Note that in the region where the vorticity vanishes the function
H is constant. Therefore in the case of the Hill’s vortex the above picture holds
only in the ball Ba where the vorticity does not vanish.) For the axi-symmetric
flows without swirl the flow on the tori will be quite special and all the integral
lines of u and ω will be closed. This may no longer be the case for more general
flows, such as axi-symmetric flows with swirl, where the flow of u or ω can
resemble a flow on R2/Z2 generated by a vector with an irrational slope.

The above picture is smoothly deformed as we move c in J ′
reg.

(ii) A variational characterization104

Let us consider a smooth vorticity field ω0 in R3. We can assume that ω0 is
compactly supported.

104See Arnold, V. I., Sur la géométrie différentielle des groupes de Lie de dimension infinie
et ses applications à l’hydrodynamique des fluides parfaits, Ann. Inst. Fourier (Grenoble) 16
1966 fasc. 1, 319-361.

This paper contains many more results. We will study some of them in more detail later.
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If ω0 evolves as ω(x, t) according to Euler’s equation (7.12), with u(x, t) deter-
mined by the Biot-Savart law (10.12), we know from Helmholtz’s law (lecture 7)
that the field ω(x, t) will stay in the set

Oω0 = {ϕ∗ω0 , ϕ : R
3 → R3 is a volume-preserving diffeomorphism} (20.10)

We could impose some conditions on the behavior of ϕ as x→∞ to make the set
Oω0 smaller, but this will not be important for our purpose at the moment. The
sets Oω0 can be viewed as orbits of the natural action of the volume-preserving
diffeomorphism groups on the vorticity fields.

Let us now think as if the function spaces were finite-dimensional, ignoring at
first the considerable complications due to infinite dimensions.105

Let us pretend that Oω0 are submanifolds of the space of all “suitable” vorticity
fields. (We can consider all compactly supported smooth div-free fields, for
example.)

To each (smooth, compactly supported) vorticity field ω we can associate its
energy by

E(ω) =

∫
R3

1

2
|u|2 dx , (20.11)

where u is obtained from ω by the Biot-Savart law (10.12).

We now prove the following important fact:

Proposition 1

Let ω be a compactly supported (or sufficiently fast decaying) smooth vorticity
field (and hence div-free). Then ω is a steady-state solution of incompressible
Euler’s equation if and only if it is a formal critical point of the energy E
restricted to the orbit Oω.
The word “formal” is used to emphasize that the orbit Oω is not really a sub-
manifold of the space of all relevant vorticity fields.

Proof

We first identify the formal tangent space to Oω at ω. This is given by all
(smooth) vector fields of the form

d

dt
|t=0 ϕ

t
∗ω , (20.12)

where ϕt is a flow generated by a div-free field ξ (via d
dtϕ

t(x) = ξ(ϕt(x))). This
is the same as all (smooth) vector fields of the form

[ξ, ω] , (20.13)

105In the case of Euler’s equations in dimension three these complications are particularly
severe.
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where ξ runs through the smooth vorticity fields with the required decay. Now
the condition that ω be a formal critical point of the restriction of the energy
functional E to the orbit Oω is that

d

dt
|t−0E(ω + t[ξ, ω]) = 0 (20.14)

for each smooth div-free field ξ with sufficiently fast decay. To calculate the
derivative in the last expression, it is useful to use the vector potential A of u
given by (10.13), (10.14). Let us denote

u̇ =
d

dt
|t=0 u(ω+ t[ξ, ω]), Ȧ =

d

dt
|t=0 A(ω+ t[ξ, ω]) A = A(ω ), u = u(ω) .

(20.15)
where u(ω) denotes the velocity field corresponding to ω (via the Biot-Savart
law), and A(ω) the the velocity vector potential corresponding to ω (via (10.14)).
Then, by integration by parts,

d

dt
|t=0E(ω + t[ξ, ω]) =

∫
R3

1

2
(Ȧ ω +A [ξ, ω]) =

∫
R3

A [ξ, ω] dx . (20.16)

We next calculate∫
R3

A [ξ, ω] dx =

∫
R3

1

2
curl(A× ω) ξ dx =

∫
R3

1

2
(u× ω) ξ dx. (20.17)

If the last integral vanishes for each smooth compactly supported div-free field
ξ, it means that

u× ω = ∇h (20.18)

for some scalar function h and we see that u solves (20.1) for a suitably chosen p.
Vice versa, if u solves (20.1), the same calculation shows that ω is a formal
critical point of the functional E restricted to the orbit Oω, and the proof of
Proposition 1 is finished.

Proposition 1 explains at a heuristic level many features of the set of steady
state solutions. A finite-dimensional model of the situation is the following:
suppose we have a space with coordinates (x, y), where x ∈ Rm and y ∈ Rn

and a smooth function E(x, y). Assume now that x → E(x, y0) has a critical
point at x0, i. e. ∇xE(x0, y0) = 0. If the Hessian matrix ∇2

xE(x0, y0) is not
singular, then for each y close to y0 the function x→ E(x, y) will have a critical
point x = x(y) close to x0, which depends smoothly on y. This follows from the
Implicit Function Theorem. In other words, the critical points of the restriction
of E to the surfaces given by fixing the coordinate y come (locally and under
some non-degeneracy assumptions) as manifolds which are labeled by y. In
a similar way, the steady states of Euler’s equation should come as manifolds
which are labeled by the orbits Oω. Due to the difficulties coming form the
infinite-dimensional nature of the real picture is more complicated (especially
in dimension 3), with many open problems. (Note that both the dimension and
co-dimension of the formal tangent space to Oω is infinite.)
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20.2 The Clebsch Variables

In 1850s R.F.A.Clebsch came up with a remarkable way to re-write the incom-
pressible Euler’s equations.106 We will outline the main idea.

Let f, g be two smooth scalar functions of R3. Let us assume that the vector
field f∇g is in L2(R3), so that the Helmholtz decomposition (lecture 6) of f∇g
is well-defined. Let u be the divergence-free part of f∇g. We have

u = f∇g +∇h , (20.19)

where
∆h = − div(f∇g) , ∇h ∈ L2(R3) , (20.20)

or, equivalently,

h =

∫
R3

G,i(x− y)f(y)∇g(y) dy , (20.21)

where G is the Green function (10.9) of the laplacian.

This construction gives a (quadratic) map

(f, g)→ u , (20.22)

so that u can be considered as a function of the pair (f, g). From the elementary
identity

f∇g +∇h = −(∇f)g +∇(fg + h) , (20.23)

we see that the map (f, g) → u is anti-symmetric on the (smooth) pairs (f, g)
with f∇g, (∇f)g ∈ L2(R3):

(f, g)→ u ⇐⇒ (g, f)→ −u , f∇g, (∇f)g ∈ L2(R3) . (20.24)

The map (f, g)→ u is not injective. For example, (f, f)→ 0 and, more gener-
ally, if (f, g)→ u then also (f, g+φ(f))→ u (under appropriate assumptions).

The key point for our purposes here is the identity

ω = curlu = ∇f ×∇g . (20.25)

From (20.25) we see that

ω∇f = 0, ω∇g = 0 . (20.26)

This means that the functions f, g are constant along the integral lines of ω.

In other words, the curves107 {x ∈ R3 , f(x) = a, g(x) = b} are the vorticity
lines of the field u.

106Clebsch, R.F.A., Über eine allgemeine Transformation der hydrodynamischen Gleichun-
gen” J. Reine Angew. Math. 54(1857) 293–313.

Clebsch, R.F.A., Über die Integration der hydrodynamischen Gleichungen” J. Reine Angew.
Math. 56(1859) 1–10.
107Strictly speaking, the set {x ∈ R3 , f(x) = a, g(x) = b} may not always be a smooth
curve. However, it is a smooth curve for almost every (a, b) in the range of the map x ∈ R3 →
(f(x), g(x)) ∈ R2, by Sard’s theorem.
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We can therefore consider the values f(x), g(x) as labels attached to the vorticity
lines of the field u, with the caveat that the labeling is not one-to-one and that
it might be degenerate at some points.108 It is a good exercise to consider the
same construction in dimension n = 2.

What is the range of the map (f, g) → u? This question is non-trivial and we
will not address it at the moment. It is clear, however, that the range is “rich”,
and it contains many genuinely three-dimensional vector fields. At the same
time, not every smooth, div-free field u with compactly supported vorticity and
u(x)→ 0 at ∞ is in the range of the map (f, g)→ u.

We can now consider the functions f, g as time dependent. The constructions
gives us a time-dependent velocity field u and the corresponding time-dependent
vorticity field ω. How do the Euler equations for u look in terms of f, g? The
answer is surprisingly simple:

Proposition 2

With the notation above, the equations

ft + u∇f = 0 , (20.27)

gt + u∇g = 0 . (20.28)

give the evolution of u = f∇g+∇h and ω = ∇f ×∇g under Euler’s equations.

We see that if we merely transport the “labels” f, g of the vorticity lines by
the velocity field u (obtained from (f, g) by the map above), we get exactly the
evolution by Euler’s equations. Therefore, in these variables the Euler equation
“reduces” to the transport of two scalars (f, g) by a velocity field u they generate
via the map (f, g)→ u.

Proof

Let ϕt be the Lagrangian map generated by the vector field u, as in lecture 2.
Equations (20.27), (20.28) are equivalent to

f(ϕt(x), t) = f(x, 0), g(ϕt(x), t) = g(x, 0) . (20.29)

The vorticity of the velocity field ω̃(x, t) given by f(x, t), g(x, t) satisfies

ω̃(ϕt(x, ), t) = (∇f)(ϕt(x), t)× (∇g)(ϕt(x), t) . (20.30)

Let
A = ∇ϕt . (20.31)

Then, from (20.29),

(∇f)(ϕt(x), t)A = ∇f(x, 0), (∇g)(ϕt(x), t)A = ∇g(x, 0) . (20.32)

108In other words, we are not claiming that the “manifold of the vortex lines” (an object for
which we do not give a precise definition at the moment) is parametrized by (f, g).
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Hence

(∇f)(ϕt(x), t) = ∇f(x, 0)A−1, (∇g)(ϕt(x), t) = ∇g(x, 0)A−1 . (20.33)

and, by (20.30)

ω̃(ϕt(x), t) = (∇f)(ϕt(x), t)A−1 × (∇g)(ϕt(x), t)A−1 . (20.34)

Recalling that for any 3× 3 matrix M and any vectors a, b ∈ R3 we have, with
obvious notation,

(aM × bM) = (M∗a×M∗b) = Cof (M∗)(a× b) = Adj (M)(a× b) , (20.35)

we see from (20.34) (using det∇ϕt(x) = 1) that

ω̃(ϕt(x, t), t) = ∇ϕt(x)ω̃(x, 0) = ∇ϕt(x)ω(x, 0) . (20.36)

This says that the vorticity field ω̃(x, t) “moves with the flow” in the same
way that the vorticity field given by evolution by Euler’s equations, and the
statement of Proposition 2 follows.

Let us define a functional

H(f, g) =
∫
R3

1

2
|u|2 dx, (20.37)

where u is obtained from (f, g) by the map (f, g) → u above. Note that H is
quartic in the variable (f, g). We calculate

d

ds
|s=0H(f + sφ, g) =

∫
R3

u(φ∇g +∇ḣ) =
∫
R3

(u∇g)φ , (20.38)

where ḣ is the d/ds derivative of the div-free part of the Helmoltz decomposition
of (f + sφ)∇g at s = 0. In a similar way

d

ds
|s=0H(f, g + sφ) =

∫
R3

u(f∇ψ +∇ḣ) =
∫
R3

−(u∇f)φ . (20.39)

We can write (20.38), (20.39) as

δH
δf

(f, g) = u∇g, δH
δg

(f, g) = −u∇f . (20.40)

Therefore the evolution equations (20.27), (20.28) can be written as

ft =
δH
δg

(f, g) , gt = −
δH
δf

(f, g) , (20.41)

resembling the Hamiltonian equations of Classical Mechanics

q̇i =
∂H

∂pi
, ṗi = −

∂H

∂qi
. (20.42)

Note also the connection with Proposition 1: the critical points of H are steady-
state solutions. These connections are related to some general geometrical facts
concerning the so-called “symplectic reduction” for hamiltonian systems, which
is somewhat hidden in the background. We will investigate these issues in more
detail later.
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21

10/31/2011

21.1 Viscosity and the Reynolds number

Assume we have two parallel plates gliding along each other at a constant
speed V . Assume the plates do not touch each other, but there is a very small
gap d between them filled with a fluid. For concreteness let us assume the fluid
is incompressible, although it is not really necessary. Consider a coordinate sys-
tem in which the x3 axis is perpendicular to the plates, the top of the first plate
coincides with the plane x3 = 0 and the bottom of the second plate coincides
with the plane x3 = d. Let the plate x3 = 0 be at rest, and assume the plate
x3 = d moves at speed (V, 0, 0). Furthermore, let us assume that the velocity
field in the fluid between the plates is

u(x) =

 V x3

d
0
0

 . (21.1)

In a real situation this will be the case as long as the speed V does not exceed a
certain critical value Vcrit which, for a given fluid, is inversely proportional to d.
For V ≥ Vcrit the velocity field may no longer be of the form (21.1), but it will
be more complicated (and possibly time-dependent).

In real fluids there is some “internal friction”, and a force (F̃ , 0, 0) needs to be
applied to the upper plate to keep it moving. Let F be the magnitude of the
force per unit area of the plate, so that F = F̃ /A, where A is the area of the
plate. (The flow will be exactly of the form (21.1) only when the plates are
infinite, but the effect due to the finiteness of the plates can be neglected as
long as the dimensions of the plates are much larger than d.)

In many fluids (including water) one observes the following relation (for V <
Vcrit)

F = µ
V

d
, (21.2)

where µ is a constant (depending on the fluid). This is the simplest possible
realistic relation between V, d and F , and the fluids for which is holds are often
called newtonian fluids. In the non-newtonian fluids the relation between V, d
and F can be more complicated.109 In what follows we will only consider the
newtonian fluids.

The constant µ is called the viscosity of the fluid. The physical dimension of µ
is

[µ] =
mass

(length) (time)
. (21.3)

109Examples of non-newtonian fluids include blood, ketchup, certain paints, shampoos etc.
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The kinematic viscosity ν is defined by

ν =
µ

ρ
, (21.4)

where ρ is the density of the fluid. The kinematic viscosity is often also called
just viscosity. The physical dimension of ν is

[ν] =
(length)2

time
. (21.5)

Already at this stage, without going to PDEs, we can return to Example 1
from lecture 1, in which we considered the drag force F on a ball moving at
speed U in a fluid of density ρ. In our first calculation in lecture 1, based on the
dimensional analysis and leading to formula (1.1), we only used one parameter to
describe the fluid, namely the density ρ. The (kinematic) viscosity ν is another
parameter which describes the properties of the fluid, and we can replace the
assumption (1.5) by

F = ϕ(ρ,R,U, ν) . (21.6)

Going through the dimensional analysis similarly as in lecture 1, we obtain

F = ρR2U2ϕ(1, 1, 1,
ν

RU
) . (21.7)

The quantity ν
RU is dimensionless, i. e. it is independent of the choice of the

basic units. It is customary to work with its inverse, which is called the Reynolds
number and is denoted by Re,

Re =
UR

ν
. (21.8)

The kinematic viscosity of water in the SI units is approximately 10−6, and for
air it is approximately 10−5. Therefore the Reynolds numbers for most everyday
flows are quite high.

Relation (21.7) is then usually written as

F = c(Re)
1

2
ρR2U2 (21.9)

and the coefficient c(Re) (which is a function of Re) is called the drag coefficient.
The function

Re→ c(Re) (21.10)

has of course been subject to detailed experimental scrutiny and its behavior is
simple and non-trivial at the same time. If you do an online image search for
“drag coefficient”, you will see some of the typical curves.110 Explaining these
curves mathematically remains a great challenge. We will return to this issue
when we introduce the PDE describing the flow.

110For example, you can check http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml
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21.2 The Navier-Stokes equation

We will now introduce the viscosity into the equations of motion. As we dis-
cussed in lecture 5, in the ideal fluids the Cauchy stress tensor is given by

τij = −pδij . (21.11)

In fluids with viscosity the Cauchy stress tensor contains an additional term

τij = −pδij + σij , (21.12)

where σij is the viscous stress, due to the viscosity of the fluid. For the simple
flow (21.1) in a fluid with viscosity µ given by (21.2) we expect,

σ13 = µ
V

d
, (21.13)

which expresses the idea that the fluid layers {x3 = const.} slide along each
other with some friction. (By the symmetry of the stress tensor one must
also have σ31 = µVd , which has a somewhat less transparent interpretation.)
In general, it is natural to expect that the viscous stress σij(x) at a point x
will depend on ∇u(x). Since the anti-symmetric part of ∇u(x) is related to a
rigid rotation of an infinitesimal volume of fluid at x, see lecture 4, we expect
that σij(x) will depend only on the symmetric part of ∇u(x), the deformation
tensor ei,j(x) =

1
2 (ui,j(x) + uj,i(x)) . We will make two assumptions about this

dependence.

1. The dependence is linear, i. e. we have at each point

σ = L(e) (21.14)

for some linear map L between symmetric matrices .

2. The dependence is homogeneous, i. e. the map L in (21.14) is the same at
each point x.

3. The dependence is isotropic, i. e.

L(QeQ∗) = QL(e)Q∗ (21.15)

for each rotation Q ∈ SO(3).

It can be shown111 that these three conditions imply that one has

σij = 2µeij + λδijekk (21.16)

for some constants µ, λ ∈ R, where ekk is the trace of eij (and therefore ekk =
div u).

111The proof is not very difficult. One can do it “by hand”, but the most natural context for
the proof is that of the elementary representation theory of the group SO(3). In particular,
the proof follows directly from the Schur’s Lemma.
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For the incompressible fluids one has ekk = 0 and therefore (21.16) reduces to

σij = 2µeij . (21.17)

The constant µ is the same as the one in (21.2), as one can easily check.

For compressible fluids one can indeed have “two viscosities”, and both µ and
λ are necessary to describe the viscous effects.112

Even with the assumptions 1–3 above, one cannot rule out that the “constants”
µ, λ is (21.16) will in fact depend on the pressure, temperature, density and
perhaps also some additional quantities. However, the assumptions that µ and
λ are constant seems to work quite well in practice (for newtonian fluids).

If we now return to the derivation of the equations of motion in lecture 5, and
use (21.12) for the Cauchy stress tensor, with σij given by (21.16), we obtain

ρut + ρu∇u+∇p− µ∆u− (µ+ λ)∇div u = f(x, t) . (21.18)

As in lecture 5, this equation should be considered together with the equation
of continuity

ρt + div(ρu) = 0 . (21.19)

Moreover, for compressible fluids one has to specify the dependence of p on ρ.113

In the incompressible case when ρ = ρ0 = const. one often writes f as ρ0f and
divides the equation by ρ0 to obtain

ut + u∇u+
∇p
ρ0
− ν∆u = f(x, t) , (21.20)

div u = 0 . (21.21)

This is the incompressible Navier-Stokes equation, first considered in the 1820s
by C. L. Navier and derived in a definitive form by G. G. Stokes in 1840s.
The equation should augmented by a boundary condition. The correct boundary
condition at rigid boundaries for most flows114 is that the velocity of the fluid
coincides with the velocity of the corresponding boundary point. In particular,
if the boundary does not move, then u = 0 at it. This should be contrasted
with the condition un = 0 at the boundary for the ideal fluids.

21.3 The drag force calculation from the Navier-Stokes
equation

Let us now go back to the problem of the drag force moving though an incom-
pressible fluid of density ρ, (kinematic) viscosity ν and speed U . What is the

112See e. g. “The discussion of the first and second viscosities of fluids under the leadership
of L. Rosenhead, F.R.S.”, Proceedings of the Royal Society of London, Vol. 226, 1954.
113The models based on (21.18), (21.19) and a relation p = p(ρ) are not quite right from the
thermodynamical point of view, although they are adequate for many purposes. To get the
thermodynamics completely right, one should introduce temperature and augment the two
equation by a third one which expressed (locally) the conservation of energy.
114including virtually all flows we encounter in everyday life
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prediction from the Navier-Stokes equation? Let Ω = R3 \ BR be the domain
occupied by the fluid. We would like to solve the Navier-Stokes equation in
Ω with the boundary conditions u = 0 at the boundary ∂Ω and the condition
u → U as x → ∞. Once we know u and p, the drag force can be determined
from the formula

Fi =

∫
∂Ω

τijnj dx , (21.22)

where τij = −pδij + 2µeij = −pδij + 2ρνeij is the Cauchy stress tensor and ni
is the unit normal pointing in the fluid region.115

Calculation 1

A reasonable starting point seems to be to find a steady-state axi-symmetric
solution u = u(x). It seems that it is not possible to find an explicit solution
in a closed form.116 One can nevertheless calculate solutions numerically on
a computer.117 We can start with low Reynolds numbers and continue the
solution to higher Reynolds numbers. The steady axi-symmetric solution we
calculate and the corresponding drag force will be in very good agreement with
the experimental observations for Reynolds numbers Re ≤ Rec with Rec of
order 102. For Reynolds numbers of this magnitude the “real flow” in the
experiment becomes unstable. Numerically we can continue the steady axi-
symmetric solution to higher Reynolds numbers, but neither the flow pattern
nor the drag force will match the experimental data. (The drag force will be too
low.) The explanation is simple: the calculated solution is unstable and for high
Reynolds numbers it is never observed in the experiments. The flow observed
in the experiments for higher Reynolds numbers is neither axi-symmetric nor
time-independent.

Calculation 2

Following what we see experimentally, in the numerical calculation we introduce
perturbations away from the steady-state axi-symmetric solutions, and solve the
full time-dependent Navier-Stokes equations without enforcing any symmetries.
It is quite non-trivial to do such calculations on a computer, but it can be done.
We note that the force given by (21.22) becomes time-dependent, and we have
to determine the drag force by taking an average:

Fi =
1

t2 − t1

∫ t2

t1

Fi(t) dt . (21.23)

If we start increasing the Reynolds number, we will see more and more oscilla-
tions in the solution (especially in the “wake region” behind the ball), and the

115Formula (21.22) can still be further manipulated by integrating by parts, and one can
obtain expression which may be better from various points of view (e. g. more suitable for
numerical simulation), but this is not our focus at the moment.
116However, we will soon see that one can calculate explicitly (following G. G. Stokes) the
solution of the linearized equation, i. e. the function d

dU
|U=0 u(x, U), where U is the velocity

at ∞ as above.
117This is not a simple task, but it can be done.
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velocity field u(x, t) will have large gradients, both in space and time. This phe-
nomenon is often referred to as turbulence. If we have a large super-computer
(by 2011 standards) we can continue the calculation up to Reynolds numbers
of order 104 (or perhaps even 105 ) 118 before the oscillations of the solution
become too fast to follow due to computer limitations.

A flow around a car going at 60 mph corresponds to Reynolds numbers well
above 106, and at present it is not possible to fully solve the Navier-Stokes
equations for such flows.119 In fact, mathematically we do not even know if the
Navier-Stokes equations have good solutions in such regimes.
In practice these difficulties are sidestepped by replacing the full Navier-Stokes
equations by various models. The reason why this works reasonably well in many
cases is that the highly oscillatory solutions of the Navier-Stokes equations (also
called turbulent solutions) have some universal features, which we will discuss
in more detail soon. The mathematical study of this behavior based on the
Navier-Stokes equations seems to be out of reach at present, but there are
“phenomenological theories” which shed some light on the problem.

118Opinions here can differ because opinions on what is a “well-resolved calculation” are not
uniform.
119One can still use the incompressible equations at such speeds. The compressibility of air
becomes important only when the speeds become comparable with the speed of sound.
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11/2/2011

22.1 The scaling symmetry of the Navier-Stokes equation

The Navier-Stokes equation has the expected symmetries coming from its trans-
lational and rotational invariance. You can also check how the solutions trans-
form under a Galilean transformation

x′ = x− Ut , t′ = t , (22.1)

where U = (U1, U2, U3) ∈ R3 is a fixed velocity vector - one gets no surprises
here. One can also note the trivial transformations

f(x, t)→ f(x, t) + ρ0∇g(x, t), p(x, t)→ p(x, t) + g(x, t) . (22.2)

The most interesting symmetry of the Navier-Stokes equation is probably the
scaling symmetry defined for any λ > 0 by

u(x, t)→ λu(λx, λ2t), p(x, t)→ λ2p(λx, λ2t), f(x, t)→ λ3f(λx, λ2t) .
(22.3)

Our notation means the following: if (u, p, f) satisfy (21.20), (21.21) in Ω× (t1, t2)
(where Ω ⊂ R3) and we define

uλ(x, t) = λu(λx, λ2t), pλ(x, t) = λ2p(λx, λ2t), fλ(x, t) = λ3f(λx, λ2t) ,
(22.4)

together with

Ωλ = {x
λ
, x ∈ Ω} , (22.5)

then (uλ, pλ, fλ) satisfy (21.20), (21.21) in Ωλ × ( t1λ2 ,
t2
λ2 ).

One can for example think of λ as a dimension-less number which changes
the the unit of length from L to L

λ and the unit of time from T to T
λ2 , while

describing the same solution. (Note than with this scaling the unit of kinematic

the viscosity L2

T is unchanged, as it should be the case if we do not want to
change the the viscosity in the equation.)

A typical situation in which this symmetry is relevant is as follows. Assume
we wish to study a flow around a submarine of length L using a scale model of
length l, with L = λl, with both the submarine and the model being operated in
the same fluid. If the flow around the submarine is u(x, t), the flow λu(λx, λ2t)
(with x, t measured in the same units) gives a flow around the model and vice
versa. This means that if we wish to know the flow around the submarine at
speed U in all detail, we should run the model at speed λU . (We can of course
come to the same conclusion by looking at the Reynolds number Re = UL

ν , by
dimensional analysis from the last lecture.) This suggests that if we have a 100
meter submarine with the expected speed 10 m/s, a 10 meter model would have
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to go at 100 m/s to generate a flow which would be exactly similar to the flow we
are interested in. It is of course hard to operate the model at those speeds, and
hence we might be tempted to conclude that the 1:10 scale model is not very
useful. The situation with scale models of airplanes looks similarly hopeless at
first. In practice the scale models are not as useless as the above might suggest,
and one can get valuable insights from them.120 The reason is again in a certain
universality of the behavior of turbulent flows, which we already mentioned at
the end of the last lecture.121

If we are willing to change the viscosity, we can scale by

u(x, t)→ κu(λx, λκt) , p(x, t)→ κ2p(λx, λκt)
f(x, t)→ λκ2f(λx, λκt) , ν → κ

λν .
(22.6)

If U is some characteristic velocity of the flow (such as some average velocity,
or the velocity at ∞), L is some characteristic length (such as the distance
between two distinguished points in at the boundary of the flow region) and ν
is the viscosity of the fluid, the above scaling changes these quantities as

U → κU, L→ L

λ
, ν → κ

λ
ν , (22.7)

and the Reynolds number based on these quantities, defined as

Re =
UL

ν
, (22.8)

is preserved by this scaling. This of course should be the case, as the Reynolds
number is defined exactly so that it is not changed in this situation.

22.2 Flows in pipes

Let us consider a pipe of radius R and a coordinate system in which the center
of the pipe coincides with the x1-axis. The kinematic viscosity of the fluid is ν,

120At the same time, one has to be cautious and know which results from the scale model
can be used for the big object and which results should not be used.
121Once the Reynolds number is sufficiently high, it may be the case that some important
quantities (such as the drag coefficient, for example) become fairly independent of it. If our
scale model reaches the Reynolds number at which this effect starts taking place, it may be
enough to get reasonable conclusions (although we cannot really be completely sure in situ-
ations where there is not much previous experience). We have plausible heuristic arguments
which give some explanation of this phenomena, but its real mathematical understanding
seems to be out of reach at present. Our basic beliefs in this area are based on experimental
results and – more recently – on numerical simulations, but not on the theoretical analysis of
the equations. What we know from the theory does not rule out the observed behavior, but
we cannot really say that we would predict this behavior from the theoretical analysis of the
equations if we did not see it before in experiments or numerical simulations. Once we know
the behavior experimentally / numerically, we can try to explain how it can be allowed by
the equations. Much has been done in this direction, but a clear-cut explanation without any
hand-waving still seems to be elusive.
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its density is ρ. There is an explicit steady-state solution of the Navier-Stokes
equation representing a flow in the pipe:

u(x) =

 2U(1− x2
2+x

2
3

R2 )
0
0

 , p(x) = −8ρνUx1
R2

+ const. (22.9)

Here U is taken so that the amount of fluid passing though the pipe per unit
time is (area of the pipe section)U = πR2U . The relation between the drop
of pressure per unit length of the pipe P ′ = p,x1 , the velocity U and the radius
R based on this solution is

U =
P ′R2

8ρν
. (22.10)

Solution (22.9) is usually called Poiseulle’s solution, and (22.10) is called Poiseulle’s
law.

Recall that in lecture 1 we mentioned another formula for this situation, the
Darcy-Weischbach formula,

U = c

√
P ′R

ρ
, (22.11)

which is the only possible dimensionally consistent relation if we assume that
U = ϕ(ρ,R, P ′). If we repeat the derivation assuming

U = ϕ(ρ,R, P ′, ν) (22.12)

we obtain

U = c(Re′)

√
P ′R

ρ
, (22.13)

where Re′ is the Reynolds number based on P ′, R, ρ, ν, defined as

Re′ =
P ′ 12R

3
2

ρ
1
2 ν

. (22.14)

Alternatively, we can write

P ′ = c̃(Re)
ρU2

R
, (22.15)

with the more usual definition

Re =
UR

ν
. (22.16)

Experimentally, the functions c(Re′) or c̃(Re) are not quite constant for large
Reynolds number, but typically they only change slowly (once large Reynolds
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numbers are reached), so that (22.11) is not bad as a first approximation.122

There is of course a dramatic difference between (22.10) and (22.11). The ex-
planation is that no formula is valid universally for flows observed “in practice”.
Relation (22.10) is valid (quite precisely) for low Reynolds numbers (of order
up to 103), whereas (22.11) is valid (only approximately) for flows observed
“in practice” at high Reynolds numbers (of order, say, at least 105). At the
low Reynolds numbers the observed flow is exactly (22.9). On the other hand,
this flow is virtually never observed at high Reynolds numbers. Instead, the
observed flow is of highly oscillatory nature, with oscillations in both space and
time. We are again dealing with turbulence.123 The simple solution (22.9) is
unstable at the high Reynolds numbers124. The transition to turbulence in this
case has been the subject of many studies, starting with the classical works of
O. Reynolds in 1880s125, and continuing to this day.126 (The classical papers of
Reynolds on the pipe flows are still a very good reading today.)

The situation with the flow (21.1) from the last lecture (often called the Couette
flow), with the help of which we introduced viscosity, is similar to the situation
with the pipe flow. The explicit flow (21.1) is observed only until a certain
critical Reynolds number (which is again of order 103 or so). For high Reynolds
numbers the flow between the plates will be turbulent, and formula (21.2) will no
longer work. This effect must be taken into account when viscosity is measured:
we must be sure that we are in the regime in which the flow is really (21.1), and
not some more complicated flow, in which case the measured viscosity would be
higher than the “basic viscosity” which appears in the Navier-Stokes equations if
we wish to model all the details of the fluid motion. Note that when d in (21.1)

is small, then we can go to high velocities V (of order 103ν
d ) before the flow

becomes unstable.

22.3 The Taylor-Couette flow

In the 1920s G. I. Taylor identified a situation where the onset of instability
can be studied both theoretically and experimentally. We consider a domain
between two concentric cylindrical surfaces. The domain is filled with a fluid
we wish to study. Instead of looking at plates sliding along each other, we

122The subject of the flows in pipes is of course of great practical interest and there has been
a lot of investigations in this direction, including a number of phenomenological formulae
refining (22.11). For an introduction based on classical lectures by L. Prandtl see the book
“Applied Hydro- and Aeromechanics” by O. G. Tietjens. For more recent texts you can type
“pipe flow” in Google Books, and you will see a number of books on the subject.
123It is worth emphasizing that typical everyday flows are turbulent, due to the low viscosity
of air and water which is of the order 10−5 and 10−6 respectively, in the SI units. When we
talk about “high Reynolds numbers” we are not talking about some exotic speeds.
124The instability is not the traditional linearized instability. It seems to appear only at the
non-linear level.
125Reynold’s works are freely available online, see the links at the Wikipedia entry for
O. Reynolds.
126For more recent works, see for example Hof, et al. Science 10 September 2004, 1594–1598
and Busse, Science 10 September 2004, 1574–1575.
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can look at the situation with the two cylinders in which the cylinders rotate.
(For example, the situation when the inner cylinder rotates produces unstable
behavior.) If the cylinders are of infinite extent along their common axis of
symmetry, there is a simple explicit solution of the Navier-Stokes equation,
which in the cylindrical coordinates has the form

u = u(θ)(r) eθ , u(θ)(r) = ar +
b

r
. (22.17)

The onset of instability for this flow can be seen from the linear analysis about
it.127 The transition to more complicated flows in this situation has been inves-
tigated in some detail, and various flow patters after the loss of stability have
been studied at some length.128 As you can already expect, the mathematical
analysis of the turbulent regimes again remains elusive.

127Taylor, G.I. (1923). ”Stability of a Viscous Liquid contained between Two Rotating
Cylinders”. Phil. Trans. Royal Society, 289-343.

See also the book Drazin, P. G., Read, W. H., Hydrodynamic Stability.
128See for example the book P. Chossat, G. Iooss, The Couette-Taylor problem, Springer-
Verlag, 1994.
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23.1 The Stokes flow around a sphere

Let us consider a steady flow around a sphere at low velocities. We will work
with cylindrical coordinates, and we slightly change our notation as follows.

a ............ the radius of the sphere,
Ba ............ the ball {x ∈ R3, |x| ≤ a},
(0, 0, U) ............ the velocity of the fluid at ∞,
Ωa ............ the domain R3 \Ba,
r ............ the cylindrical coordinate r =

√
x21 + x22,

z ............ the cylindrical coordinate z = x3,

R ............ the distance from the origin R =
√
x21 + x22 + x23,

ν ............ the kinematic viscosity of the fluid,
ρ ............ the density of the fluid,
F ............ the drag force,
Re ............ the Reynolds number Re = Ua

ν ,
cd = cd(Re) ............ the drag coefficient defined by F = cd

1
2ρa

2U2,
u = u(x) ............ the velocity field in Ωa,
ψ = ψ(r, z) ............ the axi-symmetric steam function of u (when u is axi-symmetric).

(23.1)
As in lecture 21, we wish to solve the Navier-Stokes equation in Ωa with the
boundary conditions u(x) → (0, 0, U) as x → ∞ and u|∂Ωa = 0, and then
calculate F from formula (21.22), but this time we are interested in the situation
Re→ 0+.
It can be proved rigorously that for sufficiently small Reynolds number, say
Re < Rec with Rec small129, there exist a unique smooth steady-state solution
of the problem.130 Therefore the drag force F is well-defined for Re < Rec.

131

Let us now consider the quantities a, ρ, ν as fixed. The drag force F will be
then a function of velocity U (well-defined for 0 ≤ U < νRec

a ).We will write

129The exact value is not important at this point as we are only interested in the limit
Re → 0+.
130See the book G. Galdi: An Introduction to the Mathematical Theory of the Navier-Stokes
Equations, Volume II, Chapter IX.
131The existence result for the steady-state solutions can be in fact extended to arbitrary
large Reynolds numbers, see the book of Galdi quoted above. However, the uniqueness has
not been proved for large Reynolds numbers, and it can be expected to fail. It is quite possible
that there might be several distinct steady-state solutions for a given large U , each of them
with a different drag force F . One can speculate that the solution with the highest F will be
the “most stable one” (even though it can still be unstable with respect to time-dependent
perturbations). (Similar situation in fact does occur for flows between rotating cylinders.) It
could perhaps even be the case that for some moderate value of Re (between, say, between 30
and 300) one might have two distinct stable solutions u, each with a different drag force F .
There appears to be no result which would rule out such a situation.
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F = F (U). We can try to formally calculate the derivative

F ′(0) =
∂F

∂U
|U=0 . (23.2)

The reason why we say “formally” is that we have not investigated how smooth
the function F (U) is at U = 0 and, in particular, whether the derivative (23.2)
is well-defined. This issue is more tricky than it might seem at first, since
F is defined through a solution of a nonlinear elliptic system in the infinite
domain Ωa. If Ωa was replaced by, say,

Ωa,b = {x ∈ R3, a < |x| < b} (23.3)

with the boundary conditions

u|{|x|=a} = 0, u|{|x|=b} = (0, 0, U) , (23.4)

it would more or less clear that F is analytic in U near U = 0 and it would be
straightforward to justify the formal calculation we are about to do. However,
for the infinite domain Ωa the situation is more complicated. In fact, it turns
out that F is not a smooth function at U = 0, although the singularity appears
only at the level of F ′′′(0). The usual formal calculations break down already at
the level F ′′(0) – this is the so-called Whitehead paradox (1880s). If we do the
formal calculation in dimension n = 2, it will break down already at the first
step – this is the so-called Stokes paradox (1850s). The singularity in F (U) for
n = 2 appears at the level of F ′′(U).132

Fortuitously, in dimension n = 3 the formal calculation of F ′(0) turns out to
lead to the right result. The calculation was first carried out by G. G. Stokes
in 1850s. Let us denote by Ẋ the (formal) derivative ∂X

∂U |U=0 of a quantity X
at U = 0. From (21.22) we have

Ḟ =

∫
Ωa

τ̇ijnj . (23.5)

Here
τ̇ij = −δij ṗ+ 2ρνėij , (23.6)

where ėij is the symmetric part of ∇u̇, with u̇, ṗ solving

−ν∆u̇+ ∇ṗ
ρ = 0

div u̇ = 0
in Ωa , (23.7)

together with the boundary conditions

u̇|∂Ωa = 0, u̇(x)→ (0, 0, 1) as x→∞. (23.8)

132We refer the reader interested in the details to the following papers:
John Veysey II, Nigel Goldenfeld, Simple viscous flows: From boundary layers to the renor-

malization group, Reviews of Modern Physics, Vol 79, July-Sept. 2007.
Proudman, I. and Pearson, J. R. A., 1957, J. Fluid. Mech. 2, 237.
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The system (23.7) for u̇, ṗ is known as the Stokes system, or even more precisely
as the steady Stokes system. Stokes found an explicit solution of (23.7) with
the boundary conditions (23.8) by seeking the solution as an axi-symmetric
vector field with no swirl, which he expressed in terms of the axi-symmetric
stream function ψ̇(r, z) (see lecture 17 for the definition of the axi-symmetric
stream function). Eliminating the pressure from the equations by taking curl,
one obtains a PDE for ψ(r, z) which can be solved by a separation of variables
if we seek the solution in the form

ψ̇(r, z) =
1

2
r2f(R) . (23.9)

After some calculations one gets

ψ̇(r, z) =
1

2
r2(1− 3a

2R
+

a3

2R3
) , ṗ = −ρν 3az

R3
. (23.10)

Note that (23.7) implies that ∆ṗ = 0 and the function ṗ in (23.10) is the
simplest possible non-trivial harmonic function in Ωa which vanishes at ∞ and
is not radially symmetric. Substituting the solution in (23.5), we obtain the
famous result of Stokes that

Ḟ = 6πρνa . (23.11)

The more usual formulation is that in the limit of vanishing Reynolds number
one has

F =̇ 6πρνaU, Re << 1. (23.12)

If one tries to calculate F ′′(0) by the same method, one finds that the equations
for ü, p̈ do not have a solution. (This is the Whitehead paradox). However,
the derivative F ′′(0) still exists. The singular behavior appears at the level of
F ′′′(0) in the form of a term with log(Re). Similarly, if one tries to calculate
F ′(0) by this method in dimension n = 2, one finds that the equations for u̇, ṗ
do not have a solution. (This is the Stokes paradox). The derivative F ′(0) still
exists (and = 0), and the singular behavior appears at the level of F ′′(0), also in
the form of a term with log(Re). We refer the reader to the paper of Proudman
and Pearson quoted above.

One should also prove uniqueness for the linear problem (23.7) for u̇, ṗ and the
boundary condition (23.8), augmented with the requirement that ṗ → 0 at ∞,
for example. This can be done, with the level of difficulty depending on the
class in which uniqueness is sought.

The solutions of the non-linear problem for small Re << 1 are in some sense
close to the Stokes solution, although one must be somewhat careful with the
definition of what “close” means, due to the unboundedness of the domain
Ωa. This family of solutions can be numerically continued from small Reynolds
numbers to large Reynolds number, where they still seem to persist, although
they are unstable to time-dependent perturbations. For large Reynolds numbers
the drag force for these solution will be much lower than the drag force for
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the time-dependent (turbulent) solutions which are observed in real flows with
large Re, somewhat similarly to the situation with difference in the resistance
of pipe flows between the laminar solution (22.9) and the turbulent solutions
actually observed for larger Reynolds numbers. We can speculate that the
unstable continuation of the Stokes flow to large Reynolds numbers133 perhaps
plays the role which the Poiseulle’s flow (22.9) plays for the pipe flows.

133assuming a well-defined continuation exists
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24

11/7/2011

During this lecture we discussed photographs of various flows from Milton Van
Dyke’s book “An Album of Fluid Motion” which illustrate some of the phenom-
ena we have encountered so far in the course. In case you have not attended the
lecture and are interested in the material, the book is available in the Walter
Library reserve. The commentaries in the book explain very well the various
phenomena in the photographs. Many of the pictures can be found online.
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25.1 The Landau Jet

Let consider an incompressible viscous fluid of constant density ρ and viscosity
ν > 0 and a steady-state flow of the fluid in R3 satisfying

−ν∆u+ u∇u+ ∇p
ρ = f(x) ,

div u = 0 ,
u → 0 , x→∞ .

(25.1)

Let us start with a smooth compactly supported f . When we are given an f
the existence of smooth solution to (25.1) is a-priori not clear, but it was proved
by J. Leray in 1930s.134 In general we do not expect that the solutions will
be unique when f is large, there might be perhaps several solutions for a given
(large) f , although such examples have not been constructed rigorously, as far
as I know. Let ϕ(x) be the usual mollifier, i. e. a radial smooth non-negative
function on R3 with support in the unit ball such that

∫
R3 ϕ = 1, and let

ϕε(x) = ε−3ϕ(x/ε). We can consider the problem above with

f(x) = βϕε(x)e3 , (25.2)

with a parameter β > 0 and e3 = (0, 0, 1). We can now consider the limit case
ε→ 0+. In the limit ε→ 0+ we have

f(x) = β δ e3 , (25.3)

where δ is the Dirac distribution supported at x = 0. We have, with some abuse
of notation,

λ3δ(λx) = δ(x) , (25.4)

and therefore, recalling the scaling symmetry (22.3) of the Navier-Stokes equa-
tion, we see that it is reasonable to expect that the equations

−ν∆u+ u∇u+ ∇p
ρ = βδe3 ,

div u = 0 ,
u → 0 , x→∞ .

(25.5)

have a solution u with

λu(λx) = u(x) , λ > 0 . (25.6)

Moreover, we can ask that u be smooth in R3 \ {0}. It is also reasonable to
expect that the solution u might be chosen to be axi-symmetric.

134See for example G. Galdi’s book “An introduction in the Mathematical Theory of the
navier-Stokes equations”, Vol. 2
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Now if u satisfies (25.6) then it is determined by its restriction on the sphere
S2 and if it is moreover axi-symmetric, then it is actually determined by a
(vector-valued) function of one variable only. Therefore, for such fields the
system (25.5) reduces to a system of ODE. If one writes down this system in
suitable coordinates, such as the polar coordinates, it looks complicated, but in
1944 L. Landau was able to find a family of explicit solutions to this system of
ODEs. The calculation can be found in standard textbooks, see for example the
Fluid Mechanics by Landau and Lifschitz (p. 82 of the second edition), or An
Introduction to Fluid Mechanics by G. K. Batchelor (p. 206). To write down
the Landau solutions, we recall that the spherical coordinates are given by

x1 = R cos θ ,
x2 = R sin θ cosφ ,
x3 = R sin θ sinφ ,

(25.7)

where we use R = |x| to distinguish it from the cylindrical coordinate r =√
x21 + x22.

For A > 1 we set

b = b(A) = 16π

(
A+

1

2
A2 log

A− 1

A+ 1
+

4A

3(A2 − 1)

)
(25.8)

The function b(A) is strictly decreasing for A ∈ (1,∞) with β → +∞ as A→ 1+
and b(A) ∼ 16π

A for A→∞.

Let us consider an axi-symmetric velocity field given by the axi-symmetric
stream function

ψ =
2νR sin2 θ

A− cos θ
. (25.9)

Landau showed that
The velocity field given by the stream function (25.9) solves (25.5) with β =
ν2b(A), with the pressure given by

p = ρν2
4(A cos θ − 1)

R2(A− cos θ)2
. (25.10)

It can be shown that Landau’s solution (25.9), (25.10) is the only solution
of (25.5) which is smooth in R3 \ {0} and satisfies (25.6).135 It is interesting to
compare the Landau solution with the fundamental solution of the linear Stokes
system

−ν∆u+ ∇p
ρ = βδe3 ,

div u = 0 ,
u → 0 , x→∞

(25.11)

which is given by the stream function

ψ =
β

ν

1

8π
R sin2 θ . (25.12)

135V. Sverak, On Landau’s solution of the Navier-Stokes equation, Journal of Mathematical
Sciences, 2011, Volume 179, Number 1, pp. 208–228.
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In the limit A→∞, which means β → 0, we have, in some sense,

ψ ∼ 16π

A
ψ . (25.13)

although one needs to be somewhat careful about the nature of the approxima-
tion. (The approximation is certainly good on compact subsets of R3 \ {0}.)

In principle the Landau solution should be relevant for describing the flow which
we obtain by blowing in the straw, so we can try to use it to explain Example
3 from lecture 1: why is the ping-pong ball stable if we place it in the jet from
the straw (assuming we the straw is pointed up)? However, formula (25.10) for
the pressure shows that in the planes {x3 = c > 0} the maximum pressure is
at the center of the jet (x1, x2, c) = (0, 0, c) and the pressure is decaying as we
move away from the center. This would predict that the ping-pong ball put in
the jet will be unstable.

25.2 Reynolds stress

To understand why the ping-pong ball in Example 3 from lecture 1 is stable, we
need to know that in most jets we encounter in everyday life the flow is not given
by the Landau solution from the previous section, but instead the velocity field
is turbulent and oscillates, similarly as in pipe flows at high Reynolds numbers.
This is again not so easy to see from the equations, and at this point we take it
as an experimental observation. Let us assume the the velocity field in the jet
is of the form

u(x, t) = u(x) + v(x, t) , (25.14)

where u(x) is an average velocity field at the point x. We emphasize that we
have in mind a situation where it is reasonable to expect that some average
velocity field exists, such as when we blow into a straw with a constant effort
and the straw is stationary. There is more than one way to define the average
field u(x). The simplest one is probably

u(x) = lim
(t2−t1)→∞

1

t2 − t1

∫ t2

t1

u(x, t) dt , (25.15)

assuming the limit exists. Proving the existence of the limit is mathematically
out of reach, and we will simply assume that the limit exists. In general, we
will use the notation

f(x) = lim
(t2−t1)→∞

1

t2 − t1

∫ t2

t1

f(x, t) dt , (25.16)

and we assume that the limit exists whenever the notation is used. For our
velocity field u(x, t) we will write

u(x, t) = u(x) + v(x, t) , (25.17)
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or simply
u = u+ v . (25.18)

We will write the Navier-Stokes equation in the following way

uit + ∂j(ujui) +
p,i
ρ
− ν∆ui = 0 , div u = 0 . (25.19)

We take averages to obtain an equation for u. Assuming that |u(x, t)| ≤ C
for each x, t (which we again do not know how to prove rigorously in most
interesting situations) and ρ = const., it is not hard to pass to averages in the
linear terms of the equation:

ut = 0, ∆u = ∆u,

(
p,i
ρ

)
=
p,i
ρ
, div u = div u . (25.20)

For the term uiuj we have

uiuj = (ui + vi)(uj + vj) = uiuj + vjvj , (25.21)

due to the obvious fact that vi = 0.

For general solutions u(x, t) there is not much we can say about vivj . Easy
examples show that we cannot expect it will vanish.136 We have to accept that
it is a new quantity, which – in general – is not related to u in any obvious way.
We introduce the notation

vivj = Rij = Rij(x) . (25.22)

The tensor Rij is called Reynolds stress. There is some vague analogy of this
tensor with the viscous stress σij we discussed in lecture 21. The origin of
the viscous stress is at the molecular level: the molecules from layer of fluid
moving at different speeds mix due to their chaotic thermal motion and their
mixing explains the tendency for the velocities at two “neighboring layers” to
approach their average. Similarly, at a much larger scale of the motion of “fluid
parcels”, the various parcels of fluid mingle and interact, and this tends to
average out the mean velocities, creating an (imperfect) analogy of the viscous
stress at this much larger scale. The effect of this on u is described by the
Reynolds stress. We can already anticipate that one the actions of the Reynolds
stress will be to enhance viscous-like effects. If we look at the fluid at the
larger scale where the oscillations v(x, t) look small, the Reynolds stress might
induce – among other things – an extra “apparent viscosity”, sometimes called
as turbulent viscosity.137 It is of course very challenging to derive this effect
mathematically with any precision, but at a heuristic level it is not hard to
understand that some effect of this form should take place.

136For example, if f(t) = sin t, then f = 0 and ff = 1
2
.

137In reality this is an over-simplification. Some experts consider the notion of turbulent
viscosity as problematic.
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The equation for the average velocity u are simply

∂

∂xj

(
uiuj +

p

ρ
δij +Rij − νeij(u)

)
= 0 , (25.23)

or

−ν∆ui + ujui,j +
p,i
ρ

+Rij,j = 0 . (25.24)

These equations have to be complemented by

div u = 0 . (25.25)

If we could express Rij in terms of u, p, we would have a closed set of equations
for u, p. However, it is not clear how to express Rij in terms of u, p. Any type
of expression, even non-local expressions where Rij(x) would depend not only
on u(x),∇u(x),∇2u(x), . . . but also on the values of these quantities at other
points would be great, as it would close the equations. In general one would
obtain an integro-differential equation for u. There has been a lot of effort to
come up with plausible phenomenological rules of how to determine Rij from
ui. Some of these rules work reasonably well for certain special flows, but the
goal of finding a good rule which works for general situations remains elusive.

One can attempt to use the Navier-Stokes equation to find information about
Rij , and average relations for vivj obtained from the equation. However, due
to the non-linearity of the equations, in equations for vivj we will have new
terms such as vivjvk = Rijk, and again we cannot close the equations. This
can be continued to vivjvkvl and higher order averages, but there are always
new terms which do not allow us to close the equations. This is the notorious
closure problem.

Although the introduction of the Reynolds stresses does not lead to good equa-
tions for u, we can still get very valuable insights from this concept. For example,
let us look at the problem with the stability of the ping-pong ball in the jet of
air as described in Example 3 from lecture 1, which we also discussed in the pre-
vious section. Let u(x, t) be the flow in the jet (now assumed to be oscillating).
The position of the jet in the coordinate system is assumed to be the same as
for the landau jet in the previous section. Let u = u + v as above. Let Rij be
the Reynolds stress. What can we say about Rij at a point (0, 0, c) with c > 0?
Based on the symmetries, we can expect (at (0, 0, c)) the following:

R12 = 0, R13 = 0, R23 = 0, R11 = R22 . (25.26)

Let
v21 + v22 + v23 = V 2 . (25.27)

Then

Rij =
V 2

3
δij +R′

ij , R′
kk = 0 (summation understood) . (25.28)
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If we had R′
ij = 0 near the axis of the jet, the equation (25.24) would reduce to

−ν∆ui + ujui,j +
(p+ 1

3ρV
2),i

ρ
= 0 . (25.29)

The quantity P = p + 1
3ρV

2 would then coincide with the pressure calculated
without the presence of the Reynolds stresses, and the real (average) pressure
would be

p = P − 1

3
ρV 2 . (25.30)

This shows that the oscillating part of the solution provides a mechanism for
lowering the pressure at the center of the jet, giving potentially some explana-
tion for the stability of the ping-pong ball. Of course, in reality we do not have
R′
ij = 0 and the situation is more complicated. If we start looking at what is

happening at the boundary of the ping-pong ball, things get even more com-
plicated, because at the boundary we should have V = 0 (assuming the ball is
stationary). Additional analysis is needed to account for all these effects, but
the basic idea that the oscillatory part of the flow causes a drop in the pressure
is good. In real jets, if we measure the pressure at the planes {x3 = c > 0},
we do see that the pressure is the lowest at the axis of the jet, and this is why
the ping-pong ball is stable. We see from the above analysis that the stability
crucially depends on the fact that the flow in the jet is turbulent. More details
about turbulent jets, including plots of the Reynolds stresses (obtained from
measurements or numerical simulations) can be found in the book of S. Pope
“Turbulent Flows”.138 On p. 113 of the book you can find an argument that a
more precise (but still approximate) formula for the pressure p should be

p = p∞ − ρ v3v3 , (25.31)

where p∞ is limiting value of the pressure as at (0, 0, x3) with x3 →∞.

138I thank to Prof. Ivan Marusic for pointing out this reference to me, and for a discussion
concerning experimental observations and their interpretations. It should be emphasized that
any possible flaws in the above descriptions and heuristics are solely due to the author of these
notes.
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Homework assignment 2
due November 28

Do one or more of the following three problems:

Problem 1

Assume that u is a smooth divergence-free velocity field in R3 such that

curlu(x) = λ(x)u(x)

in R3 for some function λ(x). Such fields are called Beltrami fields.

1. Show that any Beltrami field is a steady-state solution of the incompressible
Euler’s equation (for a suitable pressure p(x)).

2. For a given ξ ∈ R3 and a given λ ∈ R find all solution of the system
curlu = λu, div u = 0 of the form v(x) = v̂eiξx, where v̂ ∈ C3. Show that
if u(x) is a linear combination of solutions of this form for different ξ but the
same λ, then the real part of u(x) solves the steady Euler equation. Also show

that the so-called ABC flows, given by u(x) =

 A sinx3 + C cosx2
B sinx1 +A cosx3
C sinx2 +B cosx1

, can be

obtained in this way.

3.∗ (Optional) Decide if there are non-trivial Beltrami fields in R3 which are
compactly supported.

Problem 2

Let us consider a large axi-symmetric cylindrical container C filled with perfect
incompressible fluid of density ρ which rotates about its axis of symmetry with
angular velocity Ω in an otherwise empty space. Assume that the gravitational
forces can be neglected.139

1. Show that in the coordinate frame of the cylinder in which the axis of
symmetry passes through the origin the equations of motion for the fluid are

ut + u∇u+ 2Ω× u+ 1
ρ∇(p−

1
2ρ|Ω× x|

2) = 0

div u = 0
in C (25.32)

together with the boundary condition un = 0 at the boundary ∂C of C.

2. Linearize the equations about the trivial solution u = 0 and, assuming that
C = R3, find the solutions of the form

v(x, t) = v̂eiξx−iωt

of the linearized system, where v̂ ∈ C3. (The real part of these solutions can
be though of as representing “waves” in the incompressible rotating fluid. Note

139Since the fluid is incompressible, the effect of the gravitational forces would not change
the motion of the fluid, it would only change the pressure.
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that the relation between ξ, ω and v̂, also called the dispersion relation, is non-
trivial.)

Problem 3

Consider two large plates in the planes x3 = 0 and x3 = d > 0 respectively, with
d small. Assume that the space the between plates is filled with incompressible
fluid of density ρ and kinematic viscosity ν. Assume that the upper plate
oscillates in its own plane along the x1−axis with speed v(t) = V cosωt. Find
what the motion of the fluid will be after a sufficiently long time, and find the
forces per unit area acting on both plates (after a sufficiently long time).
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11/11/2011

26.1 Reynolds stress in a channel flow

Let L > 0 and let
Ω = {x ∈ R3, −L < x2 < L} (26.1)

Let us think of Ω as a limiting case of a “channel”

ΩL,L′ = {∈ R3 ,−L < x2 < L , −L′ < x3 < L′}, (26.2)

with L′ →∞. (In this situation we usually think of x1 as measuring the length,
x2 measuring the height, and x3 measuring the width.) We consider a flow
u(x, t) in the channel such that the mean flow (defined by (25.15), which we
again assume to be a good definition) is of the form

u(x) =

 u1(x2)
0
0

 . (26.3)

The boundary condition is that u(x, t) = 0 at ∂Ω, and hence also u1(−L) =
u1(L) = 0. We wish to obtain as much information about the Reynolds stresses
as possible, based on the Navier-Stokes Equation and some plausible symmetry
assumptions. As in the last lecture we assume

u(x, t) = u(x) + v(x, t) , with v = 0 , (26.4)

and we define the Reynolds stresses

Rij(x) = vivj(x) . (26.5)

We will assume the following identities, based on the symmetries of the situation:

u1(x2) = u1(−x2) ,
Rij = Rij(x2) ,
R13 = 0 ,
R23 = 0 ,

Rii(−x2) = Rii(x2), i = 1, 2, 3 (no summation) ,
R12(−x2) = −R12(x2)

p = p(x1, x2) ,
p(x1,−x2) = p(x1, x2) .

(26.6)

We also recall that, by definition, Rij = Rji. Therefore the Reynolds stress ten-
sor in this case involves four functions of one variable: R11(x2), R22(x2), R33(x2)
and R12(x2). In general we do not expect expect that the solution u(x, t) will
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have such symmetries, once we get into the regimes where the simple flow given
by the explicit steady-state solution

u(x) =

 2U(1− x2
2

L2 )
0
0

 (26.7)

will be unstable. However, it is reasonable to expect that the averaging involved
in the definitions of u and Rij will restore the symmetries.

The average pressure p(x) is expected to depend on x1, x2, but not on x3. (A
pressure gradient in the x1 direction is necessary to maintain the flow, and hence
we expect the x1− dependence.) The independence on x3 is expected due to
the invariance under translations in the x3 direction and the fact that the mean
flow is perpendicular to the x3 direction.

Note that the mean flow u given by (26.3) satisfies u∇u = 0. Denoting by ′ the
derivative ∂

∂x2
and taking into account (26.6), the averaged equations (25.24)

reduce to
−νu′′1 + p,x1

+R′
12 = 0 ,

p′ +R′
22 = 0 .

(26.8)

From the second equation of (26.8) we see that

p(x1, x2) = π(x1)−R22(x2) . (26.9)

Substituting this into the first equation and using the second equation again,
we see easily that π(x1) = −Ax1 + const. for some A ∈ R which we expect to
be positive. Hence

p(x1, x2) = −Ax1 −R22(x2) + const. (26.10)

We see that R22 lowers the pressure in the middle of the channel, similarly to
what we saw in (25.30) or (25.31) in the context of the turbulent jet. We can
now substitute px1

= A into the first equation and integrate once to obtain
(after using u′1(0) = R12(0) = 0 which follows from (26.6)),

R12 = Ax2 + νu′1 . (26.11)

this expression will of course vanish if u(x, t) is given by (26.7) and the flow is
laminar. For turbulent flows the profile will of u1(x2) be much “flatter” away
from the boundaries, changing only slowly as we move from the center of the
channel to the boundary, with a quite sharp drop to zero once we get close to
the boundary. This gives a good idea about what R12(x2) is. However, we do
not have enough equations to determine all the functions involved. If we know
neither R12 nor u1, equation (26.11) does not say much. The closure problem
appears again, and we do not know how to overcome it using only the “first
principles”, which in this case are expressed by the Navier-Stokes equation.
There are various phenomenological theories and closure models which enable
one to calculate u1 and lead to quite reasonable agreement of the calculated
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profile u1 with measurements. However, even in this simple situation there is
not a uniform opinion among experts about which models should be used.140

26.2 Energy dissipation

In lecture 12 we studied the energy conservation and the local flux of energy for
Euler’s equation. It is quite easy to adapt the formulae to the case of the Navier-
Stokes equation. For viscous fluids we typically have loss of energy due to the
internal friction and we expect that this will appear through the viscous stress
tensor and the deformation tensor (see lecture 21) in the equation for the energy
flux. In what follows we assume for simplicity that the fluid is incompressible
and its density ρ is constant.
We write the Navier-Stokes equation as

ρuit + ρujui,j + p,i − σij,j = 0 , ui,i = 0 . (26.12)

Multiplying the first equation by ui and using the second equation we obtain

(ρ
|u|2

2
)t + [uj(ρ

|u|2

2
+ p)− σijui],j = −σijui,j = −σijeij = −2µeijeij . (26.13)

In comparison with equation (12.2) for Euler (with f = 0), we have the addi-
tional term −σijui which describes the work done by the viscous forces and the
term −2µ eijeij which describes the local rate of energy loss due to the viscosity.
The rate of energy loss on a domain O at a given time is∫

O
2µeijeij dx (26.14)

and therefore we can call 2µeijeij the local rate of energy dissipation per unit
volume. The physical dimension of this quantity is

[2µeijeij ] =
M

LT 3
=

mass

(length) (time)3
. (26.15)

Often it is more convenient to work with the quantity

2νeijeij = 2
µ

ρ
eijeij (26.16)

which is the local rate of energy dissipation per unit mass. Its physical dimension
is

[2νeijeij ] =
L2

T 3
=

(length)2

(time)3
. (26.17)

140See for example the papers
Barenblatt G.I., Chorin A.J., Hald O.H., Prostokishin V.M., Structure of the zero-pressure-
gradient turbulent boundary layer, Proc. Natl. Acad. Sci. USA 29:7817-19, 1997.
Alexander J. Smits, Beverley J. McKeon, and Ivan Marusic, HighReynolds Number Wall
Turbulence, Annual Review of Fluid Mechanics, 2011, 43:353-75.
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For a turbulent flow u(x, t) we introduce a quantity

ϵ = 2νeijeij . (26.18)

This is the local average rate of dissipation per unit mass in the fluid, and often
it is called just dissipation. In general we expect ϵ to depend on x but not on t
(which is obvious if we use the averaging (25.15), assuming as always that the
limit exists). We may write ϵ = ϵ(x) if we wish to emphasize the dependence.
For example, in the turbulent channel flow considered in the previous section
we expect ϵ = ϵ(x2), with the profile nearly constant until we are close to the
boundary, where it is less clear what to expect heuristically, as the changes in
the flow near the boundary can be expected to be quite dramatic. (The region
one has to worry about is only a thin boundary layer near the channel walls.)
Note that unlike the Reynolds stresses Rij , the dissipation ϵ typically does not
vanish at the boundary. In the first approximation it is not unreasonable to
assume that ϵ is not far from a constant up to the boundary.141 (Note that for
the laminar flow (26.7) ϵ is exactly constant for simple reasons. The reasons
that it should also be (approximately) constant for turbulent flows are not so
simple.) The situation with the pipe flow is similar: for large Reynolds number
we expect ϵ to depend only on the distance from the pipe center, and, in fact,
we expect the profile to be not far from a constant. Again, the situation can be
somewhat more complicated near the pipe wall.

We should emphasize that the relative simplicity of the behavior of ϵ is expected
only due to the averaging procedure in its definition. The non-averaged rate of
energy dissipation 2νeijeij can be expected to oscillate wildly in both space and
time once the flow is turbulent.

We now come to a key point in the phenomenological approach to turbulent
flows. Namely, it is observed that

(P) in many situations, once the Reynolds number is sufficiently high, the dis-
sipation ϵ is quite independent of viscosity.

This is by no means obvious and it might look even suspicious at first. For
example, let us consider a pipe flow as in lecture 22. Assume the mean speed of
the fluid is U , the radius of the pipe is R, and these quantities are fixed while
we take smaller and smaller ν, so that the Reynolds number Re = UR

ν becomes
very large. The above principle (P) says that as we decrease the viscosity,
the dissipation ϵ will not (significantly) change, once sufficiently large Reynolds
numbers are reached. The idea is that the decrease of ν in the expression (26.18)
will be compensated by the increase of eijeij . The smaller viscosity will result
in steeper gradients ∇u and a larger magnitude of the deformation tensor eij ,
in such a way that the decrease of ν and the increase of eijeij will cancel each
other. It is not hard to understand that some effects in this direction should take

141These issues have of course been studied in detail experimentally and by numerical sim-
ulations. See for example the book of S. Pope “Turbulent Flows”, Chapter 7.1
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place, but the quantitative observation that the decrease of ν will be more or less
exactly compensated by the increase in eijeij so that ϵ will remain practically
unchanged is harder to explain. We will accept it as an experimental fact. Of
course, once we accept that ϵ is independent of ν, it is not hard to explain
that the pressure drop P ′ in formula (22.15) should be quite independent of the
Reynolds number, as the dissipation and the pressure drop are related to each
other.

The above principle comes with some caveats (some of which we will discuss),
but in many cases it works well and enables one to make useful predictions in
problems which seem to be untractable by any other means.
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27

11/14/2011

27.1 Kolmogorov-Richardson energy cascade

The velocity field in a turbulent flow is complex and one can see various struc-
tures at different scales. An example is provided by our everyday experience with
meteorological flows. These flows have some two-dimensional features (because
the relevant layer of the atmosphere is very thin in comparison with Earth’s
radius) and there are also some characteristic effects due to the Earth’s rota-
tion, but they still illustrate reasonably well some of the phenomena we wish to
discuss. A large storm can have dimension of hundreds of kilometers and the
motion of air associated with it can have a characteristic and easily distinguish-
able large-scale structure. It produces many local storms, and each of those can
be seen as its own event, with clearly distinguished structures. Each local storm
produces many wind gusts, and each of those has again its own characteristic
structure and scale. This hierarchy continues up to a quite small scale, of orders
of millimeters, where one could still distinguish individual vortex filaments pro-
duced by the flow, for example.142 In a turbulent flow we can similarly discern
various structures, parcels of fluid of various sizes which move for a while in a
coordinated fashion, before morphing to other structures. It is customary to call
these structures “eddies” or “whirls”. Each eddy can be thought of as having a
certain size and characteristic speed of the flow associated with it. It is not easy
to formalize this notion mathematically. Usually the Fourier transform provides
a good way to do it. The easiest situation is when we consider vector fields on
a three dimensional torus of dimension 2πL > 0

T3
L = R3/(2πLZ3), (27.1)

which is the same as considering vector fields which are 2πL periodic in the
direction of each coordinate axis. We can express each vector field u(x) in T3

L

as
u(x) =

∑
k∈Z3

L

û(k)eikx , (27.2)

and we can identify eddies of size l with the Fourier modes with wave numbers
k = (k1, k2, k3) with |k| ∼ 1

l . We note that the physical dimension of the wave
number k is

[k] =
1

length
=

1

L
. 143 (27.3)

The normalization in (27.2) is chosen so that the energy per unit mass of the
fluid at frequency k is |û(k)|2. Note that this is different from a normalization

142Of course, the meteorological flows include also various thermodynamical effects, such as
evaporation, condensation, changes of temperatures which make them even more complicated.
We will not discuss those effects here.
143We use L both as a specific length (in (27.1)) and a general symbol of length (in (27.2)).
This should not lead to a conclusion as the context will always by clear.
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which would be natural to use if we wished to pass to Fourier transform by
taking L → ∞. In that case one should write u(x) = 1

(2πL)3 .
∑
k∈Z3

L

û(k)eikx .

In our normalization (27.2) the Fourier coordinate û(k) has the same physi-

cal dimension as u(x), whereas its dimension would be L4

T if we used Fourier
transformation.

The identification of the eddies with the Fourier components means that the
quantities (such as the velocity or the vorticity) in the large eddies vary slowly.
(Abrupt changes in u(x) result in slowly decaying Fourier coefficients û(k).)

For vector fields u(x) in a domain Ω ⊂ R3 these notions can be defined by taking
the Fourier transform of a suitable localization of u(x), such as φ(x)u(x), where
φ is a suitable smooth cut-off function. We will not go into precise definitions
here,144 as the whole analysis will stay at a heuristic level, and therefore it is
enough to use only a heuristic concept of the “wave number” k when talking
about the fields in a domain (such as a pipe or a channel). We just keep in mind
that the notion of “eddies of size l” in a vector field u(x) in some subdomain
O is roughly the same as the notion of the Fourier components of φ(x)u(x) at
wave numbers145 1/l, where φ is a cut-off function adapted to O.

For concreteness, let us consider a flow in a pipe oriented about the axis x1. The
flow is maintained by a pressure gradient in the x1 direction, similar to (26.10).

We can think of the pressure gradient as a constant force

 A
0
0

. This is the

force which supplies the energy which is dissipated by the flow. If we start
action by this force on a fluid at rest, one can calculate the time development
of the flow quite explicitly in terms of the heat equation. The solution will be
of the form

u(x, t) =

 u1(r, t)
0
0

 , r =
√
x22 + x23 , (27.4)

with u1(r, t) approaching the Poiseulle’s flow (22.9) as t → ∞. (Note that the
non-linear term vanishes on this solution.) The solution is unique, and therefore
under ideal conditions no turbulence and the accompanying complicated eddies
and oscillations in the flow will develop. However, there will always be some
departure from the perfect symmetries, either in the force, or in the initial
condition, or in the shape of the pipe, and the simple solution (27.4) will develop
instabilities. The way this happens in a pipe can be quite complicated, and not
quite clarified even today.146 However, we can say that the instabilities will first

144This is a good exercise in Fourier transformation methods. In particular, one should
establish that in the range of the frequencies we will be interested in, our notions do not
depend on the details of the cut-off function φ assuming the function is chosen from an
appropriate class.
145Often also called frequencies, or – more precisely – spatial frequencies
146See for example
T. Mullin, “Experimental Studies of Transition to Turbulence in a Pipe”, Annu. Rev. Fluid

Mech. 2011, 43:1-24 .
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show as certain “eddies” in the flow, with the energy supplied to these eddies
from the main flow. (If the loss of stability happens at a relatively low Reynolds
number, of the order 103 or so, one will often observe only some sections of
the pipe filled with regions of turbulence, forming “turbulent plugs”. These
turbulent regions need more energy to be sustained, and they can slow down the
flow.) Eventually we have more and more eddies of various sizes appearing, and
in the end some kind of equilibrium is reached in which the energy supplied by
the force acting at low wave numbers and “macroscopic scale” is transmitted by
the fluid into the small scales/high wave numbers. This creates high gradients,
and the dissipation 2νeijeij dissipates energy at the level of these small scale
eddies. In flows with boundaries, such as the pipe flows we discuss here, one has
to distinguish between the flow close to the boundary, in the so-called boundary
layer, and the “bulk flow” far away from the boundaries. The above description
applies to the bulk flow, the boundary layer needs a separate analysis which we
will not go into at this time.

We imagine that the energy mostly moves from the large eddies to the smaller
eddies, but there can also be a non-zero transfer in the other direction. In terms
of the Fourier picture one can see from the formula

cos ax cos bx =
1

2
[cos(a+ b)x+ cos(a− b)x] (27.5)

that the quadratic interaction can change frequencies in both directions.

We imagine that there is some kind of a “statistical equilibrium” which the
system reaches in which the energy supplied by the force into the large scales
moves (in a non-local fashion) through the eddies of different sizes in a compli-
cated way, with the net flux of energy being from the large scale towards the
small scales. Note that this equilibrium is of a different nature than equilibria
discussed, say, in the kinetic theory of gases,147 in that the system is dissipative
and requires a supply of energy.

Mathematically it is easier to replace the pipe flow by so-called Kolmogorov
flows. These are flows on the torus T3

L obtained from solving

ut + u∇u+
∇p
ρ
− ν∆u = f(x), div u = 0,

∫
T3

L

u dx = 0 . 148 (27.6)

where

f(x) = β

 cos k2x2
0
0

 (27.7)

for some fixed low k2, with β > 0 being a parameter. There is a trivial steady-

147We will discuss these topics in more detail later.
148This last condition is useful to suppress the trivial non-uniqueness of the solutions caused
by the fact that there is no boundary and if we change a solution by a constant, we still get
a solution.
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state solution

u(x) =
β

νk22

 cos k2x2
0
0

 . (27.8)

This solution becomes unstable for sufficiently large β and the whole scenario
described above again comes into play.149 The advantage of this set up is that
the definition of the eddies in terms of the Fourier coefficients û(k) in (27.2)
is straightforward and there are no complications coming from the boundary
effects.

One of the basic assumptions in the theory of turbulent flows is that for high
Reynolds numbers the flow exhibit a certain universality. For example, if we
watch a small area of the turbulent flow in a pipe and away from the boundary
and subtract the mean velocity of the flow, what we see should not be that much
different from watching, say, a small area of the Kolmogorov flow above (once it
becomes turbulent), or say, a small area in a turbulent jet (once we subtract the
mean velocity). In each case the macroscopic picture should be characterized
only by a few quantities, such as the Reynolds number Re, energy dissipation
ϵ, and the viscosity ν. The motion will of course be very complicated, but it
will be “complicated in the same way” in all cases, once the few macroscopic
parameters are the same.

In addition, the role of the viscosity ν is only in establishing a cut-off in the
energy cascade due to the dissipation of the smallest eddies. The idea is that
we are interested mostly in the large eddies, we do not really want to follow
all the details of what all the small eddies do. The small eddies are important
only to the degree that their behavior influences the large eddies. And – it is
further assumed – for the behavior of the large eddies of size, say, l0, it is not
important whether the cut-off for the smallest eddies is at length l0

104 or l0
105 or

even l0
106 . There might be a difference for the large eddies between the cut-off at

l0
10 and l0

100 , but not between
l0
105 and l0

106 . The large eddies will feel no difference
between the cutoffs at such large Reynolds numbers, according the these ideas.
This is the reason why the scale models we discussed in lecture 22 work better
then one might naively expect.

In practice these ideas seem to be often confirmed, but one has to be quite
careful and apply them correctly. Sometimes a small-scale phenomenon in a
small area of the flow can significantly change the whole flow, as is the case
with the phenomenon of the drag crisis.150 There is a vague and somewhat

149This statement would not be true in dimension n = 2, it is important that we allow 3d
perturbations. See the paper “An example of absence of turbulence for any Reynolds number”
by C. Marchioro, Comm. Math. Phys. 105 (1986), 99-106.
150This is the effect that for the flows around bluff bodies (such as the sphere) the drag
coefficient c in (21.9) suddenly drops by a significant factor (e. g. from .5 to .1 for a smooth
sphere) at Reynolds numbers of order 105, to the degree that the force F itself drops if we
increase the velocity. The effect was discovered by A. G. Eiffel (the architect of the Eiffel
tower) in 1912, and explained in 1914 by L. Prandtl. The explanation is based in the changes
in the flow in the very thin area of the boundary layer.
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superficial similarity of such unexpected effects with phase transitions: one can
have reasonable ideas about how molecular structure of, say, water affects its
behavior in a qualitative way, but it is is not easy to calculate from the first
principles when exactly will water start freezing and how brittle will ice be. In
a similar vein, one can have reasonable qualitative ideas about what is going
on in turbulent flows, but it is hard to predict from the Navier-Stokes equation
when the drag crisis happens and how much it will reduce the drag.

27.2 The Kolmogorov length and the Kolmogorov-Obukhov
law.

In the above picture the following questions are natural:

1. What is the size of the smallest eddies? (= the cut-off length)

2. What is the energy distribution of energy between the eddies of various
sizes?

The answer to these questions is suggested by dimensional analysis, as first
noticed by A.N. Kolmogorov and A. M. Obukhov in 1941.151

Let λ be the size of the smallest eddies, or the cut-off length. (Alternatively, 1/λ
is the magnitude of the highest wave numbers which are needed to approximate
u well by a Fourier series.) By the above considerations, λ should depend only
on the dissipation ϵ and the kinematics viscosity ν, and possibly the density ρ.
The physical dimensions of these quantities are

λ ............ L ,

ϵ ............ L2

T 3 ,

ν ............ L2

T ,
ρ ............ M

L3 .

(27.9)

By the dimensional analysis as in lecture 1 it is easy to see that the only possible
expression for λ is

λ = c ϵ−
1
4 ν

3
4 . (27.10)

In the case of the pipe flow we know from our considerations above (see e. g.
Principle P in the last lecture) that ϵ should depend only on U (the mean
velocity) and R (pipe radius), and not an ν. By dimensional analysis we have

ϵ = c
U3

R
, (27.11)

with possibly different value of c than in (27.10). In general, the value of c
can change from line to line in what follows. In terms of the Reynolds number

151Kolmogorov, A.N., Local structure of turbulence in an incompressible fluid at very high
Reynolds number, Dokl. Acad. Nauk SSSR, 30, No. 4, 299–303, 1941.
Obukhov, A.M., Spectral energy distribution in a turbulent flow, Dokl. Acad. Nauk. SSSR,
32, No. 1, 22–24, 1941.
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Re = UR
ν we can write

λ = c
R

Re
3
4

. (27.12)

In general, if we have some more complicated geometry but have some charac-
teristic speed U 152and characteristic length L, which can be used to define the
Reynolds number

Re =
UL

ν
, (27.13)

the above analysis can still be applied and we conclude that the cut-off length
should be given by

λ = c
L

Re
3
4

. (27.14)

The length λ is called the Kolmogorov length. It is believed to give a reasonable
estimate of the size of the smallest eddies, which is also the smallest scale which
should be resolved in a numerical simulation. Therefore in dimension three the
number N of grid points needed for simulating a flow should depend on the

Reynolds number Re as N ∼ Re
9
4 . In the physicist’s terminology, the number

of the degrees of freedom of a turbulent flow grows approximately as Re
9
4 with

the Reynolds number. We should emphasize that the conclusion is based on
many assumptions and in practice the spacing of the grid may need to be even
smaller if we wish to solve the equations precisely. The Kolmogorov distance λ
represents the smallest scales under the assumptions that the intensity of the
energy dissipation is, on average, uniformly spread throughout the space. In
practice this may not be so and the significant dissipation may be concentrated
in regions of relatively small volume, which might lead to smaller scales than
anticipated by (27.14). Therefore the formula (27.14) should be considered with
some caution.

Let us now turn to the question of how much energy is in the eddies of size l.
It is more convenient to use the wave number magnitude κ = 1/l rather than l.
In terms of the Fourier representation (27.2) we have

κ = |k| . (27.15)

Let E(κ) be a function describing the average kinetic energy per unit mass in
the fluid at wave numbers of magnitude κ, so that∫ κ2

κ1

E(κ) dκ (27.16)

represents the average kinetic energy per unit mass in eddies with wave numbers
with magnitude between κ1 and κ2. In terms of the Fourier representation (27.2)

152Strictly speaking, we really have to consider the size of the range of values of the velocity
field, we should rule out the trivial situation where both the fluid and the boundaries move at
a constant speed U , in which case we do not expect any instability or turbulence, of course.
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we have ∫ κ2

κ1

E(κ)dκ ∼
∑

κ1≤|k|≤κ2

|û(k, t)|2 , (27.17)

where the “overbar” again means that we take an average, as in (25.16) or (26.18),
and we denote explicitly the dependence of u on t.

Let κK = λ−1 be the Kolmogorov cut-off frequency. By the discussion above
we expect that for frequencies above κK the density E(κ) is small, and – on
average – the part of u coming from these high frequencies is negligible.153

Beginning with some frequency κ1 such that 1
κ1

is quite smaller than the size of
the large eddies, the distribution of energy in the eddies should exhibit universal
features. The interval of frequencies (κ1, κK) is called the inertial range. The
energy density E(κ) in the inertial range should be independent of ν. It should
depend only on ϵ and, of course, κ. Assuming this, it is easy to obtain the
formula for E(κ) from the dimensional analysis. The dimensions of the various
quantities are

κ ............ 1
L ,

ϵ ............ L2

T 3 ,

E(κ)(dκ) ............ L2

T 2 ,

E(κ) ............ L3

T 2 .

(27.18)

The only way E(κ) can depend on ϵ and κ in a dimensionally consistent manner
is easily seen to be

E(κ) = c ϵ
2
3κ−

5
3 . (27.19)

This is the Kolmogorov-Obukhov law. This law does seem to be supported
by experimental data. Various confirmations of it, deviations from it, and its
modifications have been extensively discussed in the literature since 1950s, with
the conclusion that the formula (27.19) does seem to capture an important part
of the truth.

153Such a picture is incompatible with the possible existence of singularities in the Navier-
Stokes solutions, a scenario which has not been ruled out mathematically.
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28.1 Time-scales and frequencies in turbulent flows

When considering the oscillations of the velocity in time, we have to distinguish
between the Eulerian description and the Lagrangian description. In the Eu-
lerian description we are interested in the time scales and frequencies of the
functions

t→ u(x, t) (28.1)

for fixed points x (and quantities obtained then by averaging over x). In flows
with a non-zero mean speed U (such as the pipe flow, for example), these time-
frequencies can depend on U . There is a heuristic principle due to G. I. Taylor,
known as the frozen turbulence hypothesis, which says that in many cases (in-
cluding the pipe flow and the channel flow) one can obtain the time-frequencies
in (28.1) by simply assuming that vector fields with the spatial scales charac-
teristic for the flow will move simply by translation by the mean speed U . In
other words, we take a vector field v(x) with spatial characteristics of the flow
(such as v(x) = u(x, t1) and consider the field

w(x, t) = v(x− Ut) . (28.2)

The assumption behind this principle is that the typical velocities of the “small
eddies” (of size l such that the wave number 1/l is in the inertial range) are
smaller than U , and the smaller eddies mostly move with the mean flow, so that
the higher frequencies in (28.1) should be similar to the higher frequencies in
t→ w(x, t). This assumption seems to be confirmed by experimental results in
certain simple flows, including the pipe flows and the channel flows.

Once we accept the frozen turbulence hypothesis, we can translate the infor-
mation about the spatial behavior of u(x, t) into the information about the
temporal behavior and vice versa.
For example, if the Kolmogorov length for the flow is λ, the smallest time-scale
relevant for (28.1) is clearly

τe =
λ

U
, (28.3)

where we use the subindex e to indicate that we are dealing with the time-
dependence in the eulerian setting, as in (28.1). Combining this with (27.14),
we can write

τe = c
R

U
Re−

3
4 . (28.4)

If we calculate the solution numerically on a fixed grid, that the relevant depen-
dence on t is exactly (28.1) and the time-step should in our scheme should be
at most of the size τe.

154

154Of course, various numerical analysis considerations might suggest to take an even smaller
step, the estimate above of the limit on the time-step by τe is independent of the choice of
the numerical method.
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From the frozen turbulence hypothesis and the Kolmogorov-Obukhov law (27.19)
one can also obtain how much energy there is on average in the various frequen-
cies of the function t → u(x, t). We simply replace u(x, t) by w(x, t) in (28.2),
assuming that v(x) is some typical field satisfying the Kolmogorov-Obukhov
law. These calculations can be done with various degrees of rigor. The simplest
rough reasoning would be that if we take a function with a spatial wave number
of size κ, such as f(x) = sinκx and consider f(x−Ut), then we see a temporal
frequency

ω = κU (28.5)

Replacing κ by ω in the considerations leading of to (27.19), we obtain that the
average energy per unit mass (in a fixed domain) which is contained in the part
of velocity field with the eulerian155 temporal frequencies between ω1 and ω2 is∫ ω2

ω1
E(ω) dω, with

E(ω) = c (Uϵ)
2
3ω− 5

3 . (28.6)

Using the above one-dimensional model to conclude that we can just replace
κ by ω using the relation (28.5) is really a simplification of a more involved
calculation one should do. (In the above reasoning we did not take into account
that the spatial wave numbers are vectors, and most of them will not be parallel
to U , which leads to a modification of (28.5) to

ω = κU cosα , (28.7)

where α is the angle between the direction of the velocity U and the direction
of the wave number k (with κ = |k|). However, the more precise calculation
(which can be done by using the Fourier transformation, for example), leads to
the same conclusion as the simplified formula (28.5).156

155We have in mind the frequencies in (28.1) when x is held fixed. This should be distin-
guished from the Lagrangian frequencies, when we watch the temporal oscillations of the fluid
from a coordinate system moving with fluid particles.
156If we assume

v(x) =
∑

k∈ Z3

2πL

v̂(k)eikx (28.8)

and consider w(x, t) = v(x1 − Ut, x2, x3) we have

w(x, t) =
∑

k∈ Z3

2πL

v̂(k)ei(k1(x1−Ut)+k2x2+k3x3) =
∑

ω∈ U
2πL

Z

a(x, ω)e−iωt , (28.9)

where
a(x, ω) =

∑
k′
v̂(k1, k

′)eikx , (28.10)

with the obvious notation. We are interested in the average

b(ω) =
1

(2πL)3

∫
T3

L

|a(x, ω)|2 dx , (28.11)

which can be evaluated from (28.9), leading to

b(Uk1) =
∑

k′∈ Z2

(2πL)2

|v̂(k1, k′)|2 . (28.12)
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If we take the quantities ϵ and ν which characterize the shortest spatial scale,
the Kolmogorov length λ( (27.10)), we can from ϵ and ν a unique quantity with
the dimension of time

τ ∼ ϵ−
1
2 ν

1
2 , (28.13)

and a unique quantity with the dimension of velocity

v ∼ λ

τ
∼ ϵ 1

4 ν
1
4 . (28.14)

The time τ is called the Kolmogorov time. The three quantities λ, τ and v
define the Kolmogorov scales of the turbulent motion, and they should describe
some important features of turbulent motions. In the previous lecture have
already identified λ as the size of the smallest eddies. The velocity v can be
reasonably identified as a typical velocity within the smallest eddies (as watched
from a coordinate system moving with the eddy we focus on), and the quantity
τ can be reasonably identified as the timescale of the fluid oscillation within
the smallest eddies (as watched from a coordinate system moving with the eddy
we focus on). The fluid particles move along complicated trajectories. There is
some mean velocity, and large deviations from the straightforward motion due
to the large eddies. If we look closer, we see smaller-scale deviation due to the
smaller eddies, and so on, up to the smallest eddies. The smallest eddies impose
the “final level of oscillations” on the trajectories. These are small oscillations
with amplitude λ and frequency 1

τ . None of this can be proved rigorously, but it
is still remarkable that we can at least start discussing any plausible quantitative
predictions for such complicated phenomena. The Kolmogorov theory brings at
least some order (somewhat tentative, admittedly) into what would otherwise
look as an untractable chaos.

The Reynolds number Reλ corresponding to v, λ and ν is

Reλ =
vλ

ν
= 1 , (28.15)

which goes well together with the idea that most of the action of the molecular
viscosity is takes place at the level of the small eddies.

28.2 Turbulent flow modeling

The ideas behind the Kolmogorov-Richardson cascade can be used in justifying
various approaches to turbulent flow modeling and, as we already mentioned in
the last lecture, they can also be used to explain why scale models are more
useful than what we might first guess based on comparing the Reynolds num-
bers, see the discussion in lecture 22. Here we will only briefly discuss a simple

Assuming that v̂(k) is approximately isotropic for higher wave numbers, we obtain (28.6) after
a simple calculation.
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example of modeling. Assume that we wish to calculate the drag force, as in lec-
ture 21 (section 21.3). Let us change the Navier-Stokes equation by considering
the viscosity ν to be x−dependent:

uit + ujui,j +
p,i
ρ
− (2ν(x) eij(u) ),j = 0, div u = 0 . (28.16)

For a given ν(x) we can in principle calculate the drag force F . (Note that this
includes some time averaging, see (21.23), and we assume that the averages give
some well-defined drag force F .) We can write

F = F (R,U, ρ, [ν(x)]) , (28.17)

where the square bracket [ν(x)] indicates a functional dependence on the whole
function ν(x). We know that for water we have ν ∼ 10−6, which leads to
large Reynolds numbers for everyday flows, and therefore a detailed numerical
calculation of these flows which would reproduce the field u(x, t) in full detail
may be very challenging, and in many cases impractical. We can now make
considerations along the following lines. Let us have a look at the turbulent
region behind the sphere (the turbulent wake). Perhaps the details of the motion
in this region are not so important for the drag force, and we can try to cut the
Kolmogorov-Richardson cascade shorter, to save computing power. This can
be done by increasing the viscosity. We increase ν(x) in a smooth way by a
factor of, say, 10 in parts of the turbulent wake which are at some distance from
the sphere. (We assume that the Reynolds number is already quite high.) The
effect of this is that in the region where ν was increased the length of the energy
cascade was cut. We hope to find that this dramatic change in ν(x) does not
have much effect of the resulting force F , while we can now do the calculation
with less computing power, since our grid in the region of higher viscosity does
not have to be so fine. With some experimentation, we can build up some
expertise for where we can afford to increase ν(x) significantly without changing
F too much, and where cannot do that without getting the answer completely
wrong. Eventually we can build up enough experience to be able to calculate
some important quantities (such as the drag force, or lift force) with enough
precision, even though we do not really solve the full Navier-Stokes equation,
but some model equation with artificial viscosity. There are many potential
pitfalls in this approach. For example, to get the right values of the pressure
in important areas, we may have to model the effect that the turbulent part of
the velocity (some of which we have cut) lowers the pressure, as we discussed in
lecture 25. This will require to bring in some auxiliary quantities which model
effects of the velocity field oscillations which cannot be captured on our grid.
You can imagine that the whole process is quite experimental, proceeding by
trial and error, until we can tune our model so that we get reasonable answers
from it. Because of the obvious practical importance of such calculations, a
lot of effort has gone into building various models, based not only on the idea
of artificial viscosity and Reynolds stresses, but also on many other ingenious
ideas. There is a large literature on this subject, and we could spend the whole
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year discussing various methods. Interested readers may consult for example
the book “Turbulent Flows” by S. Pope. Even with the large computers we
have today, getting reliable predictions in situations where we do not have a
lot of previous experience (such as new geometrical arrangements of the flow)
is challenging.
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29

11/18/2011

29.1 Turbulence in dimension n = 2, preliminary consid-
erations

In our considerations so far of the oscillatory Navier-Stokes solutions the dimen-
sion n of the space did not seemingly play much role, and therefore one might
perhaps at first expect that the theory might also work in dimension n = 2.
This turns out not to be the case. The behavior of 2d Navier-Stokes solutions
at high Reynolds numbers is quite different. In fact, some experts believe that
the term “2d turbulence” should be avoided, because turbulence really exists
only in 3d. Nevertheless, the term is widely used.

The reason why the theory we have discussed in the last few lectures does
not work in dimension n = 2 is that the basic tenet of the theory, Principle
(P) formulated in lecture 26 is expected to fail in 2d. The energy dissipation
behaves differently. The reason for this can be explained best in the situation
of the free Navier-Stokes equation (with no forces) on a torus T2 = R2/Z2 or
T3 = R3/Z3 (no boundaries and finite volume). We consider the initial-value
problem

ut + u∇u+ ∇p
ρ − ν∆u = 0

div u = 0
in Tn × [0,∞), (29.1)

u(x, 0) = u0(x) in Tn. (29.2)

The initial condition u0(x) is assumed to be smooth but “generic”, which means
that it is “sufficiently complicated”. In particular, we assume that it does not
have any special features which would bring into play some extra properties
of certain classes of solutions, such as for example being independent of one
variable. In what follows we will assume that the problem (29.1), (29.2) has a
smooth solution for our initial condition u0(x). This is only known in dimension
n = 2, in dimension n = 3 the problem is open. 157 Formula (26.13) gives∫

Tn

1

2
|u(x, t)|2 dx+

∫ t

0

∫
Tn

ν|∇u(x, s)|2 dx ds =
∫
Tn

1

2
|u0(x)|2 dx . (29.3)

Let us denote

D(t1, t2, u0, ν) =

∫ t2

t1

∫
Tn

ν|∇u(x, s)|2 dx ds (29.4)

and let us consider the behavior of D(0, T, u0, ν) for some very large but fixed
T as ν → 0. What is known/expected about this behavior when n = 3?

157See e. g. http : //www.claymath.org/millennium
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1. If the problem (29.1), (29.2) with ν = 0 (Euler’s equation) has a smooth
solution on the time interval [0, T ], then D(0, T, u0, ν)→ 0 as ν → 0. This
is a rigorous result.

2. However, even if the assumption in 1. is satisfied, the convergence of
D(0, T, u0, ν) to 0 is expected to be very, very slow, as the corresponding
solution of the Euler equation will presumably produce structures with
extremely small scales.

3. It is conceivable (but unknown) that the Euler equation (corresponding
to ν = 0) does not have a smooth solution, in which case one might even
speculate that D(0, T, u0, ν) ≥ ε > 0 as ν → 0. This is an open problem.

The above is of course related to Principle (P) from lecture 26, although we
should note that the set up here is different in that we have no external forcing
(neither by a volume force nor from the boundary).

In dimension n = 2 the situation is completely different. We first note that for
any smooth div-free field v(x) in Tn we have∫

Tn

|∇v(x)|2 dx =

∫
Tn

| curl v(x)|2 dx , (29.5)

as one can see from integration by parts. Hence, denoting ω = curlu as usual,
we have

D(t1, t2, u0, ν) =

∫ t2

t1

∫
Tn

ν|ω(x, t)|2 dx dt . (29.6)

When n = 2 the vorticity ω is a scalar and we have

ωt + u∇ω − ν∆ω = 0 . (29.7)

The solutions of this equation satisfied a maximum principle. Therefore, denot-
ing M = maxx |ω0(x)|, we see that |ω| ≤M in T2 × [0,∞), which gives

D(0, T, u0, ν) ≤ νM2T area(T2) . (29.8)

Hence we see that, in the case of no forces and no boundaries, the dissipation
must go to zero at rate O(ν) as ν → 0. Although the situation in which we have
considered Principle (P) are more complicated than the simple example above in
that boundaries and/or volume forces are involved, the calculation (29.8) casts
serious doubt on Principle (P) in dimension n = 2.

Experimentally it is non-trivial to realize 2d flows, but it is reasonable to assume
that the dynamics of large-scale meteorological objects of dimensions, say, hun-
dreds of kilometers should exhibit some 2d features due to the relative thinness
of the relevant part of the atmosphere in comparison with such large dimen-
sions. Of course, locally the motion is still genuinely 3d, but one can expect
that some averaged large-scale properties should exhibit 2d effects. It is non-
trivial to make such speculations mathematically precise, of course, and at this
point we will not attempt to do so.
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Another situation when 2d features are promoted is the motion of fast rotating
fluids. This is related to Problem 2 in Homework Assignment 2 and can be
made rigorous.158

29.2 2d incompressible Euler equations – long time be-
havior

One can obtain a good idea about some of the features of the 2d turbulence
from looking at the case ν = 0, corresponding to the Euler equation. We will
consider the Euler equation in a 2d domain Ω. As usual, we will denote by ω
the vorticity and by ψ the stream function, see lecture 14 for details.

We will consider the Euler equation in the vorticity form

ωt + u∇ω = 0 , in Ω× [t1, t2], (29.9)

where u is obtained from ω as discussed in lecture 14. We can take t1 = −∞
and/or t2 = ∞. If we specify an initial condition of the form ω(x, 0) = ω0,
where ω0 ∈ L∞(Ω), it can be shown159 that there is a unique solution of (29.9)
in Ω × (−∞,∞) with ω(x, 0) = ω0. Since we are dealing with non-smooth
functions, the exact uniqueness class and the sense in which the equation is
satisfied and the initial condition is attained need to be specified with some
care, but at the moment we will bypass these technical issues, referring the
interested reader to the book of A. Majda and A. Bertozzi mentioned above.
We will work with the non-smooth solutions with bounded vorticity because
they are natural objects when studying the long-time behavior of the solutions,
as we will see.

The solutions of (29.9) with ω(x, 0) = 0 satisfy the estimate

|ω(x, t)| ≤ ||ω0||L∞(Ω) , (29.10)

as one can see at a formal level from (2.17).160

Let us consider a set A ⊂ Ω with |A| = 1
2 |Ω|.

161 We let B = Ω\A and consider

ω0 = χA − χB , (29.11)

where χX denotes the characteristic function of the set X.

To discuss the long-time behavior of the solution ω(x, t) of (29.7) with the initial
datum (29.11), we recall the notion of weak∗ convergence in L∞.

158See for example
Babin, A., Mahalov, A., Nicolaenko, B., 3D Navier-Stokes and Euler equations with initial

data characterized by uniformly large vorticity. Dedicated to Professors Ciprian Foias and
Roger Temam (Bloomington, IN, 2000). Indiana Univ. Math. J. 50 (2001), Special Issue, 135.
159This is a result of V.Yudovich from 1960s. A relatively short proof can be found for
example in the book of A. Majda and A. Bertozzi “Vorticity and Incompressble Flow”.
160This formula gives a proof for smooth solutions. The general case requires some additional
reasoning.
161We use the notation |A| for the Lebesgue maesuire of A.
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We say that a sequence ωj ∈ L∞(Ω) converges weakly∗ to ω ∈ L∞ if∫
Ω

ωjf dx→
∫
Ω

ωf dx , f ∈ L1(Ω) . (29.12)

For sequences ωj with |ωj | ≤ C this notion is equivalent with a number of other
notions of weak convergence, such as weak convergence in L2 (in which case we
take f ∈ L2 in the above definition), weak convergence in distributions (when we
take f smooth and compactly supported), etc. We will use the notation ωj ⇀ ω
to indicate any of these equivalent notions of weak convergence. We emphasize
that the equivalence requires the assumption |ωj | ≤ C (almost everywhere),
where C can depend on the sequence. We also recall that the closed balls {ω ∈
L∞ , |ω| ≤ C} are weakly∗ compact, and that the weak∗ topology restricted to
these balls is metrizable. 162

Let us now return to the question of the long-term behavior of ω(x, t) with the
initial condition (29.11). We can imagine that at the initial time we color the
fluid particles in the set A red and the particles in the set B blue. As time
progresses, the fluid particles are mixed by the flow, and naively we might think
that, in most cases, it might be reasonable to conjecture the following:

ω(t)⇀ 0 , t→∞ , (29.13)

or at least
ω(tj)⇀ 0 , for some sequence tj →∞. (29.14)

This conjecture can also be illustrated well in the Fourier space, where it also
might look plausible at first. Let us consider the equation in the torus T2 and
write Ω = T2 for a moment. We have

ω(x, t) =
∑
k∈Z2

ω̂(k, t)e2πkx (29.15)

and the weak convergence (29.13) is equivalent to

lim
t→∞

ω̂(k, t)→ 0 , k ∈ Z2 . (29.16)

This would mean that in the Fourier space the solution ω̂(k, t) would move to
increasingly higher frequencies as time progresses. This is also suggested in 3d
by the Richardson-Kolmogorov cascade, and it might be a plausible conjecture
for typical solutions of the 3d Euler equation (assuming the solutions exist). It
is not known whether or not it is true (in dimension n = 3).

However, in dimension n = 2 the the behavior (29.13), (29.14), or (29.16) cannot
occur, based on considerations of the energy. Recall that the kinetic energy is
given by

E(ω) =

∫
Ω

1

2
ρ|u|2 dx =

∫
Ω

−1

2
ρψω dx , (29.17)

162Recall that the whole space L∞(Ω) with the weak∗ topology is not metrizable.
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where u or ω are expressed through ω.163 For example, on the torus T2 we
have ∆ψ = ω, which determines ψ up to a constant, and hence u = ∇⊥ψ is
determined by ω uniquely.

Lemma 1
The energy E = E(ω) is weakly∗ continuous on bounded sets of L∞. In other
words |ωj | ≤ C, ωj ⇀ ω implies E(ωj)→ E(ω).

Proof
Let us consider the corresponding stream functions ψj , ψ defined by ∆ψj =
ωj , ∆ψ = ω, together with appropriate boundary conditions. By elliptic regu-
larity, the functions ψj , ψ have two derivatives in L2(Ω) (assuming the boundary
of Ω is smooth). Hence ψj → ψ uniformly by the Sobolev Imbedding The-
orem (recall that we are in dimension n = 2) and E(ωj) =

∫
Ω
−ψjωj dx →∫

Ω
−ψω dx = E(ω) as j → ∞. (There are many other ways to do the proof.

Also, in the case Ω = T2 one can do a simple proof “by hand” directly in the
Fourier space.)

Lemma 1 obviously rules out the behavior (29.13), (29.14), or (29.16) above.
The energy conservation provides an obstruction to a “complete mixing”. We
can try correct the conjecture as follows: perhaps typical solutions of the Euler
equation (29.9) mix the vorticity to the maximal degree which is still consistent
with the energy conservation? In the Fourier picture, this would correspond
to “as much vorticity ω̂(k) escaping to k ∼ ∞ as possibly can be consistent
with E(ω) = E(ω0). This suggests that ω could perhaps be obtained from the
principle

I(ω) =

∫
Ω

1

2
ω2 dx→ min. , E(ω) = E0 = E(ω0) . (29.18)

Note that both I and E are quadratic forms in ω, and one can obtain (at least
formally) the equation characterizing the result of the minimization (29.18) by
the usual Lagrange multiplier method: minimizing I(ω)− λE(ω) This leads to
an equation

I ′(ω)− λE′(ω) = 0 , (29.19)

which is the same as

ω + λ̃ψ = 0, E(ω) = E0 , (29.20)

where λ̃ = λρ. We know that ω = ∆ψ, so that the minimizer ω should be an
eigenfunction of the Laplacian (with suitable boundary conditions). Moreover,
the minimization in (29.18) dictates that λ̃ be the lowest possible nontrivial
eigenvalue. In the case of Ω = T2 all this can be again easily seen directly in
the Fourier picture.

163We keep the constant density ρ in the formula so that we get the correct physical dimen-
sions, although its specific value plays no role in our considerations here.
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The above consideration suggest that as t → ∞, the solutions ω(t) should
weakly∗ approach the finite-dimensional space generated by the eigenfunctions
associated with the lowest non-trivial eigenvalue of the laplacian (with suitable
boundary conditions).

As we shall see this conjecture still needs further corrections, but in some sit-
uations (such as the initial data ω0 with sufficiently small energy) it gives a
prediction for the long-times behavior of ω(t) which is looks to some degree
plausible. Moreover, one does see this behavior of the solutions numerically if
instead of pure Euler equation (29.9) one adds a small viscosity ν > 0 to the
equation and looks at the solutions of

ωt + u∇ω − ν∆ω = 0 . (29.21)

for times t of order ∼c
ν , where c is a constant with the physical dimension of

area. Therefore the above considerations, although non-rigorous, do seem to
capture at least a part of the truth. However, it is still an over-simplification,
as we shall see.

The integral I(ω) is called the enstrophy. The above considerations leading the
principle of minimizing the enstrophy at a fixed energy lead to the following
tentative conclusions: in dimension n = 2 energy tends to be dissipated much
more weakly than in dimension n = 3. Moreover, it tends to move to low spacial
frequencies. The flow of the energy to the low frequency modes is a particularly
striking feature of the 2d flows, it is exactly the opposite of what is happening
in 3d. It was first predicted by R. Kraichnan in 1967. At the level of the point-
vortex model it was anticipated by L. Onsager in 1949. The term inverse energy
cascade is often used in this context.
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30

11/21/2011

30.1 The model equation ut + uux − νuxx = 0 .

Let us consider the viscous Burgers equation

ut + uux − νuxx = 0 (30.1)

inR1×(t1, t2). As we discussed in lecture 2, the equation ut+uux = 0 represents
free particles. We can think of free particles which interact through viscosity,
but a natural equation for such a system would not really be (30.1).164 One can
think of (30.1) simply as a model equation which can illustrate some types of
behavior of PDE solutions. We allow t1 = −∞ and/or t2 = +∞. The equation
can also be considered on T1 × (t1, t2), with similar results, but we will work
in R× (t1, t2), where one can write down more explicit solutions. The equation
satisfies the obvious analogue of (29.3)∫

R

1

2
u(x, t2)

2 dx+

∫ t2

t1

ν|ux|2 dx dt =
∫
R

1

2
|u(x, t1)|2 dx , (30.3)

and we can again define

D(t1, t2, u0, ν) =

∫ t2

t1

ν|ux|2 dx dt , (30.4)

where u(x, 0) = u0(x), and we assume 0 ≤ t1 ≤ t2.

The equation has been studied in great detail in many papers, and in particu-
lar in E. Hopf’s influential paper in the Communications on Pure and Applied
Mathematics in 1950.165 The reader interested in deeper study of the equation
is refered to E. Hopf’s paper, here we will only briefly illustrate that for the
equation (30.1) scenario 3 from last lecture (section 29.1) is valid: the equation
with ν = 0 can develop singularities, and D(0, T, u0, ν) ≥ ε > 0 as ν → 0+ (un-
der suitable assumptions). The reason for the development of the singularities
when ν = 0 was already discussed in lecture 2: if u0(x1) > u0(x2) for some
x1 < x2, we will have a situation that a faster particle is approaching a slower
particle, and since there is no interaction and the particles move at constant
speeds, sooner or later some two particles with different speeds will come into
contact with each other, creating a discontinuity in u.

164The right equations describing such a system could be

ρut + ρuux = σx, ρt + (uρ)x = 0 , (30.2)

where ρ = ρ(x, t) is the density of the particles and σ is the viscous stress. We can assume
for example that σ = σ(ux) or σ = σ(ux, ρ).
165Vol. 3, 1950, pp. 201–230
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We note that if we start with a smooth and compactly supported u0 at t = 0,
then up to the time T ∗ of the first collision the solution of ut + uux = 0 will be
smooth and we will have D(0, T, u0, ν)→ 0 as ν → 0+ for any 0 < T < T ∗.

If the inviscid equation (the case ν = 0) develops a discontinuity at x = x1 and
time t = t1 but is regular for t < t1, the viscous equation will develop at times
t ∈ (t1, t1+ δ) (for sufficiently small ν) a steep gradient of order 1

ν in an interval

of width of order ν, and hence the integral
∫ t1+δ
t1

∫
R
ν|ux|2 dx dt will be at least

of order ∼ bδ/2, where b is the jump of u across the discontinuity.

A remarkable feature of equation (30.1) is that it can be transformed to the
linear heat equation

φt = νφxx. (30.5)

This is achieved by the Cole-Hopf transformation

u = −2ν φx
φ
. (30.6)

The Cole-Hopf transformation can be used to study the solutions of (30.1) in
detail. Here we only mention the following properties of the solutions.

1. If u(x, t) is a solution, so it u(x− ct, t) + c for any c ∈ R.

2. The equation has the same scaling symmetries and the Navier-Stokes
equation, see (22.7), (22.8). For example, if u(x, t) is a solution, so is
λu(λx, λ2t).

3. The function u(x) = − tanh x
2ν is a solution. Together with 1. and 2. this

can be used to construct traveling waves of the form −λ tanh
(
λ(x−ct)

2ν

)
+c.

4. More generally, if Ak > 0, ak, bk ∈ R, k = 1, 2, . . .m, then the function

u(x, t) =

∑m
k=1 2akAke

−ak(x−akt−bk)

ν∑m
k=1Ake

−ak(x−akt−bk)

ν

(30.7)

is a solution of (30.1).

Points 1-3 above should give the reader a good idea as to what one can expect
when a discontinuity (often called a shock) develops, and that D(0, T, u0, ν) will
not approach 0 with ν → 0 if T is larger than the lifespan of a smooth solution
of the equation with ν = 0. Taking ν → 0+ in (30.7) gives and illustration of
the behavior of the shocks and the dissipation of energy at the shocks.

The behavior of solutions of (30.1) is to some degree mimicked (with various
complications) by compressible flows. The incompressible case is quite far away
from (30.1).
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11/23/2011

31.1 A simple example from Statistical Mechanics

In lecture 29 we tried to find the long-term behavior of the incompressible
2d Euler equation by minimizing the enstrophy I = I(ω) for a fixed energy
E(ω) = E0. As we will see later, this procedure has still to be adjusted, but
it already illustrates an important idea that we can try to bypass the often
very difficult process of integrating the equations describing a physical system
by using instead some simple phenomenological principle which might capture
important features of the phenomena at hand. From a purely mathematical
point of view this can only provide some more or less reasonable conjectures
about the behavior of solutions, it is not a replacement for rigorously establishing
that the solutions of our equations have the expected properties. However,
from the point of view of physics such approach is often fruitful. In fact, as
we have already mentioned before, in some cases it may turn out that the
phenomenological principles on which our conjectures are based are more robust
and perhaps even more fundamental than the equations themselves.166

Let us consider the following classical example from Statistical Mechanics. We
consider a gas of total massM in a smooth domain Ω ⊂ R3 of a finite volume V .
We assume the gas consists of a very large number N of very small particles.
We can think of atoms, but our model is simpler, as we will assume that the
particles are essentially point-particles, without any internal structure. Let the
coordinates of the particles be x(i) ∈ R3, i = 1, 2, . . . , N . The velocities of the
particles are v(i), i = 1, 2, . . . , N . The mass of one particle is m = M

N . The
total kinetic energy of the particles is

E =
∑
i

1

2
m |v(i)|2 . (31.1)

We assume the particles interact with one another through collisions, and we
will assume that the collisions are “elastic”, in the sense that the kinetic energy
is preserved during each collision. We also assume that the collisions of the
particles with the boundary ∂Ω are elastic. We will adopt the notation

x1 = x
(1)
1 , x2 = x

(1)
2 , x3 = x

(1)
3 , x4 = x

(2)
1 , . . . , x3N = x

(N)
3 (31.2)

166For example, the basic ideas about the equations of motion underwent a dramatic change
after the discovery of the Quantum Mechanics, whereas the Statistical Mechanics, which was
originally developed in the context of the Classical Mechanics, was in fact quite well prepared
for the shift to Quantum Mechanics, as the main principles were not much dependent on the
details of the equations of motion. In fact, one of the the important original impulses for the
development of the Quantum Mechanics came from the problem of the black body radiation,
where the (phenomenological) principle of the equipartition of energy between the different
degrees of freedom in a physical system lead to a contradiction with ideas of the Classical
Physics.
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and
v1 = v

(1)
1 , v2 = v

(1)
2 , v3 = v

(1)
3 , v4 = v

(2)
1 , . . . , v3N = v

(N)
3 . (31.3)

If we let the system evolve for some time, we expect that it will reach some
state of a “statistical equilibrium” as we see in the real gasses. What will be
the distributions of the particles in Ω and the distribution of their velocities?
Instead of trying to solve the equations of motion, we can follow the founders
of Statistical Mechanics and make the following plausible conjectures:

(i) The particles will be uniformly distributed in Ω. This means that in a

macroscopic domain Ω1 ⊂ Ω we will find approximately N |Ω1|
|Ω| particles at any

given time, where | · | denotes the volume ( = the Lebesgue measure).

(ii) The vector v1, . . . , v3N will be uniformly distributed over the 3N −1 dimen-
sional sphere given by

(v21 + v22 + · · ·+ v23N ) =
2E

m
=

2E

M
N . (31.4)

This means that the probability that the vector v1, . . . , v3N will be in a subset

O of the sphere is |O|
|sphere|

, where | · | denotes the natural 3N − 1 dimensional

measure on the sphere. In fact, it can be reasonably assumed that the same
will be true in any macroscopic domain Ω1 ⊂ Ω. (In this case we replace 3N by

3N |Ω1|
|Ω| , and we refer only to the particles which are in Ω1.)

We will see below that based on these assumptions one can quite easily calculate
the distribution of velocities of the particles and obtain the so-called Maxwell
distribution, first calculated by Maxwell in 1859.

There are some important assumptions underlying the above conjectures. Roughly
speaking, the conjectures say that the macroscopic behavior of the system is (af-
ter some time) determined only by the quantities 2E

M and N , regardless of other
details of the initial data. Our assumption that the collisions are elastic implies
that, no matter what the details of the collisions are, the energy E is conserved.
The quantities M , and N are obviously also conserved in our model. To conjec-
ture (i) and (ii), we should be confident that we did not miss any other conserved
quantity which might affect the behavior envisaged by (i) and (ii). An addi-
tional conserved quantity has the potential of invalidating the conjectures. For
example, let us assume that the domain Ω is bounded, smooth, and invariant
under rotations about the x3-axis. Then the x3 component of the total angular
momentum of the system

I3 =
∑
i

m (x(i)× v(i))3 (31.5)

will be conserved by the evolution, and if I3 ̸= 0 for the initial data, the con-
jectures (i) and (ii) above cannot be correct, since one can easily see that they
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imply I3 → 0 in the long-time limit.167 If I3 is the only additional quantity
which is conserved, it is possible to adjust the conjectures (i) and (ii) in a way
which takes the conservation of I3 into account. However, the necessary adjust-
ment is less obvious than (i) and (ii), although it is still possible to to come up
with the right guess “by hand”, without using the machinery of Statistical Me-
chanics.168 In this case the density of the particles will not be independent of x,
it will depend on the distance from the axis of symmetry. The local distribution
of velocities will also depend on x, so that we will observe some macroscopic
rotation of the gas about the x3 axis.

Even when no other conservation laws are present, additional objections to
conjectures (i) and (ii) can come from the reversibility of the equations of motion
and the Poincaré recurrence theorem. These important issues, which have been
discussed since the birth of Statistical Mechanics, are related to the validity of
the Second law of Thermodynamics. We will not discuss them at the moment.

One can take the point of view that the experimental verification of (i) and (ii)
is at least as good as the experimental verification of the equations of motion
and promote (i) and (ii) to postulates, without worrying about the details of
the equations of motion. That is in some sense the philosophy of Statistical
Mechanics, where the analogues of (i) and (ii) are worked out and postulated
in much more general situations, and an effective computational machinery for
such considerations is developed.

In what follows we will assume that we do not have any additional conserved
quantities which would invalidate (i) and (ii). Assuming (i) and (ii), let us
calculate the distributions of the velocities of the particles. More precisely, we
consider the following question. Given a < b ∈ R, what is the probability that
the x1-component of velocity of a given particle of the gas is between a and b?

We first introduce some notation and recall some classical formulae.

Sn−1 ............ (n− 1)-dimensional sphere {x ∈ Rn, |x| = 1}.
Γ(s) ............ Euler’s Gamma function, so that Γ(n) = (n− 1)!.

|Sn−1| = 2π
n
2

Γ(n
2 ) ............ (n− 1)-dimensional volume of Sn−1.

σn−1 ............ the (n− 1)-dimensional measure on Sn−1

normalized to total volume 1
(31.6)

We also recall the limit

Γ(n2 )√
n
2 Γ(n−1

2 )
→ 1, n→∞ , (31.7)

167In the context of the real physics of the gas molecules, it is presumably impossible to have
an Ω which would have the above symmetry at the scale of the atomic dimensions, which is
why the conservation of I3 does not seem to present a problem for conjectures (i) and (ii)
in axi-symmetric containers Ω. The symmetry is lost at the atomic scale and the angular
momentum I3 of the gas can change in the collisions with the walls of the container, even
though they appear rotationally invariant to our eyes.
168With the use of the machinery the calculation is standard.
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and the formula

σn−1

(
{x ∈ Sn−1, α < x1 < β}

)
=
|Sn−2|
|Sn−1|

∫ β

α

(1− x21)
n−3
2 dx1 , (31.8)

where −1 ≤ α ≤ β ≤ 1.

In the context of (31.4), let us set ϵ = E
M . This is the kinetic energy per unit

mass due to the motion of the particles of the gas. We also set

vi = yi
√
2ϵN , (31.9)

so that (31.4) becomes

y21 + y22 + · · ·+ y23N = 1 . (31.10)

The condition
a < v1 < b (31.11)

is then equivalent to
a√
2ϵN

< y1 <
b√
2ϵN

. (31.12)

We need to calculate

I(a, b) = σ3N−1

(
{y ∈ S3N−1, αN < y1 < βN}

)
, (31.13)

where

αN =
a√
2ϵN

, βN =
b√
2ϵN

. (31.14)

By (31.8) we have

I(a, b) =
|S3N−2|
|S3N−1|

∫ βN

αN

(1− y21)
3N−3

2 dy1 . (31.15)

Using (31.9) and (31.6), we have

I(a, b) =
Γ( 3N2 )

√
2πϵN Γ(3N−1

2 )

∫ b

a

(1− v21
2ϵN

)
3N−3

2 dv1 . (31.16)

We note that for N →∞ we have

I(a, b) =

∫ b

a

1√
4πϵ′

e−
v2
1

4ϵ′ dv1 , (31.17)

where ϵ′ = ϵ
3 . We conclude that in the limit N → ∞ the probability density

that a given particle will have the x1-component velocity v1 is

1√
4πϵ′

e−
v2
1

4ϵ′ , (31.18)
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which is a form of the Maxwell distribution, first calculated by Maxwell in 1859
(by a somewhat different method). Note that ϵ′ is a macroscopic quantity, one
third of the energy per unit mass of the gas.

Remarks

1. Conjectures (i) and (ii) are very natural in the context of our example,
where the geometry is so simple that we have no trouble guessing the “most
uniform” distribution of x and v with the given energy level. However, in
more complicated situations it can be less obvious to predict what the “most
uniform” distribution should be and one has to come up with more sophisticated
principles. This is the subject of Statistical Mechanics. One approach, which
we will discuss later, is based on the introduction of the notion of entropy,
and the “most uniform” distribution will be the one which will maximize the
entropy, subject to given macroscopic constraints (such as the total energy, total
momentum, etc.). In the language of the Statistical Mechanics, our calculation
above was an elementary microcanonical emsemble calculation.

2. One could be tempted to imagine the particles as very small classical hard
balls of some finite small radius, with a certain continuous distribution of mass
over the ball. If we adopt such a picture, we should take into account that in
addition to the translational motions, the balls can also spin, and the kinetic
energy of the spinning contributes to the total energy of the system. The col-
lision of two balls is now more complicated and we have to involve the energy
contained in the spinning in our consideration. The analogy of conjecture (ii)
is now somewhat harder to guess if we do not invoke some general principles of
Statistical Mechanics.

3. If we imagine our balls as small elastic bodies, governed by the usual equa-
tions for elastic material, the deformations of the balls will have infinitely many
degrees of freedom and the considerations based on the uniform distribution of
energy between the modes of motion of the system will lead to the transparently
wrong conclusion that the energy will move to higher and higher modes of the
elastic oscillations of the balls, bringing the translational velocity essentially to
zero after some time. We see that the idea of gas molecules as classical small
balls with some elasticity leads to a contradiction. All these issues are fully
resolved only at the level of Quantum Mechanics.
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32

11/28/2011

32.1 Additional conserved quantities for 2d Euler flows

Let us now return to the principle (29.18) of minimizing the enstrophy I(ω) for
a fixed energy level, which we used as our first conjecture about the long-time
behavior of the Euler solutions. Based on this principle we would predict that
after a long time, the vorticity ω(t) will be weakly∗ close to an eigenfunction of
the Laplace operator, and perhaps we will have ω(tj)⇀ ω, where ω is a suitable
multiple of one of the eigenfunctions of the laplacian (and a suitable sequence
tj →∞), with E(ω) = E(ω0). However, the equation

ωt + u∇ω = 0 (32.1)

conserves also other quantities than the energy, and this can invalidate the above
prediction. For example, we know that

||ω(t)||L∞ ≤ ||ω0||L∞ , (32.2)

and hence the prediction would be wrong if ||ω||L∞ > ||ω0||L∞ . The situation
is somewhat similar to what we saw last time with the example from Statistical
Mechanics: if our system has a conservation law which we do not take into
account in our conjecture concerning the long-time behavior, the conjecture
may quite likely be wrong in cases where the extra conservation law plays an
important role. The obvious additional conserved quantities of (32.1) are

If (ω) =

∫
Ω

f(ω(x, t)) dx , (32.3)

where f : R → R is any continuous function. However, there is an additional
complication: the convergence suitable for studying the long-time behavior
seems to be the weak∗ convergence (in the sense that ω(tj) ⇀ ω for some
tj → ∞, for example) and one can easily see that the quantities If are not
weakly∗ continuous unless the function f is affine. Therefore we do not expect
If (ω) = If (ω0) in general for the possible long-time weak∗ limits ω. On the
other hand, if f is convex, we do have

If (ω) ≤ lim inf
j→∞

If (ωj), ωj ⇀ ω , (32.4)

which is a constraint of the same nature as (32.2). The quantities If therefore
have to be taken into account in the sense of (32.4). One way to formalize this
is the following. For ω0 ∈ L∞(Ω) we set169

Oω0 = weak∗ closure of

{
ω0 ◦ h ,

h : Ω→ Ω is a volume
preserving diffeomorphism

}
. (32.5)

169The definition has been considered in the paper by A. I. Shnirelman “Lattice theory and
flows of ideal incompressible fluid,” Russian J. Math. Phys. 1 (1993), no. 1, 105–114.
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The above constraints on the possible long-time limits ω of ω(t) (in the sense
that ω(tj) ⇀ ω for some tj → ∞) coming from the conservation properties
of (32.1) viewed as a transport equation for ω and the condition div u = 0 can
then be summarized as

ω ∈ Oω0 . (32.6)

The sets Oω0 can have a simple characterization. For example, when ω0 =
χA − χΩ\A with |A| = 1

2 |Ω|, then

Oω0
= {ω ,

∫
Ω

ω = 0 , −1 ≤ ω ≤ 1} . (32.7)

In general, the sets Oω0 are always convex. This may not be immediately
transparent from the definition, but the proof is not hard. We will return to
this issue next time.
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33

11/30/2011

33.1 Orbits and their weak∗ closures

We recall that we are dealing with bounded smooth domain Ω ⊂ R2. We can
also allow Ω to be a torus such as Ω = R2/Z2 or, more generally Ω = R2/Λ,
where Λ is a lattice or rank 2 in R2. Last time we defined for ω0 ∈ L∞(Ω) the
set

Oω0 = weak∗ closure of

{
ω0 ◦ h ,

h : Ω→ Ω is a volume
preserving diffeomorphism

}
, (33.1)

which is the weak∗ closure of the orbit of ω0 under the action of the volume pre-
serving diffeomorphisms.170 It might at first appear that these sets are some-
what unwieldy, but in fact they are quite simple. It turns out that they are
always convex, with a relatively easy characterization. We will illustrate this on
the example

ω0 = χA − χB , |A| = 1

2
|Ω|, B = Ω \A. (33.2)

Lemma

For ω0 given by (33.2) we have

Oω0
= {ω ,

∫
Ω

ω = 0 , −1 ≤ ω ≤ 1} . (33.3)

Proof

We say that ω is a special simple function if

ω =
∑
j

bjχEj , (33.4)

with |bj | ≤ C and Ej are mutually disjoint rectangles. We have to have Ω =
∪jEj modulo a set of measure zero. In what follows we will often ignore sets of
measure zero when they are irrelevant for our considerations. It is not hard to
see that it is enough to prove the lemma for the case what ω0 is a special simple
function. For this case we will show that if ω is a special simple function with∫
Ω
ω = 0 and −1 ≤ ω ≤ 1, then ω ∈ Oω0 . Again, it is not hard to see that this

implies the lemma.

The key point of the proof is that one can quite easily approximate the bijec-
tive measurable maps h : Ω→ Ω which preserve the measure (in the sense that

170In general we consider the diffeomorphisms to be orientation preserving.
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|h(E)| = E and |h−1(E)| = |E| for any measurable set E) by the diffeomor-
phisms in the L1 metric. For the proof we will not need this approximation re-
sult in its full generality, we will only need to approximate maps which, roughly
speaking, permute rectangles.

Let us consider two disjoint rectangles Q1, Q2 ⊂ Ω of the same volume. Let
h12 : Q1 → Q2 be a smooth volume-reserving diffeomorphism and let h21 = h−1

12 .
Let us define a map h : Ω→ Ω (not necessarily continuous) as follows

h(x) =


h12(x) x ∈ Q1 ,

h21(x) x ∈ Q2 ,

x elsewhere.

(33.5)

For concreteness let us assume that Q1, Q2 are open. Let γ be a smooth curve
joining Q1 and Q2, and let U an open neighborhood of γ. We can think of U
as a thin strip along γ joining Q1 and Q2. We claim that for each compact set
K1 ⊂ Q1 with K2 = h12(K1) there exists a smooth diffeomorphism h̃ : Ω → Ω
such that h̃ = h on K1 ∪K2 ∪ (Ω \ (Q1 ∪ Q2 ∪ U)). The main idea is simple:
we think of the region V = Q1 ∪Q2 ∪ U as a container with an incompressible
fluid. We imagine we color K1 red and K2 blue, and we have to move the fluid
in the region V in a smooth fashion so that we switch the red and blue regions
according to h12, and the particles very close to ∂V do not move. The blue and
red regions have to be passed through the thin connection U in an amoeba-like
manner, exchanging their positions. At this point we will slightly cheat and
omit the details of the proof of this step. (It does require some effort to work
out a formal proof, and one way or another one has to use some non-trivial
tools.)

From the above it is clear that h given by (33.5) can be approximated by smooth
volume-preserving diffeomorphisms hj with

∫
Ω
|f(h(x)) − f(hj(x))| dx → 0 as

j →∞ for each f ∈ L∞(Ω).

Once we can “switch” two rectangles in the above manner, it is clear that we
can permute any finite number of mutually disjoint rectangles, as long as they
have the same volume.

Let us now consider a particular special simple function ω ∈ Oω0 ,

ω =
∑

bjχEj , βj = |Ej | . (33.6)

The assumption ω ∈ Oω0 is equivalent to

−1 ≤ bj ≤ 1,
∑
j

bjβj = 0 . (33.7)

We wish to construct an approximation of ω by ω0 ◦ h for a suitable volume
volume preserving map h. Which functions η can be approximated by ω0 ◦ h
(for some h)? By using the above construction with permuting the rectangles,
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it is not hard to see that it is enough to approximate the function ω by simple
special functions of the form

η =
∑
j

(χFj − χGj ) , (33.8)

where Fj , Gj are mutually disjoint rectangles covering Ω (modulo a set of mea-
sure zero). In the first approximation, let us try to choose Fj , Gj so that
Ej = Fj ∪Gj and |Fj | = tj |Ej | = tjβj , with

tj =
1 + bj

2
. (33.9)

Note that 0 ≤ tj ≤ 1 by our assumptions, and that∫
Ej

(χFj − χGj ) = βjbj . (33.10)

The sets Fj have to be covered by images of mutually disjoint rectangles con-
tained in the set {ω0 = 1}. Therefore the following compatibility condition
must be satisfied: ∑

j

|Fj | =
1

2
|Ω| . (33.11)

This is easily seen to be a necessary and sufficient condition for our construction
to be possible. We need to check that it is satisfied. We have∑

j

|Fj | =
∑
j

tjβj =
∑
j

1

2
βj +

∑
j

1

2
bjβj . (33.12)

Now
∑
j βj = |Ω| as Ej cover Ω and

∑
j bjβj = 0 by (33.7), and therefore

by (33.12) the compatibility condition (33.11) is satisfied. With the choice of
Fj and Gj as above we approximated ω by a special simple function η ∈ Oω0

which in each Ej takes on the values 1 and −1 so that the average of η over
Ej has the value bj . To get approximations which weakly∗ converge to ω, we
can cover each Ej by a large number of small rectangles Ejk, . . . and repeat the
construction with the covering Ej replaced by Ejk. It is easy to see that in this
way we can get a sequence ηl ∈ Oω0 converging weakly∗ to ω. This finishes the
proof of the lemma.

Remark

For a general ω0 ∈ L∞(Ω) the set Oω0 can be characterized as

Oω0 = {ω ∈ L∞(Ω) ,

∫
Ω

ω dx =

∫
Ω

ω0 dx ,

∫
Ω

(ω−c)+ dx ≤
∫
Ω

(ω0−c)+ dx, c ∈ R},

(33.13)
where s+ denotes the positive part of s. The main idea of the proof is similar to
the proof of the lemma above, except that the “accounting” is somewhat more
complicated.
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33.2 Long-time behavior for 2d Euler - another attempt

In lecture 29 we explored the possibility of minimizing the enstrophy I(ω) =∫
Ω

1
2ω

2 dx at a given energy level E(ω) = E0 to predict the long time behavior
of Euler solutions, and we saw in lecture 32 that this may lead in some cases to a
transparently incorrect result, due to the constraints stemming from ω(t) ∈ Oω0 .
We can now try to adjust this procedure by the following rule:

Minimize I(ω) subject to the constraints E(ω) = E(ω0) and ω ∈ Oω0 .
(33.14)

In a domain without symmetries, this procedure takes into account all the con-
served quantities we are aware of. In a domain which is rotationally invariant,
the procedure misses the conservation of the moment of rotation of the fluid171

and still needs to be adjusted (by simply adding the additional conserved quan-
tity to our constraints).

Let us look again at the example (33.2) in the context of (33.14). In this case
the constraint ω ∈ Oω0 in (33.14) can be incorporated as follows. Let us define

g(ω) =

{
1
2ω

2, |ω| ≤ 1 ,

+∞ , |ω| > 1 .
(33.15)

Then for our special case (33.2) the minimization (33.14) becomes

J(ω) =

∫
Ω

g(ω)→ min, subject to E(ω) = E(ω0),
∫
Ω
ω = 0 . (33.16)

The function g(ω) can be approximated by smooth finite functions approaching
∞ for |ω| > 1. For a finite smooth g we can write the equation for the minimizers
in (33.16) by the usual procedure of Lagrange multipliers. We consider recall
that E(ω) =

∫
Ω
− 1

2ψω, where ψ is the stream function, and consider

L(ω) =

∫
Ω

(
g(ω)− λ(−1

2
ψω)− µω

)
dx. (33.17)

The condition L′(ω) = 0 gives

g′(ω) + λψ − µ = 0 . (33.18)

Keeping in mind that g is now a smooth finite approximation of the func-
tion (33.15), let us assume that g′ is strictly increasing and set F = g−1 (inverse
function). Then (33.18) gives

∆ψ = ω = F (−λψ + µ). (33.19)

171Given by
∫
|x|2ω dx if the center of the rotational symmetries is at the origin.
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As the functions g approach (33.15), the corresponding functions F approach
the following function

F (y) =


y |y| ≤ 1

1 y > 1

−1 y < −1 .
(33.20)

Therefore the procedure (33.14) predicts that the Euler solutions will weakly∗

approach the set of solution of the equation (33.19) where F is given by (33.20),
and the multipliers λ, µ are determined from the constraints E(ω) = E(ω0) and∫
Ω
ω = 0. (We note that the solutions of (33.20) are steady-state solutions of

the Euler’s equation, see (14.31).)In comparison with our first guess (29.20), the
equation is now non-linear, and the problem of finding the relevant solutions is
non-trivial.

The prediction of the long-time behavior of the 2d Euler solutions via the so-
lutions of (33.19) is certainly better than the prediction based only on the en-
strophy we discussed in lecture 29, but it is still not optimal in that we do not
really have any deeper justification for the finite part of the function g. In fact,
and we can replace the finite part of g by any uniformly convex function and
still get a similar prediction with a different function F in (33.20). Therefore
we have many predictions. Which one is the most reasonable? We will discuss
this issue soon. For now we note that we have to view all our prediction in
this direction with a grain of salt. The mixing which is necessary to obtain the
characterization of Oω0 in the lemma above is quite significant, as we can see
from its proof, and we can have some doubt if the evolution by Euler’s equation
can really achieve that level of mixing. In reality this may not be the case,
and therefore the principle (33.14), and also its still more sophisticated variants
which we will discuss later, cannot be viewed with the same level of confidence
as, say, the conjectures (i) and (ii) from lecture 31.
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34

12/2/2011

34.1 2d Incompressible Euler as a dynamical system in a
compact metric space

As we have seen in previous lectures, the space L∞(Ω) with the weak∗ topology
seems to be a natural space for the vorticity ω when we consider the long-time
evolution of 2d incompressible Euler solution. We have seen that the Euler
solutions ω(t) satisfy ||ω(t)||L∞ ≤ ||ω0||L∞ . Let c = ||ω0||L∞ and let

X = Xc = {ω ∈ L∞(Ω), ||ω||L∞ ≤ c} (34.1)

The set X equipped with the weak∗ topology is a compact metric space.172

In what follows we will always consider X with the weak∗ topology, unless we
explicitly state otherwise.
It is natural to ask if the evolution by Euler’s equation defines a good dynamical
system on X. This is a non-trivial issue. Note that so far we have always
assumed that our initial condition ω0 is “sufficiently regular” and the existence
results we discussed in lecture 13 were also formulated in the context of smooth
solutions. On the other hand, to be able to consider the Euler equation as a
dynamical system in X, one should have the following:

1. (Existence and uniqueness) For each ω0 ∈ X we have a unique solu-
tion of the 2d incompressible Euler equation (14.22) t → ω(t) in X with
ω(0) = ω0.

2. (Continuity) The map (t, ω0)→ ω(t) from R×X → X is continuous.173

These properties can be indeed established in our situation. Property 1 was
established in the 1960s by V. Yudovich174 and property 2 follows quite easily
from Yudovich’s results.

We note some technical points which come up in this context. First, the Euler
equation

ωt + u∇ω = 0 (34.2)

should be reformulated so that it can be well-defined for vorticities ω(x, t) which
are bounded but do not have any smoothness in x. (We assume that u is
determined by ω as discussed in lecture 14.) Second, one must define in which

172A standard way to introduce a metric in X which gives the weak∗ topology on X is
the following: consider a countable dense set fj of functions in the unit ball of L1(Ω), let

pj(ω) = |
∫
Ω fjω dx|, and set dist(ω′, ω′′) =

∑
j

2−jpj(ω
′−ω′′)

1+pj(ω′−ω′′) .
173The topology on R ×X is taken to be the natural product topology: (tj , ωj) → (t, ω) if
tj → t and ωj → ω in X.
174V. I. Yudovich, Non-stationary flow of an incompressible fluid, Zh. Vychisl. Mat. Mat.
Fiz. 3, 1032–1066, 1963.
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sense the initial condition is attained. Both of these points are addressed by
considering the weak solutions of (34.2). The key point in the definition of the
weak solutions is that div u = 0, and therefore (34.2) can be written as

ωt + div(ωu) = 0 . (34.3)

When ω and u are bounded measurable, the expression on the left-hand side
of (34.3) is well-defined as a distribution, and that is the key to the definition of
the weak solution. We will consider (34.3) with the natural boundary condition
un = 0 at the boundary ∂Ω, where n is the unit normal to ∂Ω as usual. This
condition on u is enforced via the boundary condition for the stream function
when solving ∆ψ = ω. (One assumes that ψ is locally constant on the boudary,
with a given constant for each component.)

If ω ∈ L∞(Ω × (t1, t2), the function x → ω(x, t) is defined as an element of
L∞(Ω) for a. e. t ∈ (t1, t2) and for such t we can define the stream function
ψ(x, t) by solving ∆xψ(x, t) = ω(x, t) in Ω, with the boundary condition as
above. This determined u(x, t) = ∇⊥ψ(x, t) a. e. in Ω× (t1, t2). In what follows
we will always consider u as determined by ω in this way.

We say that ω ∈ L∞(Ω× (t1, t2) is a weak solution of (34.3) in Ω× (t1, t2) if∫ t2

t1

∫
Ω

−ωφt − ωu∇φ dx dt = 0 (34.4)

for each smooth φ : Ω× (t1, t2) which is supported in Ω× [t1+ τ, t2− τ ] for some
τ > 0. (We note that we can also demand that φ be compactly supported in
Ω× (t1, t2), which leads to the same notion of solution, due to the fact that the
condition un = 0 is already enforced.)

If f ∈ L∞(Ω× (t1, t2)) satisfies for some a = (a1, a2) ∈ L∞(Ω× (t1, t2))∫ t2

t1

∫
Ω

−fφt − a∇φdx dt = 0 (34.5)

for each smooth φ compactly supported in Ω × (t1, t2), the equation imposes
some extra regularity on f , so that the function x → f(x, t) is well-defined as
an element of L∞(Ω) for each t ∈ [t1, t2]. This can be seen from the fact that
for a smooth φ = φ(x) compactly supported in Ω the function

t→
∫
Ω

f(x, t)φ(x) dx (34.6)

will satisfy∫ t2

t1

−
∫
Ω

f(x, t)φ(x) dx θ′(t) dt =

∫ t2

t1

∫
Ω

a(x, t)∇φ(x)θ(t) dt (34.7)

where θ(t) is smooth, compactly supported in (t1, t2). This shows that the func-
tion (34.6) has a bounded distributional derivative and therefore is Lispchitz.175

175Recall that a Lipschitz function g : (t1, t2) → R is a function with |g(t′) − g(t′′)| ≤
C|t′ − t′′|, t′, t,∈ (t1, t2) for some C ≥ 0.
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In particular, it is uniformly continuous in (t1, t2), and hence well-defined for
each t ∈ [t1, t2]. As φ = φ(x) was an arbitrary smooth compactly supported
function, we see that x ∈ f(x, t) is well-defined as an element of L∞(Ω) for each
t ∈ [t1, t2].

The above considerations show that if ω ∈ L∞(Ω × (t1, t2)) is a weak solution
of (34.3), then x → ω(x, t) is well-defined as an element of L∞(Ω × (t1, t2))
for each t ∈ [t1, t2]. Moreover, the function t → ω(·, t) is continuous as a
function from (t1, t2) into L∞(Ω × (t1, t2)) with the weak∗ topology (and can
be continuously extended to [t1, t2]. In other words, taking c = ||ω||L∞ , the
function t → ω(·, t) is a (uniformly) continuous function from (t1, t2) to the
metric space X above.

Assume now that t1 ≤ 0 ≤ t2. Taking into account the above remarks, it is
clear that weak solutions provide a good framework to talk about the initial
value problem

ωt + u∇ω = 0, ω(x, 0) = ω0 ∈ L∞(Ω). (34.8)

The main result proved in the above quoted 1963 paper of Yudovic is the fol-
lowing:

Theorem 1

The initial value problem (34.8) has a unique weak solution in L∞(Ω× (t1, t2))
for any t1 ≤ 0 ≤ t2, including t1 = −∞ and t2 =∞.

We will not go into the proof of this theorem. We refer the reader to the book
“Vorticity and Incompressible Flow” by A. Majda and A. Bertozzi, Chapter
8, or to the original paper of Yudovich. The main difficulty in the proof is the
uniqueness part. The proof of the theorem in fact also gives the following result:

Theorem 2

The solution ω(x, t) in Theorem 1 depends continuously on the initial data
in the following sense: if ωj0 converges weakly∗ to ω0 and ωj is the solution

corresponding to ωj0, then for each t ∈ (t1, t2) the solutions ωj(·, t) converge
weakly∗ to ω(·, t).

Theorems 1 and 2 show that the Euler equation provides a good dynamical
system in the metric space X, and we can use all the notions used in the study
of abstract dynamical systems. For example, for each ω0 we can define the
ω−limit set of the trajectory t→ ω(t) passing through ω0 as

Ω+(ω0) = ∩t>0 weak∗ closure of {ω(s), s ≥ t} , (34.9)

where we use the notation ω(s) = ω(·, s). Next time we will look at the sets
Ω+(ω0) in more detail.
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35

12/5/2011

35.1 Solutions with vorticity trajectories pre-compact in L2

Having the possibility of considering the 2d Euler equation as a dynamical
system on a compact metric has the advantage that we can apply general
concepts of the theory of the dynamical systems, such as the ω-limit sets
introduced last time, see (34.9). Going further in applying general conclu-
sions which can be made for dynamical systems on compact metric spaces, we
could for example construct measures on the ω−limit sets which are invari-
ant under the flow and study their ergodic properties. However, the infor-
mation about the Euler solutions which one can get from the general princi-
ples concerning dynamical systems on compact metric spaces does not seem
to be very deep, unless one uses some specific features of our situation. It
is useful that we can define the sets Ω+(ω0) (see (34.9)), but what can we
say about these sets? Clearly Ω+(ω0) ⊂ Oω0 ∩ {E(ω) = E(ω0)}. It is not
clear how often it happens that Ω+(ω0) = Oω0 ∩ {E(ω) = E(ω0)}. In the
absence of some obvious additional conserved quantities176, can we “typically”
expect Ω+(ω0) = Oω0 ∩ {E(ω) = E(ω0)}, or would such situation be excep-
tional/impossible? Questions of this type seem to be open.

Today we consider one simple result which is still based on fairly general argu-
ments, but does seem to be of some interest in the context od 2d Euler solutions
we have been studying.

Theorem

For any ω0 ∈ L∞(Ω) there exists ω0 ∈ Ω+(ω0) such that the trajectory ω(t)
passing through ω0 is pre-compact in L2(Ω). In particular, the ω−limit set
Ω+(ω0) is compact in L2.

Proof

Consider the enstrophy I(ω) =
∫
Ω

1
2 |ω|

2 dx. The functional I is sequentially
weakly∗ lower semi-continuous on L∞(Ω), and hence weakly∗ lower semi-continuous
on the metric space X (see (34.1)). The set Ω+(ω0) is compact in X, and there-
fore I attains its minimum on it. Let ω0 ∈ Ω+(ω0) be such that m = I(ω0) ≤
I(ω) for each ω ∈ Ω+(ω0) and let ω(t) be the trajectory with ω(0) = ω0.
Assume ω(tj) converge weakly∗ to ω1. We have ω1 ∈ Ω+(ω0) (relying on
Theorem 2 from lecture 34) and therefore I(ω1) ≥ m. On the other hand
I(ω1) ≤ lim infj→∞ I(ω(tj)) = m. Therefore I(ω(tj)) → I(ω1), and together
with the weak∗ convergence of ω(tj) to ω1, this implies the strong convergence
of ω(tj) to ω1 in L2(Ω). (It is not hard to see that the proof also works with I
replaced by If (ω) =

∫
Ω
f(ω(x)) dx as long as f is strictly convex.)

176such as
∫
Ω |x|2ω dx when Ω is a disc centered at the origin
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Remarks

1. In general, if we minimize If over Oω0 ∩ {E(ω) = E(ω0)} rather than
Ω+(ω0), we get a steady state solutions (which can depend on f). This follows
from results in the paper of A. Shnirelman quoted in lecture 32 and can be also
proved directly, by generalizing the procedure leading to (33.19) in lecture 33.

2. The solution ω(t) from Theorem 1 seems to be relevant in the context of
solutions we observe in long-time numerical integration of the 2d Euler equation.
For concreteness, let us assume that the domain Ω is the two-dimensional torus
R2/2πZ2 and let ω̂(k, t) be the Fourier coefficients of ω (so that ω(x, t) =

1
(2π)2

∑
k ω̂(k, t)e

ikx). A numerical simulation has a limit to its resolution, which

can be represented by a cut-off in the frequency space, in the sense that we only
consider frequencies k ∈ Z2 with |k| ≤ κ, where κ is some large number.177 We
can imagine a cartoon picture in which the actual (non-truncated) solution is
consisting of two parts. One which lives in “finite frequencies” (ideally ≤ κ),
and one which gradually drifts to the infinite frequencies. Both parts can have
non-negligible L2-norm. However, energy has to be conserved, and therefore the
“finite frequency part” has to move somewhat towards the origin, to compensate
for the loss of energy caused by the high frequency part moving to still higher
frequencies. In our first attempt on the prediction of the long-time behavior in
lecture 29 we assumed that the “finite frequency part” will move all the way
down to the lowest possible frequencies. However, we can also imagine that
this may not be the case, and on its way towards to low frequencies the “finite
frequency part” can get stuck in some time-dependent regime, which will not
descent all the way to the lowest modes. After a long time the high frequency
part will be practically invisible, residing only in very high frequencies, and what
we see will be only the “finite frequency part”. There will be no further “leaking
to infinity” from this part, and we can identify it with the solution ω(t) above.
The would be the simplest possible scenario. The reality is presumably more
complicated, but the Theorem above is a (weak) statement in this direction.

3. If the scenario 2 above is correct, then we would expect that Ω+(ω0) is in
fact compact in L2 for a “typical” ω0. Whether or not this is true is unclear.

177On your laptop you can take easily κ = 102, on a larger machine one can take κ ∼ 104,
and κ ∼ 105 is still realistic on today’s big computers.

168



Homework Assignment 3
due December 21

Due one or more of the following five problems:

Problem 1

Verify that the Cole-Hopf transformation (30.6) takes the positive solutions of
the heat equation (30.5) into the solutions of the viscous Burgers equation (30.1).

Problem 2

In the context of (33.13), prove that

Oω0 ⊂ {ω ∈ L∞(Ω) ,

∫
Ω

ω dx =

∫
Ω

ω0 dx ,

∫
Ω

(ω−c)+ dx ≤
∫
Ω

(ω0−c)+ dx, c ∈ R}.

(35.1)

Problem 3

Calculate the fundamental solution of the linear steady Stokes system (25.11)
in the cartesian coordinates.

Problem 4

Explain why blowing into a flute can generate sound.

Problem 5

Consider a flow of water in a 3/4 inch garden hose. Assume the stream of water
leaving the hose can rise 20 feet high.
a) Estimate the Reynolds number of the flow inside the hose.
b) Estimate the size of the smallest eddies inside the hose.
c) Estimate the highest frequency with which the fluid particles oscillate around
their mean trajectories.
d) Estimate how much power is needed to sustain the flow (not counting the
power needed for accelerating the fluid from the state of rest) if the length of
the hose is 100 feet.
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36

11/7/2011

36.1 Maximizing the entropy

The idea behind the various conjectures for the long-time behavior of the 2d
incompressible Euler solutions is mostly that, roughly speaking, the solution
should mix the vorticity in the maximal possible way which is still consistent
with the conservation of the conserved quantities.178 One way to measure mix-
ing is to look at values of integrals If (ω) =

∫
Ω
f(ω) dx for convex functions f .

The smaller the value of If (ω) on ω ∈ Oω0 , the more mixing has to take place
to produce ω from ω0 ◦ h (where h is a volume-preserving diffeomorphism) by
weak∗ convergence. We have seen in the proof of the theorem in the last lecture
that this idea works at some level, but there are clearly an ad hoc components
in that approach. Today we look at the issue of how to measure the level of
mixing in a more sophisticated way. We will again consider only the simple
example179

ω0 = aχA − aχB , B = Ω \A, |A| = 1

2
|Ω| , (36.1)

where a ≥ 0 . 180 We will consider a simple approach which is sometimes used in
introductory Statistical Mechanics.181 Our goal is to illustrate the main ideas.
Let us first consider the following discrete problem. We cover Ω (modulo a
set of measure zero) by r mutually disjoint “boxes” B1,B2, . . . ,Br of the same
measure |Ω|/r. We divide each of these boxes into n mutually disjoint smaller
boxes of measure |Bi|/n = |Ω|/rn. Consider now the vorticity functions ω
which are constant constant on each box Bk, denoting the value on Bk by ωk.
We assume that the value ωk in Bk is a result of mixing values +1 and −1 in
the small boxes contained in Bk. In each of the small boxes the value of the
function which we use for mixing is either +1 or −1. If in n+k small boxes of
Bk the value is +1 and in n−k of the small boxes of Bk the value is −1, then we
have

n+k + n−k = n, ωk = a ·
n+k
n
− a

n−k
n
. (36.2)

Letting

ρ±k =
n±k
n
, (36.3)

178As we have already mentioned in the last lecture, this conjecture may be too optimistic
in that it over-estimates the amount of mixing the equation is able to provide. Nevertheless,
it is interesting to work out the consequences of the “maxima possible mixing” hypothesis.
179It is not hard to generalize the approach we will consider to the general case.
180We could set a = 1 without loss of generality, but from the point of view of dimensional
analysis it is better to use (36.1), where a is thought of having the same physical dimension
as ω.
181See e. g. the text “Concepts of Modern Physics” by A. Beiser.
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we can write

ρ±k =
a± ωk
2a

. (36.4)

Imposing the constraint ∫
Ω

ω = 0 (36.5)

is clearly the same as demanding that the total number of the small boxes
where we use +1 is the same as the total number of the small boxes where
we use −1. We will only consider the configurations in which this constraint
is satisfied. With all the boxes B1, . . . ,Br and all the small boxed inside them
fixed, how many configurations of +1 and −1 which “produce ω1, ω2, . . . ωr
does there exist?182 Recalling elementary combinatorics, we write the number
of configurations as

K = K(ω) = Πj=rj=1

n!

n+j ! n
−
j !
. (36.6)

We have
logK =

∑
j

[
log n!− log n+j !− log n−j !

]
. (36.7)

Using the Stirling formula

logm! = (m− 1

2
) logm−m+

1

2
log 2π +O(

1

m
), m→∞ (36.8)

and setting n±j = ρ±j n, we can write, assuming all n±j are large enough,

logK =
∑
j

[
n(−ρ+j log ρ+j + ρ−j log ρ−j ) +

1

2
log n+

1

2
log ρ+j +

1

2
log ρ−j −

1

2
log 2π

]
+R ,

(36.9)
where R is an error term. Therefore

logK

nr
=

1

|Ω|

∫
Ω

(−ρ+ log ρ+ − ρ− log ρ−) dx+ R̃ (36.10)

where ρ± = ρ±j in Bj and R̃ is an error term. The integral on the right can be
called entropy. This term is used in many situations in various ways. In the
context of Statistical Physics it is often proportional to the logarithm of the
number of ways in which some event can occur.183 In our case it can be thought
of as the logarithm of the number of ways in which the function ω can be mixed
from +1 and −1, normalized per the small box. Note that

ρ± =
a± ω
2a

(36.11)

182For a given ω the formulae may not give an integer n±
k , but we will ignore this issue, as

we are interested in the continuum limit anyway.
183For a rigorous treatment of probabilistic notions related to entropy we refer the reader to
the book “Large deviation techniques and applications” by A. Dembo and O. Zeitouni. For
an introduction to Information Theory, where the notion of entropy is also important, and
the terms Shannon entropy or “measure of information” are also used, we refer the reader to
the book “Information Theory” by R. B. Ash.
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as in (36.4). Omitting a more detailed analysis of the error term184 and passing
formally to the continuum limit, we obtain that logK

nk approaches

S(ω) = 1

|Ω|

∫
Ω

a+ ω

2a
log

(
a+ ω

2a

)
+
a− ω
2a

log

(
a− ω
2a

)
dx . (36.12)

We can call S(ω) the entropy of the function ω (with respect to ω0 given
by (36.1), so we might also write S(ω, ω0)). The value S(ω) should in some
way quantify the among of mixing which is necessary to produce ω from ω0.

We let

s(ω) =
a+ ω

2a
log

(
a+ ω

2a

)
+
a− ω
2a

log

(
a− ω
2a

)
, (36.13)

so that

S(ω) = 1

|Ω|

∫
Ω

s(ω) dx . (36.14)

The function s(ω) is defined so far only for ω ∈ [−a, a] and it is natural to set
s(ω) = −∞ when |ω| > a.

Let us now consider the problem

Maximize S(ω) subject to E(ω) = E(ω0) and
∫
Ω
ω dx = 0. (36.15)

Assuming that Ω is a torus or a simply connected domain,185 we can write the
equation for ω coming from (36.15) by using Lagrangian multipliers as usual.
We maximize

S(ω)− βE(ω)− µI(ω) , E(ω) = E(ω0) = E0, I(ω) =
1

|Ω|

∫
Ω

ω

a
dx = 0 ,

(36.16)
where the physical dimension of β is 1/energy and µ is dimensionless. We
have E(ω) = 1

2ρ
∫
Ω
−ψω dx, where ρ is the (constant) density of the fluid. Let

M = ρ|Ω| be the total mass of the fluid. From the maximization of in (36.16)
we obtain

s′(ω) + βMψ − µ

a
= 0 . (36.17)

We have

s′(ω) =
1

2a
log

(
a+ ω

a− ω

)
. (36.18)

Inverting this expression, we obtain from (36.17)

∆ψ = ω = a tanh(βaMψ + µ) . (36.19)

184In particular, in the derivation we should assume that the densities ρ±j are not too close

to zero, so that the Stirling approximation is still valid and the error term R̃ is small.
185The only issue in multiple connected domains is in recovering ψ from ω. One of course
solves ∆ψ = ω, but the correct boundary condition on ψ needs some discussion. We will get
to this issue later.
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If the conjecture of “maximal possible mixing compatible with the given con-
straints” is correct, we can expect the solutions of Euler equation to approach
(weakly∗ ) the solutions of (36.19) for large times. The multipliers β and µ
above are determined from E(ω) = E0 and I(ω) = 0. The study of the relevant
solutions of (36.19) (subject to E(ω) = E0 and I(ω) = 0) is a nontrivial topic
in its own right, and we will discuss some aspects of it soon.
The maximum value of S(ω) among all ω subject to the constraints ω ∈ Oω0 and
E(ω) = E0 can be denoted by S(E0). This function S = S(E) is the analogy of
the entropy function used in Statistical Mechanics and Thermodynamics.

Historical comments

The Statistical Mechanics approach to 2d Euler equations has a long history,
starting with a well-known 1949 paper by L. Onsager.186 In 1970s a model based
on the point-vortices approximation equations of the form ∆ψ = f(βψ+µ) with
f ∼ sinh was derived by G. Joyce and D. D. Montgomery.187 Equation (36.19)
(with a different normalization of the parameters) was first derived around 1990
(in a slightly different way) by J. Miller188 and R. Robert189, as a special case
of a more general theory which instead of the special initial data (36.1) consid-
ers general ω0. A further important contribution to the theory (which we will
discuss next time) is due to B. Turkington.190 The concept of mixing which we
use was introduced in the 1993 paper by A. Shnirelman191 quoted in lecture 32.
The reader can also consult the book “Non-linear Statistical theories for Basic
Geophysical Flows” by A. Majda and X. Wang”, the book “Vorticity and Tur-
bulence” by A. Chorin, or the book “Topological Hydrodynamics” by V. Arnold
and B. Khesin.

186Nuovo Cimento (9) 6 (1949), Supplemento No. 2, 279–287.
187Journal of Plasma Physics (1973), 10, pp 107–121
188Phys. Rev. Lett. 65, 1990, no. 17, 2137–2140.
189J. Statist. Phys. 65 (1991), no. 3–4, 531–553.
190Communications in Pure and Applied Mathematics, Vol. LII, No. 7, 1999, pp. 781–811.
191Russian J. Math. Phys. 1 (1993), no. 1, 105–114.
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12/9/2011

37.1 Ideal gas revisited

In lecture 31 we calculated the velocity distribution of particles in an ideal
gas (under some assumptions). That calculation was based on a conjecture
that after letting the system evolve for some time, the probability of finding the
vector of all the particle velocity coordinates to assume the value (v1, v2, . . . v3N )
is uniformly distributed over the given energy surface. Today we calculate the
velocity distribution in a different way, using the notion of entropy. This will
hopefully give some illustration of the notion of entropy in a situation which is
simpler than the 2d Euler, and where one can actually explicitly calculate the
analogue of the function S = S(E) mentioned at the end of the last lecture.

The notion of entropy can be introduced in many ways. The way we chose here
represents one of the more elementary approaches and our choice has been mo-
tivated by a desire to have a definition which closely follows our considerations
for 2d Euler solutions in the previous lecture.

We again consider N particles of mass m in a domain Ω ⊂ R3. The total
mass is M = Nm. We will describe the state of the system in a way which is
different from our description in lecture 31. Instead of using probability density
in the “big space” (x1, . . . , x3N , v1, . . . , v3N ) we will use the particle density in
the 6−dimensional space (x1, x2, x3), (v1, v2, v3). The density of the particles
will be denoted by ρ(x, v). For any box B ⊂ R3 ×R3 the number of particles
with coordinates x = (x1, x2, x3) and velocities v = (v1, v2, v3) which belong to
B is

N

∫
B
ρ(x, y)

dx dv

C
, (37.1)

where C is a constant of dimension [length]3 [velocity]3 , which can be thought
of as the volume of a reference box in R3 ×R3. The reason we introduce this
factor is that we wish to keep the density ρ dimensionless. Our definition clearly
implies the normalization ∫

R3×R3

ρ(x, v)
dx dv

C
= 1 . (37.2)

The energy E of the system of particles described by the density ρ will be
assumed to be

E =

∫
R3×R3

ρ
1

2
M |v|2 dx dv

C
. (37.3)

This means that there is no potential or interaction energy. The particles are
supposed to interact so that they can reach the “equilibrium state” which we
are going to calculate based on some conjectures, so there is an idealization
here: we assume that somehow the equilibrium state will be reached even when
the energy is given by (37.3). We can imagine for example that the particles
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are very small and they only interact through elastic collisions, and the total
volume occupied by the particles is negligible in comparison with the volume
they occupy. That is why we talk about “ideal gas”. In a real gas there will be
an additional term in (37.3) (not to speak about quantum effects and a number
of other phenomena, which we also neglect). Nevertheless, in many situation
the ideal gas provides a very good approximation of the real situation.

Assume now we take some large finite box in R3 × R3 centered at (0, 0) and
divide in into a large number r of small boxes B1,B2, . . . ,Br of the same vol-
ume b. We assume that the coordinates of all N particles are in the large box.
Let nj be the number of particles in Bj . We let

pj =
nj
N
, pj = ρj

b

C
. (37.4)

LetK be the number of ways in which we can distribute the N particles between
B1, . . . ,Br so that the number of particles in Bj is nj . We have192

K =
N !

n1!n2! . . . nr!
(37.5)

Using Stirling’s formula (36.8) together with nj = pjN , we obtain, similarly to
the calculation (36.9) in the last lecture,

logK = N(
∑
j

−pj log pj) +R , (37.6)

where R is a remainder term which we will not study in detail. Hence

logK

N
∼
∫
R3×R3

−ρ log(ρ b
C
)
dx dv

C
=

∫
R3×R3

−ρ log ρ dx dv
C

+ log(
C

b
) .

(37.7)
The term log C

b approaches ∞ as b → 0+. However, we note that the term
is independent of ρ, and in fact represents (modulo a finite term) the number
logK
N for the special case n1 = n2 = · · · = nr =

N
r . So we can remove this term

with the understanding that our formula will represent not logK
N but rather the

difference (up to some constant) between this quantity and the same quantity
for the uniform distribution. Following the traditional notation, we will denote

H = H(ρ) =

∫
R3×R3

−ρ log ρ dx dv
C

. (37.8)

This integral, introduced by L. Boltzmann is sometimes called the entropy
of the density ρ. It plays the same role as the function s in (36.12). The

192Here we assume that in principle it is possible to have some information which can dis-
tinguish the particles from one another. This is always possible in the classical picture of the
world, where information is not “physical” and does not interact with our system. We know
that in reality this is not the case, but for our purposes here it is still OK to assume that in
principle we can tell one particle from another, e. g. by knowing their histories. However, we
should keep in mind that at the level of the Quantum Mechanics this is impossible.
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“most likely” density ρ corresponding to a given energy level E can now be
predicted (following L. Boltzmann) to be given by maximizing H(ρ) subject
to the constraint (37.3) that the system has energy E and also the condition∫
R3×R3 ρ

dx dv
C = 1. Using Lagrange multiplyers as in the last lecture, we see

that we should maximize the functional∫
R3×R3

(
−ρ log ρ− βρ1

2
M |v|2 − µρ

)
dx dv

C
, (37.9)

where β and µ are eventually determined by the constraints. Setting the varia-
tion of (37.9) equal to zero, one obtains

− log ρ− β 1
2
M |v|2 − µ− 1 = 0 (37.10)

Further calculation193 leads to

β =
3

2E
, ρ(x, v) =

C

V (4πϵ′)
3
2

e−
|v|2
4ϵ′ , (37.13)

where V = |Ω| and ϵ′ = E
3M , as in (31.18). This is again the Maxwell distri-

bution of the velocities, this time expressed in a somewhat different way. We
can now define the entropy S = S(E, V ) of the gas as the maximal value of∫
R3×R3 −ρ log ρ dx dv

C for the given constraints. Using (37.13) and calculating
the integral, one obtains

S = S(E, V ) = log

[
V

C

(
E

M

) 3
2

]
+ const. (37.14)

It is important to point out that this formula is not quite correct from the point
of view of physics in that it does not give the correct dependence on M . (The
dependence on V and E is correct, modulo the choice of normalization.) This
is due to the fact that one should really do the calculation in the phase space
(x, p), where p = mv. There are several reasons why the phase space (x, p) is
the right object here, rather then the space (x, v), which we will discuss at some
point. However, for our purposes of pointing out the analogy of our 2D Euler
calculation with classical Statistical Mechanics the above calculation in (x, v) is
adequate.

The above principle of entropy maximization can be used also in the cases when
there are additional conserved quantities. We just maximize the entropy subject
to the constraint that conserved quantities have certain given values.

193For the calculation use the identities∫
R3

e−α
1
2
|x|2 dx =

1

(2πα)
3
2

(37.11)

and ∫
R3

1

2
|x|2e−α

1
2
|x|2 dx = −

d

dα

1

(2πα)
3
2

. (37.12)
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For example, in the hypothetical case when the vessel containing the gas would
be axi-symmetric (even from the point of view of the atoms) so that the quantity
I3 given by (31.5) is conserved, we can calculate the statistical equilibrium
distribution ρ(x, v) by simply maximizing H(ρ) subject to the constraints of
fixed energy E and the x3− component of the momentum I3 = I3(ρ). The
reader is encouraged to calculate the resulting distribution as an exercise.

Historical notes

The notion of entropy was first introduced by by R. Clausius in 1865. The
original definition was phenomenological:

dS =
dQ

T
, (37.15)

where dS is the (infinitesimal) change of entropy, dQ is the heat delivered to
the medium and T is the temperature. The connection between the entropy
and (the logarithm of) the number of states of the system was discovered by
L. Boltzmann in 1870s, who pioneered the type of calculations discussed above
and introduced a fundamental equation194 for the evolution of the density ρ(x, v)
(which we did not discuss yet).

194The Boltzmann equation, in today’s terminology. In our notation it reads ρt + v∇xρ +
F∇vρ = Q(ρ, ρ), although it is usually written in the phase-space variables (x, p).
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38

12/12/2011

38.1 Turkington’s entropy function for 2d Euler

We return to the 2d incompressible Euler with the initial condition

ω0 = aχA + bχB , B = Ω \A . (38.1)

We assume b ≤ a. (We remark that all the principles we are discussing work
also in the general case ω0 ∈ L∞(Ω) with not-so-hard adjustments. We work
with (38.1) to focus on the main ideas in the simplest non-trivial situation.) Let

m =
1

|Ω|

∫
Ω

ω0 dx = a
|A|
|Ω|

+ b
|B|
|Ω|

. (38.2)

From our considerations in lecture 33 we see that

Oω0 = {ω ∈ L∞(Ω) , b ≤ ω ≤ a , 1

|Ω|

∫
Ω

ω dx = m} . (38.3)

If Ω is a torus R2/Λ, we must take m = 0. For Ω ⊂ R2 we will assume that Ω is
simply connected for simplicity. In this case the stream function is determined
by ω from

∆ψ = ω, ψ|∂Ω = 0 . (38.4)

The modification of the entropy function s(ω) in (36.13) to this situation is
easily seen to be

s(ω) = −ρa log ρa − ρb log ρb, ω = aρa + bρb, 0 ≤ ρa, ρb ≤ 1 , (38.5)

and the “entropy of the function ω” is

S(ω) = 1

|Ω|

∫
Ω

s(ω) dx . (38.6)

While the function s(ω) looks quite natural, it is not the only feasible candidate.
Note that s(ω) is simply the “information entropy” −pa log pa − pb log pb of the
probability distribution (pa, pb) of the process where we choose a value of vor-
ticity to be either a (with probability pa) or b (with probability pb), such that
the mean value of the chosen vorticity is ω. This corresponds to “mixing the
value ω” using only a, b. In the paper quoted at the end of lecture 36, B. Turk-
ington argues that one should really think of ω as being “mixed” from all values
between b and a, since – roughly speaking – in the process of mixing we can
use some of the values which already have been mixed before. This corresponds
to the idea that there can be many different scales on which the values b, a are
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mixed, and not just the scale of the “small boxes” we used in lecture 36. One
way to capture this idea mathematically is to replace the function s(ω) above
by the following function

s̃(ω) = sup{ 1
a−b

∫ a
b
−ρ(y) log ρ(y) dy ,

0 ≤ ρ ≤ 1, 1
a−b

∫ a
b
ρ(y) dy = 1, 1

a−b
∫ a
b
yρ(y) dy = ω }. (38.7)

We are now allowing all “probability densities” ρ(y) dy
a−b in (b, a) which give ω as

their mean value and among those we choose the one with the maximal entropy.
The value of the entropy at ω ∈ (b, a) is s̃(ω).

Note that s̃(ω)→ −∞ as ω → a− or ω → b+, in contrast with the function s(ω)
defined by (36.13). (We considered s(ω) only for b = −a, but the generalization
to any b < a is straightforward.) The states ω maximizing the entropy function

S̃(ω) = 1

|Ω|

∫
Ω

s̃(ω) dx (38.8)

for the constraints of a given energy E and ω ∈ Oω0 will satisfy the analogue
of (36.17)

s̃′(ω) + βMψ − µ = 0 , (38.9)

where this time we took µ to have the same dimension as ω. To express ω
from (38.9) so that we get an equation of the form ω = ∆ψ = F (βMψ − µ),
we need to calculate the inverse function to the function ω → s̃′(ω). This can
be done as follows. Using lagrange multipliers, one can see that the density
ρ(y) in (38.7) which achieves the maximal value of

∫ a
b
−ρ log ρ for the given

constraints is
ρ(y) = eαy+γ (38.10)

for some α, γ ∈ R. The values of α and γ are determined by the constraints. The
calculation can be simplified by the following standard trick used in Statistical
Mechanics. Let us set

Z(α) =
1

a− b

∫ a

b

eαy dy =
eαa − eαb

α(a− b)
(38.11)

and
f(α) = logZ(α) . (38.12)

We note that the function f(α) is convex195 in R, with

f ′(α)→ a, α→∞, and f ′(α)→ b, α→ −∞. (38.13)

The constraints can be expressed as

f ′(α) = ω, f(α) = −γ , (38.14)

195This is a general property of the functions ϕ(ξ) which can be written as ϕ(ξ) =
log

∫
X eξx dν(x) for some probability measure ν.
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and we have
s̃(ω) = f(α)− αf ′(α), f ′(α) = ω . (38.15)

Alternatively, we have
s̃(ω) = inf

α
f(α)− ωα. (38.16)

This is an example of a Legendre transformation196 An important fact concern-
ing the Legendre transformation is the the relation

ω = f ′(α) (38.17)

is inverted as
α = −s̃′(ω) . (38.18)

Vice versa, the relation (38.18) is inverted by (38.17). Recalling (38.9), we see
that to write the equation for the stream function in the form ∆ψ = F (βMψ−
µ), we do not have to calculate s̃(ω), it is enough to have f(α). In terms of
f(α), the equation is

ω = ∆ψ = f ′(βMψ − µ) . (38.19)

This equation describes the conjectured “end-states” in the model of B. Turk-
ington (in the special case (38.1)).

To make a comparison with (36.19), let us consider the case b = −a. Then

f(α) = log
sinhαa

αa
(38.20)

and
f ′(α) = aL(αa) , (38.21)

where L(u) = cothu − 1
u is the so-called Langevin function. We note that

L(−u) = −L(u), L(0) = 0, L′(0) = 1,−1 < L(u) < 1, L′(u) > 0, L(u)→ ±1 as
u → ±∞. Hence the function is somewhat similar to tanhu or the function F
in (33.20), the difference being a slower approach to the limiting values when
u→ ±∞.

To compare the three models given by F, tanh, L we note that each approaches
the limiting values at ±∞more slowly than the previous one, and hence predicts
more “mixing” than the previous one. (As above, F is defined by (33.20).)

The conjecture that all solutions will approach the “end-states” predicted by
any of these models is probably too optimistic. Many solutions will probably
“get stuck” in regimes discussed in lecture 35.

196The usual definition is as follows. Let f : Rn → R be a strictly convex C1 function.
Then the map x → f ′(x) (which can be thought of as a map from Rn to its dual space, also
identified with Rn) is injective and maps Rn onto set O ⊂ Rn. (If f has uniform super-linear
growth, then O = Rn.) Let g(y) = supx(yx−f(x)). Then the map x = g′(y) inverts the map
y = f ′(x). The function g is called the Legendre transform of the function f . It comes up in
many situations.
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38.2 Open problems related to entropy maximization

Equations (38.19) and (36.19) may have many solutions and not all of them
correspond to ω which maximizes the entropy S̃(ω) (resp. S(ω)) for the given
constraints. In fact, a complete characterization of the maximizers seems to
be an open problem. In the case m = 0 and for small values of energy all
the maximizers should be close to the space of eigenfunctions corresponding to
the first eigenvalue of the laplacian, as can be seen from the linearization of
the equation. If Λ ⊂ R2 is the lattice generated by (l, 0), (0, 1) with l > 1,
Ω = R2/Λ, and m = 0 (see (38.3)), it is quite conceivable that every ω ∈
Oω0 which maximizes the entropy depends only on x1, which would mean that
the “maximal entropy” theories predict that in the limit the flow will always
approach shear flows in the x2 parallel to e2. This is obviously not the case
for shear flows parallel to e1 (which are steady state solutions), but one might
say that these would be exceptional cases. But what happens if we take a small
perturbation of a shear flow parallel to e1? Will the flow eventually end up being
weakly∗ close to a shear flow parallel to e2? That seems to be quite unlikely,
although it has not been ruled our rigorously, as far as I know.197 We can also
study the functions

S = S(E,m) = sup{S(ω), ω ∈ Oω0 , E(ω) = E} , (38.22)

where S(ω) is defined in terms of s(ω) in (38.5), (38.6), or the analogous func-
tions

S̃ = S̃(E,m) = sup{S̃(ω), ω ∈ Oω0 , E(ω) = E} , (38.23)

with S̃ defined by (38.8). The entropy functions arising through the canonical
formalism of Statistical Mechanics (which we have not used or defined yet) are
concave in E. Are the functions (38.22) or (38.23) concave in E? It seems this
questions is open.

Let us consider how the function E → S(E) = S(E, 0) should look for a torus Ω
(no boundary). First of all, it is not difficult to see that the energy function
ω → E(ω) is bounded on Oω0 . Let us denote the upper bound by Emax. Since
Oω0 is weakly∗ compact and E(ω) is weakly∗ continuous in ω, the maximum
Emax is attained on some ω1 ∈ Oω0 . One can show that ω1 is a steady-state
solution of the Euler’s equation.198 The states which maximize the energy on
Oω0 are quite special and when we produce them, we expect we cannot really do
any “mixing”, as this would be wasting possibilities for increasing the energy.
Therefore we expect that the entropy at Emax will either vanish (for the function
S(E, 0)) or be −∞ (for the function S̃(E, 0). On the other hand, for E = 0
we can take ω = 0 in (38.22) or (38.23), which has the maximal entropy of any

197Recall that our convention concerning flows on tori is that the velocity field is given by a
stream function, u = ∇⊥ψ, and hence the mean velocity of the flow is always vanishes.
198In fact, ω1 has some relatively strong stability properties, as the evolution preserves both
Oω0 and the energy E. The is the main idea behind the so-called Arnold stability criterion,
which we will discuss later.
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function on Oω0
, due to Jensen’s inequality. Hence we expect that E → S(E, 0)

and E → S̃(E, 0) will be decreasing functions of E, defined on the finite interval
[0, Emax]. This is in contrast with the entropy function S(E, V ) of the ideal gas
we calculated in lecture 37 (see (37.14)) which is increasing in E (and concave in
E, as expected). The thermodynamical formula (37.15) motivates the definition
of temperature T in Statistical Mechanics as199

1

T
=
∂S

∂E
. (38.24)

We see that in the case of the torus Ω = R2/Λ and ω0 given by (38.1), the
temperature will be negative (assuming our conjectures above are correct). The
existence of state with negative temperature in statistical mechanics on 2d Eu-
ler’s equation was predicted already in 1949 by L. Onsager in the paper quoted
at the end of lecture 36.

Let us now look at a simply connected case Ω = disc in R2 and b = 0, a = 1
in (38.1), with b < m < a in (38.2). In this case it is not hard to see that the
energy on Oω0 cannot reach zero, but it attains a minimal value Emin > 0 on
Oω0 . It also attains a finite maximal value Emax on Oω0 , similarly as in the case
of the torus discussed above. The energy minimizing configuration should be
achieved when all the vorticity +1 is concentrated in a strip near the boundary
of the disc Ω, whereas the energy maximizing configuration should be attained
when all the vorticity +1 is in a disc centered at the center of the disc Ω. These
configurations should in fact be unique (for the disc), and hence we expect
S(Emin) = S(Emax) = 0 and S̃(Emin) = S̃(Emax) = −∞ in this case. The
functions S, S̃ will then be increasing up to E = E(ωm), where ωm ≡ m, before
becoming decreasing. Therefore the temperature defined by (38.24) should be
positive in (Emin, E) and negative in (E,Emax). The maximal entropy achieved
at E will be S(E) = s(m) and S̃(E) = s̃(m) respectively.

It would be interesting to prove the above picture rigorously. As far as I know,
it has not been done.

199Of course, this temperature has nothing to do with the usual temperature of the fluid.
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39.1 Kraichnan’s 2d turbulence theory

We have seen in lecture 29 that the dissipation of energy characteristic for 3d
turbulence theory (lecture 27) must have quite different features in dimension
n = 2, and our study of the long-time behavior of the solution of the 2d incom-
pressible Euler equation in the last few lectures confirmes this expectation. The
solutions of the 2d equations become “chaotic” in a quite different sense than
the 3d solutions. We expect to see some local “disorder” and randomness at
the level of the vorticity field ω, but at the same time the integrals If in (32.3)
are conserved by the equation, and the energy of the solutions survives taking
weak∗ limits. As a consequence we expect the appearance of the large-scale
structures, a purely 2d phenomena which has no analogy in 3d turbulence.

Let us now consider the 2d Navier-Stokes equation with a forcing term, written
in terms of the vorticity ω(x, t).

ωt + u∇ω − ν∆ω = g(x, t) (39.1)

in a 2d domain Ω. For simplicity we will consider the case Ω = R2/LZ2, a
“periodic box” of size L. We can write

ω(x, t) =
∑

k∈2πZ2/L

ω̂(k, t)eikx, (39.2)

so that we have
1

|Ω|

∫
Ω

|ω(x)|2 dx =
∑
k

|ω̂(k)|2 . (39.3)

We will always assume ω̂(k)|k=0 = 0. The corresponding velocity fields u(x)
will also be assumed assumed to satisfy û(k)|k=0 = 0, corresponding to the
condition

∫
Ω
u(x) dx = 0 (which is preserved in the time evolution by Euler’s

equations). The energy per unit volume of the velocity field in “eddies” of the
sizes l ∈ (1/κ1, 1/κ2) is given by ∑

κ1≤|k|<κ2

|û(k)|2 (39.4)

and we will write it as ∫ κ2

κ1

E(κ) dκ . (39.5)

In this setting the measure E(κ) dκ is of course discrete, but as is usually done
(and as we did in lecture 27) we will deal with E(κ) as if it were a continuous
function (which is the case in the limit L→∞).200

200You can think of replacing E(κ) by
∫
E(κ−κ′)ϕ(κ′)dκ′ where ϕ is a mollifier with support

spread about a suitable distance.
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The Fourier components of the function x → g(x, t) are denoted by ĝ(k, t) (or
just ĝ(k) if the dependence on t is not emphasized). We assume that ĝ(k) are
non-zero only for frequencies of size close to some fixed size κin. Assume that ν
is very small. As is the 3d case, we can ask the following natural questions:

1. What is the smallest length scale (or the highest spatial frequencies) ob-
served in ω(x, t)?

2. How does the function E(κ) look like?

The basic assumption in the 3d case which enabled us to make reasonable con-
jectures concerning these questions was that the rate of energy dissipation in
the fluid per unit mass ϵ (see (26.18)) was independent of ν. See lecture 26. In
view of our considerations in lecture 29, this is no longer a good assumption in
dimension n = 2. Following R. Kraichnan201, we will replace this assumption
by an assumption concerning the (mean) rate of dissipation of the enstrophy∫
Ω

1
2ω

2 dx. From (39.1) we have

∂

∂t

1

2
ω2 + div[u

1

2
ω2]− ν∆1

2
ω2 = −ν|∇ω|2 + gω . (39.6)

Let
η = ν|∇ω|2 , (39.7)

where the notation f means a suitable average, as in lecture 26. Kraichnan sug-
gested to replace the (3d) principle P in lecture 26 by the following assumption:

(P2) In many situations, once the Reynolds number is high, the quantity η is
quite independent of ν.

We will see that one has to take this principle with many caveats, and even
more caution is necessary than in the case of the 3d principle (P) is lecture 26.
Nevertheless, if applied correctly, the principle seems to contain some part of
the truth.

Let us now combine dimensional analysis and P2 to get feasible conjectures for
answers to questions 1 and 2 above. Let λ denote the minimal length scale from
question 1 (the 2d Kolmogorov length). The physical dimensions of the relevant
quantities are

λ ............ L
ω ............ 1

T

ν ............ L2

T
∇ω ............ 1

LT
η ............ 1

T 2

ϵ ............ L2

T 3

κ ............ 1
L

E(κ) ............ L3

T 2 .

(39.8)

201The Physics of Fluids, Vol. 10., No. 7, July 1967
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Here ϵ has the same meaning as in lecture 27: the average rate of energy dissi-
pation per unit mass of fluid.

If we assume that λ and E(κ) depend only on η and E(κ) depends only on η
and κ, the dimensional analysis shows

λ = cη−
1
6 ν

1
2 (39.9)

and
E(κ) = cη

2
3κ−3 , (39.10)

where the value of the dimensionless constant c can change from line to line as
usual. Equation (39.10) is assumed to be true in the “inertial range” κ ∈
(κin, κmax), with κmax ∼ 1/λ ∼ cη

1
6 ν−

1
2 . As a consistency check, we can

calculate the rate of enstrophy dissipation over the inertial range from (39.9)
and (39.10). We have ∫ κmax

κin

νE(κ)κ4 dκ ∼ cη 2
3 η

2
6 ∼ cη , (39.11)

as should be the case, where we have used 1
|Ω|
∫
Ω
|∇ω|2 dx ∼

∫∞
0
E(κ)κ4 dκ.

Let us now look at the rate of energy dissipation per unit mass due to the
dissipation in the inertial range:

ϵinertial =

∫ κmax

κin

νE(κ)κ2 dκ ∼ cνη 2
3 log(

η
1
6

κinν
1
2

) . (39.12)

If η stays fixed, this quantity clearly approaches zero as ν → 0+. This is consis-
tent with our considerations is lecture 29. We see that the picture above cannot
be complete, as the inertial range does not account for the energy dissipation
which is necessary to have a steady influx of energy at frequencies ∼ κin. What
happens with the excess energy? If our hypotheses above are correct, the excess
energy cannot go to high frequencies (where it would be dissipated as in 3d) the
only way it can go is to the low frequencies. For this to be possible, we must
have enough “space” at the low frequencies for the energy to go to. If we asume
that the dimension L of our periodic box is very large, with κ0 = 1

L << κin, one
can imagine, following Kraichnan, the situation where the inertial range regime
is established, and after that the energy gradually cascades down to the low fre-
quencies, in a striking reversal of the 3d situation. During the time before this
cascade eventually reaches the lowest frequecies, a “quasi-steady” state is estab-
lished: there is a lowest “active” frequency depending on time, κ(t) > κ0, such
that the frequencies below it contain only a small amount of energy. The energy
in the range (κ1(t), κin) where κ1(t) is slightly larger than κ(t) is distributed
according to the Kolmogorov law:

E(κ) ∼ ϵ 2
3κ−

5
3 , κ ∈ (κ1(t), κin) (39.13)
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an in this interval of frequencies the energy moves downward. For frequencies
κ > κin we have the steady inertial range characterized by (39.10). The rate at
which κ(t) decreases can be estimated from energy conservation:∫ κin

κ(t)

E(κ) dκ ∼ tε , (39.14)

where we have ignored the difference between κ(t) and κ1(t). This gives

κ(t) ∼ ϵ− 1
2 t−

3
2 . (39.15)

If L = ∞ so that κ0 = 0, this process can continue indefinitely. If L is finite,
then κ0 > 0 and we can consider the following scenarios:

1. Once κ(t) reaches κ0, the energy starts accumulating in the low modes
κ ∼ κ0 and the energy in these modes will become very large. This will of
course have a ripple effect on the higher modes: they will also gradually receive
more energy than in the quasi-steady state above, until the total dissipation
reaches a level which is enough to dissipate the energy being delivered to the
system. The arguments above do not predict what the final (and presumably
steady) distribution of energy E(κ) will be. There is a result from the theory
of attractors (which we have not discussed yet), which seems to be relevant for
the considerations concerning this final stage. If λ is the minimal length scale in
the flow, we expect the flow will have ∼ (Lλ )

2 degrees of freedom. That means

that in a computer simulation we would need roughly ∼ (Lλ )
2 modes to capture

the flow. If (39.9) was correct also for the ultimate equilibrium state, it would

mean that the number of degrees of freedom of the system is ∼ η
1
3 L2

ν . However,

the theory of attractors suggest202 that it is in fact higher, of order ∼ cν−
4
3

which presumably can be explained by the changes in the asymptotics after the
downward cascade reaches the lowest frequency κ0.

2. If there is a mechanism for removing energy in the low modes with frequen-
cies κ ∼ κ0, the above “quasi-steady” situation can be stable: the energy will
cascade from κin down to ∼ κ0 where is will be dissipated, and (39.13) together
with (39.10) (for κ > κ0) will describe the energy distribution.

The scenarios described above are not really universally accepted, and there
are not many rigorous results concerning these topics. Opinions of experts
concerning the validity of these conjectures are not uniform. In any case, it
seems to be clear that the phenomenological formulae (1.1) and (1.4) will not
be valid in dimension n = 2. Based on the above it is reasonable to conjecture
that for the flows in dimensions n = 2 the constants c in those formulae will
approach 0 as the Reynolds number increases to ∞. The reasoning behind
formulae (1.1) and (1.4) did not explicitly use that we were in dimension n = 3,
and therefore the approximate correctness of the formulae for n = 3 was in part
a lucky coincidence.

202P. Constantin, C. Foias, R. Temam, On the Dimension of Attractors in Two-Dimensional
Turbulence, Physica D 30, 1988, 284–296.

186



40

1/18/2012

40.1 Stability

We have used quite a few times the phrase “the flow becomes unstable”, without
really defining this terminolgy precisely in mathematical terms. Let us discuss
this issue in some more detail, still somewhat loosely. In the next lecture we
will discuss a model equation by E. Hopf and for this model we will be able to
do explicit calculations. For the Navier-Stokes equation the corresponding cal-
culations more involved, and without using numerical simulation on computers
they can be done only in a few simple cases and not without considerable effort.
Our approach will be to describe first only qualitatively what one observes for
the “real flows”, so that we can appreciate the model of Hopf, where some of
these effects can be seen in a situation where calculations are not difficult.

Example 1: The Taylor-Couette flow203

We have briefly discussed this flow in lecture 22. Let 0 < R1 < R2 and consider
the domain

Ω = {x ∈ R3, R1 <
√
x21 + x22 < R2 , 0 < x3 < L}. (40.1)

Let (r, θ, z) be the cylindrical coordinates204, and let eθ = eθ(x) be the vector
with cartesian coordinates (−x1

r ,
x2

r , 0), often denoted by ∂
r∂θ . We consider the

Navier-Stokes equation205

ut + u∇u+
∇p
ρ
− ν∆u = 0, div u = 0 (40.2)

in Ω with the boundary conditions

u(x) =

{
Ueθ when x ∈ ∂Ω and r =

√
x21 + x22 = R1,

0 when x ∈ ∂Ω and r > R1.
(40.3)

In other words, we assume that the inner cylinder rotates with angular velocity
ω given by U = ωR1, while the rest of the boundary is stationary. We assume
that L >> R2, so that the cylinder is long.206

203See for example the book: P. Chossat and G. Ioos, The Couette-Taylor Problem, Springer,
Berlin, (1994).
204given as usual by x1 = r cos θ, x2 = r sin θ, x3 = z
205As usual, we assume that the density ρ is constant, and with a suitable choice of units we
can assume ρ = 1.
206Note that boundary condition (40.3) is not continuous at the intersection of the “lids”
and the inner cylinder. This probably does not cause any serious problems, although I am
not sure whether the question was rigorously investigated.

187



The boundary conditions (40.3) are imposed in experiments, but for mathemat-
ical analysis one imposes slightly different conditions. Namely, one assumes that
u is defined in the domain

Ω̃ = {x ∈ R3, R1 < r < R2}, r =
√
x21 + x22 (40.4)

with

u(x) =

{
Ueθ for r = R1

0 for r = R2

(40.5)

and the additional condition

u(x1, x2, x3 + L) = u(x1, x2, x3) , x ∈ Ω̃ . (40.6)

It turns out that for L >> R2 the conditions (40.5), (40.6) are, for many
purposes, a good approximation of (40.3), up to possible disturbances near the
ends x3 = 0, x3 = L. 207

The equation (40.2) in Ω̃ with the boundary conditions (40.5),(40.6) has a simple
steady state solution

u(x) =
(a
r
+ br

)
eθ (40.7)

where a, b ∈ R are easily calculated from the boundary conditions.

In experiments this flow is only observed for low velocities U = ωR1, where
the notion of “low” depends also on R1, R2. The right way to formulate the
stability condition for u is in terms of the so-called Taylor number208

Ta =
ω2R1(R2 −R1)

3

ν2
, (40.8)

which is similar to (but not the same as) the square of the Reynolds number.
The definition takes into account the role of the centrifugal force, a factor which
makes the situation different from, say, the simple shear flow u(x) = (U x3

L , 0, 0)
in the (infinite) channel {x = (x1, x2, x3); 0 < x3 < L}. The simple flow (40.7)
is observed up to Taylor numbers of about 1700. For higher Taylor number the
trivial solution is still present, but is unstable, and experimentally one observes
different solutions.

The loss of stability is analyzed mathematically by searching the Navier-Stokes
solutions in the form

u(x, t) = u(x) + v(x, t) . (40.9)

207This is confirmed experimentally. I am not sure if a rigorous mathematical proof of this
statement is available.
208It is interesting to compare the definition with the Reynolds number. Since we have two
lengths R1, R2, in addition to U or ω, there is not a unique way to define the Reynolds number.
For example, when R1 is large in relative to R2 −R1, it is reasonable to choose the Reynolds

number as Re =
U(R2−R1)

ν
=

ωR1(R2−R1)
ν

.
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The perturbation v vanishes at the boundary and, in the case when condi-
tion (40.6) is considered, also satisfies this condition. The equations for v(x, t)
are

vt + u∇v + v∇u+ v∇v + ∇q
ρ
− ν∆v = 0, div v = 0 . (40.10)

Mathematically, one can define the notion of stability in several ways. One
notion of the stability of u stability of u is that any solution of v (with any
sufficiently regular initial condition v(x, 0) = v0(x)) converges to 0 as t→∞.

Usually one first studies the so-called linearized stability, which amounts to
studying the linear part of equation (40.10),

vt + u∇v + v∇u+
∇q
ρ
− ν∆v = 0, div v = 0 . (40.11)

The idea is that for small perturbation the term v∇v can be neglected. We can
write this linear equation as

vt = Lv , div v = 0 . (40.12)

where L = L(u) a linear operator.

We can compare this equation with a (finite dimensional) ODE for x(t) =
(x1(t), . . . , xm(t))

ẋ = Ax , (40.13)

where A is an m by m matrix. The general solution of (40.13) is

x(t) = etAx, x(0) = x. (40.14)

Let σ(A) ⊂ C be the spectrum of the matrix A. For a finite matrix this is of
course the same as the set of all the eigenvalues of A. We know that if

σ(A) ⊂ {z ∈ C, Re z < 0} (40.15)

then all solutions of (40.13) converge exponentially to zero. If we have λ ∈ σ(A)
with Reλ > 0, we have an exponentially growing solution, and for λ ∈ σ(A)
with Reλ = 0 we have a solution which does not converge to zero.

Let us consider a non-linear ODE

ẋ = f(x) , x = (x1, . . . , xm), f : Rm → Rm, (40.16)

where f is assumed to be smooth. Let x be an equilibrium point, i. e.

f(x) = 0 . (40.17)

The linearized equation at x is

ẏ = Df(x)y , (40.18)

189



where Df(x) is the jacobi matrix ∂fi
∂xj

(x). In the theory of ODE it is proved

that if
σ(Df(x)) ⊂ {z ∈ C , Re z < 0} (40.19)

then the solutions x(t) of (40.16) with x(0) close to x converge exponentially
to x as → −∞. Hence the linearized (exponential) stability at a rest point x
implies the local non-linear (exponential) stability of x.

A similar result is true also in the context of the Navier-Stokes equations, al-
though one has to be more careful with the formulation, as the notion of “close”
can have many meanings in function spaces. At this stage we will not go into
technical details, and simply state that the local (exponential) stability of a
general steady solution u is decided by the spectrum of the linearized operator
L, similarly to the finite dimensional case. If

σ(L) ⊂ {z ∈ C , Re z < 0} (40.20)

then the steady solution u is stable. The equation determining the spectrum is

−ν∆v + u∇v + v∇u+
∇q
ρ

= λv, div v = 0, in Ω, (40.21)

with the corresponding boundary conditions at ∂Ω. In the case with Ω̃ con-
sidered above the boundary conditions are v = 0 at Ω̃ and v(x1, x2, x3 + L) =
v(x1, x2, x3). The analysis of the spectrum in the context of (40.21) is quite
non-trivial even in simple geometries, such as in the case of the solution (40.7).
Nevertheless, for (40.7) the solution can be reduced to an ODE by the method
of the separation of the variables (since the base solution u is independent of θ
and z in the cylindrical coordinates). The calculations can be found for exam-
ple in a famous paper by G. I. Taylor.209 The calculations show that there is a
critical value Ta crit of the Taylor number such that for Ta < Ta crit we have

σ(L) ⊂ {z ∈ C , Re z < 0} (40.22)

and at Ta = Ta crit a real eigenvalue is crossing the imaginary axis, and becomes
positive for Ta > Ta crit. The simple solution u becomes unstable, and other
stable steady solutions solutions appear. The new stable solution, say, ũ is more
complicated than u. It is still axi-symmetric, but it is not independent of z. If
you do an online image seach for “Taylor vortices”, you will get some good
pictures of the solution.

In this special case the loss of stability is via a bifurcation to a more complicated
steady solution. The original solution is still present, but it looses stability. A
cartoon picture of this can be given even in a 1d model. Consider the ODE for
a scalar function x = x(t) given by

ẋ = f(x, λ) = −x(x2 − λ) . (40.23)

209”Stability of a Viscous Liquid contained between Two Rotating Cylinders”, Philosophical
Transactions of the Royal Society of London, 1923.
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For any λ ∈ R we have the trivial solution x = 0. The linearized “operator” at
x is

Ly = fx(x, λ)y = λy (40.24)

and σ(L) = {λ}. We see that x is stable for λ < 0 and unstable for λ > 0.
(The case λ = 0 is left to the reader as an exercise.) For λ > 0 two new stable
solutions appear

x = ±
√
λ , (40.25)

and the solutions of (40.23) starting at any x ̸= 0 will converge to one of those
steady solutions.

The situation with the Navier-Stokes solution u above is more complicated than
this cartoon picture, as in the case when the explicit calculations can be done
– the boundary conditions (40.5), (40.6) – the new stable equilibria form a 1d
manifold (obtained by shifting one of the solutions along the z-axis), but for the
moment we will ignore these more subtle points.

The loss of stability due to a bifurcation to a more complicated steady solution
is only one of the several ways in which stability can be lost. Another important
way of the stability loss is due to appearance of a periodic solution via the so-
called Hopf bifurcation. In this case the steady solution starts oscillating. This
will be illustrated on a model equation due to Hopf in the next lecture. The
Hopf bifurcation corresponds to situations when the spectrum of the linearized
operator crosses the imaginary axis with a pair of non-zero complex-conjugate
eigenvalues. The Hopf bifurcation appears to describe for example the loss of
stability of a steady flow around the cylinder.210 In this case the parameters
are U (the velocity as x→∞), R (the radius of the ball) and ν (the kinematic
viscosity of the fluid). The behavior of the solution is characterized by the
Reynolds number Re = UR

ν . The Hopf bifurcation of the steady to the so-called
von Karman vortex street appears to occur for Re ∼ 40, when one can start
observing some oscillation of the wake behind the cylinder.211

We should emphasize that the general theory of the Hopf bifurcation is some-
what more complicated then what is indicated in the brief comments above.
In particular, one has to distinguish the so-called super-critical and sub-critical
cases. We will discuss the details later. The above comments pertain mostly to
the super-critical case.212

210In this one has to calculate the corresponding solution and the spectrum of the linearized
operator numerically on a computer. The solution appears to be too complicated for a “paper
and pencil” calculation.
211See for example some of the photographs in the book “An album of Fluid Motion” by M.
Van Dyke.
212For more details the reader can consult the original 1942 papers of E. Hopf (Ber. Math.-
Phys. Kl. Säch Acad. Wiss. Leipzig, 94, 1-22 and Ber. Verh. Acad. Wiss. Leipzig Math.-Nat.
Kl., 95 (1), 3-22 or various book. The book “Nonlinear Oscillations, Dynamical systems,
and Bifurcations of Vector Fields”, by J. Guckenheimer and P. Holmes contains an excellent
exposition of the topics.
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As we increase the Reynolds number (or the Taylor number), the solutions bi-
furcating from a simple solution can undergo further bifurcations: for example,
the “Taylor vortices solution” can bifurcate to an even more complicated steady
solution, which in turn can later bifurcate to a periodic solution. Periodic solu-
tion can lose stability via a secondary oscillation at a (usually faster) frequency,
so that it becomes “doubly periodic”, similarly to the function A1e

iω1t+A2e
iω2t.

With further increase of the Reynolds number (or the Taylor number) new and
new frequencies can appear, so that the solution could resemble a function of
the form

m∑
k=1

Ake
iωkt (40.26)

with m frequencies (ω1, ω2, . . . , ωm).

When the frequencies (ω1, . . . , ωm) are linearly independent over the rational
numbers and the amplitudes A1, . . . , Am do not vanish, the closure of the tra-
jectory (40.26) will be an m−dimensional torus. One can imagine a (deformed)
version of such a torus imbedded in the space of the div-free vector fields as an
m− dimensional manifold Xm and the solution u(x, t) “winding” around Xm.
We can also imagine that the manifold Xm will attract all solutions u(x, t),
starting from any (sufficiently regular) initial data. This is essentially the pic-
ture proposed by L. Landau213 in 1944 and also by E. Hopf214 in 1948, and is
often referred to as the Landau-Hopf model of turbulence. One can envisage
that for large Reynolds numbers the dimension m will become very large, and
such a scenario does have the potential to explain many observations concerning
turbulent flows.215 When computers enabled researchers to perform numerical
simulations of dynamical systems, it was discovered that the loss of stability
can happen also in other ways (which were quite unexpected at the time), and
the so-called strange attractors were discovered.216 It is natural to assume that
the Landau-Hopf scenario has to be generalized to incorporate these additional
ways in which stability can be lost. This is discussed in the well-known 1971
papers by D. Ruelle and F. Takens,217 where a rigorous mathematical treat-
ment of some (finite-dimensional) examples of bifurcations to strange attractors
is given. A good discussion of the topics discussed in this lecture can also be
found in the newer editions of the Landau-Lifschitz’s “Fluid Mechanics”.

213Doklady Akademii Nauk SSSR 44: 339-342.
214Communications on Pure and Applied Mathematics 1: 303-322.
215It is worth noting that at some point it was not generally believed that the turbulent flow
is described by the Navier-Stokes equations, and Landau’s insight that turbulence might be
simply a dynamical effect of the equations of motions was not universally accepted.
216The best know “strange attractor” is probably the Lorenz attractor, see Edward N. Lorenz,
“Deterministic Nonperiodic Flow”, Journal of the Atmospheric Sciences 20 (2): 130141,
(1963).
217“On the nature of turbulence.” Commun. Math. Phys. 20, 167-192(1971) and 23, 343-
344(1971).
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41.1 E. Hopf’s model equation

Today we will explain the main features of the model from the 1948 paper of
E. Hopf mentioned in the last lecture. We will closely follow E. Hopf’s paper.

We consider 2π-periodic functions and R, which is the same as considering the
function on the unit circle S1. Following Hopf’s paper, we will use the following
conventions.

For a sufficiently regular f : S1 → C we will write its Fourier series as

f(x) =
∑
k

fke
ikx , (41.1)

with

fk =
1

2π

∫ 2π

0

f(x)eikx dx , k ∈ Z . (41.2)

We define

f ◦ g(x) = 1

2π

∫ 2π

0

f(x+ y)g(y) dy , (41.3)

which is a variant of the usual convolution f ∗ g(x) =
∫
f(x− y)g(y) dy.

We denote by f the function f(x) = f(x).
We note that

(f ◦ g)k = fkgk . (41.4)

Our equations will be for two (sufficiently regular) function u, z : S1× [0,∞)→
C. We will write u = u(x, t), z = z(x, t). The equations will contain a given
function F : S1 → C, with F = F (x). The specific form of the equations is as
follows:

ut = −z ◦ z − u ◦ 1 + µuxx ,
zt = z ◦ u+ z ◦ F + µzxx ,

(41.5)

where µ > 0 is a parameter analogous to fluid viscosity.

We will make the following additional assumptions

1. The functions u, z are even in x, e. i. u(−x) = u(x), z(−x) = z(x). In
terms of the Fourier coefficients this means that uk = u−k, zk = z−k.

2. The function u is real, i. e. u = u. In terms of the Fourier coefficients this
means uk = u−k.
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With these assumptions is is easy to verify that the quadratic terms in the
equation satisfy the identity∫ 2π

0

−(z ◦ z)u+ (z ◦ u)z dx = 0 , (41.6)

similar to the identity∫
Ω

(u∇u+∇p)u dx = 0, (assuming div u = 0) (41.7)

which is important in connection with the energy estimate for the Euler or the
Navier-Stokes equations, see lectures 11 and 12.

In the Fourier variables zk, uk the system (41.5), under our additional symmetry
assumptions 1. and 2. above, can be written as

u̇0 = −z0z0 − u0 ,
ż0 = z0u+ F 0z0 ,

(41.8)

and
u̇k = −zkzk − k2µuk,
żk = zkuk + F kzk − k2µzk ,

k ̸= 0 . (41.9)

The key point is that in the Fourier variables the system (41.5) decomposes into
a family of mutually non-interacting 3 by 3 ode systems of a similar nature, and
– as we will see – the general solutions of each of the system can be studied in
detail. Therefore the system (41.5) is in some sense too simple. Nevertheless,
the behavior of its solution is still instructive.

Let us look more closely at (41.9) for some fixed k ̸= 0. We set

uk = u, zk = z = x+ iy, Fk = F = a+ ib, k2µ = ν . (41.10)

We obtain

u̇ = −zz − νu,
ż = zu+ Fz − νz . (41.11)

The system (41.11) has an obvious equilibrium point (u, z) = (0, 0). Its lin-
earization at this equilibrium is

u̇ = −νu,
ż = Fz − νz , (41.12)

or

d

dt

 u
x
y

 =

 −ν 0 0
0 a− ν b
0 −b a− ν

 u
x
y

 = A

 u
x
y

 . (41.13)
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The eigenvalues of the matrix A can be easily seen to be

−ν, −ν + a+ ib, −ν + a− ib . (41.14)

The trivial solution u = 0, z = 0 will be linearly stable if and only if −ν+a < 0.
(Recall that we always assume ν > 0.) If a > 0, then as we change ν from large
to small, for ν = a the eigenvalues of the matrix A will cross the imaginary axis
at ±ib and the trivial solution becomes unstable.

It is in fact possible to analyze the global behavior of the general solution
of (41.11) in all detail. Following E. Hopf, we use the cylindrical coordinates
r, θ, u, writing

z = reiθ . (41.15)

The system (41.11) then becomes

u̇ = −r2 − νu ,
ṙ = r(u+ a− ν) ,
θ̇ = −b .

(41.16)

The general solution of the third equation is

θ(t) = θ0 − bt , (41.17)

and the first two equations do not contain θ. Therefore it is enough to study
the system

u̇ = −r2 − νu ,
ṙ = r(u+ a− ν) , (41.18)

which should be considered for u ∈ R , r ≥ 0. The system has a trivial equi-
librium u = 0, r = 0 which is stable linearly stable for a − ν < 0 and linearly
unstable for a−ν > 0. For a−ν > 0 the system has a second equilibrium, given
by

u = −a+ ν , r =
√
−νu . (41.19)

This equilibrium is linearly stable, as one can easily check. To understand the
global behavior of a general solution, we eliminate u from (41.18) by expressing
it in terms of r and ṙ from the second equation, and substituting the expression
into the first equation. We obtain

d

dt

(
ṙ

r

)
= −r2 − ν

(
ṙ

r
− a+ ν

)
. (41.20)

Letting r = eq, we obtain

q̈ + νq̇ = −e2q + ν(a− ν) = −∂V (q)

∂q
, (41.21)

where

V (q) =
1

2
e2q − ν(a− ν)q . (41.22)
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Equation (41.21) represents a motion of a particle (with coordinate q) in the
potential V (q) and friction νq̇. We distinguish tow cases:

Case 1: a− ν ≤ 0.
In this case the potential V is strictly increasing and the particle will always
approach q → −∞ as t→∞. This shows that in the case a−ν < 0 the solutions
of the original system will always approach the trivial equilibrium u = 0, z = 0,
while “orbiting” around the u− axis at a constant angular velocity −b.

Case 2: a− ν > 0.
In this case the potential V is convex, decreasing for large negative q and increas-
ing for large positive q, and attains its minimum at q = q0 = 1

2 log(ν(a − ν)).
Hence the general solution q(t) will be given by exponentially decaying oscilla-
tions around the equilibrium q0, with q(t)→ q0 as t→∞.

Going back to the original system (41.11), we see from the above that for a−ν ≤
0 and b ̸= 0 any solution will approach the trivial equilibrium u = 0, z = 0.
For a − ν > 0 any solution starting away from the line z = 0 will approach
(possibly with some oscillations) the unique non-trivial periodic orbit of the
system, characterized in the cylindrical variables r, θ, u by equations (41.19)
and the equation θ̇ = −b. The solutions starting on the line z = 0 will approach
the trivial equilibrium u = 0, z = 0.

We have thus obtained a very good picture of the behavior of the solutions
of (41.11).
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E. Hopf’s model equation (continued)

The function F in (41.5) can be thought of as a parameter (somewhat similar
to a “right-hand side” of an equation, although it is really a coefficient of a
linear term). Recall that we write its Fourier coefficients as Fk = ak + ibk, with
ak, bk ∈ R. Last time we analyzed the system (41.9). We note that the analysis
of the equations (41.8) for the k = 0 modes is similar. In fact, if we take ν = 1
and F = F0 + 1 in (41.11), we get (41.8). In particular, the trivial solution
u0 = 0, z0 = 0 of (41.8) will be globally stable for a0 < 0. We will assume
this for simplicity, so that in the rest of our discussion we do not have to pay
attention to the modes with k = 0. (The modifications one has to make in the
general case are self-evident.)

According to our calculations last time, the trivial equilibrium uk = 0, zk = 0
of the k−th mode equations (41.9) will be globally stable if and only if

ak − k2µ ≤ 0 . (42.1)

We can choose a smooth function F with ak > 0 and bk ̸= 0 for all k ̸= 0. (Note
that the smoothness of F implies that ak, bk approach quickly zero as |k| → ∞.)
Let us set

µk =
ak
k2

and S = {µk, k ∈ Z, k ̸= 0} . (42.2)

Clearly µk → 0 as |k| → ∞.

If we now consider the solutions of (41.5) for general smooth initial data and
vary µ > 0, we will see the following behavior. (Recall that we consider only the
solutions which are even in x and for which u(x, t) is a real-valued function.)

1. For large µ all solutions u(x, t), z(x, t) will converge to the trivial solution
u = 0, z = 0 as t→∞.

2. As we decrease µ > 0 to smaller values (still positive), we can cross points
of S. The modes k with µk > µ will become unstable, and – except for the
very special case when zk|t=0 = 0 – will approach a non-trivial periodic
solution. The amplitude of the oscillation of the k−th mode with µk > µ
depends on µ as k2

√
µ(µk − µ), while their frequency is proportional to

bk. Therefore the “end-state” of a generic solution for a given µ > 0 is
that it is “winding up” around a torus in the phase space, the dimension
of which coincides with the number of points in the set S∩(µ,∞) (counted
with their multiplicities). Other non-trivial but unstable solutions can be
obtained by choosing some of the amplitudes of the modes with µk > µ
to vanish, while keeping the other non-trivial.

197



We see that the solutions do exhibit some features which we expect in turbulent
solutions. Some features of the model which do not correspond to what we
expect for the Navier-Stokes solutions are for example the following:

1. The Fourier modes uk, zk and ul, zl do not interact for k ̸= l (unless
|k| = |l|). This means that the model cannot have any Richardson-Kolmogorov
cascade as discussed in lecture 27. The energy does not move from low to
high frequencies in contrast to what is envisaged for the 3d Navier-Stokes
equations.

2. When we decrease the viscosity in the Navier-Stokes equations and new
and new frequencies appear we expect that these new frequencies will most
of the time be higher than the “old” frequencies. This is clearly not the
case in the Hopf model.

Nevertheless in spite of these (and some additional) drawbacks the model does
provide some insight in what we might expect for the Navier-Stokes solutions.

42.1 Steady Solutions

So far we have discussed essentially two ways in which the stability of a solution
can be lost when a flow parameter, such as viscosity, or the magnitude of force
is changed. One was the loss of stability of the elementary solution (40.7) of
the Taylor-Couette flow, and one was Hopf’s example, where we have observed
the Hopf bifurcation. We mentioned that the numerical evidence suggests that
the loss of stability of the steady flow around the cylinder to a periodic solu-
tion (approximated by the so-called Karmán vortex street) is due to a Hopf
bifurcation, similar to what we have seen in Hopf’s example.218 Both of these
examples share the feature that the “old solution” which loses stability is still
present even after the stability loss, we just do not typically see it because of
the instability. Equation (40.23) provides one of the simplest examples of this
situation. There are other ways in which stability can be lost. As a toy example,
the reader can consider the 1d equation

ẋ = f(x, λ) = −∂W (x, λ)

∂x
, (42.3)

with

W (x, λ) =
x4

4
− a2x2

2
− λx , (42.4)

where λ ∈ R is the “bifurcation parameter” and a > 0 is considered as fixed.
(One can also consider a as a bifurcation parameter, of course.)

To get some idea of what one might expect of the actual solutions of the Navier-
Stokes equations, it is useful to have a closer look at the set of the steady state

218Of course, the coordinates in which the similarity will be apparent have to be suitably
chosen.
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solutions.219 We will consider the following situation. We consider a smooth
bounded domain Ω ⊂ R3 and a smooth function f : Ω → R3. We consider the
problem of finding a smooth u : Ω→ R3 with

−ν∆u+ u∇u+∇p = f(x) ,
div u = 0 ,
u|∂Ω = 0 .

(42.5)

These are of course the steady states of the Navier-Stokes equation with the
right-hand side f (and the Dirichlet boundary condition u|∂Ω = 0). For most
real situations such steady states are observed when ν is sufficiently large, but
are not observed for small ν. Mathematically, the existence of such steady states
for small ν was not clear until the 1930s, when J. Leray proved the existence of
the steady states for any ν > 0.220

Instead of considering a bounded domain Ω ⊂ R3, we could also consider the
case Ω = R3/Z3, when Ω can be thought of as a 3d torus, and one imposes
additional conditions

∫
Ω
f dx = 0 and

∫
Ω
u dx = 0. This case is in fact simple

in some details.

All proofs of the existence of the steady states are based one way or another on
the identity ∫

Ω

(u∇u+∇p)u dx = 0 . (42.6)

which – as we have already seen in the last semester (see, for example, lecture 12)
– is true for any smooth div-free field u : Ω→ R3 with u|∂Ω = 0.

We will recall the “weak Poincare inequality”: for each smooth u : Ω→ R3 with
u|∂Ω = 0 we have ∫

Ω

|u|2 dx ≤ C
∫
Ω

|∇u|2 , (42.7)

where C = C(Ω). The inequality also holds for Ω = R3/Z3 when
∫
Ω
u dx = 0,

which immediately follows from the Fourier series representation of u. (The
condition div u = 0 is not necessary for (42.7), although in some cases it may
be used to lower the constant C. In our case the size of C is not important.)

Let us denote

||∇u||2 =

∫
Ω

|∇u|2 dx, ||f ||2 =

∫
Ω

|f |2 dx. (42.8)

We note that (42.6) and (42.7) imply that∫
Ω
(ν∆u− u∇u−∇p+ f)u dx =

∫
Ω
(−ν|∇u|2 + fu) dx

≤ −ν||∇u||2 + C||f || ||∇u||
< 0 when ||∇u|| > ν−1C||f || .

(42.9)

219In general, when investigating the solutions of ẋ = f(x, λ), it is always a good idea to
check the steady states, given by f(x, λ) = 0. In the context of PDEs the characterization of
the steady states might be a non-trivial task.
220J. Leray, Etude de diverses équations intégrales non linéaires et de quelques problèmes
que pose l’hydrodynamique. J. Math. Pures Appl. 12, 182, (1933).
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A finite-dimensional analogy of the situation is the following. Assume we have
a smooth vector field b = b(x) in Rm (where m can be large). Assume that

b(x)x =
m∑
j=1

bj(x)xj < 0 on the sphere {|x| = r}. (42.10)

Then the field b has to vanish inside the ball {|x| < r}. In other words, we
assume (in (42.10)) that the trajectories given by the equation

ẋ = b(x) (42.11)

intersect the boundary {|x| = r} of the ball Br = {|x| < r} transversally, with
all the boundary points entering the inside of the ball as time increases. In
particular, the ball in invariant under the flow. Under these conditions one can
see from Browder’s fixed point theorem that the field b has to vanish inside the
ball Br .

221 Inequality (42.9) is analogous to (42.10), so if we could pretend that
we are in a finite dimension, we would conclude that −ν∆u+ u∇u+∇p has to
vanish for some u, p with ||∇u|| < ν−1C||f || . The problem is to make sure that
in the case we are considering this argument works in the infinite dimensional
setting of the vector fields u in Ω. (In general, Browder’s fixed point theorem
can fail in infinite dimensions.) This line of reasoning can indeed be made into
a rigorous proof, but we will use another argument, which perhaps gives more
insight into the situation.

Let us first consider the linear equation for u : Ω→ R3 given by

−ν∆u+∇p = f ,
div u = 0 ,
u|∂Ω = 0 .

(42.12)

This is the steady Stokes problem. This equation is relatively well under-
stood.222 The problem can be formulated as a minimization problem: among
all div-free fields with u|∂Ω = 0 (and sufficient regularity) find the one which
minimizes the integral ∫

Ω

(
1

2
ν|∇u|2 − fu) dx . (42.13)

It can be shown that the problem behaves in many respects similarly to the
Laplace equation, if we disregard the scalar features of the Laplace equation
(such as the maximum principle and the Harnack inequality).223

221Consider the map x→ ϵb(x) and show that for a sufficiently small ϵ > 0 it maps Br into
itself. By Browder’s theorem this means that the map has a fixed point, i. e. x + ϵb(x) = x,
which is the same as b(x) = 0., i. e. the flow has to have a rest point inside Br. Since b does
not vanish at the boundary of Br, the fixed point must by in Br.
222There are still quite a few open problems about it, such as optimal regularity of solutions
in Lipschitz domains.
223This is usually a safe heuristics for the steady problem (42.12), but it can be dan-
gerous to use a similar comparison between the corresponding time-dependent problem
ut − ν∆u+∇p = f , div u = 0 and the heat equation ut − ν∆u = f . Although many simi-
larities exist also for the time-dependent problems, one has to be cautious.
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Let Gν be the solution operator for (42.12). This means that for a given f we
denote the unique solution u of (42.12) by Gνf . Note that Gνf = 1

νGf , where
G = G1.

We can rewrite (42.5) as

u+Gν(u∇u) = Gνf , (42.14)

or

u+
1

ν
G(u∇u) = 1

ν
Gf . (42.15)

The natural scalar product in the context of this equation is

((u, v)) =

∫
Ω

∇u∇v dx . (42.16)

Identity (42.6) implies

((Gu, u)) = 0 when ∇u ∈ L2(Ω) and u|∂Ω = 0. (42.17)

This will play an important role in solving (42.15).
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Steady state solutions (continued)

Using the notation from the last lecture, let us set

G(u∇u) = N(u), Gf = F,
1

ν
= λ . (43.1)

Equation (42.15) can then be written as

u+ λN(u) = λF . (43.2)

To solve this equation for a specific λ = λ0, we will find solutions for all λ ∈
[0, λ0] by continuation from λ = 0. In the case λ = 0 the equation is trivial and
we have clearly have a unique solution u = 0.

We will denote by H the space of all div-free vector fields in Ω with ∇u ∈ L2(Ω)
and u|∂Ω = 0. Recall that for u, v ∈ H we defined the scalar product

((u, v)) =

∫
Ω

∇u∇v dx . (43.3)

The space H equipped with this scalar product is a Hilbert space. We will use
the notation

||u||H =
√
((u, u)). (43.4)

Our first step is the following:

Lemma 1

Equation (43.3) is uniquely solvable in H for sufficiently small λ.

Remark: Our goal is of course to extend the existence part of the lemma to
any λ ∈ [0, λ0]. (We will see that it is in fact true for any λ ∈ R.) For the
uniqueness part of the lemma the smallness assumption on λ is essential. In
general, uniqueness can fail when λ is not sufficiently small.

We postpone the proof of the lemma and state the next main point of our
method, and a-priori estimate for the solutions of (43.3). (The estimate is in
fact a version of (42.9).)

Lemma 2

For any solution u ∈ H of (43.2) with λ ≥ 0 we have

||u||H ≤ λ||F ||H . (43.5)

202



Proof

Taking the scalar product of both sides with u and recalling (42.17), we have

||u||2H = λ((F, u)) ≤ λ||F ||H ||u||H , (43.6)

and (43.5) follows.
Summarizing the situation, we see that

1. Our equation has a unique solution u = u(λ) for sufficiently small λ. (In
fact, u depends smoothly on λ for these small λ.)

2. When λ ∈ [0, λ0], our equation has no solutions u with ||u||H > λ0||F ||H .

Let us investigate what to expect in this situation if H were finite-dimensional.
Let us consider a smooth map

ϕ : Rm × [0, λ1]→ Rm . (43.7)

We will write x for elements of Rm, so that we have ϕ = ϕ(x, λ). Assume
that ϕ(x, 0) = x and that the equation ϕ(x, λ) = 0 has no solutions for when
|x| ≥ r, λ ∈ [0, λ1] for some r > 0. By the Implicit Function Theorem we
know that for sufficiently small λ the equation ϕ(x, λ) = 0 has a unique solution
x = x(λ) depending smoothly on λ (when λ stays small).

Assume ϕ satisfies an additional “non-degeneracy assumption”

rankDx,λ ϕ(x, λ) = m for each |x| ≤ r, λ ∈ [0, λ1]. (43.8)

Here we denote by Dx,λϕ the (m+1)×m Jacobi matrix of all partial derivatives
of ϕ, with respect to both x and λ.

The Implicit Function Theorem implies that if (43.8) is satisfied and (x, λ) is a
solution of ϕ(x, λ) = 0 with |x| ≤ r and λ ∈ (0, λ1), then in a sufficiently small
ball B ⊂ Rm × R centered at (x, λ), the solutions (x, λ) ∈ B of ϕ(x, λ) = 0
form a smooth curve (not necessarily parametrized by λ). In other words, the
set X = {(x, λ), ϕ(x, λ) = 0, |x| ≤ r, λ ∈ (0, λ1)} is a smooth one-dimensional
submanifold of {|x| ≤ r, λ ∈ (0, λ1)}. Note that by our assumptions the set X
stays away from {(x, λ), |x| ≥ r, λ ∈ [0, λ1]}.
For the general ϕ satisfying our assumptions, the manifold X can be compli-
cated. It can have many connected components, some of them being closed
curves, some of them being curves starting at (x′, λ1) for some x′ ∈ Rm with
|x′| < r and tracing a segment in {(x, λ) , |x| < r, λ ∈ (0, λ1)} before return-
ing to some point (x′′, λ1), with |x′′| < r. We emphasize again that under our
assumptions X cannot have any branch points.

We will now focus on the connected component of X which contains the curve
of solutions x(λ) near zero (defined for small λ), with x(0) = 0. Let Y be
the connected component of X containing the curve x(λ) for small λ. Let
π : X → [0, λ1] be defined by

π(x, λ) = λ . (43.9)
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Lemma 3

We have π(Y ) = (0, λ1) .

Proof:

Assume π(Y ) does not contain (0, λ1). In that case the set Y ∪{(0, 0} is compact
(since X is a is locally a submanifold), and it is in fact a curve emanating from
(0, 0) which can be parametrized by length. Note that the curve cannot return
to the area of small λ, due to the uniqueness of the solutions for those λ. Let
γ(s) = (x(s), λ(s)), s ∈ [0, L) be the parametrization by length (with |γ′(s)| =
1). Clearly L has to be finite (otherwise X would not be a submanifold). Due
to the condition |γ′(s)| = 1 the limit γ(L) = lims→L γ(s) exists, and at γ(L) we
get a contradiction with the fact that X is a submanifold, as the curve “ends”
at this point.

The proof shows that for any λ0 < λ1 the curve starting of solutions starting
at (0, 0) will eventually reach some point of the form (x, λ0) with |x| < r. We
emphasize that the curve may not be globally a graph of a function λ→ x(λ).
It starts as such a function, but it may later “turn back”. A simple example
of this situations is presented by our earlier example (42.3). At the “turning
points” the tangent line to the manifold ϕ(x, λ) = 0 is perpendicular to the line
x = 0, and cannot be parametrized by λ. The matrix Dxϕ(x, λ) is singular at
such points (while the the full matrix Dx,λϕ(x, λ) has rank m). The curve Y
can be calculated numerically by continuation, but near the turning points we
cannot use λ to parametrize it. We can use for example length as an alternative
parameter.

Assume we are in the situation described above and (x, λ) is a turning point
where the curve “turns back” (so that in a parametrization by length s →
(x(s), λ(s)) we have λ = λ(s), with the function λ(s) having a local maximum
at s). Assume moreover that the solutions (x(s), λ(s)) for s ∈ (s−δ, s) are stable,
in the sense that the eigenvalues of Dxϕ(x, λ) are in {z ∈ C , Re z < 0}. Then
we can locally write x = x(λ) for the curve. What happens to the solutions x(λ)
if we increase λ just above λ and solve the equation ẋ = ϕ(x, λ) with x(0) = x,
say? There is not much we can say in general, since the trajectory x(t) may get
far away from x local features of ϕ(x, λ) near (x, λ) are insufficient to determine
what happens. As an exercise the reader can analyze the toy model (42.3) in
this context.

The above analysis used in a crucial way the assumption that rank Dx,λϕ(x, λ) =
m when ϕ(x, λ) = 0. What happens when this conditions is not satisfied? The
following theorem shows that an arbitrary small perturbation of the equation
can fix a possible failure of the condition rank Dx,λϕ(x, λ) = m.

Sard’s Theorem224

224A. Sard, The measure of the critical values of differentiable maps, Bull. Am. Math. Soc.
vol. 48 (1942) pp. 883-890. For a comprehensive treatment see for example H. Federer’s book
“Geometric measure Theory”, Chapter 3.4.

204



Let O ⊂ Rm be an open set and let f : O → Rl be a smooth map, where l ≤ m.
Let for almost every y ∈ ϕ(O) (with respect to the standard l−dimensional
measure Rl) the condition rankDf(x) = l is satisfied everywhere on f−1(y).

Returning to the situation above with the map ϕ(x, λ), let us now consider
the general situation when condition (43.8) is not necessarily satisfied. Let us
again set X = {(x, λ), |x| < r, λ ∈ [0, λ1), ϕ(x, λ) = 0} and let Y again be
the connected component of X containing the solutions x(λ) for small λ. The
difference this time is that X,Y may not be submanifolds. All we can say is
that these sets are compact in {(x, λ) , |x| < r, λ ∈ [0, λ2] for each λ2 < λ1, and
that Y is connected. We claim that Lemma 3 is still valid:

Lemma 3’

In the situation above we still have π(Y ) = (0, λ1).

Proof

Let yj ∈ Rm, |yj | < r, yj → 0 be such that rankDx,λϕ(x, λ) = m when
ϕ(x, λ) = yj . Such yj exist in view of Sard’s theorem and the assumption
ϕ(x, 0) = x. Let Xj and Yj be defined by replacing 0 by yj in the definitions
of X and Y above. The same reasoning as in the proof of Lemma 3 shows
π(Yj) = (0, λ1) for each j. Let Ỹ a limit point of the sequence of sets Yj in

the so-called Hausdorff metric.225 Clearly π(Ỹ ) = (0, λ1) and Ỹ ⊂ Y. Therefore
π(Y ) = (0, λ1) and the proof is finished.226

Remarks:

1. We recommend that the reader goes through this proof with ϕ(x, λ) replaced
by f(x, λ) from example (40.23), where the sets Xj , Yj and X,Y can be easily
visualized.

2. Replacing the set X which may possibly have branching points by regular
manifolds Xj may sometimes be a good strategy in numerical continuation of
solutions, as we can avoid difficulties related to passing through branch points
of X.

3. Even in the situation whenX is a smooth manifold and away from the turning
points, the steady solution can still lose stability to a time-periodic solution, or
a more complicated time-dependent behavior. For example, in the case of a flow
around a cylinder, it appears numerically that the curve of solutions obtained

225The Hausdorff metric on the set of compact subsets of a compact metric space has several
equivalent definitions. We recall for example the following one. Let M be a compact metric
space. For any compact set K ⊂ M we define f : M → R by fK(x) = dist (x,K). We
can define a distance function d on the set X of all compact subsets of M by d(K1,K2) =
supx |fK1

(x)−fK2
(x)|. This is one of the several possible definitions of the so-called Hausdorff

distance between two compact sets. It is not hard to show that X equipped with this distance
function is again a compact metric space.
226An interesting question is the following: does there exist a “regular curve” Z ⊂ Y with
π(Z) = (0, λ1)? This should be a decidable question, and some variant of it may have been
studies in the literature, although I do not know a reference.
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by the continuation from the small Reynolds numbers is a regular curve without
branching or turning points. Its stability is lost to a periodic solution (via a
Hopf bifurcation), when a pair of eigenvalues of (an analogue of) Dxϕ(x, λ)
crosses the imaginary axis away from the origin.

Next we need to establish how to make these finite-dimensional results relevant
for the infinite-dimensional setting of the Navier-Stokes equations.
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Steady solutions (continued)

Our considerations above were in finite dimensions. The steady Navier-Stokes
equation in H is of course an infinite-dimensional problem, and therefore the
finite-dimensional considerations cannot be directly applied to equation (43.2).
There are several ways to overcome this difficulty. We will present the so-called
Galerkin method, which is based on finite-dimensional approximations. The
method is also suitable for calculating the solutions numerically on a computer.

The Galerking method appears most naturally in the context of variational
problems. Let us consider for example the steady linear Stokes system

−ν∆u+∇p = f ,
div u = 0 ,
u|∂Ω = 0 .

(44.1)

We have mentioned in lecture 42 that this problem is equivalent to minimizing
the functional

J(u) =

∫
Ω

(
ν

2
|∇u|2 − fu) dx (44.2)

over the space H of the div-free vector fields in Ω with
∫
Ω
|∇u|2 dx = 0 with

u|∂Ω = 0, see (43.2), (43.3).

Let V be a finite-dimensional subspace of H. Instead of minimizing J over H,
we can minimize it over V . Finding a minimum of J over V is a task which
is well-suited for computer simulations.227 The condition that u be a critical
point of J on V is

J ′(u)v =

∫
Ω

(ν∇u∇v − fv) dx = 0, v ∈ V . (44.3)

This is often called the variational formulation of (44.1). For any V as above it
obviously has a unique solution uV ∈ V . This notion immediately generalizes
to the steady Navier-Stokes by simply replacing f with f − u∇u. Hence the
steady-Navier-Stokes equation “truncated to V ” is the system∫

Ω

(ν∇u∇v + u∇uv − fv) dx = 0 , v ∈ V , (44.4)

227One should emphasize that effective construction of good finite-dimensional subspaces V
for general domains Ω is non-trivial, especially when we wish that the condition div u = 0
be exactly satisfied. It is of course easy to write-down many div-free vector fields (such as
u = curlA), but for a numerical simulation we wish that our space V has some additional
properties which may not be easy to accommodate together with the condition div u = 0. In
the case when Ω = R3/Z3 (and also for more general tori), the most natural finite-dimensional
approximations are by truncated Fourier series, which are of course easy to generate.
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for which we seek a solution uV ∈ V . Note that (44.4) can be written again
in the form of (43.2), by simply inverting the linear part of the equation.
Let PV : H → V be the orthogonal projection (where we use the scalar prod-
uct (43.3) in H). The system (44.4) is nothing but

u+ λPVN(u) = λPV F . (44.5)

Note that for each u ∈ V we have

((PVN(u), u)) = ((N(u)u, PV u)) = ((N(u), u)) = 0 . (44.6)

Hence the same reasoning as in Lemma 2 in the previous lecture gives

||uV ||H ≤ λ||PV F ||H ≤ λ||F ||H (44.7)

for any solution uV of (44.5). An equivalent estimate

ν||∇uV ||H ≤ C||f ||L2(Ω) (44.8)

can be obtained by setting v = uV in (44.4), similarly to (42.9). Assume that
v1, . . . , vm is a basis of V . Writing u = ξ1v1+· · ·+ξmvm, we obtain and equation
for ξ ∈ Rm of the form

ϕ(ξ, λ) = 0 . (44.9)

with the same properties as the map ϕ(x, λ) we studied in the previous lecture.
The scalar product of ξ = (ξ1, . . . , ξm) and η = (η1, . . . , ηm) is now of course
given by

(ξ, η) =
m∑

i,j=1

ξiηj

∫
Ω

∇vi∇vj dx . (44.10)

By Lemma 3’ in the previous lecture we have

Proposition

For each finite-dimensional subspace V ⊂ H the problem (44.6) has at least
one solution uV . Moreover, any such solution uV satisfies (44.7) or (equiva-
lently) (44.8).

Let us now recall basic facts concerning weak convergence in Hilbert spaces. We
recall that a sequence uj ∈ H converges weakly to u ∈ H if ((uj , v))→ ((u, v))
for each v ∈ H.228 The weak convergence will be denoted by ⇀. The same
definition works in any Hilbert space. We recall that in any Hilbert space X we
have the following:

xj ⇀ x, yj → y ⇒ (xj , yj)→ (x, y) . (44.11)

228In Functional Analysis it is proved that this implies that the sequence uj is in fact bounded
in H. If we already know that uj is a bounded sequence, then in the definition of the weak
convergence it is enough to require ((uj , v)) → ((u, v)) for any v from some dense subspace
of H.
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Recall also that every bounded sequence in a separable229 Hilbert space contains
a weakly converging subsequence.

We will also need the following case of the Sobolev inequality inequality. If
Ω ⊂ R3 is a domain with a smooth boundary, then for each u ∈ H we have

||u||L6(Ω) =

(∫
Ω

|u(x)|6 dx
) 1

6

≤ C
(∫

Ω

|∇u(x)|2dx
) 1

2

= C||∇u||L2(Ω) = C||u||H ,

(44.12)
where C is some constant depending on Ω. In addition, we have the Rellich’s
Theorem:

uj ⇀ u in H ⇒ uj → u in Lp(Ω) for each p < 6 (strong convergence) .
(44.13)

With these preliminaries, it is now easy to pass to the limit in our construction
of the solutions in H. Let us consider a sequence

V1 ⊂ V2 ⊂ · · · ⊂ H (44.14)

of finite dimensional subspaces of H with the following property:

v ∈ H ⇒ there exists vj ∈ Vj with ||v − vj ||H → 0 . (44.15)

Let us write for simplicity uj for uVj , the solutions of (44.5) with V = Vj . Due
to (44.7) we know that the sequence is bounded in H and hence we can choose
a subsequence weakly converging to a u ∈ H with ||u||H ≤ λ||F ||H ≤ C

ν ||f ||L2 .
Skipping some members of the sequence Vj if necessary, we can assume that
uj ⇀ u. Let v ∈ H and let vj ∈ Vj with vj → v in H. We have∫

Ω

∇uj∇vj + uj∇ujvj − fvj = 0 (44.16)

for each j. We note that by Rellich’s Theorem (42.13) the sequence uj converges
strongly to u in the space L4(Ω). For the same reason (or by Sobolev’s Inequal-
ity (44.12)) the sequence vj converges to v in L

4(Ω). From this and from (44.13)
it is now easy to see that we can pass to the limit in (44.16), obtaining∫

Ω

∇u∇v + u∇uv − fv = 0 . (44.17)

Since v ∈ H is arbitrary, we see that u is a variational solution of the steady state
problem (42.5). This type of solution is also sometimes called weak solution.
Our reasoning above establishes the following result

229Recall that a Hilbert space is separable if it contains a countable dense set.
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Theorem (Existence of steady state solutions)

For each f ∈ L2(Ω), the steady Navier-Stokes equation (42.5) has at least one
weak solution u ∈ H. Moreover, any such solution satisfies ||u||H ≤ C

ν ||f ||L2(Ω) .

Note that at this point we have not established that u is smooth when f is
smooth. We will discuss this point next time. In fact, it is natural to ask if with
a suitable choice of the subspaces Vj the sequence uj will approach u smoothly
(assuming uj ⇀ u and f being smooth). This should be the case, although I do
not know a reference for such a result.
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Steady solutions (continued)

We will first establish the uniqueness of the steady state solutions for small
Reynolds numbers.

We will use the following special case of the so-called Sobolev Inequality. As
above, Ω ⊂ R3 is a smooth bounded domain. Let u be a vector field in Ω with
∇u ∈ L2(Ω) and u|∂Ω = 0. Then we have(∫

Ω

|u|6 dx
) 1

6

≤ C
(∫

Ω

|∇u|2 dx
) 1

2

(45.1)

for a suitable constant C. (The constant C is in fact independent of Ω in this
case, and its best possible value can be determined quite explicitly, if we do not
impose the div-free constraint on u.)

Remark: If you see this type of inequality for the first time, a good way to
remember the exponents (and to have a good rule of thumb of what they are in
other cases) is to use dimensional analysis. If we think of u as a velocity field
the physical dimension of which is L

T , we check easily the following dimensions∫
Ω
dx ..... L3

u ..... LT−1

∇ ..... L−1

∇u ..... T−1∫
Ω
|∇u|2 dx ..... L3T−2

(
∫
Ω
|∇u|2 dx) 1

2 ..... L
3
2T−1∫

Ω
|u|6 dx ..... L9T−6(∫

Ω
|u|6 dx

) 1
6 ..... L

3
2T−1∫

Ω
|u|p dx ..... Lp+3T−p(∫

Ω
|u|p dx

) 1
p ..... L1+ 3

pT−1

(45.2)

Here we used the dimension LT−1 for u only because we have in mind the
Navier-Stokes equation. If the viscosity in the Navier-Stokes equation is fixed,
we can use units in which ν = 1. Since the dimension of ν is L2T−1, this means
that we can count T as L2. In this case the dimensions in the table will be just
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powers of L: ∫
Ω
dx ..... L3

u ..... L−1

∇ ..... L−1

∇u ..... L−2∫
Ω
|∇u|2 dx ..... L−1

(
∫
Ω
|∇u|2 dx) 1

2 ..... L− 1
2∫

Ω
|u|6 dx ..... L−3(∫

Ω
|u|6 dx

) 1
6 ..... L− 3

2∫
Ω
|u|p dx ..... L−p+3(∫

Ω
|u|p dx

) 1
p ..... L−1+ 3

p

(45.3)

Since in this case the dimension is determined only by a single exponent, we
often identify the dimension with the exponent. For example, we can say that
the dimension of u is −1, the dimension of ∇u is −2, etc.
When dealing with inequalities of the form (45.1), with the same degree of
homogeneity in u on both sides, it does not really matter what the dimension
of u is, and we can also consider it dimensionless. In this case the only terms
contributing to the dimension will be dx (which has dimension 3) and ∇ (which
has dimension −1).
No matter which of the above ways we used to count the dimension, the basic
rule of thumb is that the dimension of both sides of the inequality should be the
same. This determins the exponents in (45.1) and other Sobolev inequalities.

If we are interested in an inequality of the for (45.1) with an exponent 1 ≤ p ≤ 6,
we can write (∫

Ω

|u|p dx
) 1

p

≤ C̃L
1
2−

3
p

(∫
Ω

|∇u|2 dx
) 1

2

, (45.4)

where L is some natural characteristic of Ω having the dimension of length, such
as its diameter. If we write the inequality in this form, then C̃ will depend on
the shape of (When L is the diameter of Ω, the inequality will be true with a
C̃ independent of Ω, although C̃ may not be chosen so that it is optimal for all
the domains when p < 6.)

For general treatment of Sobolev inequalities the reader can consult for example
the book “Sobolev Spaces” by V. G. Mazja (Springer-Verlag, New York, 1985),
where a geometric approach is adopted. For a Harmonic Analysis approach, the
reader can consult for example the book “Singular Integrals and Differentiability
properties of Functions” by E. Stein (Princeton University Press, 1970).

With (45.4) one can easily prove uniqueness of the steady state solutions of (42.5)
for large viscosity. Assume

−ν∆u+ u∇u+∇p = f(x) ,
div u = 0 ,
u|∂Ω = 0 .

(45.5)
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and
−ν∆v + v∇v +∇q = f(x) ,

div v = 0 ,
v|∂Ω = 0 .

(45.6)

Letting w = u− v and subtracting the two equations, we obtain

−ν∆w + w∇u+ v∇w +∇(p− q) = 0 ,
divw = 0 ,
w|∂Ω = 0 .

(45.7)

Multiplying the first equation of (45.7) by w and integrating by parts, we obtain∫
Ω

(
ν|∇w|2 + (w∇u)w

)
dx = 0 . (45.8)

Writing L = diamΩ, we have∫
Ω

|(w∇u)w| dx ≤
(∫

Ω

|w|4 dx
) 1

2
(∫

Ω

|∇u|2 dx
) 1

2

(45.9)

and hence from (45.4)∫
Ω

|(w∇u)w| dx ≤ C̃2L− 1
2

(∫
Ω

|∇w|2 dx
)(∫

Ω

|∇u|2 dx
) 1

2

. (45.10)

By (43.5) we have
||∇u||L2 ≤ Cν−1||f ||L , (45.11)

where we have explicitly restored the “dimensional balance” into the weak
Poincare inequality (42.7) by writing it in the form (45.4) with p = 2. It is
now easy to see from (45.8) that w = 0 when

ν > C̃2L− 1
2Cν−1L||f || , (45.12)

or
C1L

1
2 ν−2||f || < 1 , (45.13)

where C1 = C̃2C . Hence we have shown

Theorem (Uniqueness of the steady solutions for small Reynolds number)

Condition (45.13) guarantees that the steady Navier-Stokes problem (42.5) has
a unique solution in H.

We now return to the form (43.1) of (42.5), and establish properties of N from
which the uniqueness result as well as the existence result for small Reynolds
number will also be transparent.

We recall that N(u) = G(u∇u). We let

B(u, v) = G(u∇v) +G(v∇u) = DN(u)v , (45.14)
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where DN denotes the derivative (in the space H).

Lemma 1

The bilinear form B is continuous on H. In other words, we have

||B(u, v)|| ≤ C||u||H ||v||H , u, v ∈ H . (45.15)

We start by the following natural energy estimate for the steady Stokes problem.
Assume

−∆u+∇p = div f ,
div u = 0 ,
u|∂Ω = 0 ,

(45.16)

where f = {fij} and div f is the vector fij,j . Then

||∇u|| ≤ ||f || , (45.17)

where, as usual, || · || means the L2-norm. This is the most natural inequality
for the system (??). For the proof we just multiply the first equation of (45.16)
by u and integrate by parts. We obtain

||∇u||2 =

∫
Ω

|∇u|2 dx =

∫
Ω

−f∇u ≤ ||f || ||∇u|| , (45.18)

which implies (45.17).

The function w = B(u, v) is obtained as a solution of

−∆wi + ∂ip = ∂j(uivj + ujvi) ,
divw = 0 ,
w|∂Ω = 0 ,

(45.19)

and hence by (45.17) we have

||∇w|| ≤ ||u⊗ v + v ⊗ u|| ≤ 4||u||L4 ||v||L4 , (45.20)

where we use the usual notation u⊗ v for the matrix uivj and

||f ||Lp =

(∫
Ω

|f |p dx
) 1

p

. (45.21)

Using (45.4), we conclude

||B(u, v)||H ≤ C2L− 1
2 ||u||H ||v||H . (45.22)

We will treat (43.2) as an abstract equation, writing it in the form

u+
λ

2
B(u, u) = λF . (45.23)
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The existence and uniqueness of the solutions for small λ can now be derived
from the following simple abstract result.

Lemma 2

Let B be a continuous bilinear form on a Banach space X satisfying ||B(x, y)|| ≤
c||x|| ||y||. Let z ∈ X such that ||z|| < 1

4c and let 0 < ξ1 < ξ2 be the roots
of the equation ξ = ||z|| + cξ2. Then the equation x + B(x, x) = z has a
solutions x satisfying ||x|| ≤ ξ1. Moreover, the solutions is unique in the open
ball {x ∈ X, ||x|| < ξ2}.

Proof

Consider the map f(x) = z −B(x, x). It is not hard to see that for each x ∈ X
with ξ1 < ||x|| < ξ2 we have ||f(x)|| < ||x|| and that the iterates f(x), f2(x) =
f(f(x)), . . . , fk(x), . . . approach the ball {x, ||x|| ≤ ξ1}. Moreover, we have

||f(x)− f(y)|| ≤ c||x− y|| (||x||+ ||y||) , (45.24)

which shows that f is a contraction on any ball of radius ξ ∈ [ξ1,
ξ1+ξ2

2 ). Hence
for any x ∈ {x, ||x|| < ξ2 the iterates fk(x) must approach a fixed point. the
fixed point has to be unique in any ball on which f is a contraction, and hence,
in particular, in {x, ||x|| < ξ} whenever ξ ∈ [ξ1,

ξ1+ξ2
2 }).

Note that the proof is practically the same for X = R and the case when X is
a general Banach space.
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46.1 Regularity

The solutions u of the steady Navier-Stokes problem (42.5) we have obtained
in the previous lectures satisfy the equation belong to the space H of div-free
vector fields in Ω with ∇u ∈ L2(Ω) and u|∂Ω = 0, and satisfy the equation in
the sense ∫

Ω

(ν∇u∇v + u∇u v − fv) dx = 0, v ∈ H . (46.1)

Are the solutions smooth? Obviously, the solutions can be only as smooth as f
allows. For example, when f is discontinuous, and we have −ν∆u+u∇u+∇p =
f , then some of the terms on the left-hand side must be discontinuous. The best
we can expect is that the second derivatives of u are “as good as f”. This of
course should be made more precise, and the precise formulation requires some
definitions of functions spaces which “measure” the regularity of functions.

Details of the regularity theory for the problem above are somewhat technical,
but the main ideas are not hard to understand. We will illustrate them on the
following model problem. Consider vector valued functions u : (a, b) → Rm.
We will write u = u(x), with x ∈ (a, b) and u(x) = (u1(x), . . . , um(x)). Let us
consider a quadratic form B(u, u) =

∑
bijuiuj on Rm and the equation

u′ +B(u, u) = f , (46.2)

where f : (a, b) → Rm is a given integrable function. An analogy of the def-
inition (46.1) in the context (46.2) is the following: we say that u is a weak
solution of (46.2) in (a, b) if u is a locally integrable function such that B(u, u)
is locally integrable and for each smooth compactly function φ : (a, b)→ Rm we
have ∫ b

a

(−uφ′ +B(u, u)φ− fφ) dx = 0 . (46.3)

We would like to show that any weak solution (46.2) are “as regular as f allows”.
This can be done as follows:

1. For any locally integrable g : (a, b)→ Rm show that any weak solution230 of

v′ = g (46.4)

is actually the usual solution: namely, v is absolutely continuous and v′ = g al-
most everywhere in (a, b). In particular, when g is continuous, v is continuously
differentiable and satisfies v′ = g everywhere in (a, b).

2. If g is differentiable, we can take the derivative of (46.4) and repeat the
argument. Hence if g′ is locally integrable, v′ is absolutely continuous and

230The definition is as expected from the above: v is locally integrable and
∫ b
a −uφ′−gφ = 0

for any smooth, compactly supported φ.
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v′′ = g′. This can be iterated as many times as allowed by g. In particular,
if g is k times continuously differentiable, then v is k + 1 times continuously
differentiable.231

3. We can now apply the above conclusions for the linear equation v′ = g to
the non-linear problem (42.6). First, since f and B(u, u) are locally integrable,
we see that u is absolutely continuous and u′ + B(u, u) = f . This means that
the term B(u, u) is in fact absolutely continuous, with [B(u, u)]′ = B(u′, u) +
B(u, u′), which is a locally integrable function (as u′ is locally integrable and u
is continuous). This means that if we can differentiate f , we can differentiate
the whole equation and the derivative u′ is a weak solution of

u′′ = f ′ − [B(u, u)]′ = f ′ −B(u′, u)−B(u, u′) (46.5)

and hence u′ is absolutely continuous. It is clear that we can continue this pro-
cedure and take as many derivatives of the equation as allowed by the regularity
of f .

The above procedure by which we establish regularity by iterating a linear
regularity argument, using at each step the information we have from previous
steps, is usually called bootstrapping.

One can use essentially the same procedure to prove that the solutions of (46.1)
are as smooth as f allows, if we measure regularity in the right way. The role of
the linear equation v′ = g will now be played by the linear Stokes problem (44.1),
and the role of locally integrable functions will be played by various function
spaces232 , which are designed so that the solutions of the linear equation “gain
regularity”, similarly to what we have seen in the simple example above.

At the level of PDEs there is one very important phenomenon our model ODE
problem (46.2) fails to reproduce (at least in the formulation above). It is the
notion of criticality, which expresses the fact that we need a certain level of
regularity to start the bootstrapping procedure. Let us illustrate this notion in
a simple PDE setting.

We consider the PDE
−∆u = |u|2σu (46.6)

for a scalar function u in a domain Ω ⊂ Rn, where σ > 0. For our purposes
here we can take Ω = {x, |x| < 1}. By analogy with (46.3), a weak solution
of (46.5) in Ω is a locally integrable function u in Ω such that |u|2σu is also
locally integrable in Ω and∫

Ω

(
−u∆φ− |u|2σuφ

)
dx = 0 (46.7)

231This may seem to be obvious tautology, but note that we define the derivatives via the
weak formulation:

∫
(−vφ′ − gφ) dx = 0 for each smooth compactly supported φ.

232such as the Sobolev spaces Wk,p or the Hölder spaces Ck,α
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for each smooth compactly supported function φ : Ω→ R.
For simplicity we will consider only positive solutions, so that the non-smoothness
of the function u→ |u|2σu at u = 0 can be ignored and we can write the equation
simply as

−∆u = u2σ+1 . (46.8)

When are the (positive) solutions of this equation smooth? Unlike in the
case (46.2), we can now write down solutions which are not smooth. Namely, it

is easy to check that for σ > 1
n−2 and Aσ = [ 1σσ(n− 2− 1

σ )]
1
2σ , the function

w =
Aσ

r
1
σ

(46.9)

is a weak solution of (46.8). For this function we see explicitly that the non-
linear operation w → w2σ+1 results in a loss of regularity, which the inverting
of the laplacian exactly compensates for, but does not improve.233

Based on this, one can conjecture that the function w represents a “bordeline for
regularity”: if a (positive) solution u of (46.8) is “slighly more regular regular”
than w given by (46.9), it has to be smooth. There are various ways of making
the notion of “sligtly more regular” precise. For example, in many cases the
condition234 u ∈ Lp for a suitable p works well. If the function w above is
indeed the borderline for regularity in terms of the Lp spaces, then we can
expect the following result

Assume σ > 1
n−2 . Let u be a weak (positive) solution of (46.8). If u ∈ Lp(Ω)

for some p ≥ σn, then u is smooth.

This can indeed be proved. It is quite easy for p > σn, when a direct boot-
strapping argument along the lines of the ODE example above works (with the
necessary adjustments taking into account that instead of the simple operator
d
dx we invert −∆).235 The case p = σn is more subtle, and one has to supplement
the simple bootstrapping by an additional idea.

233It is instructive to look at the (nonlinear) operation T : v → (−∆)−1v2σ+1 for functions
of the form ar−α. Assuming that 2 < α(2σ + 1) < n, we have T (ar−α) = cr(−2σα−α+2),
which can be interpreted as a gain in regularity when −α < −2σα − α + 2, or, equivalently,
α < 1

σ
. The case α = 1

σ
is the borderline for a regularity gain by T .

234Recall that we use Lp(Ω) to denote the space of all measurable functions f in Ω such that∫
Ω |f |p dx is finite. For such functions we define ||f ||Lp = (

∫
Ω |f |p dx)

1
p

235We should remark that although this process is by now standard in the theory of PDE,
it took some time to find the right technical set up. This was achieved in the first half of
the 20th century (for the elliptic equations we consider here). It turned our that the spaces
of continuous functions, or functions with continuous derivatives (usually called Ck today)
are not suitable for most PDE arguments, and neither are the spaces of integrable functions
or spaces with integrable derivatives (usually called Wk,1 today). The continuity has to be
replaced by Hölder continuity (the spaces Ck,α, and the integrability has to be replaced by
the “Lp integrability” (the spaces Wk,p) for 1 < p < ∞. The reason why the spaces Ck

are not suitable is the following: if ∆v = f and f is (locally) continuous, then the second
derivatives ∇2u may not be continuous. Similarly, if f ∈ L1 (locally), then ∇2u may not be
locally in L1.
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We see that there is a certain threshold regularity effect for the solutions of (46.8).
In general one can have irregular (weak) solutions, but once the solution has a
certain critical level of regularity, it has to be smooth. On the scale of the Lp

spaces, the space Lσn plays a distinguished role for the weak solutions of (46.9),
and is often called the critical space.

Equation (46.8) is invariant under the scaling symmetry u(x) → uλ(x) =

λ
1
σ u(λx), λ > 0 Note that wλ = w for each λ > 0. We say that the so-

lution is scale invariant and its singularity at x = 0 is self-similar. Note also
the the Lp− norm for the critical p − σn is scale invariant: when p = σn and
v ∈ Lp(Rn), then ||vλ||Lp = ||v||Lp for λ > 0.

The regularity question can also come up in a slightly different context. Suppose
we know from some other argument that the solutions we are interested in
satisfy, say, ∇u ∈ L2(Ω). When will such solutions be regular? Clearly, if the
solution w above satisfies ∇w ∈ L2, then the condition ∇u is insufficient for
regularity. The condition ∇w ∈ L2 is equivalent to σ > 2

n−2 , which is the same

as 2σ+ 1 > n+2
n−2 . In this case it can be proved that the exponent 2σ+ 1 = n+2

n−2

is critical for regularity (with the assumption ∇u ∈ L2) and with this exponents
the solutions are still regular. The critical exponent can also be from the scaling
invariance: the right value of σ is the one for which the controlled quantity, in
this case

∫
|∇v|2 dx is invariant under the scaling v → vλ.

For the steady Navier-Stokes equation one can adopt a similar approach. It can
be used to show relatively easily (once the linear theory for the linear problem
is worked out) that the solutions of (46.1) are smooth, the condition ∇u ∈ L2

turns out to be quite better than “critical” in dimension n = 3 in this case. (It
turns out to be exactly critical in dimension n = 4.)

However, unlike in the simple example (46.8), for the Navier-Stokes problem we
do not have simple explicit solutions which would be plausible candidates for
determining the borderline cases. The notion of “critical” in this case is more
based on the method of proof, and the critical spaces are the borderline spaces
for the bootstrapping argument. For solutions in the spaces with less regularity
than the critical spaces the bootstrapping argument does not work, but we do
not have any examples which would show that the solutions can actually be
singular. Let us illustrate this by mentioning the following problem. Consider
the solution of −∆u + u∇u +∇p = 0, div u = 0 in a domain Ω ⊂ Rn. It is
easy to see that for a regular solution u one has the following: if φ : Ω→ Rn is
a compactly supported smooth vector field with divφ = 0, then236∫

Ω

(−ui∆φi − uiujφi,j) dx = 0 . (46.10)

The integral (46.10) is well-defined whenever u ∈ L2(Ω). Therefore one can
consider the div-free vector fields u ∈ L2(Ω) satisfying (46.10) for each smooth

236We sum over the repeated indices and use the notation φi,j = ∂jφi.
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div-free vector field φ compactly supported in Ω. Such solutions are sometimes
call very weak solutions, as the term “weak solution” is usually reserved for
solutions u ∈ H defined by (46.1). What is the borderline for regularity for the
very weak solutions? The bootstrapping argument, in its more sophisticated
version suitable for the critical cases, gives the following:

Assume n ≥ 3. Then any very weak solution of (46.10) with u ∈ Ln(Ω) is
smooth in Ω.237

It is not known if this result is optimal.238 We have no example of a very weak
solution which would not be smooth. It also appears to be open if the result
remains true for n = 2. (In that case we know it is true if we replace Ln by
Ln+δ for some δ > 0.)

Note that the norm in the space Ln is invariant under the scaling u→ uλ(x) =
λu(λx): if u ∈ Ln(Rn), then ||uλ||Ln = ||u||Ln .

In dimension n = 3 the condition u ∈ H comfortably implies that u ∈ L3(Ω)
(for bounded domains). In dimension n = 4 the condition ∇u ∈ L2 still implies
u ∈ L4, although it is now a borderline case. In dimension n = 5 the condition
∇u ∈ L2 no longer implies u ∈ L5, and it is an open question whether all very
weak solutions with ∇u ∈ L2 are regular.

We will now show a heuristic argument which illustrates the notion of criticality
from a slightly different angle. The argument can be made rigorous, but we
will ignore the technicalities at this stage. Assume that we solve the problem
depending on a parameter κ > 0

−∆u+ u∇u+∇p = κf
div u = 0
u|∂Ω = 0 .

(46.11)

in a bounded smooth domain Ω ⊂ Rn. The function f is assumed to be smooth.
Assume we have a smooth solutions for all κ ∈ [0, κ). Moreover, assume that
the solutions satisfy a uniform bound∫

Ω

|∇u|2 dx ≤ C (46.12)

for all κ ∈ [0, κ). Can these solutions become unbounded as κ→ κ?

For a given solution let M = maxx |u(x)|. We can imagine that the modulus
|u| of the velocity field u has a peak of hight M at some point x ∈ Ω. We will

237This is an interior regularity result, we say nothing about the regularity at the boundary.
In fact, since we make no assumptions on u at the boundary, the solution may not be smooth
up to the boundary.
238It is clear, though, that our current methods cannot prove a better result (at least at the
scale of the Lp spaces).
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say that the peak has width r > 0 if |u| > M/2 in the ball Bx,r ∩ Ω, where
Bx,r = {x, |x− x| < r}.

Claim

If M is sufficiently large, the width of the peak is at least of order 1/M .

In other words, there exists ε > 0 such that whenever M is sufficiently large,
then the width of the peak is ≥ ε

M .
A rigorous proof requires some work, but we can at least outline the main
idea. Define v(y) = 1

M u(x + y
M ). Note that v is defined on a large domain

Ω̃ = M(Ω − x), and |v| ≤ 1 in Ω̃. The field v satisfies the equtions (46.11)
with Ω replaced by Ω̃ and f replaced by f̃(y) = κ

M3 f(x + y
M ). Note that f̃

is small (point-wise), together with is derivatives up to a given order, when
M is sufficiently large. In this situation the linear theory239 gives a bound
on the modulus of continuity of v,240 which means that |v| > 1

2 is some fixed
neighborhood of 0 which is independent of M . Going back from v to u we get
the result.

Note that the above claim is exactly what one would expect from the dimensional
analysis. Since the viscosity is now fixed to ν = 1, we can use (45.3) to determine
the dimension of various quantities. The velocity u has dimension −1, the peak
width has dimension 1. The only dimensionally consistent way to estimate the
width r through the maximum of |u| (denoted by M) is that r has to at least
of order 1

M .

The above claim quantitatively captures the heuristics that the peak cannot be
too thin, due to the effect of the viscosity. The viscosity (which we normalized
to ν = 1 in our setting here) is trying to keep the velocities of the nearby fluid
particles the same, so any very thin peak will be washed out by it. High peaks
can only appear if they are sufficiently massive.

In dimension n = 3 we have the Sobolev inequality (45.1), and in view of (46.13)
we see that ∫

Ω

|u|6 dx ≤ C̃ (46.13)

for some C̃ independent of M . Using the estimate of the width of our peak, we
obtain ∫

Ω

|u|6 dx ≥ ϵ1M3 (46.14)

for some ϵ1 > 0 which is independent ofM . This gives a contradiction with (46.13)
once M is sufficiently large. Hence we must conclude that the functions u stay
uniformly bounded as for κ ∈ [0, κ). In this way we see that as we increase κ to
some given value κ (with a bound depending on κ, of course).

239We write the equation as −∆v +∇q = f̃ − div(v ⊗ v), div v = 0.
240The rule of thumb is that if v is of order 1, then the linear theory implies that ∇v will
also be of order 1. We omit technical details, which do require some work.
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It is interesting to check what happens with this argument in dimensions n = 4
and n = 5. It turns out that dimension n = 4 is critical for this argument to
work: it still works, but without any margin to spare. In dimension n = 5 the
argument no longer works. The existence of the high peaks is compatible with
both the linear theory and the energy estimates.241 It may be incompatible
with some other estimate which we have not yet discovered 242, but based only
on the energy estimate and the linear theory we cannot tell.

Similar considerations apply also to the time-dependent problem. At the mo-
ment we will not go into the details, but we just mention the following. In
dimension n = 3 (now for u = u(x, t)) the existence of arbitrary large “peaks”
is compatible we both the linear theory and the energy estimate, so we cannot
rule out singular behavior based on those two ingredients alone. There might
be some additional estimates, hitherto undiscovered, which might rule out the
singular behavior. Alternatively, the singular behavior can perhaps occur. We
do not know which scenario is correct. This is the famous Navier-Stokes reg-
ularity problem, for the solution of which the Clay Mathematical Institute is
offering $1M, see
http://www.claymath.org/millennium/Navier-Stokes_Equations/

241This can again be seen also from behavior of the controlled quantity
∫
|∇u|2 dx under

the Navier-Stokes scaling u(x) → λu(λx). For a function u on Rn with ∇u ∈ L2 we have∫
Rn |∇uλ(x)|2 dx = λ4−n

∫
Rn |∇u|2 dx. In the critical case the controlled quantity is invariant

under the natural scaling of the equation.
242In fact, if we restrict our attention to the areas away from the boundary, such estimates
have been discovered by J. Frehse and M. Ruzicka in the 1990s, see for example their paper
“Existence of Regular Solutions to the Stationary Navier-Stokes Equations”, Math. Ann. 302
(1995), pp. 699-717.
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47.1 A classical example of a stability calculation

We will discuss a classical example of a linearized stability calculation, due to
Rayleigh243. There many other classical calculations.244 We chose Rayleigh’s
example due to its role in the discovery of the Lorenz attractor which is one of
the important early examples of chaotic solutions of dynamical systems. We
will discuss this connection later.

We consider fluid in a tank heated from below. We consider the usual quantities
describing the fluid: the density ρ, the pressure p and the velocity field u. In
addition to these quantities we will also consider the temperature of the fluid,
which we will denote by Θ. We wish to capture the effect that hot fluid rises up
(as can be seen when watching a fire, for example). We introduce the coefficient
of the thermal expansion α of the fluid defined by

δρ

ρ
= −α δΘ , (47.1)

where δρ and δΘ are small changes of ρ and Θ respectively. In general α is
not constant, it depends on ρ, θ, and the pressure p. In the regimes we will
consider here we will assume α to be constant. It would seem that with (47.1)
we have no choice but to assume that the fluid is compressible. However, there
is an approximation of the precise equations, due to Boussinesq, which captures
the main phenomena while still keeping the flow incompressible and the density
constant. We will only consider the two-dimensional problem, for simplicity.
Assume the fluid occupies a domain Ω. Let e2 = (0, 1). The gravitational
force per unit mass of the fluid is assumed to be given by −ge2, where g is
the acceleration due to gravity. We will assume that the flow is incompressible
with ρ = const. (so that, in contrast to (47.1), the temperature does not change
the density). Instead, we will assume that the temperature of a fluid particle
directly affects the gravitational force on it so that the resulting equations (due
to Boussinesq)245 are

ut + u∇u+ ∇p
ρ − ν∆u = −ge2 + gα(Θ−Θ0)e2 ,

div u = 0 ,
Θt + u∇Θ− κ∆Θ = 0 .

(47.2)

In this system the density ρ is assumed to be constant, and all the other coef-
ficients g, α, ν, κ are also assumed to be constant. The coefficient κ is the heat

243“On convection currents in a horizontal layer of fluid, when the higher temperature is on
the under side”, Philosophical Magazine, Vol. XXXII. pp. 529–546, 1916. Available online,
http://www.archive.org/details/scientificpapers06rayliala, p. 432.
244such as Kelvin’s “Vibrations of a columnar vortex”, Phil. Mag., x. 1880, pp. 155–168.
245Théorie de l’écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes
a grande section (1897), available online
http://www.archive.org/details/thbeoriedelbeco01bousrich
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conduction coefficient in the fluid and ν is the kinematic viscosity of the fluid.
While (47.2) is only an approximation of the exact equations which would in-
volve a variable ρ, it does capture the main features of the phenomena we are
interested in. (It turns out the equations also have some resemblance with the
axi-symmetric Euler/Navier-Stokes equations away from the axis of rotation,
with the temperature Θ playing the role of the component uθ of the velocity,
see lecture 17.)

We will consider (47.2) in a 2d domain Ω with coordinates x = (x1, x2). We will
assume that the x1 direction is “periodic”, i. e. all quantities we consider are
periodic in x1 with a period L. In the direction x2 the domain is characterized
by 0 < x2 < H. We can also think of Ω as Ω = S1

L
2π

× [0,H], where S1
r denotes a

circle of radius r. The boundary ∂Ω consists of two components, Γ0 = {x2 = 0},
and Γ1 = {x2 = L}. The boundary conditions are as follows

Θ = Θ0 at Γ0 ,
Θ = Θ1 = const. at Γ1 ,
u2 = 0 at ∂Ω when ν = 0 (Euler’s equations) .

In the case ν > 0 (Navier-Stokes equations) we would ideally like to impose the
condition u = 0 at ∂Ω. With this condition some of the explicit calculations
become unfeasible, and therefore we will replace it (following Rayleigh) by a
somewhat less physical condition that u2 = 0 at ∂Ω and the tangential com-
ponent of the viscous force along ∂Ω vanishes (the so called Navier boundary
condition), which amounts to the conditions u2 = 0 and ω = curlu = 0 at ∂Ω.

We make the following additional simplification. We will seek Θ in the form

Θ = Θ0 + (Θ1 −Θ0)
x2
H

+ θ (47.3)

We let

β =
Θ1 −Θ0

H
. (47.4)

We can also write

p = −g(x2 −H) +
β

2
(x2 −H)2 + q. (47.5)

With these substitutions, equations (47.2) become

ut + u∇u+ ∇q
ρ − ν∆u = gα θ e2 ,

div u = 0 ,
θt + u∇θ + βu2 − κ∆θ = 0 ,

(47.6)

with the boundary conditions

θ = 0 ,
u2 = 0 .

(47.7)

at ∂Ω for ν = 0, and the boundary conditions

θ = 0 ,
u2 = 0 ,

curlu = 0 .
(47.8)
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at ∂Ω when ν > 0. The system (47.6) with the boundary conditions (47.7)
or (48.8) has a trivial solution u = 0, θ = 0 and our goal is to investigate the
linearized stability of this trivial solution. The linearized equations at u = 0, θ =
0 are

ut +
∇q
ρ − ν∆u = gα θ e2 ,

div u = 0 ,
θt + βu2 − κ∆θ = 0 .

(47.9)

We can now decompose all the fields in the Fourier series in the x1 variable:
u1(x1, x2, t)
u2(x1, x2, t)
q(x1, x2, t)
θ(x1, x2, t)

 =
∑
k∈ 2πZ

L


û1(k, x2, t)
û2(k, x2, t)
q̂(k, x2, t)

θ̂(k, x2, t)

 eikx1 (47.10)

Since the system (48.9) is linear and invariant under the translation along x1,
it has to be satisfied separately by each summand of the Fourier series. We will
fix k ∈ 2π

L and write u1(x2, t) for û1(k, x2, t), and similarly for u2, q, θ. At a
fixed k we get the following system of equations

u1t + ik qρ − νu
′′
1 + νk2u1 = 0 ,

u2t +
q′

ρ − νu
′′
2 + νk2u2 = gα θ ,

iku1 + u′2 = 0 ,
θt + βu2 − κθ′′ + κk2θ = 0 ,

(47.11)

where we denote by f ′ the derivative ∂x2f . The reader can check that for k = 0
all solutions of this system satisfying our boundary conditions approach 0 for
t → ∞, (when κ > 0 and ν > 0) or stay bounded (when ν = 0 or κ = 0) and
hence the mode k = 0 is stable. (Note that in the case κ = 0 and ν = 0 there
is no energy dissipation in the system, and therefore the solutions of (48.9)
cannot approach 0 when the initial condition does not vanish.) Therefore in
what follows we will assume k ̸= 0 without loss of generality.

One way of approaching the stability problem is to view system (48.11) as a
linear system zt = Lz for an unknown (vector-valued) function z and to calculate
the eigenvalues of the operator L. This amounts to searching the solutions in
the form z(x2)e

λt. In general, this is a sound procedure for finite-dimensional
systems or for parabolic systems (corresponding to the case ν > 0, κ > 0 in
the example above). For linearized problems coming from the theory of Euler’s
equation this method has to be considered with some care, as it may miss
effects associated with the possible continuous spectrum of L, if the continuous
spectrum is present. In the case at hand this does not happen, but we will still
try avoid making the Ansatz z(x2)e

λt and see how far we can get without it.

Our boundary conditions still are (47.7) or (48.8) above, depending on whether
ν vanishes. Note that the 4th equation of (48.11) enforces the condition θ′′ = 0
for x2 = 0 and x2 = H. This is the usual compatibility issue arising in the
context of the heat equation. If the condition is not satisfied for the initial
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condition θ(x, 0) at time t = 0, the equation will still enforce it for t > 0, at the
cost of discontinuity of the derivatives θt, θx2x2 at time t = 0.

We can proceed with the calculation of the solutions of (48.11) as follows

Step 1. Eliminate u2 by using the 4th equation:

u2 =
1

β
(−θt + κθ′′ − κk2θ) . (47.12)

Step 2. Eliminate q using the first equation:

q =
iρ

k
(u1t − νu′′1 + νk2u1) . (47.13)

Step 3. Eliminate u1 using the third equation:

u1 =
i

k
u′2 . (47.14)

This leaves us with a single equation for the function θ:

θtt −
1

k2
θ′′tt + 2νk2θt − (κ+ 3ν)θ′′t +

κ+ ν

k2
θ′′′′t +

+ (βgα+ νκk4)θ − 3νκk2θ′′ + 3νκθ′′′′ − νκ

k2
θ(6) = 0 . (47.15)

This equation can luckily be again solved by writing θ as a Fourier series. When

θ(x2, t) =
∑
l∈πN

H

θl(t) sin lx2 , (47.16)

each summand has to satisfy the equation. A key point is that the representa-
tion (47.16) (together with (47.14) and (48.12)) is consistent with the boundary
conditions (48.8), as the reader can easily check. (This would not be so if we
imposed the Dirichlet boundary conditions u = 0 on ∂Ω.) Fixing l, dropping
the index l in θl(t), we get an ODE of the form

Aθ̈ +Bθ̇ + Cθ = 0 , (47.17)

where
A = 1 + l2

k2 ,

B = (κ+ 3ν)l2 + (κ+ ν) l
4

k2 ,

C = βgα+ νκk4(1 + l2

k2 )
3 .

(47.18)

Clearly A > 0. The coefficient B always satisfies B ≥ 0, with B > 0 when ν > 0
or κ > 0. We see that the stability of the solutions is decided by the coefficient
C. If C < 0 then the trivial solution θ = 0 is unstable, if C > 0 the trivial
solution is stable. When C = 0 and B > 0 the solution may not approach 0,
but it stays bounded. For C = B = 0 the trivial solution is unstable.
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A classical example of a stability calculation (continued)

Let us first return to equation (47.17), and consider the special case ν = 0, κ = 0.
The equation then simplifies to

θtt −
1

k2
θ′′tt + βgα θ = 0 . (48.1)

Let us denote by Gkf the solution of the problem

Lkv = v − 1

k2
v′′ = f, v(0) = v(H) = 0 . (48.2)

In other words, Gk is the Green’s function of the operator Lk with the (homo-
geneous) Dirichlet boundary conditions. We can write (48.1) as

θtt + βgαGkθ = 0. (48.3)

This should be compared with the classical wave equation

ϑtt + κ(−ϑ′′) = 0 ϑ(0) = ϑ(H) = 0. (48.4)

Both Gk and ϑ → −ϑ′′ (with the Dirichlet boundary conditions) are positive
definite operators. We see that for β > 0 we can think of (48.3) as an equation
for waves with unusual dispersion. For β < 0 the typical solutions of (48.1)
exhibit exponential growth in t, but the usual initial-value-problem is still well-
posed. (By contrast, for κ < 0 the initial-value problem for (48.4) is ill-posed.)

Let us now consider the stability condition C > 0 for (47.17) in more detail.
The trivial solution (u, θ) = (0, 0) of (48.9) will be stable if C = C(k, l) > 0 for
all k ∈ 2πZ

L , l ∈ πN
H . Let us determine when this is the case.

Since C = C(k, l) is increasing in l, it is enough to consider the case l = l = π
H .

For a given k this is clearly the most unstable mode. Let us set

a =
l

k
=

L

2H

1

m
, (48.5)

where m ∈ Z. Since C depends only on k2, we can consider m ∈ N without
loss of generality. The condition C(k, l) > 0 can be written as

−βgαH
4

νκ
< π4a−4(1 + a2)3 . (48.6)

The expression on the left is called the Rayleigh number, and denoted by R,

R = −βgαH
4

νκ
=

(Θ0 −Θ1)gαH
3

νκ
, (48.7)
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where Θ0 is the temperature at x2 = 0 and Θ1 is the temperature at x2 = H.
The reader can check that R is dimensionless, independent of the choice of units
of length, time, and temperature. The stability condition C(k, l) > 0 for each
k, l can now be written as

R < π4 min
a∈{ L

2Hm , m∈N}
a−4(1 + a2)3 . (48.8)

Clearly a sufficient condition for stability will be

R < π4 min
a>0

a−4(1 + a2)3 . (48.9)

The reader can check that

min
a>0

a−4(1 + a2)3 = a−4(1 + a2)3|a2=2 =
27

4
. (48.10)

Hence we arrive at the Rayleigh stability criterion

R <
27π4

4
. (48.11)

We note that the minimum in (48.8) is well-approximated by the minimum
in (48.9) when the length of the fluid layer L is large in comparison with its
height H. From this we can see that the criterion is sharp in the limit L→∞,
and still quite close to optimal for when L is large in comparison with H.

From the above calculations we also see that the most unstable modes will be
of the form

cos

(
π(x1 − x1)

aH

)
sin
(πx2
H

)
, (48.12)

where a is the minimizer in (48.9) (well-approximated by
√
2 for L/H large)

and x1 is arbitrary. The corresponding flow pattern can be seen from (48.12)
and (47.14) and can be easily visualized by calculating the stream function of
the flow. The flow pattern will show characteristic “convective cells”, quite
similar to the Taylor vortices (also called Taylor cells) observed in the Taylor-
Couette experiment. When the geometry is not really periodic in x1 but the
width of the layer is large in comparison with H, we will still see convective cells
similar to (47.13) away from the vertical boundaries, and x1 will be fixed by the
position of the vertical boundaries. A precise investigation of the influence of
the boundaries and the type of boundary conditions which are chosen would be
non-trivial.
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49.1 Galerkin approximation and the Lorenz system

Computer simulations aiming to investigate what happens with the solutions of
the non-linear Boussinesq system (47.6) after the trivial solution u = 0, θ = 0
loses stability lead in the early 1960s to the discovery of the Lorenz attractor,
one of the canonical examples of the surprising chaotic behavior of solutions of
quite simple dynamical systems.246

Before explaining the connection, we first discuss the Galerkin approximation
of evolution PDEs. We have already used this type of approximation in the
context of steady solutions of the Navier-Stokes equation in lecture 44. Let now
discuss the approximation in the context of the time-dependent Navier-Stokes

equations (in a smooth domain Ω ⊂ R3, or a torus Ω = R3/2πZ3

L for some
L > 0.)

We wish to find a finite-dimensional approximation of the time-dependent Navier-
Stokes in Ω

ut + u∇u+ ∇p
ρ − ν∆u = f(x, t) ,

div u = 0 ,
u|∂Ω = 0 , (if ∂Ω ̸= ∅) .

(49.1)

Let us chose a finite-dimensional space V ⊂ H, where H is again the set of all
div-free vector fields with u|∂Ω = 0 and finite

∫
Ω
|∇u|2. The procedure is similar

to (44.4): we simply consider the term ut + u∇u as a part of f in the linear
problem (44.1), with the understanding that we solve the problem for each time.
In other words, we are seeking a function u : [0, T )→ V such that∫

Ω

(utv + ν∇u∇v + u∇u v − fv) dx = 0, v ∈ V, t ∈ [0, T ). (49.2)

If v(1), . . . , v(m) is a basis of V , we can write

u(x, t) = ξ1(t)v
(1)(x) + · · ·+ ξm(t)v(m)(x) (49.3)

and (49.2) can then be expressed in the form

ξ̇i = −νaijξj + bijkξjξk + ci , (49.4)

where the summation convention is understood, the matrix aij is positive defi-
nite247 and bijkξiξjξk = 0 for any ξ ∈ Rm. Multiplying (49.4) by ξi, we obtain

246Edward N. Lorenz, “Deterministic Non-periodic Flow”, Journal of the Atmospheric Sci-
ences 20 (2): 130141, (1963).
Barry Saltzman, “Finite amplitude free convection as an initial value problem - I”, Journal of
the Atmospheric Sciences 19: 329–341, (1962).
247When Ω is a torus the matrix can have a non-trivial one-dimensional kernel, but this does
not cause problems and for the moment we ignore it.
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(at least in the case when Ω is a bounded domain with boundary)

d

dt
|ξ|2 ≤ −2γ|ξ|2 + |c||ξ| ≤ −γ|ξ|2 + 1

4γ
|c|2 (49.5)

for some γ > 0, which shows that when the function t → |c(t)|2 is integrable
on [0, T ), the solution of (49.4) is well-defined on [0, T ) for any initial condition
ξ ∈ Rm. The same calculation can be made at the level of (49.2). Since (49.2)
is satisfied for each t for each v ∈ V , we can replace v with u(x, t). Assuming
we can use (42.7), we obtain

d

dt

∫
Ω

|u(x, t)|2 dx+ ν

∫
Ω

|∇u(x, t)|2 dx =

∫
Ω

f(x, t)u(x, t) dx

≤
(∫

Ω

|f(x, t)|2 dx)
) 1

2
(
C

∫
Ω

|∇u(x, t)|2 dx
) 1

2

≤ ν

2

∫
Ω

|∇u(x, t)|2 dx+
C

2ν

∫
Ω

|f(x, t)|2 dx . (49.6)

(This calculation has to be adjusted when Ω is a torus
∫
f(x, t) dx ̸= 0, but we

will ignore this detail at this point.)

If the initial condition for (49.1) is u0(x), the natural condition for (49.2)
or (49.4) is given by ∫

Ω

u(x, 0)v(x) dx =

∫
Ω

u0(x)v(x) dx . (49.7)

In other words, u(x, 0) = uV (x, 0) is the L
2 projection of u0 in V .

What happens if, for a given u0 and f we take a sequence of subspaces V1 ⊂ V2 ⊂
· · · ⊂ H with the property (44.15), and consider the sequence of the solution
uj = uVj? Do the Galerkin solutions uj converge? This is an important and
difficult open problem closely related to the regularity problem. Partial answers
are provided by the theory of weak solutions, due to Leray and Hopf, which we
will discuss at some point. For our purposes at the moment the information we
have obtained above about the Galerkin approximations is enough.

We now turn our attention to the Boussinesq system (47.6). We can choose
a suitable finite-dimensional space V of div-free fields for the velocity field u
and a suitable space W for the temperature, and the definition of the Galerkin
approximation is similar to (49.2). However, if we wish to impose the Navier
boundary condition u2 = 0, curlu = 0 at ∂Ω we have to make some adjust-
ments. Let us first consider the linear problem (44.1) with the Navier boundary
condition. The variational formulation is: minimize

J̃(u) =

∫
Ω

(νeij(u)eij(u)− fu) dx (49.8)
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over the space H̃ of div-free vector fields u in Ω with u2|∂Ω = 0 finite
∫
Ω
|∇u|2 dx,

where eij is the deformation tensor defined in lecture 21

eij(u) =
1

2
(ui,j + uj,i) . (49.9)

This leads to the weak formulation: find u ∈ H̃ such that∫
Ω

(2νeij(u)eij(v)− fv) dx = 0, v ∈ H̃ . (49.10)

Let H0 be the space of all functions θ with
∫
Ω
|∇θ|2 dx finite and θ|∂Ω = 0.

The variational formulation of the Boussinesq system (47.6) then is∫
Ω
(utv + u∇uv + 2νe(u)ije(v)ij − gαθv2 dx = 0 , v ∈ H̃ ,∫

Ω
(θtϑ+ u∇θϑ+ κ∇θ∇ϑ+ βu2ϑ = 0 , ϑ ∈ H0.

(49.11)

For a Galerkin approximation we choose a finite-dimensional subspaces V ⊂ H̃
and W ⊂ H0, and seek

u : [0, T )→ V, θ : [0, T )→W (49.12)

such that∫
Ω
(utv + u∇uv + 2νe(u)ije(v)ij − gαθv2 dx = 0 , v ∈ V ,∫

Ω
(θtϑ+ u∇θϑ+ κ∇θ∇ϑ+ βu2ϑ = 0 , ϑ ∈W. (49.13)

For finite-dimensional V,W this will be a system of ODEs. The initial condition
for the ODE can be given by prescribing u(x, 0) and θ(x, 0).

The system (47.2) has some natural estimates: for example, by the maximum
principle for the heat equation (with drift), the solution θ will be bounded (if it
is bounded initially) and from this we can get a bout for u, similarly as in (49.6).
We will not discuss this in detail for now, but instead we focus our attention on
a particular finite-dimensional approximation, following E. Lorenz.

Let us now consider wave numbers k ∈ 2πZ
L and l∈πN

H . We take the space
V to be one-dimensional, generated by most unstable mode of the linearized
system (48.9):

V = R(
l

k
cos kx1 cos lx2, sin kx1 sin lx2) = Ru . (49.14)

The space W will be chosen two-dimensional. First, we include in it the tem-
perature field θ associated (up to a multiplicative factor) with the mode u above
in the context of the linearized analysis:

θ1 = sin kx1 sin lx2 . (49.15)

Second, we add the field
θ2 = sin 2lx2 . (49.16)
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The space W will be given as

W = Rθ1 +Rθ2 . (49.17)

We search the solution (u, θ) as

u = A(t)u(x), θ = B(t)θ1(x) + C(t)θ2(x) . (49.18)

The Galerkin approximation will now be an ODE for the functionsA(t), B(t), C(t).
After some calculation, we get

Ȧ = −ν(k2 + l2)A+ gα k2

k2+l2B ,

Ḃ = −βA− κ(k2 + l2)B + lAC ,

Ċ = −4κl2C − l
2AB .

(49.19)

Note that the linear part of the system splits into a 2× 2 system for A,B and a
separate equation for C, reflecting the fact that at the linear level the different
Fourier modes do not interact. The stability condition for the trivial solution
of the linearized system for (A,B) is exactly Rayleigh condition

νκk4(1 +
l2

k2
)3 + βgα > 0 , (49.20)

as it should be.

By a change of variables of the form

A(t) = ax(γt), B(t) = by(γt), C(t) = cz(γt) , (49.21)

where a, b, c, γ are suitable parameters, we can transform system (49.19) into a
“canonical form”. We use the traditional notation (σ, ρ, β) for the parameters in
the canonical form, with the understanding that the β does not have the same
meaning as in (49.19) or (47.6). The canonical form is248

ẋ = −σx+ σy ,
ẏ = ρx− y − xz ,
ż = −βz + xy .

(49.22)

In this system some of the features of the original Boussinesq system (47.6) are
still visible:

• the terms −σx,−y and −βz play the role of −ν∆u and −κ∆θ.

• the term σy plays the role of the buoyancy gαθe2

• the term ρx plays the role of the “background convective term” −βu2.
(Recall that the β in (47.6) has a different meaning β in (49.22).) In par-
ticular a situation when the fluid layer is heated from below corresponds to
ρ > 0, with larger ρ corresponding to higher temperature at the bottom.

• the nonlinear terms −xz and zy represent the convective term u∇θ. The
convective term u∇u does not appear in the Galerkin truncation we use
here. It produces terms which are orthogonal to the 1d space of velocities
we are using.

248See the original paper of E. Lorenz quoted above.
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50.1 The Lorenz system

We will have a closer look at the Lorenz system

ẋ = −σx+ σy ,
ẏ = ρx− y − xz ,
ż = −βz + xy .

(50.1)

The role of the various terms was explained last time. We assume that the
parameters σ, ρ, β are all positive and satisfy some further constraints which will
be specified during our calculations. The “classical values” of the parameters
for which Lorenz observed to now well-known chaotic behavior of the solutions
are

σ = 10, β =
8

3
, ρ = 28 . (50.2)

All trajectories are attracted to some bounded region

We note that the change of variables

(x, y, z)→ (x, y, z + z0) (50.3)

changes the system to

ẋ = −σx+ σy ,
ẏ = (ρ+ z0)x− y − xz ,
ż = −βz + xy .

(50.4)

Taking z0 = −ρ− σ, the system will be of the form

ξ̇i = −aijξj + a′ijξj + bijkξjξk + ci (50.5)

with aij positive definite, a′ij anti-symmetric, and bijkξiξjξk = 0. One can now
use (49.5) to see that all trajectories of (50.5) are attracted to some fixed ball.
Going back to the original variables (x, y, z) we see that all trajectories are
attracted to a ball centered at (0, 0, z0). (Note that this change of variables is
somwhat similar to the change of variables θ → Θ for the original Boussinesq
system. It is easier to see the energy estimate for (47.2) than for (47.6).)

The trivial equilibrium and its stability

The point 0 = (0, 0, 0) is trivially an equilibrium. The linearization at this
equilibrium is given by the matrix

−σ σ 0
ρ −1 0
0 0 −β

(50.6)
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Under our assumption σ, β, ρ > 0, the eigenvalues of this matrix are in the
half-plane Re z < 0 if and only if

ρ < 1 . (50.7)

This corresponds to the Rayleigh stability criterion (48.6). It is easy to see that
for ρ ≤ 1 the trivial equilibrium is the only equilibrium of the system. One
can also show that in this case the dynamics is very simple: all trajectories are
attracted to the trivial equilibrium.

Non-trivial equilibria and their stability
For ρ > 1 the system has (under our assumptions) exactly three equilibria. The
trivial one, and

q = (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1), q′ = (−

√
β(ρ− 1),−

√
β(ρ− 1), ρ− 1) .

(50.8)
The linearization of the system at q, q′ is given respectively by the matrices

L =

 −σ σ 0
1 −1 −a
a a −β

 , L′ =

 −σ σ 0
1 −1 a
−a −a −β

 , a =
√
β(ρ− 1) .

(50.9)
We have

det(λI − L) = det(λ− L′) = λ3 + a1λ
2 + a2λ+ a3 , (50.10)

with

a1 = (σ+β+1) > 0 , a2 = (ρ+σ)β > 0 , a3 = 2σβ(ρ−1) > 0 . (50.11)

It is easy to check that for ρ just above 1, the polynomial (50.10) has three
strictly negative roots. This means that for ρ just above 1, the equilibria q, q′

are linearly stable.

The equilibria q, q′ correspond to the classical picture of “convective cells” in
the fluid (similar to Taylor cells in the Taylor-Couette flow) , with the velocity
field given respectively by εu or −εu for ε ∼

√
ρ− 1.

What happens to the roots of (50.10) as we increase ρ? Can they cross from
Re z < 0 into Re z > 0? Clearly the polynomial (50.10) always has at least one
strictly negative root, and λ = 0 is not a root for ρ > 1. Therefore the only way
the roots can cross the imaginary axis when ρ > 1 is that a pair of two distinct
complex conjugate roots λ, λ crosses the imaginary axis away from zero. If this
happens, we have λ = iτ, λ = −iτ for some τ > 0 and

τ2 = a2, τ2 =
a3
a1
, (50.12)

and hence a3 = a1a2. When σ− β − 1 > 0, which we will assume, this amounts
to

ρ = ρcrit =
σ(σ + β + 3)

(σ − β − 1)
. (50.13)
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For this value of ρ we will have pair of complex conjugate roots λ, λ on the
imaginary axis. To calculate what happens with them as we change ρ, we can
calculate

λ̇ =
dλ

dρ
(50.14)

by taking a derivative of

λ3 + a1λ
2 + a2λ+ a3 = 0 . (50.15)

For the range of parameters we will be interested in we obtain

Re λ̇ > 0 , (50.16)

and we see that at ρ given by (50.13) the root cross from Re z < 0 into Re z > 0
with Re λ̇ > 0 (for the range of parameters we are investigating).

Hence at ρcrit given by (50.13) we expect a Hopf bifurcation.

One can also calculate the value ρr ∈ (1, ρcrit) of ρ for which the roots of (50.10)
cease to be real. With complex eigenvalues the equilibria q, q′ will be approached
via damped oscillations around them. To calculate ρr, one can use the condition
that the cubic discriminant

a21 − 4a22 − 4a31a3 − 27a23 + 18a1a2a3 (50.17)

vanishes, which gives a quadratic equation for ρ.

In the regime ρ ∈ (1, ρcrit) the global dynamics is still relatively simple. “Most
trajectories” approach either q or q′. There is a 2d stable manifold of the trivial
equilibrium, which separates the two basins of attraction. However, we may also
have unstable periodic orbits, which of course would not be attracted to any
of the equilibria. Hence the statement that the three equilibria attract all the
trajectories, which can be found in some texts, may be inaccurate. (A standard
numerical simulation would typically not detect unstable periodic orbits, at least
when we do not expect them.)

The Hopf bifurcation at ρ = ρcrit

From the examples of fluid flows we have discussed previously, it would not be
unreasonable to expect a loss of stability of q, q′ to a periodic orbit close to them,
similarly to what happens in Hopf’s model discussed in lectures 41, 42. This
may be the case for some values of σ and β, but it does not happen for many
other values of those parameters, including the classical values σ = 10, β = 8

3 .
For those values the Hopf bifurcation at ρcrit is subcritical: an unstable periodic
orbit exists for ρ just below ρc, and as ρ approaches ρcrit, the orbit shrinks
to 0 (at the rate ∼

√
ρcrit − ρ). We will discuss this type of Hopf bifurcation

somewhat more in the next lecture. For now we just accept the conclusion that
there is no stable periodic orbits near q, q′ for ρ just above ρcrit.

The behavior of solutions for ρ just above ρcrit, first observed by E. Lorenz in
early 1960s, is now one of the classical classical examples of “Chaos”. Typical
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solutions may first be somewhat attracted to q or q′ along their stable mani-
folds, but eventually they are repelled along the unstable manifolds, gradually
swirling away from the corresponding equilibrium (due to the complex eigenval-
ues). Typical trajectories visit neighborhoods of both q and q′ in a seemingly
random fashion. If you type “Lorenz attractor” into an image search engine,
you will get many pictures of the trajectories.
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51.1 Hopf bifurcations

In general, the theory of the Hopf bifurcation is concerned with the following
situation: we have a system

ẋ = f(x, ε) (51.1)

where x ∈ Rn and f is a (sufficiently regular) vector field depending (sufficiently
smoothly) on a parameter ε ∈ (−ε0, ε0), with

f(0, ε) = 0. (51.2)

For simplicity we will not discuss the exact regularity requirements, we can
simply assume that f is smooth in (x, ε). One can also consider the situation
when Rn is replaced by an infinite-dimensional space, but we will not consider
this generalization here. The linearization of the system (51.1) at the trivial
equilibrium x = 0 is

ẋ = L(ε)x , (51.3)

where L(ε) is the matrix Dxf(x, ε)|x=0. The matrix L(ε) is obviously real,
and hence its non-real eigenvalues come in pairs λ, λ. We will assume that the
spectrum of L(0) contains exactly one such pair λ0, λ0 on the imaginary axis,
and that for ε ∈ (−ε0, ε0) these eigenvalues can be “continued in ε”, so that the
matrix L(ε) has a pair of eigenvalues λ(ε), λ(ε) depending smoothly on ε, which
coincide with λ0, λ0 at ε = 0. The other eigenvalues of L(ε) are assumed to stay
away from the imaginary axis R

√
−1 for ε ∈ (ε0, ε0). Moreover, we assume that

d

dε
|ε=0 Reλ(ε) > 0 , (51.4)

so that the curve (ε, λ(ε)) in (−ε0, ε0)×C is smooth near λ(0) and crosses the
imaginary axis transversally. Since our statements will be local, we can in fact
assume that

d

dε
Reλ(ε) ≥ δ > 0 , ε ∈ (−ε0, ε0) . (51.5)

Example 1

Let λ = λ(ε) be as above and consider the dynamical system in R2 ∼ C given
by

ż = (λ+ c|z|2)z , (51.6)

with
c = a+ bi, a, b ∈ R, λ(0) = iω, ω > 0 . (51.7)

237



This is a special case of the situation considered above, with n = 2. Writing
z = reiθ, we obtain from (51.6)

ṙ = (Reλ+ ar2)r ,

θ̇ = Imλ+ br2 .
(51.8)

The second equation describes the rate of rotation of the trajectory about the
origin and is easy to understand. The first equation, which is independent of
θ, is crucial. By re-parametrizing ε if necessary, we can write without loss of
generality

Reλ = ε, ε ∈ (−ε0, ε0) (51.9)

and hence
ṙ = (ε+ ar2)r . (51.10)

This equation has to be considered in the region r ≥ 0. It is natural to distin-
guish three cases

Case 1: a < 0 super-critical Hopf bifurcation

In this case the equation (51.10) has a unique equilibrium r = 0 for ε < 0, and
(still for ε < 0), the equilibrium is stable. For ε > 0 we have two equilibria:
r = 0, which is unstable, and r =

√
− ε
a , which is stable. In terms of the original

system (51.6): for ε < 0 all trajectories spiral towards the origin. For ε > 0
the origin becomes unstable and the trajectories starting close to it will spiral
away from and will approach the stable periodic orbit circling along the circle
r =

√
− ε
a . The trajectories starting with large r will also approach this orbit.

In this scenario we say that the trivial equilibrium z = 0, which is stable for
ε < 0, loses its stability to a periodic orbit for ε > 0, with the amplitude of the
oscillations of order

√
ε.

Case 2: a > 0 sub-critical Hopf bifurcation

In this case the trivial equilibrium z = 0 is again stable for ε < 0 and unstable
for ε > 0. However, for ε > 0 we have no other equilibrium and all trajectories
starting away from the unstable equilibrium will spiral away to ∞. For ε < 0
the equation (51.10) has an unstable equilibrium at r = r1 =

√
− ε
a , which rep-

resents an unstable periodic orbit. Trajectories starting at r < r1 are attracted
by the trivial equilibrium, while the trajectories starting at r > r1 spiral away
to ∞.

Case 3: a = 0

This is a degenerate case when ṙ = εr. It is not really representative of general
systems (51.1). A more interesting equation would be

ż = (λ+ c1|z|2 + c2|z|4)z, cj = aj + bji . (51.11)

with a1 = 0, a2 ̸= 0, which the reader can analyze as an exercise.
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It can be shown that Example 1 is in some sense representative of the general
situation concerning (51.1) described above, with the understanding that the
degenerate case corresponding to a = 0 can be more complicated.

More precisely, one can show the following:249

For (51.1), in the situation described above, one can find in the space (x, ε) a
smooth three dimensional submanifold which is invariant under the flow250 and
system of coordinates (locally, near (0,0)) preserving the planes ε = const. such
that the flow on the submanifold is given by (51.6) up to the terms of order 4.

In the non-degenerate cases a > 0 or a < 0 this information is sufficient to de-
termine the flow: up to small deformations, it will be the same as in Example 1.
When a = 1 one needs to consider higher-order terms, such as in (51.11) (and
there are many more possibilities).

The proof of theorem is based on two steps: 1. construction of the invariant
manifold and 2. reduction of the resulting 2d equation to the normal form.251

For the Lorenz system (50.1) with the classical values of the parameters σ =
10, β = 8

3 , it turns out that the Hopf bifurcation at ρ = ρcrit discussed in the last
lecture is sub-critical. This is not an easy calculation, see the book of Marsden
and McCracken quoted above. (For some values of σ, β to bifurcation can be
super-critical, see also the book of Marsden and McCracken.) This leads us to
two non-trivial conclusions: 1. For ρ close to ρcrit and ρ < ρcrit the system has
non-trivial periodic solutions, and hence not all solutions are attracted to one
of the three equilibria (even though two of them are stable).
2. When ρ crosses ρcrit, the solutions may have no stable periodic orbit to
bifurcate to (and we already know that there is no stable equilibrium in this
regime). This opens a possibility of some interesting behavior of solutions.252

249See, for example, Marsden, J. E., McCracken, M., The Hopf Bifurcation and Its Applica-
tions, Springer, 1976. This book also contains a translation of Hopf’s original 1942 paper.
250ẋ = f(x, ε), ε̇ = 0
251We recommend the book “Nonlinear Oscillations, Dynamical Systems, and Bifurcations
of Vector Fields” by J. Guckenheimer and P. Holmes, Springer 1983 (second printing).
The idea of a normal form of an equation ẋ = Lx + g(x) where L is a matrix and g(x) is of
order at least 2 goes back to Poicaré. One can ask if the equation can be reduced to y = Ly
(up to terms of a given order) and try to achieve the reduction by a change of variables
x = h(y). In the y variable the equation is ẏ = [Dh(y)]−1(Lh(y) + g(h(y)) and one can try
to get the right-hand side as close as possible to the form Ly by a suitable choice of h. We
can try hi(y) = yi + aijyj + bijkyjyk + . . . and calculate ai, bij , etc. Whether or not this is
possible depends on the spectral properties of L. If, at a given order, a complete reduction is
not possible, one can still try to eliminate as many terms as possible. See the above book for
more details.
252We should mention that the nature of the Hopf bifurcation at ρ = ρcrit was probably
first calculated analytically only in the book of Marsden and McCracken quoted above, while
the interesting behavior for ρ > ρcrit was discovered numerically by E. Lorenz in 1963. Since
then a number of possible types bifurcations and routes to chaos have been investigated. The
reader can for consult the paper by Ruelle and Takens quoted in lecture 40, for example.
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52.1 Simple models of “Chaos”

The chaotic behavior of the solutions of the Lorenz system mentioned briefly at
the end of lecture 50 can be somewhat understood in terms of relatively simple
1d models which we will now discuss.253 In what follows we have in mind the
Lorenz system with the classical values of the parameters σ = 10, β = 8

3 , ρ = 28.
In numerical simulation it is observed that most trajectories approach an object
Σ reminiscent of a branched surface. (It is not really a branched surface in the
usual sense, though. The object is more complicated and has fractal dimension
just above 2. Nevertheless, we will use the term “surface” in what follows.)
We can imagine that the action of the flow near that surface typically is as
follows:254

1. The flow pushes trajectories towards to surface.

2. Once close to the surface, the trajectories are repelled from one another
in the direction tangential to the surface.

Let us cut the “surface” Σ by a plane Π transversal to it, and let us consider a
“return map” associated with our plane: we take a point x ∈ Π which is close
to Π ∩ Σ and move along a trajectory starting at x until we return to Π. The
return point is denoted by f(x). We emphasize that we do not intend to define
these objects rigorously, there are quite a few “loose ends” in our description
at this point.255 Our intention is only to give a relatively rough idea where the
“chaos” is coming from.

Let us now take in Π a very thin strip S containing Σ ∩ Π. (We can think
of it as a quite thin rectangle of length of order 1, perhaps deformed.) The
position of a point in this strip can be quite precisely (although not completely
precisely) described by one coordinate (along the length of the strip), let us
call it ξ. Assume ξ ∈ [a, b] ⊂ R. Let us take a point x with coordinate ξ and
consider f(x). Assume that f(x) is again in our strip S and its (approximate)
1d coordinate is η. We will write η = φ(ξ). (The map φ is only defined up to a
small error, but this is sufficient for our purposes.)

253There are much more sophisticated and precise models, which we will not discuss, but
we can refer the reader to the book of J. Guckenheimer and P. Holmes mentioned in the last
lecture and to the work of W. Tucker in which it was proved (by a computer-assisted proof)
that the geometric model proposed by J. Guckenheimer does capture the dynamics. See for
example http://www2.math.uu.se/~warwick/main/papers/comptes.pdf
254Here we do not define the notion of “typically” precisely. What we have in mind is that
the net result of the flow, when followed along a trajectory over a certain part of its journey,
can be modeled by these effects. To make these notions more precise, one should calculate
the eigenvalues and eigenvectors of the linearization of the system along typical trajectories.
255For example: what exactly is Σ, how do we choose Π, how do we know that a trajectory
starting at x will return to Π, ect?
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The main point is that the function ξ → φ(ξ) may not be monotone. This can
be explained as follows: the trajectories starting in S are pushed away from
each other in the direction tangential to S, and hence the original strip can
stretch under the evolution. In addition to being stretched, the strip can also
be deformed by the flow in other ways, and when the trajectories come back
to Π, it will not only have stretched, but it may also have “folded”256 so that
f(S) can be thought of as the original S first stretched and then folded inside
(or close to) the original S. We can think of a one dimensional version of the
dough preparation for a croissant: we roll the dough flat, then we fold it, roll it
out flat again , fold again, and keep repeating the process. The dough has some
thickness and is three dimensional, but we can introduce an approximate 2d
coordinate ξ̃ and a 2d “fold and roll map” ξ̃ → φ̃(ξ̃), which will not be injective,
although, strictly speaking, the real 3d map which describes the process precisely
is injective. However, to be able to invert the precise map, we would have to
know a position of a particle in the thin direction very precisely.

To get an idea about the long-time dynamics of the trajectories, it is therefore
sufficient to investigate the map ξ → φ(ξ). It may be hard to calculate φ from
the ODE with some precision without numerical simulation (and, in fact, at
this point φ is not even precisely defined), but one can get a reasonably good
qualitative idea about what is going on by looking at some specific models.

We see that one can hope for the following picture:

• The original system is a flow in R3. The “flow map” x → ϕt(x) is of
course invertible (although not necessarily volume preserving).

• The “return map” f which maps some domain S ⊂ Π ∼ R2 into itself is
still injective, but it now represents a discrete dynamical system. While
flows defined by ẋ = g(x) cannot exhibit chaotic behavior in dimension 2,
discrete dynamics defined by (injective) maps R2 → R2 can.

• The “approximate map” φ : [a, b] → [a, b] is 1d, but not injective. While
(smooth) injective maps [a, b]→ [a, b] cannot exhibit chaotic behavior,257

smooth non-injective maps can.

We can summarize this with the following table:

lowest dimension allowing “chaos”
smooth ODE n = 3
smooth discrete injective dynamics n = 2
smooth discrete non-injective dynamics n = 1

Let us look at the dynamics of 1d mappings. We will change our notation and
set I = [0, 1], write x for a typical point of I, and consider continuous functions
f : I → I. We start with the following simple example

256because the stretched object is assumed to be pushed to Σ ∩Π as is approaches Π
257The reader can check this as an exercise.
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Example 1

f(x) =

{
2x , 0 ≤ x ≤ 1

2 ,

2(1− x) , 1
2 ≤ x ≤ 1 .

(52.1)

This is perhaps the simplest possible example of “stretching and folding” by a
continuous map. Let us denote by f̃ the 1-periodic extension of f to R. It is
not hard to see that

fk(x) =

k times︷ ︸︸ ︷
f(f...(f(x))) = f̃(2k−1x) . (52.2)

We see that the position of x after k iteration of f (given by fk(x)) is indepen-
dent of the first k − 1 terms of the dyadic expansion ε1ε2ε3 . . . of x. Therefore
to predict fk(x), we have to know x roughly to k − 1 dyadic places. If we can
know x only up to some error δ, we can only predict fk(x) when

2k−1δ << 1 . (52.3)

This is where the “chaos” and “unpredictability” of fk(x) for large k comes
from.

Example 2 (Logistic map)

f(x) = f(x, a) = ax(1− x) , (52.4)

where a ∈ [0, 4] is a given parameter. The map was introduced in 1845 by
Verhulst to model the population of some biological species. Its dynamics was
studied in depth in well-known papers by M. Feigenbaum in the 1970s,258 in
which some unexpected and deep universal features of the dynamics of 1d maps
were discovered. Here we will only sketch some of the main properties of the map
depending on the parameter a. The example is more subtle than Example 1, as
the map does not always stretch. (Note that a smooth non-monotone cannot
always stretch.)

For a ≤ 1 the sequence fk(x) approaches 0 for any x ∈ I. For a > 0 the map f
has a non-trivial fixed point at

x =
a− 1

a
. (52.5)

The fixed point will be (locally) stable (for the iteration f(x), f2(x), . . . ) if

|f ′(x)| < 1 , (52.6)

which amounts to
a < 3 . (52.7)

258Journal of Statistical Physics, Vol. 19, No. 1 (1978) and Vol 21, No. 6, 1979
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It can be shown that for a < 3 the iterations fk(x) will converge to x for any
x ∈ (0, 1). Let us set a1 = 3.

For a just above 3 we will observe that fk(x) typically converges to an orbit of
period 2. Such orbits correspond to stable fixed points of the map f2. These
can be calculated, and one can also calculate the condition for their stability.
One finds that the 2-periodic orbit is stable up to a = a2 = 1 +

√
6. At

this value of a it loses stability and a stable 4−periodic orbit appears. The
stability of the 4−periodic orbit persists up to a3, when it loses stability to a
8−periodic orbit etc. The effect when the stability of an orbit is lost to an
orbit with twice the period is usually called period doubling (both for discrete
and continuous dynamical systems). The sequence a1 < a2 < a3, . . . can be
continued indefinitely, and for a ∈ (an, an+1) the map has a stable 2n-periodic
orbit, which attracts typical iteration sequence fk(x). There are the unstable
fixed point and the unstable 2k-periodic orbit for k = 1, . . . , n− 1.

It turns out that
ak → a ∼ 3.5700 . (52.8)

The situation for a > a is complicated: one can see “chaos” for most (but not
all) values of a. If the reader types “logistic map” into an image search engine,
she will get many nice pictures of the famous bifurcation diagram capturing the
period doubling process and the chaos setting in for most a > a.

In summary, the logistic map exhibits a surprising level of complexity when
viewed from the point of view of dynamical systems.

We should mention the special case a = 4. In this case the dynamics x, f(x), f2(x), . . .
is essentially the same as in Example 1, as observed by von Neumann. Let us
write F for the map (52.1). We introduce a change of variables

x = sin2
π

2
θ, θ ∈ [0, 1] . (52.9)

Then

4x(1− x) = 4 sin2
π

2
θ cos2

π

2
θ = sin2

π

2
2θ = sin2

π

2
F (θ) . (52.10)

This shows that for a = 4 the logistic map is, modulo a change of variables, the
same as Example 1.
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53.1 Bifurcations and their classification

So far our approach to the loss of stability of the steady solutions of the Navier-
Stokes equation, and other systems (including the finite-dimensional ODE sys-
tems) was the study of specific examples. One can adapt a more general ap-
proach, and try to find in a systematic way various scenarios in which stability
can be lost. For concreteness, let us consider a finite-dimensional ODE system

ẋ = f(x, ε) , x = (x1, . . . , xn) , ε ∈ (−ε0, ε0) , (53.1)

where f is assumed to be smooth. We assume that we have a curve of equilibria
x(ε) defined for ε ≤ 0, i. e. f(x(ε), ε) = 0, ε ≤ 0. Let

L = Lε = Dxf(x(ε), ε) . (53.2)

We have a good idea about the behavior of the solutions of the linearized equa-
tion

ẏ = Ly . (53.3)

It is given by the spectral decomposition of L. In the case when the spectrum
does not intersect the imaginary axis, we can decompose Rn into the spaces of
stable and unstable directions respectively, with the space Ys of the stable direc-
tions generated by the (generalized) eigenspaces of eigenvalues λ with Reλ < 0,
and the space Yu of the unstable directions generated by the (generalized) eiges-
paces of eigenvalues λ with Reλ > 0. If we only slightly perturb such a matrix
L, the spaces Ys and Yu can get perturbed only slightly, and from the point of
view of stability of the solutions, the perturbed situation will be similar to the
unperturbed situation.

Equilibria x for which the spectrum of L lies away from the imaginary axis are
called hyperbolic equlilibria. They are in some sense the simplest equilibria. 259

As we change ε, the most significant changes in the behavior of the solutions
of (53.1) (such as loss of stability) near an equilibrium x(ε) will occur when one
(or more) of the eigenvalues of Lε will reach the imaginary axis (and possibly
crosses it, although we should also think about the scenario where the curve
x(ε) “turns back” at ε = 0, and there may be no equilibria for ε > 0). In
general, when this happens, the changes in the dynamics can be complicated. It
is reasonable to start the study under suitable “non-degeneracy assumptions”
(in a similar way as it is reasonable to start the study of spectral properties of
matrices with the case when all eigenvalues are different, and worry about what

259For example, one has the Hartman-Grobman Theorem stating that locally near a hy-
perbolic equilibrium x, the dynamics of (53.1) is topologically conjugate to the linearized
dynamics.
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happens with multiple eigenvalues only after we understand what happens with
simple eigenvalues.) Sometimes we also use the term “transversality conditions”.

One can consider the following assumptions

A1 As ε → 0, only one eigenvalue λ = λ(ε) will approach the imaginary axis,
with all the other eigenvalues staying away from it. (In particular, this means
that the eigenvalue is real, as the complex eigenvalues come in conjugate pairs
λ, λ.) Moreover, we assume the eigenvalue is simple.260

A2 The Hopf bifurcation scenario described in lecture 51.

Scenario A2 was discussed in some detail in lecture 51, and therefore we focus on
scenario A1. Note that the in the “generic case” the spectrum should reach/cross
the imaginary axis either by scenario A1 or scenario A2. (The most common way
when the assumption of “genericity” is violated in a natural setting is when the
situation at hand has some symmetries which lead to a nontrivial multiplicity
of eigenvalues. These situations are more difficult than the “generic case”, and
will not be discussed here.)

The bifurcations due to scenario A1 are usually called co-dimension one bifur-
cations. An important point of the theory is that the study of co-dimension one
bifurcations can be largely reduced to the study of the case when the space Rn

is one-dimensional, n = 1. At a heuristic level, the reason is as follows: under
assumption A1 the most important change of the dynamics when the eigenvalue
passes through the imaginary axis involves the direction of the corresponding
eigenvectors. In this direction we go from the attraction towards the equilib-
rium to the repulsion from the equilibrium and this is clearly a complete change
of behavior. By comparison, the changes affecting the other directions should
be less significant. Without going to details, we just state that this heuristics
can be made rigorous. This is one of the important applications of the so-called
center manifold theory.261

The simplest co-dimension one bifurcations under assumption A1 in their n = 1
representation by differential equations are as follows

ẋ = ε+ x2 (saddle-node) (53.4)

ẋ = εx− x2 (transcritical) (53.5)

ẋ = εx− x3 (pitchfork) (53.6)

The saddle-node bifurcation can occur when a curve of solutions x = x(ε) of
f(x, ε) = 0 “turns back” at some point ε1 (with ε1 = 0 in (53.4)), and cannot
be locally continued beyond ε1. In some sense the this the least degenerate

260In the sense that the eigenspace E(λ) is one-dimensional and we have the decomposition
Rn = E(λ)⊕ Y (λ), where Y (λ) is invariant under L.
261See for example the book of Guckenheimer and Holmes quoted in the previous lecture.
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bifurcation, as the rank of the matrix Dx,εf is the maximal possible at all
points of the curve.

The pitchfork bifurcation occurs for example when the trivial equilibrium of the
Lorenz system loses its stability at ρ = 1, see lecture 50.

We have not really seen a transcritical bifurcation in our previous lectures.

Usually one includes also the Hopf bifurcations discussed in lecture 51 among
the co-dimension one bifurcations.

We emphasize that the above list is not a complete list of possible co-dimension
one bifurcations. If the first non-zero terms in the Taylor expansion of f(x, ε)
are of higher order than in these examples, one may get more complicated
bifurcations (possibly with relaxed assumptions about the way in which the
imaginary axis is crossed).

53.2 Periodic solutions and their stability

The stability of periodic solutions can be treated in terms of the so-called
Poincaré return map. Let x(t, ε) be a periodic solution of

ẋ = f(x, ε) . (53.7)

Assume the minimal period of the solution is T > 0. Let us take a plane Π
transversal to the curve x(t) at, say, x(0). Let y be the coordinates in the plane,
with the origin y = 0 corresponding to x(0). If we take y ∈ Π close to y = 0
and take the trajectory of (53.7) starting at y, the trajectory will be close to
x(t), and hence will intersect Π close to x(0) at a time T1 close to the period T
of x(t). Let us denote by F (y) = F (y, ε) this intersections point. By definition,
F (y) = 0. It is clear that F is well-defined in some neighborhood of the origin
y = 0. Also, if f is smooth, the map F will be smooth (in a neighborhood of
y = 0). One can now ask what happen to the periodic orbit when we change ε.
Let

L = DyF (0) . (53.8)

We will also write L = L(ε) if we wish to emphasize the dependence of L on ε.

If the spectrum of L is inside the unit disc {|λ| < 1}, the periodic orbit will be
stable and trajectories of (53.7) starting close to it will be attracted to it. Also,
if we slightly change ε, the orbit will deform slightly to a periodic orbit of the
system with the new value of ε.

The stability of the orbit can be lost when the spectrum of L crosses the bound-
ary of the unit circle.

Let us assume that at ε = 0 we have a stable periodic orbit, and we start
changing ε. The simplest ways the stability of the orbit can be lost is the
following:

1. A pair of complex-conjugate eigenvalues λ, λ reaches (or crosses) the circle
{|λ| = 1} away from 1 or −1, while the rest of the spectrum stays inside
some smaller circle.
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2. One real simple eigenvalue reaches or crosses the circle {|λ| = 1} at −1,
while the rest of the spectrum stays inside some smaller circle.

3. One real simple eigenvalue reaches or crosses the circle {|λ| = 1} at 1,
while the rest of the spectrum stays inside some smaller circle.

The first possibility is an analogue of the Hopf bifurcation. For example, when
the stability of the orbit is lost to small secondary oscillations of the solution
about the orbit, this corresponds to the super-critical Hopf bifurcation. As
the matrix L does not become singular, the equation F (x) = x will still be
solvable when the stability is lost, and the original orbit will “survive” (typically
with some deformation and a small period change), except that it will become
unstable.

The second possibility is called “period doubling”. Note that Ly = −y means
that LLy = L2y = y, and one can expect a periodic solution with period close
to 2T . This new solution can at first be stable, but can later become unstable
to another period doubling. The situation can be similar to the loss of stability
of the periodic orbits in the logistic mapping discussed in lecture 52. However,
other scenarios are possible. Similarly to the first possibility, the “old orbit”
will survive (typically with some deformation and a small change in its period),
but will become unstable.

Finally, the third possibility may occur for example in a situation when the
periodic orbit will disappear under a small change of the parameter, somewhat
similar to the loss equilibria when a curve of solutions “turns back”.

Instead of using the linearization of the Poincare map F , one can also work of
the linearized equation about the periodic solution. The linearized equation is
of the form

ξ̇ = A(t)ξ , (53.9)

where the matrix A is periodic with period T . One seeks solutions of (53.9)
in the form ξ(t) = η(t)eiωt, where η(t) is periodic with period T . This is the
topic of the Floquet theory,262 which we however will not discuss at this point,
in spite of its importance. Our goal in this lecture was only to show that there
is a well-developed theory into which many of our examples and scenarios fit.

262Floquet, Gaston, “Sur les équations différentielles linéaires à coefficients périodiques”,
Annales de l’École Normale Supérieure 12: 47–88, (1883).
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54
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54.1 Limits of Galerkin approximations of the Navier-
Stokes equations.

We return to the situation considered in lecture 49.
Let Ω ⊂ R3 be a bounded domain with smooth boundary or the torusR3/2πZ3 263

Let a div-free field u0 in Ω be given. For simplicity we can think of u0 as being
smooth, div-free, and vanishing at ∂Ω, but it is in fact sufficient to assume that
u0 ∈ L2, div-free and the normal component u0n vanishes at the boundary.264

For a fixed T > 0 we consider the problem of determining a vector field u =
u(x, t) in Ω× [0, T ] which solves (for a suitable p)

ut + u∇u+ ∇p
ρ − ν∆u = f(x, t) ,

div u = 0 ,
u|∂Ω = 0 , (if ∂Ω ̸= ∅) ,

u(x, 0) = u0(x) , in Ω.

(54.1)

Ideally we would like u(x, t) to be smooth. However, it is known that for trivial
reasons the problem may not have a solution which is smooth at ∂Ω × {0},
similarly to what happens for the heat equation.265 This is a minor issue which
we will discuss later.

We do not know any obstacle which would prevent the existence of a solution
which is smooth for t > 0, if f(x, t) is smooth. At the same time, we do not
know if such a smooth solution exists.

Let us chose a finite-dimensional space V ⊂ H, where H is again the set of all
div-free vector fields with u|∂Ω = 0 and finite

∫
Ω
|∇u|2. As in lecture 49, we can

consider the following problem∫
Ω

(utv + ν∇u∇v + u∇u v − fv) dx = 0, v ∈ V, t ∈ [0, T ), (54.2)

with the initial condition∫
Ω

u(x, 0)v(x) dx =

∫
Ω

u0(x)v(x) dx v ∈ V . (54.3)

The last condition means that u(·, 0) is an L2 orthogonal projection of u0 onto V .

263More general tori R3/Λ with rank 3 lattices Λ can also be considered.
264For uo ∈ L2(Ω) with div u0 = 0 the normal component u0n is well-defined, as the reader
can check from the formula

∫
∂Ω u0nφdx =

∫
Ω u0∇φ.

265If ut = ∆u in Ω× [0, T ] and u is smooth, then ∆u = 0 at ∂Ω, and this may not be satisfied
at t = 0 for u(x, t)|t=0 = u0(x).
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The energy inequality (49.6) implies∫
Ω

1

2
|u(x, t)|2 dx+

∫ t

0

∫
Ω

ν

2
|∇u(x, s)|2 dx dt

≤
∫
Ω

1

2
|u0(x)|2 dx+

C

2ν

∫ t

0

|f(x, s)|2 dx ds . (54.4)

Strictly speaking, the energy inequality needs a minor adjustment when Ω is a
torus and

∫
Ω
f(x, t) dx ̸= 0 or

∫
Ω
u0 ̸= 0, which we leave to the reader as an

exercise.

Let us take a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ H with the prop-
erty (44.15), and consider the sequence of the solution uj = uVj? Does this
sequance converge? This is an important and difficult open problem closely
related to the regularity problem. We aim to show that some subsequence of
uj converges weakly to some function u (in suitable spaces) which solves the
equation in a weak sense.
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Limits of Galerking approximations (continued)

Let us set

Q = Ω× (0, T ), L∞,2 = L∞,2(Q) = L∞(0, T ;L2(Ω)). (55.1)

Recall that

H = H(Ω) = {u : Ω→ R3 , ∇u ∈ L2(Ω) , div u = 0 , u|∂Ω = 0} , (55.2)

so that we can also write, in terms of the usual Sobolev space notation,

H = {u ∈W 1,2
0 (Ω,R3) , div u = 0} . (55.3)

We also set
L2
tHx = L2

tHx(Q) = L2(0, T ;H(Ω)) . (55.4)

The sequence of the approximate solutions uj constructed at the end of the
last lecture is uniformly bounded in both spaces L∞,2(Q) and L2

tHx. Therefore
we can choose a subsequence, still denoted by uj , such that for some function
u ∈ L∞,2 ∩ L2

tHx the (sub)sequence uj converges weakly∗ in L∞,2 and weakly
in L2

tHx to u. (It is easy to see that for sequences bounded in L∞,2 ∩L2
tHx the

weak∗ convergence in L∞,2 is equivalent to the weak convergence in L2
tHx and

this in turn is equivalent to the convergence in distributions.)

We now aim to investigate the consequences of the equation (54.2) satisfied by
the approximate solutions for the limit u. The situation is somewhat similar to
what we have seen in lecture 44 in the context of steady solutions, except for a
complication coming from the fact that we do not have a simple control of the
time derivative ujt , at least not at the same level as for the spatial gradient ∇uj .

Let us first slightly reformulate (54.2). We consider a test function v : [0, T ]→ V
which is smooth in t. We will write v = v(x, t). Integrating (54.2) over a time
interval (t1, t2) ⊂ [0, T ], we obtain∫

Ω

uv dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[−uvt + u∇uv + ν∇u∇v − fv] dx dt = 0 . (55.5)

Integration by parts gives∫
Ω

uv dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[−uvt − ujuivi,j + ν∇u∇v − fv] dx dt = 0 . (55.6)
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Let us set

I(t1, t2) = I(t1, t2;u, v) =

∫ t2

t1

∫
Ω

[−uvt − ujuivi,j + ν∇u∇v − fv] dx dt .

(55.7)

Our goal is to study the continuity properties of I with respect to t1. We will
see soon why this is important. For 0 ≤ t1 ≤ t2 ≤ T we clearly have

I(t1, t2) + I(t2, t3) = I(t1, t3) , (55.8)

and hence it is enough to look at I(t1, t2) for as (t2 − t1)↘ 0.

One can do the estimate for I(t1, t2) with various degree of sophistication, de-
pending on what we are willing to assume about v. For the purpose of establish-
ing an existence theorem for weak solutions, one needs only quite elementary
estimates. For example, if we assume that

|vt| ≤ A , |∇v| ≤ B , |v| ≤ C , (55.9)

we have the simple estimates∫ t2

t1

∫
Ω

|uvt| dx dt ≤ A(t2 − t1)|Ω|
1
2 sup
t1≤t≤t2

(∫
Ω

|u(x, t)|2 dx
) 1

2

,(55.10)∫ t2

t1

∫
Ω

|ujuivi,j | dx dt ≤ B(t2 − t1) sup
t1≤t≤t2

∫
Ω

|u(x, t)|2 dx , (55.11)

∫ t2

t1

∫
Ω

∇u∇v dx dt ≤ B|Ω| 12 (t2 − t1)
1
2

(∫ t2

t1

∫
Ω

|∇u|2 dx dt
) 1

2

,(55.12)

∫ t2

t1

∫
Ω

fv dx dt ≤ C|Ω| 12 (t2 − t1)
1
2

(∫ t2

t1

∫
Ω

f2 dx dt

) 1
2

. (55.13)

This shows that with the bounds (54.4) and (55.9), the function t1 → I(t1, t2)
is uniformly continuous in t1, independently of t2.

Going back to (55.6) and replacing v(x, t) by v(x)η(t) for a v ∈ V and a suitable
smooth function η(t), we see that the function

t→
∫
Ω

u(x, t)v(x) dx (55.14)

is uniformly continuous in t.

We now explain at a heuristic level why this conclusion is important. Roughly
speaking, the energy estimate (54.4) controls the size of u and the size of possible
oscillations of u in the x−direction. It does not a-priori give any estimate on
the possible oscillations of u in t. Even if our approximate solutions uj were
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bounded with bounded ∇uj but were wildly oscillating in t, we would have
a serious problem in passing to the limit in the equation. We can assume
uj converge weakly to u, but we need to pass to the limit in the non-linear
expression ujku

j
l which appears in the equation in one form or another. It is not

hard to see that oscillation in t can spoil the convergence ujku
j
l to ukul.

The uniform continuity in t of the functions (55.14) puts a constraint on the
oscillations in t which will trurn out to be sufficient to pass to the limit.

Note that the estimate for the uniform continuity was obtain from the equa-
tion, even though at first the expression for the derivative ut obtained from the
equation does not look very promising. The key point is that test function v
in (55.14) can be taken relatively smooth, and the spatial derivatives of u ap-
pearing in

∫
Ω
utv after using the equation can be moved to v by integration by

parts.

This is a quite general principle used in evolution PDEs. It was used by J. Leray
in his classical 1934 paper as well as by E. Hopf in his well-known 1950 paper
on Navier-Stokes. Later the idea was generalized to an abstract setting by
J. L. Lions and T. Aubin, and its abstract version is known as Aubin-Lions
Lemma.266

Assumptions (55.9) are too strong if one wishes to work with general finite-
dimensional subspaces V ⊂ H. In that can one can still take for v(x, t) a
field v(x)η(t), where v ∈ V and η is a smooth function of t. One can replace
estimate (55.11) by∫ t2

t1

∫
Ω

|ujuivi,j(x)η(t)| dx dt ≤ ||∇v||L2 ||η||L∞

∫ t2

t1

||u(t)||2L4

≤ ||∇v||L2 ||η||L∞

∫ t2

t1

||u(t)||
3
2

L6 ||u(t)||
1
2

L2

≤ C||∇v||L2 ||η||L∞ sup
t
||u(t)||

1
2

L2(t2 − t1)
1
4

(∫ t2

t1

||∇u(t)||2L2 dt

) 3
4

, (55.15)

where we have used (45.1) to estimate ||u(t)||L6 . The replacement for (55.10),
(55.12), (55.13) is even easier and is left to the reader as an exercise.

266Let X1 ⊂ X2 ⊂ X3 be Banach spaces such that the unit ball of X1 is compact in X2. If a
set M of functions f : [0, T ] → X1 is bounded in Lp(0, T ;X1) and the set of their derivatives

{ df
dt
, f ∈M} is bounded in L1(0, T ;X3), then the set M is pre-compact in Lp(0, T,X2).

A typical application is with X1 = W 1,2, X2 = L2, X2 = W−k,2 for some large k. The
application to the Navier-Stokes equation is not immediate due to the non-local nature of the
pressure term.
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56

Limits of Galerking approximations (continued)

We now use the information about the uniform continuity of the functions (55.14)
to show that the weak limit u of the (sub)sequence uj = uVj considered in the
beginning of lecture 55 gives a solution of the problem (54.1) in a suitable weak
sense. In what follows we assume that the whole sequence uj converges weakly
to u. This is no loss of generality, as we can always replace our original sequence
by a weakly converging subsequence.

Let us fix j0 ∈ N and set V = Vj0 . Similarly to (55.5) and (55.6), for any
(smooth) test function v : [0, T ]→ V and any (t1, t2) ⊂ [0, T ] we have for j ≥ j0∫

Ω

ujv dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[
−ujvt + uj∇ujv + ν∇uj∇v − fv

]
dx dt = 0 . (56.1)

and by integration by parts∫
Ω

ujv dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[
−ujvt − ujku

j
l vl,k + ν∇uj∇v − fv

]
dx dt = 0 . (56.2)

Roughly speaking, our goal is to show that as j →∞ the limit of all the terms
in the last equation is obtained simply by replacing uj by u.

While it is clear that∫ t2

t1

∫
Ω

−ujvt dx dt→
∫ t2

t1

∫
Ω

−uvt dx dt, j →∞ (56.3)

and ∫ t2

t1

∫
Ω

ν∇uj∇v dx dt→
∫ t2

t1

∫
Ω

ν∇u∇v dx dt, j →∞ , (56.4)

the convergence of the other terms with uj is not obvious.

Following the ideas of Leray and Hopf, we will first deal with
∫
Ω
uj(x, t)v(x) dx

and then use the result, together with additional considerations, to pass to the
limit in the non-linear term

∫ t2
t1

∫
Ω
ujku

j
l vl,k dx dt.

Let us take v = v(x) ∈ V and set

hj(t) =

∫
Ω

uj(x, t)v(x) dx , h(t) =

∫
Ω

u(x, t)v(x) dx . (56.5)

Note that while the functions hj(t) are defined for each t, the function h is at
the moment defined only for almost every t. Also note that the functions hj , h
are uniformly bounded as uj are uniformly bounded in L∞

t L
2
x.
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From the definition of the weak convergence we know that∫ T

0

hj(t)η(t) dt→
∫ T

0

h(t)η(t) dt, j →∞ (56.6)

for each smooth test function η. At the same time, in the last lecture we es-
tablished that the functions hj are equicontinuous (i.e. they have a common
modulus of continuity). Together with their uniform boundedness this implies,
by the Arzela-Ascoli Theorem, that the sequence hj is pre-compact in the topol-
ogy of uniform convergence. We also know that hj converge to h weakly∗ in L∞

(or weakly in L2), by (56.6) and the uniform boundedness of hj . We conclude
that

sup
t∈[0,T ]

|hj(t)− h(t)| → 0, j →∞ . (56.7)

This conclusion was reached for any fixed v ∈ Vj0 . Since j0 can be chosen
arbitrarily and we assume that ∪jVj is dense in H, we see that for each t and
each v ∈ H ∫

Ω

uj(x, t)v(x) dx→
∫
Ω

u(x, t)v(x) dx, j →∞ . (56.8)

Together with the uniform boundedness of uj in L∞
t L

2
x∩L2

tHx and the condition
div uj = 0, this implies that in fact∫
Ω

uj(x, t)b(x) dx→
∫
Ω

u(x, t)b(x) dx, j →∞, b = (b1, b2, b3) ∈ L2(Ω) .

(56.9)

(Sketch of proof: we can assume that b is smooth. Let b = a + ∇π be the
Helmholtz decomposition of b, with div a = 0 and an = 0 at ∂Ω, where n is
the normal to ∂Ω. We can replace b by a in (56.9), as div uj = 0, div u = 0.
We claim that H is L2−dense in L2

div = {a ∈ L2(Ω), div a = 0, a n = 0 at ∂Ω}.
Otherwise there would be an a ∈ L2

div(Ω), a ̸= 0, such that
∫
Ω
av dx = 0 for each

v ∈ H. This means that a = ∇α for some function α ∈ W 1,2(Ω) with ∂α
∂n = 0

at ∂Ω. Now div a = 0 means that ∆α = 0 and we see that α = const. by the
uniqueness for the Neumann problem. This means a = 0, a contradiction,and
the proof of (56.9) is finished.)

We see that the function x → u(x, t) is well-defined as an L2 function for each
t ∈ [0, T ], and, moreover

uj(·, t)⇀ u(·, t) (weak L2 convergence) for each t ∈ [0, T ] . (56.10)

It also shows that

t→ u(·, t) is continuous as a function from [0, T ]→ (L2,weak topology) .
(56.11)

All these statements reflect the additional information obtained from the fact
that uj not only satisfy the energy bounds, but they also satisfy an equation
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which gives higher regularity in the t direction than the mere boundedness in
the energy norm

Concerning the passage to the limit in (56.2) as j → ∞, the above consid-
erations take care of the term

∫
Ω
ujv dx |t=t2t=t1 . To handle the nonlinear term∫ t2

t1

∫
Ω
ujku

j
l vl,k dx dt, we will indicate two approaches. The first approach, due

to E. Hopf relies on the following

Lemma (E. Hopf)

Let Q = Ω × [0, T ]. Assume that a sequence of functions wj : Q → Rm is
bounded in L∞

t L
2
x(Q) and L2

tHx(Q) and converges weakly∗ in L∞
t L

2
x to a func-

tion w. In addition, assume that

wj(·, t)⇀ w(·, t) weakly in L2(Ω) for each t ∈ [0, T ] . (56.12)

Then
wj → w strongly in L2(Q). (56.13)

Proof

The proof follows quite easily from the following inequality due to K. O. Friedrichs:
for each ε > 0 there exist finitely many smooth, compactly supported functions
ak : Ω → Rm , k = 1, 2, . . . , r such that for each z : Ω → Rm, z ∈ W 1,2(Ω) we
have ∫

Ω

|z|2 dx ≤
r∑

k=1

|
∫
Ω

akz dx|2 dx+ ε

∫
Ω

|∇z|2 dx . (56.14)

Using the inequality with z(x) = wj(x, t) − w(x, t), for each t and integrating
over t ∈ [0, T ], we obtain∫ T

0

∫
Ω

|wj−w|2 dxdt ≤
∫ T

0

r∑
k=1

|
∫
Ω

[ak(w
j−w)]dx|2dt+ε

∫ T

0

∫
Ω

|∇(wj−w)|2 dxdt .

(56.15)
It is clear that our assumptions imply that the expression on the right-hand
side can be made small for high j by choosing first a small ε, then a sufficiently
high j.

The lemma shows that, under our assumptions, we can pass to the limit in the
term ∫ t2

t1

∫
Ω

−ujku
j
l vl,k dx dt . (56.16)

of (56.2), which was the last term where the passage to the limit was not clear.
We see that in the limit j →∞ we can simply replace uj by u in (56.2).

Leray used another technique for proving the strong convergence of the approx-
imate solutions uj . (He worked with different approximations, but his method
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can also be applied to the Galerking approximations.) We briefly explain the
main idea of Leray’s method, which does not rely on Hopf’s lemma above.

Let us set

ej(t) =

∫
Ω

|uj(x, t)|2 dx , e(t) =

∫
Ω

|u(x, t)|2 dx . (56.17)

An important observation from the energy inequality is the following:

The total variation
∫ T
0
|de

j

dt (t)| dt of the functions ej is uniformly bounded.
(56.18)

This is obvious in the case f = 0 as the functions ej(t) are monotone (energy
is not increasing), and follows quite easily from the energy inequality (54.4) in
the general case (under some natural assumptions on f which are satisfied in
the situation we consider here).

We can therefore assume, after perhaps passing to another subsequence, if nec-
essary, that the functions ej converge point-wise to a function e∗:

ej(t)→ e∗(t) , j →∞, for each t ∈ [0, T ]. (56.19)

Clearly ∫ T

0

ej dt→
∫ T

0

e∗ dt , j →∞ . (56.20)

If we can show that

e∗(t) = e(t) for almost every t ∈ [0, T ], (56.21)

we will know that∫
Q

|uj |2 dx dt→
∫
Q

|u|2 dx dt , j →∞ , (56.22)

and the strong convergence uj → u in L2(Q) will follow.

Let

Dj(t) =

∫
Ω

|∇uj(x, t)|2 dx , D∗(t) = lim inf
j→∞

Dj(t) . (56.23)

We know from the energy inequality that∫ T

0

Dj(t) dt ≤ C <∞, j = 1, 2, . . . (56.24)

and hence∫ T

0

D∗(t) dt =

∫ T

0

lim inf
j→∞

Dj(t) dt ≤ lim inf
j→∞

∫ T

0

Dj(t) dt ≤ C <∞ (56.25)

by Fatou’s lemma. In particular, the function D∗(t) is finite for almost ev-
ery t ∈ [0, T ]. If D∗(t) < ∞, then since we know that uj(·, t) ⇀ u(·, t) in
L2 (weak convergence), we can infer from Rellich’s compactness theorem that
uj

′
(·, t) → u(·, t) in L2(Ω) for some subsequence of uj

′
(·, t) of the sequence

uj(·, t). We conclude that e(t) = e∗(t) for each t for which D∗(t) <∞, and this
establishes (56.21) and hence also (56.22).
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Limits of Galerkin approximations (continued)
Last time we have shown that for each v : [0, T ]→ Vj0 (sufficiently regular in t)
we can pass to the limit j →∞ in (56.2) and the limit function u will satisfy∫

Ω

uv dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[−uvt − ukulvl,k + ν∇u∇v − fv] dx dt = 0 , (57.1)

where u is a weak limit of the Galerkin approximations uj . Note that it is
not clear to what degree u is uniquely determined by the procedure, as passing
to suitable subsequences is involved. We know, however, that u is sufficiently
regular for all the terms in (57.1) to be well-defined. In particular, u(·, t) is
well-defined for each t ∈ [0, T ] as an element of L2(Ω).

We would now like to remove the restriction v(·, t) ∈ Vj0 for each t and replace
it by a more natural assumption. For example, it is natural to consider the
class C1div,0 of test functions v(x, t) which are once continuously differentiable in

Ω× [0, T ], div-free, and vanish on ∂Ω× [0, T ]. We wish to show that

Assume that ∪jVj is dense in H. Then (57.1) is satisfied for each v ∈ C1div,0.

Proof

It is not hard to see that it is enough to prove the statement for v(x, t) of the
form

v(x, t) =
r∑

k=1

ηk(t)wk(x) , (57.2)

where w1, . . . , wr ∈ H and ηk are C1 functions [0, T ] → R. We approximate
each wk in H by a sequence wk,j ∈ Vj and let

vj(x, t) =
r∑

k=1

ηk(t)wk,j(x) . (57.3)

Clearly
vj → v in L∞

t Hx (57.4)

and∫
Ω

uvj dx |t=t2t=t1 +

∫ t2

t1

∫
Ω

[
−uvjt − ukulv

j
l,k + ν∇u∇vj − fvj

]
dx dt = 0 . (57.5)

Passing to the limit j →∞ we obtain the desired result. The passage j →∞ is
obvious in all terms except perhaps for the term

∫ t2
t1

∫
Ω
−ukulvjl,k dxdt. To see

that we can pass to the limit in this term it is enough to take into account that
the function ukul is bounded in L1

tL
3
x. (In fact, we have a stronger information:
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the function is bounded in L∞
t L

1
x∩L1

tL
3
x, and hence also in LptL

q
x for 1 ≤ p ≤ ∞,

2/p+ 3/q = 3.)

The function u we constructed above is usually called a Leray-Hopf solution of
the problem (54.1).

It is not hard to see that

If a Leray-Hopf solution is a sufficiently regular function, then it is a classical
solution of (54.1) for a suitable pressure function p(x, t).

Sketch of proof

Reversing the integrations by parts involved in the contruction, we obtain that∫
Ω

[ut(x, t) + u(x, t)∇u(x, t)− ν∆u(x, t)]v(x)η(t) dx dt = 0 (57.6)

for each smooth, compactly supported, div-free vector field v and each smooth
η : [0, T ]→ R. Hence, for each t ∈ [0, T ] and each v as above we have∫

Ω

[ut(x, t) + u(x, t)∇u(x, t)− ν∆u(x, t)]v(x) dx = 0 . (57.7)

This shows that

ut(x, t) + u(x, t)∇u(x, t)− ν∆u(x, t) = −∇p(x, t) (57.8)

for some function p(x, t) (which is determined up to an arbitrary function of t).

The condition u(x, 0) = u0(x) follows from the construction of u: for t1 = 0 and
t2 = T, v(x, T ) = 0 the identity (57.5) is satisfied with the first term replaced by∫
Ω
u0(x)v(x, 0) dx, and the integration by parts then shows that u(x, 0) = u0(x).

We state without proof the following result which was proved due to contribu-
tions by Leray, Ladyzhenskaya, Prodi, Serrin, Caffarelli-Kohn-Nirenberg, and
Seregin.

If a Leray-Hopf solution u belongs to L5
t,x(Q), then it is “as regular in Ω× [0, T ]

as f allows”.267 In particular, if f is smooth in Ω× [0, T ], then u is smooth in
Ω× (0, T ].

In general it is not known if the Leray-Hopf solutions constructed for smooth
data u0, f will be smooth. Perhaps an even more serious drawback is that it
is not known if the Leray-Hopf solutions are unique, even when u0 and f are

267In the context of the usual parabolic equations this could be taken locally, at least at
the level of C∞ regularity (but not necessarily analytic regularity). The situation with the
Navier-Stokes equations is more non-local, and one has to be somewhat careful concerning
local regularity. However, if f is be everywhere smooth then u will also be everywhere smooth
in Ω× (0, T ], as long as the assumption u ∈ L5

t,x(Q) is satisfied.
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smooth. Without uniqueness we cannot be sure how much predictive power the
equations really have.

It is not known how to rule out some seemingly bizarre scenarios. For example,
let us consider the following situation. Recall that in the last lecture we used
the Galerkin approximations to define the functions e(t) and e∗(t), see (56.17)
and (56.19). Assume that e∗(t) is a smooth decreasing function on [0, T ]. Is it
possible that e(t) = e∗(t) at all points except some t1 ∈ (0, T ) where we have
e(t1) = 0?

It seems that the answer to this question is not known. It is known that such
scenario cannot take place if u ∈ L4

t,x(Q), for example.
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3/5/2012

Limits of Galerkin approximations (continued)

Let us in more detail at the energy inequality for the weak solution u. For the
Galerkin approximations uj we have, as can be seen for example from (56.1),∫

Ω

1

2
|uj(x, t1)|2 dx =

∫
Ω

1

2
|uj(x, t2)|2 dx+

∫ t2

t1

∫
Ω

[ ν|∇uj |2+fuj ] dx dt . (58.1)

Using the notation (56.17), it is clear that if

e(t1) = e∗(t1), (58.2)

we obtain from (58.1) as j →∞∫
Ω

1

2
|u(x, t1)|2 dx ≥

∫
Ω

1

2
|u(x, t2)|2 dx+

∫ t2

t1

∫
Ω

[ ν|∇u|2 + fu ] dx dt . (58.3)

From this it is easily seen that under the assumption (58.2) we have

lim sup
t→t1+

e(t) ≤ e(t1) . (58.4)

At the same time we have from the weak lower semi-continuity of the norm and
the weak convergence u(·, t)⇀ u(·, t1) as t→ t1

lim inf
t→t1

e(t) ≥ e(t1) . (58.5)

In other words, the function t → e(t) is always lower semi-continuous. We
conclude that the function e(t) will continuous from the right at any point t
with e(t) = e∗(t). Clearly this also means that the function

t→ u(·, t) (58.6)

will be continuous from the right as a function [0, T ] → L2(Ω) (with the norm
topology) at such points. In particular, these considerations imply that

u(·, t)→ u0, t→ 0+ (strong convergence in L2). (58.7)

Considerations concerning the energy inequality (58.3) and the energy iden-
tity obtained from it by replacing the inequality by identity can be linked to
condition u ∈ L4

t,x(Q). In particular, it can be shown that

If u ∈ L4
t,x(Q), then (58.3) holds true with equality for each 0 ≤ t1 ≤ t2 ≤ T .
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The proof of this statement can be derived from the linear theory of the Stokes
system

ut +
∇p
ρ − ν∆u = div f ,

div u = 0 ,
u|∂Ω = 0 , (if ∂Ω ̸= ∅) ,

u(x, 0) = u0(x) , in Ω.

(58.8)

Here we use the usual notation f = {fkl} 3k,l=1 and (div f)k = fkl,l.
This form of the equation, with the right-hand side in the “divergence form”, is
quite natural in the context of the energy identity∫

Ω

1

2
|u(x, t1)|2 dx =

∫
Ω

1

2
|u(x, t2)|2 dx+

∫ t2

t1

∫
Ω

[ ν|∇u|2 + f∇u ] dx dt . (58.9)

The identity suggests that f ∈ L2
t,x(Q) should a natural condition if we wish to

estimate the solution u in L∞
t L

2
x ∩ L2

tHx. This is easy for solutions which have
enough regularity so that the usual derivation of (58.9) is rigorous. It can be
also shown that (58.9) is still true for distributional solutions of (58.8) which
belong to L∞

t L
2
x∩L2

tHx (and, in fact, to L2
t,x∩L2

tHx). In this case one can show
that the function t → u(·, t) is continuous as a function from [0, T ] to L2(Ω),
in the strong topology and one has (58.9). This is a non-trivial exercise in the
linear theory which we will not pursue. The reader interested in these issues
in the context of parabolic equations can consult the book of Ladyzhenskaya-
Solonnikov-Uraltseva on parabolic equations. (We also discussed some of these
topics in the PDE course last year, see the online course notes, lecture 60, p.
237.)

If we now have a weak solution of the Navier-Stokes equation with u ∈ L4
t,x(Q),

we can think of it as a weak solution of (58.8) with fkl = −ukul (at least when
the right-had side f in the Navier-Stokes vanishes). The condition u ∈ L4

t,x(Q)
ensures fkl ∈ L2

t,x and the validity of (58.9). With the condition u ∈ L∞
t L

2
x ∩

L2
tHx ∩ L4

t,x it is not hard to see that∫ t2

t1

∫
Ω

−ukuluk,l dx = 0 , (58.10)

and hence (when the right-hand side in the Navier-Stokes vanishes)∫
Ω

1

2
|u(x, t1)|2 dx =

∫
Ω

1

2
|u(x, t2)|2 dx+

∫ t2

t1

∫
Ω

ν|∇u|2 dx dt . (58.11)

It is easy to incorporate the Navier-Stokes right-hand side and derive∫
Ω

1

2
|u(x, t1)|2 dx =

∫
Ω

1

2
|u(x, t2)|2 dx+

∫ t2

t1

∫
Ω

[ ν|∇u|2 + fu] dx dt . (58.12)

for (54.1) (when u ∈ L∞
t L

2
x ∩ L2

tHx ∩ L4
t,x and f ∈ L2

t,x). In this case the
energy identity holds exactly, even though the regularity of the solutions (and
also their uniqueness) is unknown. With the current knowledge one can only
obtain regularity/uniqueness with additional assumptions, such as u ∈ L5

t,x.
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58.1 Imbeddings of the energy space

It is useful to recall the imbeddings

L∞
t L

2
x ∩ L2

tHx ↪→ LptL
q
x . (58.13)

Let us first consider the case of dimension n = 3. We have for 2 ≤ q ≤ 6

||v||Lq
x
≤ ||v||αL2

x
||v||1−αL6

x
≤ C1−α||v||αL2

x
||v||1−αHx

, α ∈ [0, 1],
1

q
=
α

2
+

1− α
6

.

(58.14)
Hence ∫ T

0

||u(t)||p
Lq

x
dt ≤ C(1−α)p||u||αpL∞

t L2
x

∫ T

0

||u(t)||(1−α)pHx
dt . (58.15)

Taking

(1− α)p = 2,
1

q
=
α

2
+

1− α
6

, (58.16)

we obtain that (58.13) is valid for

2

p
+

3

q
=

3

2
, 2 ≤ q ≤ 6 . (58.17)

For p = q we obtain

p = q =
10

3
. (58.18)

Hence
L∞
t L

2
x ∩ L2

tHx ↪→ L
10
3
t,x . (58.19)

This is optimal at the level of the Lpt,x spaces. We see that the information from
the energy space is insufficient to obtain u ∈ L4

t,x which – as we have seen above
– would be sufficient for the validity of the exact energy identity.

Next time we will discuss dimension n = 2, where the situation is much more
favorable.
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59

3/7/2012

59.1 Weak solutions in dimension n = 2

We will use the notation
Qt = Ω× (0, t) (59.1)

and
[|u|] = [|u|]Qt = ||u||L∞

t L2
x∩L2

tHx
, (59.2)

which is the same as

[|u|]2 = [|u|]2Qt
= ess sup

t′∈[0,t]

∫
Ω

|u(x, t)|2 dx+

∫ t

0

∫
Ω

|∇u(x, t′)|2 dx dt′ . (59.3)

In dimension n = 2 we have an important inequality268

||u||L4
t,x(QT ) ≤ C[|u|]QT

, u ∈ L∞
t L

2
x ∩ L2

tHx . (59.4)

Sketch of proof

By Gagliardo-Nirenberg inequality and Cauchy-Schwartz inequality we have
(when n = 2) for each t:∫

Ω

|u|4 dx = ||uu||2L2
x
≤ c2||∇(uu)||2L1

x
≤ 4c2||u||2L2

x
||∇u||2L2

x
. (59.5)

Integrating over t we obtain∫ T

0

∫
Ω

|u|4 dx dt ≤ 4c2||u||2L∞
t L2

x
||∇u||2L2

tL
2
x
. (59.6)

and the result follows.

We come to the important conclusion that in dimension n = 2 the natural energy
norm controls the L4

t,x norm. Therefore, by our considerations in the last lecture,
in dimension n = 2 the weak solution satisfy the energy identity (58.12) exactly,
for each 0 ≤ t1 ≤ t2 ≤ T . In fact, similar consideration can be used to obtain
the following important result, essentially due to O. A. Ladyzhenskaya:

Theorem

In dimension n = 2 the Leray-Hopf weak solution u of (54.1) with the properties
established above is unique. If ∪jVj is dense in H, then the Galerkin approx-
imations uj converge to u in the energy norm, without the need to pass to a
subsequence.

268due to O. A. Ladyzhenskaya, who used the term “multiplicative inequality”
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Sketch of proof

Assume we have two solutions u, v and set w = u− v. Then u, v, w ∈ L∞
t L

2
x ∩

L2
tHx, w(x, 0) = 0 and

wt −∆w +∇q = − div(u⊗ w + w ⊗ v + w ⊗ w) . (59.7)

The energy consideration concerning the linear problem (58.8) together with
the fact that u⊗ w,w ⊗ v, w ⊗ w belong to L4

t,x imply that∫
Ω

1

2
|w(x, t)|2 dx+

∫ t

0

∫
Ω

|∇w|2 dx dt′ =
∫ t

0

∫
Ω

wjviwi,j dx dt
′ . (59.8)

Note that all integrals in this identity are well-defined. From (59.8) we infer

[|w|]2Qt
≤ c||v||L4

t,x(Qt)[|w|]
2
Qt

(59.9)

for some fixed constant c > 0. The function ϕ(t) = ||v||L4
t,x(Qt) is uniformly

continuous in t on [0, T ] and vanishes at t = 0. We see that that w = 0 in some
interval [0, t1] where t1 ≥ τ > 0, with τ depending only on c and the modulus
of continuity of ϕ. The procedure can be repeated with t = 0 replaced by t = t1
and we conclude that w vanishes on [0, t2] with t2 ≥ 2τ . It is clear that after
finitely many steps we obtain w = 0 in [0, T ]

It turns out that in the case n = 2 which we are considering one can in fact
show that the solution u is “as smooth as the data allow”. In particular, if
f is smooth in QT then u will be smooth in Ω × (0, T ]. The precise proof of
this result in domains with boundaries requires some work. We will discuss the
reasons behind this result in the next lectures (although we will not go into all
technical details).

Regardless of the regularity result, the uniqueness theorem shows that for n = 2
we have identified the right class of solutions. In general, if one can show for
an evolution PDE both existence and uniqueness of solutions in a suitable class
(and sufficiently general initial data), we know that the equation can be used
to make predictions.

Regularity is also related to uniqueness due to the so-called weak-strong unique-
ness theorems (the first version of which can already be found in Leray’s 1934
paper). In dimensions n ≤ 3 one can show if the equation has a regular so-
lution, then any Leray-Hopf weak solution has to coincide with the regular
solution. (This means, among other things, that the Galerking approximation
will converge to the solution in the energy norm and we do not have to pass to
a subsequence, assuming that ∪jVj is dense in H, of course).
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59.2 Green’s function for the Stokes system in Rn×(0,∞).

When discussing regularity, it is usually easier to work in the whole space Rn

rather than in domains with boundaries, as boundary regularity brings addi-
tional difficulties. In addition to the advantage of not having to deal with the
boundary, the case Ω = Rn also has the advantage that the solution of the linear
problem (58.8) (called the Cauchy problem when Ω = Rn) can be represented
by quite explicit kernels.

Let us first consider the Cauchy problem in Rn × (0,∞)

ut +∇p−∆u = f ,
div u = 0 ,

u(x, 0) = u0(x) .
(59.10)

The system (59.10) has to be supplemented by additional conditions on u and/or
p to ensure uniqueness. without additional conditions the system admits “par-
asitic solutions” of the form

u(x, t) = ∇h(x, t), ∆xh(x, t) = 0, p(x, t) = −ht(x, t) , (59.11)

where the dependence of h on t can be arbitrary (and can be chosen so that
u(x, 0) = 0). If one works with functions f which have some decay as x → ∞,
one can impose the condition

u(x, t)→ 0, x→∞ (59.12)

which will obviously rule out the parasitic solutions (59.11). We will first derive
the representation formula for the solutions of (59.10) under the assumption
that f has some decay as x→∞ and (59.12).

One can consider three special cases of (59.10).

Case 1: f = 0.

In this case the solution can be obtained by setting p = 0 and setting u to be
equal to the solution of the heat equation with the initial condition u(x, 0) =
u0(x).

u(x, t) =

∫
Rn

Γ(x− y, t)u0(y) dy , (59.13)

where Γ is the heat kernel

Γ(x, t) =
1

(4πt)
n
2
e−

|x|2
4t . (59.14)

Case 2: u0 = 0 , f(x, t) = ∇ϕx(x, t).
In this case we have u = 0 and p(x, t) = ϕ(x, t) + c(t) .
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Case 3: u0 = 0, div f = 0.

In this case the solution is again given by the heat kernel, via the Duhamel’s
principle applied to Case 1:

u(x, t) =

∫ t

0

∫
Rn

Γ(x− t, t− s)f(y, s) dy ds . (59.15)

The general case can be considered as a superposition of these three cases. For
a general f we write (for each t)

f = Pf +∇xϕ , (59.16)

where f → Pf is the Helmholtz projection on the div-free fields (see lecture 6).
We can write

u(t) = Γ(t) ∗u0 +
∫ t

0

Γ(t− s) ∗Pf(s) ds, ∇p(t) = (f(t)−Pf(t)) , (59.17)

where we use ∗ to denote the spatial convolution:

f ∗ g(x) =
∫
Rn

f(x− y)g(y) dy . (59.18)

The kernel of the operator f →
∫ t
0
Γ(t− s) ∗Pf(s) ds can be written as follows.

Let G(x) be the fundamental solution of the Laplace operator and set

Φ(x, t) =

∫
Rn

G(y)Γ(x− y, t) dy . (59.19)

Note that for n ≥ 3 we have

Φ(x, t) =
1

t
n−2
2

F

(
|x|√
t

)
, (59.20)

where F (r) is s smooth function with decay ∼ r−(n−2) as r →∞.

The reader can check that (59.17) can be written as

ui(x, t) =

∫
Rn

Γ(x− y, t)u0i(y) dy +
∫ t

0

∫
Rn

kij(x− y, t− s)fj(y, s) dy ds ,

(59.21)
with

kij(x, t) =

(
−δij∆+

∂2

∂xi∂xj

)
Φ(x, t) . (59.22)

It is easy to see that

|kij(x, t)| ≤
C

(|x|2 + t)
n
2

(59.23)

and

|∇xkij(x, t)| ≤
C

(|x|2 + t)
(n+1)

2

. (59.24)

266



Homework Assignment 4

due March 29, 2012

Let L > 0 and let Ω = [0, L]. Consider the equation

ut = uxx + au− bu3

for u = u(x, t) in Ω × (0,∞) with the boundary condition u(0, t) = u(L, t) =
0, t ≥ 0. We assume a, b > 0.

a) Investigate the linearized stability of the trivial steady-state solution u = 0.

b)∗ (Optional) Describe all steady-state solutions and determine their stability.
(Hint: write the equation for the steady states as u′′ = −∂V∂u , in which x can be
thought of as time and u as a position of a particle of unit mass in potential field
V . The solutions can be written in terms of elliptic functions, but you do not
have to give these formulae. It is enough to describe the solutions qualitatively,
e. g. by their oscillations.)

c)∗ (Optional) Show that the equation has no solutions which would be peri-
odic in t other then the steady states. (Hint: note also that if we let I(u) =∫
Ω
( 12 |ux|

2 − a
2u

2 + b
4u

4) dx, we can think of our equations as u̇ = −grad I(u).)
d)∗∗ (Optional) Try to guess when the equation has bounded solutions defined
in Ω × (−∞,∞) which are not steady states. (Hint: think about the same
question for an ODE of the form ẋ = −∇f(x), where f is a function on Rn

with f(x)→∞ when x→∞.)
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3/9/2012

60.1 Estimates for solutions of the linear Stokes Systems

We have seen Navier-Stokes equation (with zero right-hand side) can be written
as (59.10) with fi = −∂j(uiuj). Our goal is to obtain certain a-priori estimates
from bounded solutions of the Navier-Stokes equations. Therefore it is natural
to consider solutions of (59.10) when f is replaced by divF , where F is a
bounded function. We will write F = {Fij}. For f = divF formula (59.21) can
be written as

ui(x, t) =

∫
Rn

Γ(x− y, t)u0i(y) dy +
∫ t

0

∫
Rn

Kijl(x− y, t− s)Fjl(y, s) dy ds ,

(60.1)
where

K = {Kijl} = {kij,l} , (60.2)

or, more symbolically,
K = ∇k . (60.3)

We will now obtain estimates for u from (60.1), assuming both that the initial
condition u0 and the function F are bounded, and that t = T for some fixed
T > 0 which will be assumed to be of order T ∼ 4. The first term behaves
represent the solution of the heat equation with the initial data u0, and its
derivatives are therefore easily seen to be bounded by

|∂lt∇ku(x, t)| ≤
Ck,l

t
k
2+l
||u0||L∞ , x ∈ Rn, t > 0 k, l = 0, 1, 2, . . . (60.4)

We now wish to estimate contribution to

|u(x, t)− u(x′, t′)| (60.5)

coming from the second term. We will assume t > t′ and estimate

|u(x, t)− u(x′, t)|, |u(x′, t)− u(x′, t′)| . (60.6)

For the first expression, we can assume x = 0 and x′ = αe, where |e| = 1.
Clearly it is enough to work under the assumption

|F | ≤ 1 (60.7)

and estimate

I =

∫ t

0

∫
Rn

|K(−y, s)−K(αe− y, s)| dy ds . (60.8)
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We use the scaling invariance of K

K(λx, λ2t) = λ−n−1K(x, t) (60.9)

and set
y = αz, s = α2τ (60.10)

to obtain

I = α

∫ t
α2

0

∫
Rn

|K(−z, τ)−K(e− z, τ)| dz dτ . (60.11)

For 0 ≤ τ ≤ 2 we will write

|K(−z, τ)−K(e− z, τ) ≤ |K(−z, τ)|+ |K(e− z, τ)| (60.12)

while for τ > 2 we can write

|K(−z, τ)−K(e− z, τ)| ≤ C

(|z|2 + τ)
n+2
2

. (60.13)

Hence (setting z =
√
τ z′ when integrating (60.13)) we see that

I ≤
∫ 2

0

+

∫ t
α2

2

· · · ≤ C1α+ C2α

∫ t
α2

2

dτ

τ
. (60.14)

For t = T ∼ 4 this means that

I ≤ Cα
(
1 + log+

1

α

)
. (60.15)

In the calculation of |u(x′, t)−u(x′, t′)| we can assume x′ = 0. Letting t′ = t−τ ,
we obtain

|u(0, t)− u(0, t− τ)| ≤ J =

∫ t

0

∫
Rn

|K(−y, t)−K(−y, t− α2)| dy dt , (60.16)

where we set K = 0 for t < 0. We set t = α2τ and y = αz. We obtain

J = α

∫ t
α2

0

∫
Rn

|K(−z, τ)−K(−z, τ − 1)| dz dτ. (60.17)

Writing again

J = α

[∫ 2

0

· · ·+
∫ t

α2

2

. . .

]
≤ α

[∫ 2

0

· · ·+
∫ ∞

2

. . .

]
(60.18)

and using

|K(−z, τ)−K(−z, τ − 1)| ≤ C

(|z|2 + τ)
n+3
2

, τ > 2 (60.19)

(for a suitable C > 0), we obtain that

J ≤ C̃α . (60.20)

We see that the function u(x, t) given by (60.1) and t ∼ 4 may fail to be
Lipschitz only by a logarithmic factor, and that for a given R > 0 it is α−Hölder
continuous for t ∈ [2, 4], x ∈ BR for any exponent α ∈ (0, 1).
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3/19/2012

61.1 The local well-posedness of the Navier-Stokes equa-
tions in subcritical spaces

The representation formula (60.1) together with estimates (59.23) and (59.24)
can be also used for an easy proof of existence and uniqueness of the so-called
mild solutions of the Cauchy problem in Rn × [0, T ) for

ut + u∇u+∇p−∆u = f ,
div u = 0 ,

u(x, 0) = u0(x) .
(61.1)

The mild solutions are as smooth as the data allow (they have the same smooth-
ness as the solutions of the linear Stokes system with the same data) and are
unique in some natural classes of solution. However, it is only known how to
prove their local-in-time existence, the global existence remains open, in general.
Mild solution differ by definition from the strong solutions 269, but in practice
they are more or less the same. (This must of course be proved from the precise
definitions.)

In this section we will assume f = 0 for simplicity. The reader can adjust the
proofs to cover the case f ̸= 0 as exercise. To motivate the definition, we will
write (61.1) with f = 0 as

ut +∇p−∆u = − div(u⊗ u) ,
div u = 0 ,

u(x, 0) = u0(x) .
(61.2)

Let
U(t) = Γ(t) ∗ u0 (61.3)

be the solution of the heat equation with the initial condition u0. (Here we
think of U and the heat kernel Γ as functions of t with values in a suitable space
of functions of x. We will often use this notation in what follows.) Using the
notation (60.2), we can re-write (61.2) as

u(t) = U(t) +

∫ t

0

K(t− s) ∗ [−u(s)⊗ u(s)], ds , (61.4)

where ∗ denotes the spatial convolution.270 For functions u, v on Rn × [0, T ]

269which might be defined as functions for which the derivatives entering the equations
are continuous and the equation is satisfied point-wise, together with some requirements for
behavior as |x| → ∞
270f ∗ g(x) =

∫
Rn f(x− y)g(y) dy .
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(the exact class of the function will be specified later) we set

B(u, v)(t) =

∫ t

0

K(t− s) ∗ [−u(s)⊗ v(s)] ds (61.5)

and re-write (61.2) as
u = U +B(u, u) . (61.6)

This will be considered as an abstract equation in a suitable function space of
functions on the space-time Rn × (0, T ).

Our approach will be based on the following well-known abstract lemma.

Lemma

Let X be a Banach space and let B : X ×X → X be a continuous bilinear form
on X with

||B(x, y)|| ≤ γ||x|| ||y|| . (61.7)

For a ∈ X consider the equation

x = a+B(x, x) . (61.8)

When
4γ ||a|| < 1 , (61.9)

the equation (61.8) has a unique solution x in the ball{
x ∈ X, ||x|| <

1 +
√
1− 4γ||a||
2γ

}
. (61.10)

Moreover,

||x|| ≤
1−

√
1− 4γ||a||
2γ

. (61.11)

Remark

The less precise statement that under the condition (61.9) the equation (61.8)
has a unique solution in the ball{

x, ||x|| ≤ 1

2γ

}
(61.12)

is often sufficient.

Sketch of proof of the Lemma

Essentially the proof in the general case can be understood by analyzing the
case X = R and B(x, y) = γxy . In that case our equation is

x = a+ γx2 . (61.13)
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The necessary and sufficient condition for (61.13) to have a solution is of course

4γa < 1 (61.14)

in which case the roots are

ξ1,2 =
1±
√
1− 4γa

2γ
. (61.15)

For general Banach space X we first note that for each (small) δ > 0 there exists
ε > 0 such

||a+B(x, x)|| ≤ ||a||+ γ||x||2 < ||x|| − ε (61.16)

when
ξ2 + δ < ||x|| < ξ1 − δ (61.17)

with

ξ1,2 =
1±

√
1− 4γ||a||
2γ

. (61.18)

Moreover, we have

||a+B(x, x)−a−B(y, y)|| = ||B(x−y, x)+B(y, x−y)|| ≤ γ(||x||+||y||) ||x−y|| .
(61.19)

This shows that the map
ϕ : X → X (61.20)

defined by
ϕ(x) = a+B(x, x) (61.21)

is a contraction on the ball {x, ||x|| ≤ ρ} for any ξ2 ≤ ρ < 1
2γ . We see that for

any x ∈ X with ||x|| < ξ1 the iteration

x0 = x, xk+1 = ϕ(xk) (61.22)

will produce a sequence converging to a fixed point x with ||x|| ≤ ξ2. Due
to (61.16) and (61.19) this fixed point is unique in {x, ||x|| < ξ1}, and the
lemma is proved.

To apply the lemma to (61.1), we have to specify the space X. There are many
choices, with various levels of sophistication.271 Here we will consider only the
very simple case

X = XT = L∞(Rn × (0, T )) . (61.23)

In this case we can consider u0 ∈ L∞(Rn) and by maximum principle for the
heat equation we have

||U ||X ≤ ||u0||L∞ . (61.24)

271For an elegant choice based on more advanced harmonic analysis estimates see for example
the paper by H. Koch and D. Tataru, Adv. Math. 157 (2001), no. 1, 22–35.
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For u, v ∈ X we have

||B(u, v)||XT
≤ ||u||XT

||v||XT

∫ T

0

∫
Rn

|K(x, t)| dx dt (61.25)

Using (59.24), a calculation similar to those we did in the last lecture (but
easier) shows that ∫ T

0

∫
Rn

|K(x, t)| dx dt ≤ C
√
T , (61.26)

for a suitable C > 0, the exact value of which is not important to us at this
point. Hence

||B(u, v)||XT ≤ C
√
T ||u||XT ||v||XT , (61.27)

and we see that the lemma above can be applied when

4C
√
T ||u0||L∞ < 1 . (61.28)

The lemma can now be used to obtain a local-in-time existence (and uniqueness)
of the solution of (61.6) in the space XT . We note that in the case XT =
L∞(Rn× [0, T ]) we are considering our local-in-time solution will in general not
satisfy

||u(t)− u0||L∞(Rn) → 0, t→ 0+ . (61.29)

This cannot be satisfied even for the solution of the linear heat equation U(t) if
the initial datum u0 is not uniformly continuous. However, the possible failure
of (61.19) is only due to the first (linear) term in the decomposition u = U +
B(u, u). The second term will approach 0 in L∞(Rn) as ∼

√
t as t → 0+

by (61.25). Also, by calculations from the last lecture we know that B(u, u) will
be Hölder continuous.

The uniqueness statement in the lemma, together with suitable “localization in
time” can be used to obtain the following statement:

For each u0 ∈ L∞(Rn) and U(t) = Γ(t) ∗ u0 the equation u = U + B(u, u) has
at most one solution in XT for any T > 0 (not necessarily small).

Sketch of proof

Let u, v be two different solutions in XT . The uniqueness statement in the
lemma implies that u = v in Rn × (0, t1) for some t1 = t1(||u||XT

, ||v||XT
). The

main point now is that this argument can be “continued in t”. Heuristically
this is clear: since the solutions coincide at t = t1, we can take t1 as a new
initial time and the same argument should give that u = v on [t1, 2t1]. We can
now continue this argument until we reach T . In this argument we treat (61.6)
essentially as an ODE in t. We have to show that this is indeed justified. This
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amounts to showing the following statement: assume that 0 < t1 < t2 and that
a function u ∈ L∞(Rn × (0, t2) solves

u(t) = Γ(t) ∗ u(0) +
∫ t

0

K(t− s) ∗ F (s) ds, t ∈ [0, t1] , (61.30)

u(t) = Γ(t− t1) ∗ u(t1) +
∫ t

t1

K(t− s) ∗ F (s) ds , t ∈ [t1, t2] ,(61.31)

where F ∈ L∞(Rn × (0, t2)). Then

u(t) = Γ(t) ∗ u0 +
∫ t

0

K(t− s) ∗ F (s) ds, t ∈ [0, t2] . (61.32)

Roughly speaking, this says that solutions of (61.6) can be “glued together” on
adjacent time intervals [0, t1], [t1, t2], assuming their value at t = t1 is the same.
We leave the proof of the statement to the interested reader as an exercise. (Note
that by the remarks above concerning the regularity of the solutions, even when
we originally assume only u ∈ L∞(Rn × (0, t1)), a class for which u(t1) is not
well-defined, the equation gives us extra regularity which is more than enough
for u(t1) to be well-defined.

The above “gluing procedure” also implies that for each u0 ∈ L∞(Rn) we can
define the maximal interval of existence T ∗ of the solution u starting at u0 in a
way which is similar to the usual ODE definition. As an exercise you can show
that

||u(t)||L∞ ≥ ε1√
T ∗ − t

, t→ T ∗
− (61.33)

for some ε1 > 0.

It can also be shown that any mild solution u ∈ XT is smooth in Rn × (0, T ],

with t
k
2∇ku(t) ∈ XT .

Above we showed that (61.1) is locally-in-time well-posed for u0 ∈ L∞(Rn).
One can show the same statement for u0 ∈ Lp(Rn) when p ≥ 3. The case p > n
can be done in a way which is quite similar to the case p =∞. The case p = n
is the “critical case” and a slightly different method has to be used.

Note that the above constructions are completely independent of the energy
identity. In fact, a-priori it is not completely clear that when u0 ∈ L2 ∩ L∞,
then the (unique) mild solution u will satisfy the energy identity. As the reader
might expect the identity will be satisfied, but it has to be proved.
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62.1 Some blow-up criteria

Let us consider a mild solution of the Cauchy problem (61.1) with f = 0 and
u0 ∈ L∞

x ∩ L2
x. Let (0, T ) be the maximal interval of existence of the mild

solution, and assume that T < 0. Whether or not this can happen for n = 3 is a
famous open question. We know by (61.33) that ||u(t)||L∞ →∞ as t→ T−. Let
us consider a sequence 0 < M1 < M2 < · · · → ∞, where M1 is sufficiently large.
For j = 1, 2, . . . let us denote by tj the first time the function t → ||u(t)||L∞

takes on the value Mj . Let xj ∈ Rn be such that

|u(xj , tj)| =Mj . (62.1)

By definition of tj , we have

|u(x, t)| ≤Mj , 0 ≤ t ≤ tj , x ∈ Rn . (62.2)

Heuristically one expects that the sequence xj should be bounded in Rn. This
can indeed be shown, but we will not go into the proof at this point.

Let us define the functions vj by

vj(y, s) =
1

Mj
u(xj +

y

Mj
, tj +

s

M2
j

), y ∈ Rn, s ∈ [−M2
j tj ,M

2
j (T − tj)] .

(62.3)
By the definitions we have

|vj(y, s)| ≤ 1, y ∈ Rn, s ∈ [−M2
j tj , 0] (62.4)

and
|v(0, 0)| = 1 . (62.5)

By the Hölder estimates in lecture 60 we can conclude that

|vj | ≥ 1
2 in Bρ × [−ρ2, 0] (62.6)

for some fixed ρ > 0. Letting zj = (xj , tj) and

Qj = Qzj , ρ
Mj

= Bxj ,
ρ

Mj
× (tj −

ρ2

M2
j tj

, tj) , (62.7)

we see that

|u(x, t)| ≥ Mj

2
, (x, t) ∈ Qj . (62.8)

We can interpret the situation in the following way: in Rn× (0, tj) the function
|u(x, t)| has a “peak” at zj = (xj , tj). The “height” of the peak is Mj . Before
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the value of |u(z)| drops below
Mj

2 , the (space-time) point z has to be away
from Qj . We can say that a peak of height M has to be at least ∼ 1

M “wide”
and its “duration” is at least ∼ 1

M2 .

It is easy to see that ∫
Qj

|u|n+2 dx dt ≥ ρn+2 . (62.9)

By passing to a subsequence, if necessary, we can assume that the parabolic
balls Qj are disjoint. It is then clear that for each τ > 0 we have∫ T

T−τ

∫
Rn

|u|n+2 dx dt = +∞ . (62.10)

This is a special can of the so-called Ladyzhenskaya-Serrin-Prodi criterion. A
slightly more general case is the following:

Assume that a mild solution u blows up at a finite time T . Let q > n, p ≥ 2 be
such that

2

p
+
n

q
= 1 . (62.11)

Then for each τ > 0 we have∫ T

T−τ

(∫
Rn

|u(x, t)|q dx
) p

q

dt = +∞ . (62.12)

The calculation is analogous to (62.9).

When n = 2 and u satisfied the energy identity, we know from lecture 59
(see (59.4)) that ∫ T

0

∫
Rn

|u|4 dx dt ≤ C < +∞ (62.13)

and hence T =∞. In other words, the mild solution is defined globally.272

272The regularity for n = 2 can also be shown by using the vorticity equation
ωt + u∇ω −∆ω = 0.
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63.1 Ruling out self-similar singularities

Assume that a mild solution of the Cauchy problem starting from some nice
initial datum u0 develops develops a finite-time singularity and the maximal
time of existence T is finite. It can be shown that when u0 ∈ L∞ ∩ L2 (for
example), then a finite-time singularity can be the only reason for any local-in-
time mild solution failing to be global in time. Roughly speaking, the behavior
of the mild solutions does not exhibit any surprises near the spatial infinity as
long as the initial datum u0 has some reasonable decay as x→∞. (A rigorous
proof of this result requires some work, and we will omit it at this stage.) We can
change coordinates so that the first singularity occurs at the origin of the space-
time. This shifted solution will of course start at some negative time t0 < 0.
Let us consider such a solution u. We assume that u is defined on R3 × [t0, 0)
and that there exists a sequence (xj , tj)→ (0, 0), t0 < t1 < t2 < . . . 0 such that
|u(xj , tj)| → ∞.

We will now do a slightly different re-scaling of u than the one used in the last
lecture. For λ > 0 we set

uλ(x, t) = λu(λx, λ2t) . (63.1)

The field uλ is defined on R3 × (λ−2t0, 0). When λ is small we can think of
uλ as a “magnification” of u: we watch the same solution, but we re-scaled the
unit of length by a factor λ and the unit of time by a factor λ2, so we can think
of watching u in slow motion under a microscope. What happens as λ→ 0+?

This process of “magnifying singularities” has been used in various situations.
For example, if we study some manifold Σ ⊂ Rm which contains 0 and, more-
over, 0 is its “singular point”, it often turns out to be useful to consider the
limit of Σλ = λ−1Σ (taking in a suitable sense) as λ→ 0+. This again “magni-
fies” what is going on near the singularity. This has proved to be very useful in
studying singularities of minimal surfaces. The procedure is in fact interesting
already for algebraic surfaces.

Returning to the Navier-Stokes equation, the scaling (63.1) is of course dictated
by our desire to preserve the equation: the fields uλ and u both satisfy the
same equation. Although the pressure does not enter the definition of the mild
solutions, it is still interesting to check how it scales. The reader can verify that
the right scaling for the pressure is

p→ pλ, pλ(x, t) = λ2p(λx, λ2t) . (63.2)

The corresponding scaling of the initial data is

u0 → u0λ , u0λ(x) = λu0(λx) . (63.3)
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We note that in general dimension n we have∫
Rn

|u0λ|2 dx = λ2−n
∫
Rn

|u0|2 dx . (63.4)

We see that in dimensions n ≥ 3 the energy of u0λ grows as λ2−n as λ → 0+.
That is another manifestation of the “super-criticality” of the Navier-Stokes
equations in dimension n ≥ 3.

What happens with uλ as λ→ 0+? If (0, 0) were a regular point of the solution
of u, then of course uλ → 0 on compact subsets of Rn × (−∞, 0) as λ → 0+.
On the other hand, if (0, 0) is a singular point of the solution273, many other
scenarios could be possible. For example, with our current knowledge we cannot
rule out the scenario that

|uλ(x, t)| → ∞ , λ→ 0+ , (x, t) ∈ Rn × (−∞, 0) . (63.5)

Let us assume that we have

uλ → u, λ→ 0+ (63.6)

where u is some “nice” function on Rn × (−∞, 0). We have not specified the
nature of convergence in (63.6). This is in fact a non-trivial point: our ability to
prove certain results may depend on the exact nature of the convergence assume
in (63.6). For example, heuristically one should have the following:

Under the assumption (63.6), when the convergence is sufficiently strong274 and
u = 0, then (0, 0) is not a singular point of u.

Such statements can indeed be proved, but at the moment we will not go into
the details. Instead, we will assume that the limit (63.6) exists (in a sufficiently
strong sense) and is non-trivial. If this is the case, one sees that

(u)λ = ( lim
λ′→0+

uλ′)λ = lim
λ′→0+

uλλ′ = u . (63.7)

Note that in this identity the existence of the “full” limit (63.6) is crucial. It is
not enough to take limits over subsequences (assuming they exist), for example.

Identity (63.7) says that the solution u is scale-invariant:

λu(λx, λ2t) = u(x, t) , λ > 0. (63.8)

Let κ > 0. For a fixed t < 0 let λ = 1√
2κ(−t)

and apply (63.8) to obtain

u(x, t) =
1√

2κ(−t)
u

(
x√

2κ(−t)
,− 1

2κ

)
. (63.9)

273We emphasize that it is unknown if such points exist.
274For example, convergence in L3(Bρ × (−ρ2, 0)) for each ρ > 0.
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We see that under the assumptions above, there should be a singular solution
of the Navier-Stokes equations of the form

u(x, t) =
1√

2κ(T − t)
U(

x√
2κ(T − t)

) , (63.10)

where T is the “blow-up time” (taken as T = 0 in (63.9)), and U is the “self-
similar profile function” (taken as u( · ,− 1

2κ ) in (63.9) ). The parameter κ > 0 is
introduced only for convenience and could be taken as κ = 1 or κ = 1

2 without
loss of generality.

The regularity we can assume about U depends on the nature of convergence
in (63.6). It is not hard to check that the function U must satisfy

−∆U + κx∇U + κU + U∇U +∇P = 0, divU = 0 , (63.11)

for a suitable function P . This is an elliptic equation which implies full regularity
of U once some critical regularity condition is satisfied. For (63.11) it can be
shown that a (very) weak solution of (63.11) which is in L3

loc(R
3) is smooth.

One can imagine situations when the condition U ∈ L3
loc(R

3) is not “au-
tomatically” satisfied. For example, if the convergence in (63.6) is only in
L2
loc(R

3 × (−∞, 0)), then u will be a (very) weak solution of the Navier-Stokes
equation which is scale invariant (in the sense of (63.8)), and the function U
will be well-defined as an element of L2

loc(R
3), and will satisfy (63.11) in the

sense that∫
R3

[−Ui∆φi − κUi(xjφi),j + κUiφi − UiUjφi,j ] dx = 0 , (63.12)

for each smooth, compactly supported vector field φ with divφ = 0. Under
these condition it is not known whether U will be smooth.

The suggestion that solutions of the form (63.10) may be relevant was made
already in 1934 by J. Leray in his well-known Acta Math. paper quoted earlier.
The main result about such solutions is the following

Theorem275

Let p ∈ [3,∞]. Assume that U ∈ Lp(R3) is a very weak solution of (63.11),
in the sense of (63.12). Then U is constant. In particular, when p < ∞, then
U ≡ 0.

We will show the main idea of the proof of the theorem next time.

275For p = 3 see Necas, J.; Ruzicka, M.; Sverak, V., On Leray’s self-similar solutions of the
Navier-Stokes equations. Acta Math. 176 (1996), no. 2, 283–294.
For p > 3 see Tsai, Tai-Peng, On Leray’s self-similar solutions of the Navier-Stokes equations
satisfying local energy estimates. Arch. Rational Mech. Anal. 143 (1998), no. 1, 29–51.
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Remarks

1. The most natural requirement on the function U at x→∞ is that

U(x) = O(|x|−1), x→∞ . (63.13)

This is because it can be shown that under natural assumptions on the solu-
tion (63.10) the limits

lim
t→T−

u(x, t) (63.14)

will exist for x ̸= 0 and be finite. This is a non-trivial result which follows
from the partial regularity theory.276 Therefore the most interesting case of the
above theorem is when p > 3.

2. The case p < 3 of the theorem is open, due to the possible lack of the local
regularity of U .

3. The theorem can be considered as a Liouville-type theorem for (63.11). It
is interesting to compare the result with the case κ = 0 (steady Navier-Stokes).
In that case it is not known if a bounded solution has to be constant, or if a
locally regular solution with ∇U ∈ L2 and U ∈ L6 vanishes. It turns out that
the terms with κ are quite helpful in proving the theorem, and in this sense the
case κ > 0 is in fact easier than the case κ = 0, contrary to what one might
initially expect.

The proof of the Theorem will be given in the next lecture.

276Caffarelli, L.; Kohn, R.; Nirenberg, L. Partial regularity of suitable weak solutions of the
Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), no. 6, 771–831.
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Ruling out self-similar singularities (continued)

We now sketch the proof of the main theorem of the last lecture. We will
essentially follow the proof of T.P.Tsai quoted last time, which uses a maximum
principle from the NRS paper. As a preparation, we recall the following classical
fact. Let u be a solution of the steady Navier-Stokes equation

−∆u+ u∇u+∇p = 0 , div u = 0 . (64.1)

Let

H =
1

2
|u|2 + p . (64.2)

Then

−∆H + u∇H = −|ω|2 , ω = curlu . (64.3)

The calculation is easy. Clearly

−∆H + u∇H = −u∆u− |∇u|2−∆p+ u∇|u|
2

2
+ u∇p = −|∇u|2−∆p , (64.4)

and now we use
−∆p = ui,juj,i . (64.5)

Writing
∇u = S +A , (64.6)

where S is the symmetric part of ∇u and A is the anti-symmetric part, we note
that

−|∇u|2 −∆p = −|S|2 − |A|2 + |S|2 − |A|2 = −2|A|2 = −|ω|2 (64.7)

and (64.3) follows.

Let us now return to equation (63.11) and write

Ũ = U + κx, P̃ = P − 1

2
κ2|x|2 . (64.8)

The vector field Ũ describes the classical particle trajectories in the self-similarity
coordinates. The reader can easily check that (63.11) is equivalent to

−∆Ũ + Ũ∇Ũ +∇P̃ = 0, div Ũ = 3κ . (64.9)

Let us set

Π =
1

2
|Ũ |2 + P̃ =

1

2
|U |2 + P + κxU . (64.10)

281



A calculation similar to that leading to (64.3) shows that (64.9) implies

−∆Π+ (U + κx)∇Π = −|Ω|2 , Ω = curlU . (64.11)

Let L be the linear operator given by

L = −∆+ (U + κx)∇ . (64.12)

We claim that for small ε > 0 the function

f(x) = fε(x) = eε
|x|2
2 (64.13)

is a super-solution of L in {x, |x| > R} when R is sufficiently large. To see this,
we calculate

f,j = εxjf, ∆f = εnf + ε2|x|2f , (64.14)

and hence
Lf = (−εn− ε2|x|2 + ε(Ux) + κε|x|2)f . (64.15)

We see that Lf ≥ 0 when x is large, ε < κ and

|U(x)| = o(|x|), |x| → ∞ . (64.16)

The last condition is obviously satisfied when U ∈ L∞, and can be proved to
be always satisfied under the assumptions of the theorem, we refer the reader
to T. P. Tsai’s paper for details.

Let
M(r) = sup

|x|≤r
Π(x) , (64.17)

let r0 > 0 be sufficiently large so that Lf ≥ 0 in Or0 = {x , |x| ≥ r0} and let
M0 =M(r0). For δ > 0 let us set

F = Fε,δ,M0 =M0 + δfε , (64.18)

where fε is the function above (see (64.13)). We have

LF > 0 in Or0 , F ≥ Π at ∂Or0 , F ≥ Π near ∞. (64.19)

The last condition follows from (64.16) and the fact that P can have at most
polynomial growth at ∞, which one can prove by using elliptic estimates, see
the paper of T. P. Tsai.

Since we have LΠ ≤ 0, we see that (64.19) imples

Π(x) ≤ F (x), x ∈ Or0 . (64.20)

Taking δ → 0, we see that

Π(x) ≤M0, x ∈ R3 . (64.21)

The strong maximum principle for the operator L now implies that

Π(x) =M0, x ∈ R3 . (64.22)

We see that LΠ = 0 in R3 and hence and (64.11) gives curlU = 0 in R3 . Since
also divU = 0 by our assumptions, we see from the Liouville theorem that U is
constant.
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65.1 Some model equations

Assume that a mild solution u of the Navier-Stokes equation discussed in lec-
ture 61 “blows up” at time t = T . In other words, (0, T ) is the maximal interval
of existence of the solution. We say that the blow-up is of Type I, if for some
τ > 0

sup
t∈(T−τ,T )

√
T − t ||u(t)||L∞ <∞ . (65.1)

Noting that in the situation above we must have

||u(t)||L∞ ≥ ε1√
T − t

(65.2)

for some ε1 > 0, as discussed in lecture 61, we see that in Type I blow-up the
solution grows with the minimal possible exponent,

||u(t)||L∞ ∼ 1√
T − t

. (65.3)

A blow-up not satisfying (65.1) is said to be Type II. A typical case would be

||u(t)||L∞ ∼ 1

(T − t) 1
2+ε

(65.4)

for some ε > 0. As discussed in lecture 13, this is usually called slow blow-up,
although some authors also use the term “fast blow-up” in this case, presumably
due to the increased exponent 1

2 + ε. See lecture 13 for a discussion of the
terminology in the context of Euler’s equation.

Usually the Type II blow-up is associated with a situation where the solution
exhibits some hesitation in the blow-up, as if there were some mechanism which
is trying to prevent the blow-up, although in the end the blow-up tendency wins
out. On the other hand, Type I blow up means that the solution blows up at
the first allowable opportunity, without much hesitation.

There are model equations where every blow-up is of type one, and other model
equations where every blow-up is of type two, and there are also equations which
can exhibit both type one and type two blow-ups.

Example 1 (The complex viscous Burgers equation)277

We consider functions u : R×(0,∞)→ C (the complex plane) and the equation

ut + uux = uxx . (65.5)

277See the paper “Zeros of complex caloric functions and singularities of complex viscous
Burgers equations” by P. Polacik and VS

283



with the initial condition
u(x, 0) = u0(x) . (65.6)

One can easily construct the local-in-time mild solutions for various classes of
u0, for example for u0 ∈ L∞, by following the procedure we used for the Navier-
Stokes equations in lecture 61. For each u0 ∈ L∞ there is a maximal mild
solution of (65.6) which is defined in R × (0, T ), where (0, T ) is the maximal
time interval on which the solution is defined. It is easy to see that when u is
real-valued (which will be the case when u0 is real valued), then the solution
satisfies a maximum principle, and hence ||u(t)||L∞ stays bounded and cannot
blow up. Therefore T =∞.

When u0 is complex-valued, the situation is more complicated. The maximum
principle is no longer satisfied. Fortuitously, the equation can be solved quite
explicitly by the use of the so-called Cole-Hopf transformation. This is a “change
of variables”

u = −2vx
v

(65.7)

which turns (65.5) into the heat equation

vt = vxx . (65.8)

The solutions of (65.8) can be analyzed in great detail, and hence the same is
true about the solutions of (65.5). Formula (65.7) shows that the singularities
of u are related to the zeroes of v. With some calculations278 one can show
that for complex-valued u0 equation (65.5) can develop a singularity starting
from smooth, compactly supported function u0 and that the blow up is always
of Type II, with

||u(t)||L∞ ∼ 1

(T − t)1+ k
2

(65.9)

for some k ∈ {0, 1, 2, . . . }, with k = 0 in the “generic case”, but with any k
as above occurring for some solution. In the language introduced above, the
blow-up can be arbitrarily slow, and it is never of Type I. In particular, there
are no self-similar singularities. We note that, by contrast, the blow-up for the
Navier-Stokes equation, if it exists, cannot be arbitrarily slow, at least in the
case when when u0 ∈ L2. In that case it can be shown279∫ T

0

||u(t)||L∞ dt < +∞ . (65.10)

This is one of the consequences of the energy estimate. For the complex-valued
solutions of (65.5) the energy estimate fails (whereas for the real valued solution
it is easy to establish).

278See the paper Li, Lu, Isolated singularities of the 1D complex viscous Burgers equation
J. Dynam. Differential Equations 21 (2009), no. 4, 623-630.
279See the paper “Localisation and compactness properties of the Navier-Stokes global reg-
ularity problem” by T. Tao, arXiv:1108.1165

284



Example II (Harmonic map heat flow)280

We consider the 3d sphere S3 ⊂ R4, functions u : Rn × (0,∞) → S3, and the
equation

ut −∆u = |∇u|2u (65.11)

for such functions. The reader can check that this equation is the L2−gradient
flow of the functional

I(u) =

∫
Rn

|∇u|2 dx. (65.12)

In other words, we can write (65.11) as

u̇ = −grad L2I(u) , (65.13)

where, as indicated by the notation, the linear functional I ′(u) in the tangent
space of maps Rn → S3 at a given u is identified with a vector in that tangent
space by the means of the L2−scalar product. The Navier-Stokes equation is in
many respects very far from being a gradient flow. In fact, its non-linear part,
the Euler equation, can be considered as a Hamiltonian system and such sys-
tems are in some sense “opposite” to gradient flows. For example, gradient flows
never admit periodic or quasi-periodic solutions, whereas for simple Hamiltonian
systems the periodic/quasi-periodic behavior is in some sense expected. (This
does not quite apply to the Euler equation and many other infinite-dimensional
systems for which the periodic/quasi-periodic solutions are expected to be non-
generic.) Nevertheless, it is interesting to compare (65.11) with Navier-Stokes.
(Note that the linear part of the Navier-Stokes equation, the linear Stokes sys-
tem, is a gradient flow of the functional

∫
Rn |∇u|2 on the space H of div-free

vector fields.)

Equation (65.11) is preserved by the scaling

u(x, t)→ u(λx, λ2t) , λ > 0 . (65.14)

Therefore the quantity which should be compared to the Navier-Stokes ve-
locity field is ∇u . One can see immediately from (65.13) that the quantity∫
Rn |∇u|2 dx is non-increasing and that one has an a-priori estimate281 for∫ T
0

∫
Rn |ut|2 dx dt . On the other hand, one does not have an a-priori estimate of∫ T

0

∫
Rn |∇2u|2 dx dt , which would correspond to the dissipation in the Navier-

Stokes energy estimate. In this sense the dissipation in (65.11) is weaker than
that in Navier-Stokes. At the same time, the gradient nature of the flow implies
many nice properties of the flow. In particular, for n ≥ 3 one has the so-called
monotonicity formula (discovered by M. Struwe): denoting by Γ the heat kernel,
the quantity

t→ (t0 − t)
∫
Rn

Γ(x− x0, t0 − t) |∇u(x, t)|2 dx (65.15)

280See for example the expository paper “Geometric Evolution problems” by M. Struwe,
AMS 1996
281The estimate can be thought of in terms of the finite-dimensional system ẋ = −∇f(x).
The equation implies |ẋ|2 = d

dt
f(x) and integration of this identity over t gives an estimates

for
∫ t2
t1

|ẋ|2 dt .
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is non-increasing for t < t0, x0 ∈ Rn (for sufficiently regular solutions). The for-
mula is behind many remarkable results concerning the heat flow in dimensions
n ≥ 3, such as the partial regularity and general results about existence of singu-
larities for topological reasons. Similar monotonicity formulae are in many cases
at the base of our understanding of a various geometrical flows. As an exercise
the reader can check that the formula is scale-invariant. Therefore even in higher
dimension it provides an a-priori bound on a scale-invariant quantity. No simi-
lar estimate is known for the Navier-Stokes equation. Usually the monotonicity
formulae are tied to the gradient flow structure of the corresponding PDE and
therefore it is not clear if an analogue exists for the Navier-Stokes equation. Of
course, an a-priori bound on any positive non-trivial scale-invariant quantity
would most likely represent a breakthrough in the Navier-Stokes theory.

One can “change coordinates” in (65.11) as follows. We think of S3 as unit
quaternions and for q ∈ S3 we denote by q the conjuate quaternion, so that
qq = qq = 1. Alternatively, we can identify S3 with the group SU(2) and use
the notation q for q−1. For a map u : Rn × (t1, t2)→ S3 ⊂ R4 we set

Uα = u
∂u

∂xα
. (65.16)

Note that for each (x, t) the vector Uα(x, t) belongs to the tangent space of S3

at the unit element 1. The tangent space can be identified with R3, and hence
Uα can be thought of as an R3− valued function. The functions Uα generated
this way are not arbitrary, they have to satisfy

Uα,β − Uβ,α + 2Uβ ∧ Uα = 0, (65.17)

a nonlinear analogue of the identity curl∇f = 0. Here and in what follows we
use the notation a ∧ b for the cross product in R3. The reader can check that
in the Uα variables equation (65.11) becomes

Uαt −∆Uα = 2Uβ ∧ Uα,β , (summation over repeated indices) (65.18)

which is at superficially reminiscent of the Navier-Stokes equation. At the level
of Uα the scaling (65.14) becomes

Uα(x, t)→ λUα(λx, λ
2t) . (65.19)

What is known about singularities? In dimension n ≥ 3 the equation does
develop singularities from smooth data. There are self-similar singularities (still
for n ≥ 3) and presumably also Type II singularities, although I am not sure if
the existence of Type II blow-up has been rigorously proved for n ≥ 3, except
in the case when the data is 2-dimensional.

In dimension n = 2 the equation is critical. However, as we already noted, the
dissipation in (65.11) is weaker than in the Navier-Stokes, and it turns out that
even in the case n = 2 the equation can develop a singularity.282 In this two-
dimensional case the singularities will always be of Type II. In particular, there

282Chang, K., Ding, W.-Y., Ye, R., Journal of Diff. Geom., 36 (1992), 507-515.
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are no self-similar singularities in this case, which can be easily seen directly
from the energy identity.
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Model equations (continued)

Example III (a modification of Burgers/Navier-Stokes)283

We consider time-dependent vector fields u(x, t) in Rn (which we think of as a
function u : Rn × (0, T ) → Rn). Let a ∈ [0, 1] and κ > 0 be given parameters.
Our equation for u will be as follows

ut + au∇u+
1

2
(1− a)∇|u|2 + 1

2
u div u = ∆u+ κ∇div u . (66.1)

We can think of it in several ways. For example, we can start with the viscous
Burgers equation

ut + u∇u−∆u = 0 . (66.2)

One can develop the local-in-time well-posedness theory for mild solution of
this equation for initial data u0 ∈ Lp for some fixed p ≥ 3 in a similar way as
for the Navier-Stokes. (In fact, the estimates are somewhat more complicated
as the non-linearity is not in divergence form, but the complications are not
serious.) For example, for u0 ∈ L∞ one has a local-in-time solution u defined
on a maximal interval of existence (0, T ), and for T < 0 we would have to have
||u(t)||L∞ → +∞ as t→ T−. However, we notice that equation (66.2) implies a
maximum principle for each component of u. For each index i we have

uit + u∇ui −∆ui = 0 , (66.3)

and hence ||ui(t)||L∞ is non-increasing in time for each i. Therefore T = +∞
and the solution exists globally for all time (and remains globally bounded).

If we modify (66.2) to

ut + u∇u+
1

2
udiv u−∆u = 0 , (66.4)

we destroy the maximum principle but will have an energy inequality instead
(which we do not have for (66.2)):∫

Rn

1

2
|u(x, t)|2 dx+

∫ T

0

∫
Rn

|∇u|2 dx dt =
∫
Rn

1

2
|u0(x)|2 dx . (66.5)

One can think of equations of the form

ut + u∇u+
1

q
udiv u−∆u = 0 , (66.6)

and look at the evolution of ||u(t)||Lq . The Burgers equation corresponds to
q = ∞ and (66.4) corresponds to q = 2. Equation (66.1) can be viewed as an

283P. Plechac, V. Sverak, “Singular and regular solutions of a nonlinear parabolic system”,
Nonlinearity 16 (2003), 2083-2097.
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additional generalization of (66.4). We note that for a = 1
2 the non-linearity

is in divergence form, and hence most of the proofs we know from the Navier-
Stokes theory (such as the local in time existence of mild solutions, or regularity
theory) can be applied to (66.1) with a = 1

2 practically without change. It is in
fact to some degree the case also for the other values of a ∈ [0, 1], but the case
a ̸= 1

2 may sometimes need slight modifications of the Navier-Stokes arguments.

The role of the parameter κ is related to compressibility. The energy inequality
for (66.1) is∫

Rn

1

2
|u(x, t)|2 dx+

∫ T

0

∫
Rn

(
|∇u|2 + κ| div u|2

)
dx dt =

∫
Rn

1

2
|u0(x)|2 dx

(66.7)
and therefore div u is expected to converge to 0 in L2

t,x when κ → ∞. It is
therefore plausible to expect that as κ → ∞, the model (66.1) will approach
and incompressible limit.284

Heuristically, it seems that the fields u which are most likely to lead to a finite-
time blow-up from smooth initial data are the solutions of the form

u(x, t) = −v(r, t)x , r = |x| . (66.8)

For the fields of this form (66.1) becomes

vt = (1 + κ)
(
vrr +

n+ 1

r
vr

)
+ 3rvvr + (n+ 2)v2 . (66.9)

This equation can be studied in some detail.285

Here are some interesting facts which can be established:

• For n ≥ 5 the solutions can develop finite-time singularities from smooth,
compactly supported initial data.

• For n = 5, 6, 7, 8, 9 the equation has self-similar singularities of the form

v(r, t) =
1

2κ(T − t)
w

(
r√

2κ(T − t)

)
, (66.10)

with w(r) ∼ 1
r2 as r →∞. The number of different solutions of this form

is at least (and probably equal to) ν(n) − 2, where ν(n) is the smallest
integer which is bigger or equal to n+2

n−4 .

• For n ≤ 4 the solutions of (66.9) starting with smooth functions with
sufficiently fast decay to 0 at ∞ stay bounded for all time and cannot
develop a singularity. On the other hand.

284This limit has been studied by W. Rusin (in preparation).
285See the paper of P. Plechac and V.S. quoted above, and also the Thesis of Dapeng Du,
University of Minnesota, 2005.
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• On the other hand, even for n = 3, 4 it is likely that solutions with slow
decay at r =∞ can develop singularities at finite time, although this has
not been proved rigorously.

• It is conjectured that for n ≥ 5 there are solutions starting from compactly
supported smooth data with type II blow up at a finite time.

The global regularity for solutions with smooth compactly initial data in dimen-
sions n = 3, 4 for general solutions of (66.1) or (66.4) seems to be open.
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Model equations (continued)

Example IV (the complex Ginzburg-Landau equation)

Let us first return to equation (63.11) and consider its time-dependent version

Us −∆U + κU + κy∇U + U∇U +∇P = 0, divU = 0. (67.1)

We now assume U = U(y, s). If we set

u(x, t) =
1√

2κ(T − t)
U(

x√
2κ(T − t)

, s) , ds =
dt

2κ(T − t)
, (67.2)

the velocity field u will still solve the Navier-Stokes equation. To produce a
reasonable singularity, we need a solution of (67.1) which, say, does not approach
0 as s→∞ and satisfies

|U(y, s)| = O

(
1

|y|

)
, |y| → ∞, s→∞ . (67.3)

One of the simplest examples of such a solution would be a solution of (67.1)
which is periodic in s and satisfies (67.3). It is not known if such solutions exist.
In fact, it is probably not even known if there are solutions of this type where
the dependence on s is just due to rotation about, say, the x3-axis with uniform
angular velocity. The reader can check that, taking T = 0, the periodicity of
U(y, s) in s corresponds to the condition

uλ = u (67.4)

for some fixed 0 < λ < 1. This should be contrasted with the condition
that (67.4) is valid for all λ ∈ (0, 1) which we need for self-similar solutions.
In other words, a self-similar singularity discussed in lecture 63 has a continu-
ous group of scaling symmetries, whereas the singularity (67.2) with a U periodic
in s has only a discrete group of scaling symmetries, given by the scalings by
λk, k ∈ Z. Striking examples of singularities with discrete group of scaling
symmetries have been found (numerically) in the context of gravitational col-
lapse in general relativity, see for example the paper “Universality and Scaling
in Gravitational Collapse of a Massless Scalar Field”, Phys. Rev. Lett. 70, 9–12
(1993) by M. W. Choptuik.

We will now present a model equation which has singularities of such form,
although it probably does not have the purely self-similar singularities. The
Complex Ginzburg-Landau equation (CGL) is an equation for u = u(x, t) which
is a function on Rn × (0, T ) with values in C (the complex numbers). We will
write it in the form

iut + (1− iε)∆u+ |u|2σu = 0 . (67.5)
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We assume that ε > 0 and that also σ > 0. It is easy to see that sufficiently
regular solutions of (67.5) with sufficient decay at ∞ satisfy the energy identity∫

Rn

1

2
|u(x, t)|2 +

∫ t

0

∫
Rn

ε|∇u|2 dx dt′ =
∫
Rn

1

2
|u(x, 0)|2 dx . (67.6)

When σ ≤ 2
n , this estimate is sufficient to show that the solution cannot blow-

up from smooth initial data with sufficient decay at ∞. Note that the equation
has a non-trivial scaling symmetry

u(x, t)→ λ
1
σ u(λx, λ2t) (67.7)

and the “critical case” σ = 2
n correspond to the situation when

∫
1
2 |u0(x)|

2 dx

is invariant under the scaling u0(x) → λ
1
σ u0(λx), as we can expect. This cor-

responds to the 2d Navier-Stokes equation. For 2
n < σ < 2

n + 1
2 the equation is

super-critical, but the non-linearity is still manageable to allow a construction
of weak solutions, similar to what we did for 3d Navier-Stokes. In what follows
we will assume that our parameters are in this range and will refer to this sit-
uation as super-critical, even though we will not consider the case σ ≥ 2

n + 1
2 .

The reader can focus on the case n = 3, σ = 1, for example. We can make the
change of variables

u(x, t) = [2κ(T − t)]− 1
2σU(

x√
2κ(T − t)

, s) , ds =
dt

2κ(T − t)
. (67.8)

This gives

iUs + κ
U

σ
+ κy∇U + (1− iε)∆U + |U |2σU = 0 . (67.9)

This equation most likely does not have good steady states which would give self-
similar singularities of (67.5), although this may not been proved rigorously in
the literature. On the other hand, there is extremely strong numerical evidence
that the equation does have good solutions U(y, s) which are periodic in s. In
fact, the solutions are of the form

U(y, s) = Q(r)e−iωs , r = |y| , (67.10)

so that the solution u(x, t) will be

u(x, t) = [2κ(T − t)]− 1
2 (

1
σ− iω

κ )Q

(
|x|√

2κ(T − t)

)
. (67.11)

In quantum mechanical interpretation (which, strictly speaking, is precise only
for ε = 0) we can think of (67.10) as a solution corresponding to a pure energy
state Q of the equation (67.9), which in this interpretation can be thought of
as a linear equation with potential −|Q|2σ(r) = V (r).
We note that for the field u(x, t) to have a good limit as t → T− the function
Q should satisfy

Q(r) ∼ r− 1
σ+iωκ , r →∞. (67.12)
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The equation for Q reduces to an ODE in (0,∞) with the “boundary condi-
tion” (67.12) as r →∞ and the boundary condition Q′(0) = 0. It turns out the
ODE has many interesting solutions (which were calculated by a combination
of rigorous analysis and numerical calculation) and therefore we can conclude
with significant confidence that (67.5) does have solutions which blow up in
finite time. The reader is referred to the the paper “On self-similar Singular
Solutions of the Complex Ginzburg-Landau equation”, CPAM, Vol. LIV, 1215–
1242, (2006), by P. Plechac an V. S. The paper is also available on the arXiv
preprint server.

We should emphasize that a fully rigorous proof of the existence of singularities
which would not partly rely on a numerical calculations does not seem to be
available. In fact, even for the case ε = 0 (the non-linear Schrödinger equation)
with σ in the range considered here the existence of solutions (67.11) probably
has not been established rigorously, although based on numerical evidence it is
universally believed that such solutions exist.
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68.1 Stability for of steady solutions of Euler’s equation

Let u be a solution of steady Euler’s equation

u∇u+∇p = 0, div u = 0 (68.1)

in a domain Ω, with the usual boundary condition u · n = 0 at ∂Ω. We will be
interested in stability of the solution u. We consider solutions

u = u+ v (68.2)

with initial data close to u. The closeness of the initial datum v0(x) = v(x, 0)
to 0 will be measured in suitable functions spaces which will be specified later.
The equation for v is

vt + u∇v + v∇u+ v∇v +∇q = 0, div v = 0 , (68.3)

where q is defined by p = p+ q, with p being a pressure function associated to
the solution u. The boundary condition for v is v ·n = 0 at ∂Ω. The linear part
of (68.3) is

vt + u∇v + v∇u+∇q = 0, div v = 0 (68.4)

with the same boundary condition v · n = 0 at ∂Ω and with the understanding
the the q in (68.4) is not the same as the q in (68.3). We can write this equation
schematically as

vt = Lv , (68.5)

where v is a linear operator defined on the div-free fields v in Ω with v · n = 0.
More precisely, we have

L = −P (u∇v + v∇u) (68.6)

where P is the Helmholtz projection onto div-free fields with vanishing normal
component at ∂Ω. We will denote the space of all smooth vector fields of this
type by X. (We assume that the domain Ω has smooth boundary.) When
we consider linear equations such as (68.4), (68.5), the vector fields can be
considered complex-valued, with the usual understanding that it is the real part
or the imaginary part which describes the physics.

Quite naturally, when we can find v ∈ X such that for some λ ∈ C with Reλ > 0
we have

Lv = λv (68.7)

we can say that u is linearly unstable. If we can show that there is no λ >
0 with this property, would it we natural to say that the system is linearly
stable? If X were a finite-dimensional space and the operator L was similar
to a diagonal matrix, this might be a reasonable definition of a weak form of
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stability. However, the operator L above may not be normal (in the sense that
L∗L = LL∗) and its spectral properties may be quite tricky, depending on which
space it is considered. Therefore it turns out that even at the linearized level,
the study of stability for steady solutions of Euler’s equation is quite difficult,
including the issue of coming up with good definitions. For example, we have
already seen in lecture 20 that the steady states quite naturally come in infinite-
dimensional families. Therefore we mostly do not really expect the solution v
above to converge to 0, because even in the most favorable circumstances the
solution u + v may not be typically approaching u, but rather some steady
state u close to u. Moreover, the convergence to u may be quite weak. In
fact, we should view the Euler equation essentially as an infinite-dimensional
Hamiltonian system (even though this is not quite precise, it is really an infinite-
dimensional Poisson system).286 In finite-dimensional Hamiltonian systems

q̇ i =
∂H

∂pi
, ṗi = −

∂H

∂qi
(68.8)

the equilibria are given by the critical points of the Hamiltonian H. If (q, p) is
such an equilibrium and H has a (non-degenerate) local minimum/maximum
at (q, p), it is natural to consider (q, p) to be stable, but the solution starting
close to it will not approach it. Rather, they will oscillate about it. This
is clear even at the linearized level. In the context of Euler’s equation this
situation is complicated by the fact that the equilibrium (q, p) is not isolated.
Typically it will belong to an infinite dimensional “manifold” of other equilibria.
The infinite dimension of X can cause effects which are not possible in finite
dimension. For example, a trajectory v(t) may approach a limit in one space,
but may not converge on another space, in a similar sense as the sequence
fk(t) =

sin kt
k approaches 0 in C0 but not in C1. All these issues make the topic

of stability of Euler’s solutions much more subtle than the topic of stability
for the Navier-Stokes solutions. The Navier-Stokes case is much closer to the
finite-dimensional systems ẋ = f(x) with hyperbolic equilibria.287 Therefore,
oversimplifying somewhat, in the Navier-Stokes case the issue of stability of a
steady state solution u (in a bounded domain, say) typically does reduce to the
question whether the linearized operator has eigenvalues λ with Reλ > 0. In
fact, due to the parabolic nature of the equation, this remains to be true even
at the non-linear level: the linearized stability implies the (local) non-linear
stability. For Euler’s equation the situation is much more complicated, and
even at the level of the linearized equations there are many open problems.

Historically, the investigations of stability of Euler steady states started in the
19th century with the study of the eigenvalue problem (68.7), and the subtleties
of the whole picture became apparent only gradually.

286The exact definition will be given later.
287An equilibrium x of ẋ = f(x) is hyperbolic if the eigenvalues of the matrix Df(x) stay
away from the imaginary axis.
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We will start with a very simple example, which nevertheless leads to important
questions which remain unanswered.

We consider the 2d Euler’s equations in a domain {(x1, x2), 0 < x2 < a}, with
the x1 direction being periodic of period L, so that we can think of a strip on a
cylinder. The steady solution u will be a sheer flow

u(x) =

(
u1(x2)

0

)
. (68.9)

As we proceed, we will impose further assumptions on u as needed.

Let us first consider the linearized problem (68.4). In the case under consid-
eration this will be a linear equation with coefficient independent of x1. We
can therefore use one of an important techniques used for linear equations – the
decomposition in the Fourier modes in the directions where the coefficients are
constants. We seek the solution v, q in the form

v(x, t) =
∑

k∈2πZ/L

v̂(k, x2, t)e
ikx1 , q(x, t) =

∑
k∈2πZ/L

q̂(k, x2, t)e
ikx1 . (68.10)

We obtain an independent equation for each Fourier mode. By slight abuse
of notation we will still write v for v̂(k, x2, t) and q for q̂(k, x2, t), with the
understanding that k is fixed. Also, we will write u(x2) or even u for u1(x2).
The equations become

v1t + ikuv1 + v2u
′ + ikq = 0 ,

v2t + ikuv2 + q′ = 0 ,
ikv1 + v′2 = 0 ,

(68.11)

where we denote the partial derivative in the x2 direction by ′. The boundary
conditions are v2 = 0 at ∂Ω. We are interested in the solutions of (68.11) for a
given initial condition v(x2, 0) satisfying the boundary condition v2 = 0 at ∂Ω.
The reader can check that the case k = 0 is trivial. We will assume k ̸= 0 in
what follows. We can eliminate v1 and q from the system (68.11), by using the
first and the third equations to express q, v1 in terms of v2. We obtain

(k2v2 − v′′2 ) + iku(k2v2 − v′′2 ) + iku′′v2 = 0 . (68.12)

Letting f = −k2v2 + v′′2 ) and letting denoting by G = Gk the operator f → v2
(note that v2 is uniquely determined by f and the boundary condition v2(0) =
v2(a) = 0)288, we can re-write (68.12) as

ft + ikuf − iku′′Gf = 0 . (68.13)

One can get the same equation more directly if one works with the vorticity for
of Euler’s equation

ωt + {ψ, ω} = 0 , (68.14)

288The reader can easily check that G is an integral operator given by Gf(x) =∫ a
0 G(x, y)f(y) dy, with an explicitly calculable kernel G(x, y).
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as discussed in lecture 14. Writing

ω = curlu, η = curl v, v = ∇⊥φ , (68.15)

ηt + uη,1 + φ,1ω
′ = 0 . (68.16)

Using Fourier series in x1 for each unknown function, the equation at the fourier
mode with wave number k ̸= 0 is

ηt + ikuη + ikφω′ = 0 , φ′′ − k2φ = η , φ(0) = φ(a) = 0 , (68.17)

which is the same as (68.13). When ω is constant, which is the same as assuming
that u is linear in x2, equation (68.13) becomes

ft + ikuf = 0 . (68.18)

This can be solved explicitly:

f(x2, t) = f(x2, 0)e
iktu(x2) . (68.19)

Recalling that u(x2) is linear in x2 and assuming it is not constant, we see
that for each Fourier mode k ̸= 0 the function f(x2, t) converges weakly (but
not strongly) to 0. For these Fourier modes we see that v̂(k, x2, t) → 0 as
t → ∞. Combining this with the simple analysis of the mode k = 0, we see
that in the case u′′ = 0 the solutions of (68.11) always approach another shear
flow v = v(x2) as t → ∞. It is a difficult open problem if for small, smooth,
compactly supported initial data this behavior prevails even at the non-linear
level, for the solutions of (68.3) (still in the case u′′ = 0).

Equation (68.13) already shows quite well the nature of the linearized prob-
lem (68.3). We can write the equation as

ift = kHf (68.20)

where H is the operator
f → u(x2)f − u′′Gf . (68.21)

The operator f → u(x2)f can be considered as a bounded self-adjoint operator
on L2. It has a continuous spectrum, with no eigenvalues unless u is constant on
a set of positive measure. The operator f → Gf is compact and self-adjoint in
L2. The operator f → −u′′Gf is still compact, but may fail to be self-adjoint.
The operator H is therefore a possibly non-self-adjoint compact perturbation
of an operator with a continuous spectrum. The behavior of operators with
continuous spectrum can be in many respects quite different from that of finite
dimensional operators.289 Therefore some aspects of question (68.13) have no
analogy in finite dimension, and the infinite-dimensional effects are in some sense
much more pronounced than what we see for the Navier-Stokes equation in a
similar situation, where the corresponding linear operator will be quite closer
to the finite-dimensional case.
289A good reference for this topic is Chapter 10 of T. Kato’s book “Perturbation Theory of
Linear Operators”.
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Homework Assignment 5
Due April 26

Consider the cubic CGL equation (lecture 67)

iut + (1− iε)∆u+ |u|2u = 0 , (68.22)

where ε > 0. Consider the equation on a 3d torus Ω, such as Ω = R3/Z3.
We are interested in the Cauchy problem of finding a solution of (68.22) in
Ω × (0,∞) with initial condition u(x, 0) = u0(x), where u0 ∈ L2(Ω) is given.
Use Galerkin approximations to show that this problem has at least one weak
solution which can be defined in a way similar to the Leray-Hopf weak solution
of the Navier-Stokes equation constructed in lecture 57. In particular, show that
one can construct u satisfying a suitable version of energy inequality (67.6), with
u(t) → u0 in L2 as t → 0+, and with the equation being satisfied in the sense
of distributions.

As an optional part, you can also study the case of dimension n = 2. In this
case the solutions are unique and smooth for t > 0. It takes some effort to
establish the uniqueness and regularity in all detail,290 you can only outline the
main reasons why it is possible to obtain this result.

290Still for n = 2. In the case n = 3 one does expect that singularities can develop from
smooth data, and uniqueness is not clear.
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Stability of steady solutions of Euler’s equation (continued) We continue
with our investigations of the stability of the shear flow (68.9). Recall that
the linearized stability problem for this situation leads to the study of equa-
tion (68.20), where the operator H is defined by (68.21). As we already dis-
cussed (see (68.7)), the first natural task is to investigate the discrete spectrum.
In the context of (68.20) we will be looking at the solutions of

Hf = cf , (69.1)

where c ∈ C and f belongs to a suitable class of functions X where the linear
equation (68.20) is considered. Natural choices of X include X = L2(0, a) or
X = Cα([0, a]). If (69.1) has a non-trivial solution f ∈ X when Im c > 0, then
obviously the steady state (68.9) is not linearly stable as t→∞. With Im c < 0
we have instability for t→ −∞.

In general, the problem of finding the eigenvalues of H is non-trivial and except
in some special cases there is no simple way of determining them. Here we will
only briefly recall some known results.291

Let us start with the following simple observation: if u′′ does not vanish in [0, a],
then we can define a scalar product

(f, g) = (f, g)u′′ =

∫ a

0

1

|u′′(x)|
f(x)g(x) dx (69.2)

and it is easy to check that H is self-adjoint with respect to this scalar product,
i. e.

(Hf, g) = (f,Hg) . (69.3)

For simplicity we can assume that u′′ is continuous in [0, a] and since we assume
that u′′ ̸= 0 in [0, a], the norm obtained from scalar product (69.2) is equivalent
to the usual L2-norm. From (69.3) we see that any eigenvalue c of H has to be
real, at least when H is considered as an operator on L2(0, a). From this one
can see a (weak version of) the well-known Rayleigh stability criterion for shear
flows (68.9).

If u is either uniformly convex or uniformly concave, then (69.1) has no solutions
with Im c ̸= 0 (and f ∈ L2).

There are many ways in which this can be seen and we will also later discuss
various extensions of this result.

291The reader interested in more details can consult for example papers by Zhiwu Lin, such
as “Instability of some ideal plane flows”, SIAM J. Math. Anal. 35 (2003), no. 2. Many ideas
are also contained in the paper by L. D. Faddeev “On the theory of the stability of stationary
plane parallel flows of an ideal fluid”, (Russian) Zap. Naucn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI) 21 (1971), 164–172.
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In the study of the eigenvalues of H, it is useful to allow changing the parameter
k continuously, which corresponds to allowing the circumference L the cylinder
in which we consider our “strip” {0 < x2 < a} to change. We also recall that the
function G in the definition of H depends on k, so that we can write G = Gk.
It is easy to see that Gk → 0 as k →∞ (in suitable norms).

We can rewrite (69.1) as

(u− c)f − u′′Gkf = 0 . (69.4)

Letting g = (u− c)f , we re-write this as

g − u′′Gk
g

u− c
= 0 . (69.5)

The operator

g → u′′Gk
g

u− c
(69.6)

is obviously well defined for c /∈ u([0, a]). When u is sufficiently regular and
u′ > 0, it turns out the operator has a well-defined limits Mk(c ± i0) when
c± iε, with ε→ 0+. Here we use the notation

Mk(c+ i0)g = lim
ε→0+

Mk(c+ iε)g . (69.7)

The precise investigation of the conditions under which such limits exists (and
in which sense they are taken) will not be discussed at this point, we only wish
to illustrate some of the main ideas.

Assuming f solves (69.4), we set

f =
gε

u− c− iε
(69.8)

and let ε→ 0+ to obtain
g =Mk(c+ i0)g . (69.9)

One can also show that Mk(c + i0)g → 0 as k → ∞, and therefore (69.4) has
no solutions when k is large. In terms of the operator H = Hk this means
that H = Hk has no discrete spectrum when k is sufficiently large. Note that
this can also be seen directly from (69.4). However, the form (69.9) of (69.4) is
useful also for other purposes.

We can take a large k so that Hk has no discrete spectrum and start lowering
until some discrete spectrum possibly appears. Under the assumption u′ > 0
or u′ < 0 (which we assume in what follows) it can be shown that if a discrete
spectrum appears at a certain k, then it has to appear at a points c = u(x1) ∈
(u(0), u(a)). It turns out that when u′′ ̸= 0, there can be no discrete spectrum.
In this case the operator H only has the same continuous spectrum as the simple
multiplication operator f → uf . If u′′ has exactly one zero in (0, a), say, x1,
then the discrete spectrum (assuming it appears) has to appear at c = u(x1).
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Let us discuss this case in more detail. Letting ϕ = ϕk = Gkf , one can re-write
equation (69.4) as

−ϕ′′ + u′′

u− c
ϕ = −k2ϕ , (69.10)

which can be thought of as an equation for eigenvalues of the operator

L = − d2

dx2
+ V, V = − u′′

u− c
, (69.11)

with Dirichlet boundary condition ϕ(0) = ϕ(a) = 0 at the endpoints. Note
that when u′′ is sufficiently regular, then V is a continuous, as u′′(x1) = 0.
When V ≥ 0, the operator L obviously cannot have negative eigenvalues, and
hence the discrete spectrum does not appear. On the other hand, when V is
sufficiently negative, there will a non-trivial eigenfunction ϕ with Lϕ = −k2ϕ
for some k ̸= 0. If this is the case, what happens to the solutions of (69.4) if we
further decrease k? Since the spectrum of L is discrete, the discrete spectrum
of Hk cannot stay at c = u(x1), and it has to move away from the real axis,
into the complex region. In the simplest situation a pair of complex conjugate
points in the spectrum of Hk is created. As we have seen above, this means
that (for L corresponding the the k) the linearized equation (68.20) will have
solutions with exponential growth. The reader interested in further details of
this topic is referred to the papers of L. Faddeev and Z. Lin quoted above. The
situation when u′ ̸= 0 and u′′ has finitely many zeroes is more complicated as
the complex eigenvalues c of Hk can potentially “travel” between the zeroes of
u′′ as k is lowered, appearing first at some k and then either disappearing again
later, or being joined by another pair. When u is not monotone, additional
complications appear. We see that even for shear flows (68.9) the discrete
spectrum of the linearized operator can exhibit quite non-trivial behavior.
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70.1 Internal waves in rotating fluid

Let us consider a steady state of Euler’s equation given by

u = Ω e3 × x , (70.1)

where e3 is the unit vector in the direction of the x3-axis and Ω is angular
velocity. (The reader can calculate the pressure as an easy exercise.) We will
again consider the solutions u(x, t) which are small perturbations of this steady
state solution. Let us consider the perturbations in the coordinate frame which
rotates with the fluid. Denoting the perturbation in this frame by v, assuming
that the density of the fluid is ρ = 1, the equation for v is

vt + 2Ωe3 × v + v∇v +∇p = 0 , div v = 0 . (70.2)

The linear part of this equation (which can be considered as a linearization of
Euler’s equation about the solution (70.1)) is

vt + 2Ωe3 × v +∇q = 0 , div v = 0 . (70.3)

This equation is sometimes called the Poincaré-Sobolev system. Its a linear
system with constant coefficients, and therefor its solutions can be analyzed by
using the Fourier transformation. We let

v(x, t) =
1

(2π)3

∫
R3

v̂(k, t)eikx dk (70.4)

and obtain from (70.3)

v̂t + 2Ωe3 × v̂ + ikq̂ = 0 , kαv̂α = 0 . (70.5)

Let Xk ⊂ C3 be given by {v̂, kαv̂α = 0} and let Pk : C
3 → Xk be the (complex)

linear projection with Pkk = 0. Equation (70.5) can be written as

v̂t + 2ΩPk(e3 × v̂) = 0 , kαv̂α = 0 . (70.6)

the matrix of Pk is292

Pk = I− n⊗ n , n =
k

|k|
. (70.7)

The let M be the matrix of the map v̂ → e3 × v̂ and let

A = Ak = PkM , (70.8)

292We denote by I the unit matrix and by a⊗ b the matrix aαbβ .
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so that (70.6) can be written as

v̂t + 2ΩAv̂ = 0 , kαv̂α = 0 . (70.9)

Evaluating A, we obtain

A =

 −n1n2 −1 + n21 0
1− n22 n1n2 0
−n3n2 n3n1 0

 . (70.10)

Let

e =

 −
n2√
n2
1+n

2
2

n1√
n2
1+n

2
2

0

 , f =


− n3n1√

n2
1+n

2
2

− n3n2√
n2
1+n

2
2√

n21 + n22

 . (70.11)

We note that the vectors e, f, n form an orthonormal frame e, f is a basis of Xk,
provided |n3| ̸= 1, which we assume in what follows. One easily checks

Ae = n3f, Af = −n3e , (70.12)

and

A(e+ if) = −in3(e+ if), A(e− if) = in3(e− if) . (70.13)

Hence the general solution of (70.9) is

v̂ = a(e+ if)ei2Ωn3t + b(e− if)e−i2Ωn3t , (70.14)

where a, b ∈ C. We see that the solutions of (70.3) can be represented as

v(x, t) =
1

(2π)3

∫
R3

[
a(k)(ek + ifk)e

i(kx+2Ωn3t) + b(k)(ek − ifk)ei(kx−2Ωn3t)
]
dk ,

(70.15)
where a(k), b(k) are complex valued functions of k belonging to, say, L2(R3).
Even with this explicit formula, there are many natural questions which are
not trivial. For example, you can try to determine under which conditions the
solutions converge to zero in L2

loc, in the sense that
∫
BR
|v(x, t)|2 dx → 0 as

t→∞ for any bounded ball BR.

From (70.15) we see that we can consider the solutions of (70.3) to be composed
of waves with the dispersion relations293

ω+(k) = 2Ω
k3
|k|
, ω−(k) = −2Ω

k3
|k|

. (70.16)

The corresponding “group velocities” of the wave packets will be ∇ω±(k) . We
see high-frequency wave packet propagate slower than low-frequency wave pack-
ets, quite contrary to what one has in classical dispersive equations such as the
Schrödinger equation, Airy equation294, the wave equation, etc.

293See for example the notes from the last years course Theory of PDEs, lecture 68
294ut = uxxx, the linearization of KdV .
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71.1 Kelvin’s waves on vortices

We mention another situation where classical stability calculations have been
made in some detail, starting with a well-known 1880 paper “Vibrations of a
columnar vortex” by Kelvin.295 Here we will not go into detailed calculations,296

our goal is essentially just to point an interesting situation.

We consider steady-state solutions of the 3d incompressible Euler equation of
the form

u(x) = V (r)eθ, r =
√
x21 + x22, eθ = (−x2

r
,
x1
r
, 0) . (71.1)

The linearized equation

vt + u∇v + v∇u+∇q = 0, div v = 0 , (71.2)

is most naturally analyzed in the cylindrical coordinates, as the symmetries of
the solution u reduce to a simple invariance under shifts in these coordinates.
As usual, the cylindrical coordinates are given by

x1 = r cos θ, x2 = r sin θ, x3 = z . (71.3)

We will write
v = vrer + vθeθ + vzez , (71.4)

where er = (x1

r ,
x2

r , 0) and ez = e3.

In polar coordinates (71.2) becomes

vr,t +
V
r v

r
,θ − 2V

r v
θ + q,r = 0 ,

vθ,t +
V
r v

θ
,θ + (V ′ + V

r )v
r + qθ

r = 0 ,

vz,t +
V
r v

z
,θ + q,z = 0 ,

(rvr),r
r +

vθ,θ
r + vz,z = 0 .

(71.5)

The coefficients in this linear system are independent of θ and z, and hence it is
natural to decompose the solution into the Fourier modes along those directions.
In other words, we can assume that

(vr, vθ, vz, q) =
(
v̂r(r, t), v̂θ(r, t), v̂z(r, t), q̂(r, t)

)
eimθ+ikz , (71.6)

295Phil. Mag. 10, p. 155, 1880
296The reader interested in details can consult for example to the book “Vortex Dynamics”
by P. G. Saffman or to the paper “Kelvin waves and the singular modes of the Lamb-Oseen
vortex” J. Fluid Mech. 551 (2006), 235–274, by D. Fabre, D. Sipp, and L. Jacquin
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where m ∈ Z and k ∈ R. We now change notation and write

(v̂r, v̂θ, v̂z, q̂) = (u, v, w, q). (71.7)

Formally the use of v for v̂θ is not quite correct as we already used v above in
a different sense, but we will see that this slight abuse of notation brings no
problems. We also set

Ω =
V

r
, B = V ′ +

V

r
. (71.8)

With the Ansatz (71.6) and notation (71.7), (71.8) system (71.5) becomes

ut + imΩu− 2Ωv + q′ = 0 ,

vt + imΩv +Bu+ imq
r = 0 ,

wt + imΩw + ikq = 0 ,
(ru)′

r + imv
r + ikw = 0 ,

(71.9)

where the derivative ∂
∂r is denoted by ′. This can be viewed as a system of

equation for functions of (r, t) ∈ [0,∞) × R. The functions u, v, w, q have to
satisfy certain “boundary conditions” at r = 0 so that the coordinate singularity
at r = 0 is compensated for and the “intrinsic” velocity field and pressure
are smooth at the x3−axis.297 System (71.9) can be thought of as a more
complicated version of (68.11). Important special cases of V include

V (r) ∼

{
r , r < 1 ,
1
r , r ≥ 0 ,

(71.10)

which was already considered by Kelvin (and where some explicit calculations
can be performed) and the so-called Lamb-Oseen vortex given by

V (r) ∼ 1− e−r2

r
, (71.11)

which was investigated numerically in the above quoted paper by Fabre et al.

In general, the study of solutions of (71.9) seems to be quite difficult. For
example, the determination of the discrete spectrum, corresponding to solutions
where

(u(r, t), v(r, t), w(r, t)) = (u(r), v(r), w(r))eλt (71.12)

leads to spectral problem for a linear ODE which appears to be hard to investi-
gate without some help from numerical simulations. It seems that even for the
Lamb-Oseen vortex (71.11) it has not been rigorously proved that there are no
exponentially growing modes (corresponding to λ > 0 in (71.12)), although nu-
merically this appears to be the case. The study of solutions of (71.9) and (71.6)
for large times is also difficult. For example, one can speculate that in the case

297The reader can work out these conditions as an exercise.
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of the Lamb-Oseen vortex a solution of (71.6) starting from smooth, rapidly
decaying data will converge to zero on in L2 on compact subsets of R3. As far
as the author knows, this has not been proved rigorously.

As in the case of rotating fluids, the “waves” generated by the system (71.6)
exhibit unusual dispersion. The dispersion appears to be too weak for implying
strong results about the full non-linear problem

vt + u∇v + v∇u+ v∇v +∇p = 0, div v = 0 (71.13)

by methods used in the theory of dispersive equations. Nevertheless, in the case
of rotating fluids the dispersive effects can be used to improve existence results
for the Navier-Stokes equation (where the viscosity will rapidly damp high fre-
quencies for which dispersion effects are particularly weak), see for example the
work of Babil, Mahalov and Nicolaenko.298 Similar effects can presumably be
expected near more general equilibria which generate some dispersion.

298Makhalov, A. S., Nikolaenko, V. P., Global solvability of three-dimensional Navier-Stokes
equations with uniformly high initial vorticity. Russian Math. Surveys 58 (2003), no. 2,
287–318
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72.1 Non-linear Stability

Euler’s equation describes a motion of continuum subject to certain restrictions
(incompressibility, the boundary conditions, etc.). As such, it can be viewed as
an infinite-dimensional version of classical Hamiltonian systems. This point of
view was emphasized in the 1960s by V. I. Arnold, who has obtained important
insights into the behavior of solutions of the Euler’s equation via considerations
related to various geometrical interpretations of the equations and analogies
with phenomena of finite-dimensional Classical Mechanics.299 Among those in-
sights are certain stability criteria for 2d steady state solutions of incompressible
Euler’s equations, which we plan to discuss.

We start by a few simple classical observations. Let us consider a Classical
Mechanics system described by a phase space x1, . . . , xn, p1, . . . , pn and Hamil-
tonian function H = H(x, p). (In the orthodox notation one should write
x1, . . . , xn, p1, . . . , pn, but using the lower indices everywhere will be OK for
our needs.) The equations of motions are

ẋi =
∂H

∂pi
, ṗi = −

∂H

∂xi
. (72.1)

Let (x, p) be an equilibrium of the system. Obviously, the equilibria can be
identified with the critical points of H. As is customary in this context, we
introduce a 2n× 2n matrix

J =

(
0 I
−I 0

)
(72.2)

and write (72.1) as
ż = J∇H , z = (x, p) . (72.3)

The linearized equations about the equilibrium z = (x, p) are

ż = J∇Q(z) , Q(z) =
1

2
H,zαzβ (z) zαzβ . (72.4)

Here the indices α, β, . . . run from 1 to 2n, and the summation convection is
understood. This can be also written as

ż = Az , (72.5)

where A is the matrix J∇2Q .

299The reader is refereed to the books “Mathematical Methods of Classical Mechanics” by
V. I. Arnold, and “Topological Methods in Hydromechanics” by V. I. Arnold and B. Khesin.
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Due to the way the matrix A arises, it is not a “generic” matrix. If we denote
by ω the “canonical symplectic form”, which is the bi-linear form given by

ω(z′, z′′) = Jαβz
′
βz

′′
α , (72.6)

it is easy to check that

ω(Az′, z′′) + ω(z′, Az′′) = 0 , z′, z′′ ∈ R2n . (72.7)

The set of such matrices A form a Lie algebra which is usually denoted by
sp(2n,R). It is a Lie algebra of the symplectic group Sp(2n,R) which con-
sists of all 2n × 2n matrices M which preserve the from ω, in the sense that
ω(Mz′,Mz′′) = ω(z′, z′′) for each z′, z′′ ∈ R2n. The matrices A ∈ sp(2n,R)
can be written as

A = JS , S is symmetric. (72.8)

Clearly, the matrices the matrices (72.8) are describes by n(2n+1) parameters,
whereas a “generic” 2n× 2n matrix is described by (2n)2 parameters.

In the simples case n = 1 we have

sp(2,R) = {A ∈M2×2, TrA = 0} = sl(2,R) . (72.9)

The important consequence of these observation is the following. Whereas for
finite dimensional truncations of the Navier-Stokes equations (of dimension n,
say) it seems to be reasonable to assume that the linearization of the equation
at a “generic equilibrium” is given by a linear system

ẋ = Ax (72.10)

where A is a “generic” n× n matrix, the linearization of a Hamiltonian system
(in dimension n, with the phase space of dimension 2n) is given by a matrix
A ∈ sp(2n,R). A generic real n×n matrix A has n distinct eigenvalues (some of
them possibly complex, coming in complex-conjugate pairs), with no eigenvalues
of the imaginary axis. In this case the space Rn can be written as a direct sum
of a stable and unstable subspaces,

Rn = Xs +Xu , (72.11)

with trajectories starting in Xs being exponentially convergent to 0, and tra-
jectories starting in Xu being exponentially repelled from 0.

The spectral behavior of a generic matrix A ∈ sp(2n,R) is different. For ex-
ample, in the simplest case n = 1 the reader check that any small perturbation
of

A =

(
0 −1
1 0

)
(72.12)

in sp(2,R) has purely imaginary eigenvalues. Therefore even in the generic case
we cannot assume that the spectrum of A is away from the imaginary axis. 300

300The reader can consult for example the book “Classical Mechanics” by V. I. Arnold
concerning more information about the spectral properties of matrices in sp(2n,R).
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Also, when A has a real eigenvalue λ, then −λ is also an eigenvalue, due to the
condition TrA = 0. Based on these simple observations we can expect that the
stability theory for “generic equilibria” for Hamiltonian systems will be different
from the case when the linearization can be considered as a generic n×n matrix.

Let consider the simplest case of a 1d Hamiltonian system with (x, p) ∈ R2 and

H =
1

2
p2 + V (x) , V (x) = (1− x2)2 . (72.13)

The Hamiltonian H has three critical points

z1 = (x1, p1) = (−1, 0), z2 = (x2, p2) = (0, 0), z3 = (x3, p3) = (1, 0) .
(72.14)

The reader can calculate the linearized equations at these equilibria. At z1, z3
the eigenvalues of the linearized system will by on the imaginary axis, whereas
at z2 the eigenvalues will be real. The points x1 and x3 represent non-degenerate
local minimal of the potential V and solutions obtained by small perturbations
of the equilibria z1 or z3 will oscillate about these equilibria, staying close to
them, but not approaching them. The equilibrium z2 is easily seen to be unstable
both linearly and non-linearly. The type of stability exhibited by z1 and z3 is,
roughly speaking, the best we can hope for in the case of (finite-dimensional)
Hamiltonian systems. Next time we will consider more complicated versions of
this situation.
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73

4/23/2012

Non-linear Stability (continued)

The simple fact that local minima/maxima of the Hamilton function H are
stable equilibria of the Hamiltonian system

ż = J∇H(z) (73.1)

can be combined with conservation laws to obtain information about stability
of certain solutions. Assume that the hamiltonian is H and that f = f(x, p) is
a quantity conserved by the evolution, i. e.

ḟ = fxẋ+ fpṗ = fxj
Hpj − fpjHxj

= 0 . (73.2)

We introduce the usual notation

{f,H} = fxjHpj − fpjHxj . (73.3)

This expression is called the Poisson bracket of the functions f = f(x, p) and
H = H(x, p). The conservation of a quantity f = f(x, p) under the evolution
generated by H is equivalent to {f,H} = 0.

Let us fix c ∈ R and consider the surface Σc = {f = c}. Assume Σ is a smooth
surface on which ∇f ̸= 0. Let z be a local minimum of H on Σc. The point z
may not be an equilibrium of the system (73.1), as we may have

∇H(z) = λ∇f(z) (73.4)

for some Lagrange multiplier λ which may not vanish. Clearly the set {H =
H(z) , f = c} is invariant under the evolution, and so is the set {f = c , H <
H(z) + ε}. In some situations this can be used to show stability properties of
certain solutions (which in this context can be called “orbits”). Note that we
can also consider local minima of f on the surfaces {H = E}. One can also
consider a situation with several conserved quantities f1, . . . , fm.

Rather than going into the general theory related to these themes, we will
present a simple example which will illustrate the main points relevant for the
situation arising the in context of Euler’s equations.

We consider the classical problem of a particle of unit mass moving in R2 in
the potential V = V (r), with r =

√
x21 + x22 . The Hamiltonian is

H(x, p) =
1

2
|p|2 + V (r) . (73.5)

The system is invariant under rotations

(x, p)→ (R(θ)x,R(θ)p) , R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
. (73.6)
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Let us denote by X the phase-space R4 and by G = S1 the rotation group. For
a function f on X and R ∈ G we will write

Rf(z) = f(R∗z) . (73.7)

We easily verify
{Rf,Rg} = R{f, g} , RH = H , (73.8)

and therefore the whole system “descends” on the manifold301 of the G−orbits
Y = X/G. The functions on Y can be identified with the functions f on X
satisfying Rf = f . The Poisson bracket naturally “descends” to functions on
Y , due to (73.8): given f, g on Y , we identify them with invarient functions
f̃ , g̃ in X, take {f̃ , g̃} in X, which will be an invariant function on X, and can
therefore be (uniquely) identified with a function {f, g} on Y . A natural choice
of local coordinates302 on Y is r, pr, pθ where r, θ are the polar coordinates in
the (x1, x2) plane and

p1dx1 + p2dx2 = p1d(r cos θ) + p2d(r sin θ) = prdr + pθdθ . (73.9)

These coordinates are usually obtained (in this example) as follows: we consider
the Lagrangian

L(x, ẋ) =
1

2
|ẋ|2 − V (r) =

1

2
(ṙ2 + r2θ̇2)− V (r) . (73.10)

Then

pr =
∂L

∂ṙ
, pθ =

∂L

∂θ̇
. (73.11)

The action of the group G = S1 on X in the coordinates r, θ, pr, pθ is

R(θ0)(r, θ, pr, pθ) = (r, θ − θ0, pr, pθ) , (73.12)

and hence (r, pr, pθ) are natural (local) coordinates in (a large part of) Y , as
stated. For two functions f = f(r, pr, pθ), g = g(r, pr, pθ) their Poisson bracket,
as defined above, is easily seen to be

{f, g} = frgpr − fprgr . (73.13)

In particular, this means that

{pθ, f} = 0 for each f = f(r, pr, pθ) . (73.14)

In general, functions C with the property that {C, f} = 0 for each f are called
Casimir functions, and we see that in our case the function pθ is an example of

301In our case Y can be identified with R3 (with zero being a “branch point” of the pro-
jection X → Y ) although this may not be immediately obvious if you have not seen these
considerations before. However, for our purposes here we do not really need to identify Y
very precisely. In general, if a groups acts of X, the set of orbits X/G may not be a manifold
in a neighborhood of each point.
302which do not necessarily parametrize the whole Y in a one-to-one manner, only “most of
it” - the reader can do the exact analysis of the situation as an exercise
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a Casimir function (on the space Y ). The function pθ can be identified with the
angular momentum p×x and equation (73.14) expresses the conservation of the
angular momentum303 in the situation we consider here, and any Hamiltonian
invariant under the action (73.6) (or (73.12)). The Hamiltonian (73.5) can be
expressed in the (r, θ, pr, pθ) coordinates as

H =
p2r
2

+
p2θ
2r2

+ V (r) . (73.15)

The evolution of the variables r, pr, pθ is given by

ṙ =
∂H

∂pr
, ṗr = −

∂H

∂r
, ṗθ = 0 . (73.16)

The equilibria of this system correspond to circular orbits of the point around
the origin, and they are given by critical points of H for a given fixed pθ. In
other words, we are looking for critical points of H constrained to pθ = const.
Let us assume that for some fixed pθ = pθ the Hamiltonian H(r, pr, pθ) has a
strict local minimum on the surface pθ = pθ at r = r, pr = pr. Note that this
means that pr = 0. Let us in fact assume that the minimum is non-degenerate,
in the sense that the Hessian matrix (with respect to (r, p))(

H,rr H,rpr

H,prr Hprpr

)
(73.17)

at (r, pr, pθ) is (strictly) positive definite. One can then see that for any initial
condition (r, pr, pθ) close to (r, pr, pθ) the solution of (73.16) will stay close
to (r, pr, pθ). In fact, in the situation we are considering, with strictly positive
definite Hessian (73.17), it is not hard to see from the Implicit Function Theorem
that for each p̃θ close to pθ the surface pθ = p̃θ has a local minimum (r̃, p̃r) of
H close to (r, pr), which is unique in a small neighborhood of (r, pr) and has
similar stability properties as (r, pr). Here we can see everything quite explicitly,
the equilibria correspond to the circular trajectories, and their stability means
that a small perturbation of a circular trajectory will be close to a circular
trajectory (assuming that the Hessian (73.17) is strictly positive definite, or
strictly negative definite).

For the Newtonian potentials V (r) = −αr (with α > 0) we know that the orbits
are ellipses, and from this it is easy to see that in fact any (bound) trajectory is
stable in the above sense. For potential which are not newtonian the trajectories
which are not circular may not be closed.

303This is related to Noether’s theorem and also to the fact that if we take the function pθ
as a hamiltonian, the motion we get is exactly the one generated by the rotations. This can
be seen easily from the equation in the (r, θ, pr, pθ) coordinates, which are

ṙ =
∂H

∂pr
, ṗr = −

∂H

∂r
, θ̇ =

∂H

∂pθ
, ṗθ = −

∂H

∂θ
.

Note that for H = pθ the motion will give the rotations by the group. These themes are
studied in detail in the context of momentum maps on symplectic manifolds with a group
action.
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We see from the above picture that for the stability of circular orbits it is
necessary that the function304

Veff =
p2θ
2r2

+ V (r) (73.18)

has strict local minima in r. (The case when V has a local maximum corresponds
to an unstable circular orbit, as the Hessian (73.17) will be indefinite in this
case.) The newtonian potential in dimension n ≥ 3 is

V (r) = − α

rn−2
, (73.19)

where α > 0. (Our assumption that the motion takes place in a 2d subspace is
justified even in Rn, due to the conservation of the n-dimensional momentum.)
The reader can check that for Newtonian potentials in dimension n = 3 the
potential Veff does have a unique strict local minimum for each pθ ̸= 0. The
corresponding circular trajectories will be stable. For n ≥ 4, the potential Veff
does not have local minima, and therefore there are no stable circular orbits
(nor any other reasonable stable bound orbits, as the reader can check). The
case of dimension n = 2 is left to the reader as an exercise.

Similar considerations can be used for studying stability of certain solutions of
2d Euler’s equations, as observed by V. I. Arnold in the 1960s.

304sometimes called the effective potential
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74

4/25/2012

Non-linear stability (continued)

The simple example of planetary orbits we calculated last time can be compared
with the situation we have for the 2d Euler’s equation. We have seen (see e. g.
lecture 20) that the Euler evolution

ωt + u∇ω = 0 (74.1)

preserves the orbits

Oω0 = {ω , ω = ω0 ◦ ϕ−1 , ϕ ∈ SDiff(Ω)} , (74.2)

where SDiff(Ω) is the group of the volume-preserving diffeomorphisms of Ω. (In
fact, we can take just the connected component of the identity.) The fact that
ω(t) stays in Oω0 (with ω0 = ω(0)) is closely related to the conservation of the
quantities

If (ω) =

∫
Ω

f(ω) dx (74.3)

by the Euler evolution. One can introduce a notion of Poisson bracket of the
space of the vorticities so that the Euler equation becomes

ω̇ = {ω,E} , (74.4)

where E is the energy functional (20.11) and

{If , F} = 0 (74.5)

for any (sufficiently regular) functional F on the space of vorticities. This is
analogous to the equations (73.16), with the variables r, pr, pθ playing the role
of ω the function H playing the role of E and the condition pθ = const. playing
the role of If (ω) = const . The surfaces pθ = const. play the role of the orbits
Oω0 . Just as we could get some stability of equilibria which are local minima
of H|{pθ=c} for a fixed c, we can expect (following V. I. Arnold) to get some
stability for equilibria of Euler’s equations which are local minima/maxima of
the energy E on an orbit.

We start with a formula (due to V. I. Arnold) for the second variation of the
energy E restricted to an orbit Oω0 at an equilibrium ω ∈ Oω0 . (Note that for
ω ∈ Oω0 we trivially have Oω0 = Oω.) As we have seen in lecture 20, the steady
states in Oω0 formally correspond to the critical points of the restriction of E
to Oω0 .

We will consider the orbit Oω0 formally as a manifold (which is a sub-manifold of
the space of the vorticities). In reality the sets Oω0 are not really sub-manifolds
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of the usual functions spaces, but at this point we will not worry about this.
The tangent space TωOω0 at ω will be (formally) identified with the space of
functions

η = ξ∇ω (74.6)

where ξ is a smooth div-free field on Ω which is tangent to ∂Ω. We will express
the second variation

δ2E(ω) (74.7)

as a quadratic form in η.

There is one point which is perhaps worth commenting on before doing the
calculation. Let M be a manifold and f : M → R a function on M . Assume
that x1, . . . , xn are local coordinates on M . The differential df is given by

df =
∂f

∂xi
dxi (summation understood) . (74.8)

and df(x) is intrinsically defined as a linear form of the tangent space TxM .
The usual definition is as follows. If ξ ∈ TxM and γ(t) is a curve in M with
γ(0) = x and dγ

dt |t=0 = ξ, then

df(x)ξ =
d

dt
|t=0f(γ(t)) . (74.9)

In general, the second variation of f does not have an intrinsic meaning as a
quadratic form on TxM . For example, in the above situation, when we take

d2

dt2
|t=0f(γ(t)) =

∂f

∂xi
(x)γ̈i(0) +

∂2f

∂xi∂xj
(x)ξiξj , (74.10)

we see that the term on the left-hand side is intrinsic, but the first term is not a
quadratic form of TxM , as it depends of γ̈(0). However, when df(x) = 0 (which
is of course an intrinsic condition), then we see from (74.10) that the expression

∂2f

∂xi∂xj
(x)ξiξj (74.11)

is well-defined intrinsically as a quadratic form on TxM . We will carry out the
calculation of (74.7) next time.

315



Homework assignment 6

due May 10, 2012

Consider a 2d ideal incompressible fluid with inhomogeneous density ρ = ρ(x, t).
Assume the fluid occupies a two-dimensional region Ω which is periodic of period
L in the x1 direction, and x2 ∈ (0, a), where a > 0. The equations of motion
are

ρut + ρu∇u+∇p = −ρge2 ,
ρt + u∇ρ = 0 ,

div u = 0 .

where e2 is the unit vector in the x2 direction, g > 0 is a constant describing
the acceleration due to gravity, u is the velocity field of the fluid, and p is the
pressure in the fluid. The boundary condition are u2 = 0 at {x2 = 0} and
{x2 = a} . Show that any (sufficiently regular) configuration with u = 0 and
ρ = ρ(x2) is a steady-state solution (for a suitable p). Analyze the linearized
stability of this solution.
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75

4/27/2012

75.1 The second variation of energy on a vorticity orbit
at a steady solution of 2d Euler

We consider the 2d (incompressible) Euler’s equations in a domain Ω. We as-
sume that Ω is smooth, with possibly several boundary components Γ0,Γ1, . . . ,Γm.
We describe the velocity field u with the help of the stream function ψ, see lec-
ture 14, (14.9). We will consider the vorticity ω as our primary variable. The
stream function ψ is obtained from ω by solving

∆ψ = ω, ψ|∂Ω is locally constant and
∫
Γj

∂ψ
∂n = γj , (75.1)

where γj are given. We can also assume ψ|Γ0 = 0 without loss of generality. The
condition that ψ be locally constant at ∂Ω expresses the assumption that no
fluid flows through the boundary, which means that the boundary components
Γj are streamlines. If ω and γj are given,305 then ψ (which is determined up to
a constant306) can be obtained by minimizing the functional∫

Ω

1

2
|∇ψ|2 −

∑
j

∫
Γj

γj
∂ψ

∂n
(75.2)

over the functions ψ with ∇ψ ∈ L2(Ω). From the Kelvin Circulation Theorem
we see that the quantities ∫

Γj

∂ψ

∂n
(75.3)

are constants of motion. The “vorticity coordinates” of the velocity field ∇⊥ψ
are given by determining ω and the constants γj . The energy of the velocity
field ∇⊥ψ (given by a vorticity field ω and the circulations γj) is

E(ω) =
∫
Ω

1

2
|∇ψ|2 =

∫
∂Ω

1

2
ψ
∂ψ

∂n
+

∫
Ω

−1

2
ωψ . (75.4)

We will denote by η the variations of ω and by φ the variations of ψ (for the
given γj). Clearly ∆φ = η and since the boundary condition that φ|∂Ω is

locally constant and
∫
Γj

∂φ
∂n = 0. We demand that the variations η belong to

the (formal) tangent space TωOω0 , which is given by the functions of the form

η = ξ∇ω , (75.5)

where ξ is a any smooth div-free field tangent to ∂Ω at the boundary (i. e.
ξ n = 0 at ∂Ω).

305Note that
∫
Ω ω =

∫
∂Ω

∂ψ
∂n

, so that we need to know only m of the m + 1 numbers
γ0, γ1, . . . , γm .
306unless we fix the constant for example by demanding that ψ|Γ0 = 0.
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The first variation of E on Ω in the direction of η given by (75.5) is

δE(ω)η = E ′(ω)η =

∫
Ω

∇ψ∇φ =

∫
Ω

−ηψ =

∫
Ω

−(ξ∇ω)ψ =

∫
Ω

(ω∇ψ)ξ .

(75.6)
We can assume that ξ = ∇α for some smooth α which is locally constant at
∂Ω. In terms of α we have

E ′(ω)η = E ′(ω)(∇⊥α) =

∫
Ω

{ψ, ω}α , (75.7)

where, as usual,
{ψ, ω} = ψ,1ω,2 − ψ,2ω,1 . (75.8)

We see that ω is a critical point of E on the orbit if and only if

{ψ, ω} = 0 . (75.9)

We also reached this conclusion in lecture 20.

Assuming δE(ω) = 0, we now wish to calculate the second variation

δ2E(ω)(η, η) = E
′′
(ω)(η, η) . (75.10)

For this we take some curve ωε in the orbit Oω0 with

d

dε
|ε=0ω = η (75.11)

and calculate
d2

dε2
|ε=0E(ω + ϵη) . (75.12)

Last time we have seen that this definition is “intrinsic” (independent of the
choice of ωε as long as (75.11) is satisfied) if δE(ω)η = 0. We can take ωε as
follows. We assume ξ is as above that η = ξ∇ω. Let ϕε be the flow generated
in Ω by ξ, with ϕε(x) = x. We let

ωε = ω ◦ ϕε . (75.13)

We have

ϕε(x) = x+ εξ +
1

2
ε2ξ∇ξ . (75.14)

In what follows we use the notation

ω̇ =
d

dε
|ε=0 ωε, ω̈ =

d2

dε2
|ε=0 ωε , (75.15)

and similarly for ψε (the stream function of ωε with our boundary conditions
in (75.1)).

We have
d2

dε2
E(ωε) =

∫
Ω

∇ψ̇∇ψ̇ +∇ψ∇ψ̈ =

∫
Ω

|v|2 − ψω̈ , (75.16)
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where v is the velocity field generated by η = ω̇ (with the stream function ψ̇

and the boundary conditions
∫
Γj

∂ψ̇
∂n = 0 ). We have

ω̈ =
d2

dε2
|ε=0 ω(x+εξ+

1

2
ε2ξ∇ξ+. . . ) = ω,ilξiξj+ωiξjξi,j = (ω,iξjξi),j . (75.17)

Hence ∫
Ω

−ψω̈ =

∫
Ω

−ψ(ω,iξjξi),j =
∫
Ω

ψ,jωiξjξi . (75.18)

For a steady state solution ω we know that the vectors ∇ψ and ∇ω are parallel,
and hence, assuming ∇ω ̸= 0, we have ψ,j = a(x)ω,j for some functions a(x).
Sometimes the notation

a(x) =
dψ

dω
(75.19)

is used, so that we can write∫
Ω

−ψω̈ =

∫
Ω

a(x)η2 =

∫
Ω

dψ

dω
η2 (75.20)

For example, when ω = F (ψ) for F ′(ψ) ̸= 0, we have dψ
dω = 1

F ′(ψ) , and hence

δ2E(ω)(η, η) =
∫
Ω

|v|2 + 1

F ′(ψ)
η2 . (75.21)

We see that, in this situation, when F ′(ψ) > 0, the second variation δ2E(ω)
is positive definite, and hence the equilibrium ω will be linearly stable. Under
some assumptions one can also establish non-linear stability results, as we will
see next time.
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76

4/30/2012

76.1 More on critical point under constraints

Let us consider two smooth functions f, g : Rn → R, and the classical problem
of finding an extremum of f under the constraint g = c. (We assume that the
reader is familiar with the basic facts about the Lagrange multipliers.) We will
denote by Σ = Σc the set {g = c}. We assume that the derivative g′ (which can
be identified with the gradient vector ∇g) does not vanish on Σ (and hence Σ
is locally a smooth (n− 1)-dimensional sub-manifold of Rn). Let x be a critical
point of f on Σ. We know that

f ′(x) = λg′(x) , (76.1)

where f ′, g′ denote the differentials of respectively f, g in Rn. If x = xc gives a
global maximum of f on Σc and

S(c) = f(xc) = max
{g=c}

f , (76.2)

then one has
dS

dc
= λ . (76.3)

Let us now consider the second variation of f |Σ at x. We write x = (x′, xn), with
x′ ∈ Rn−1. We will assume without loss of generality that we have x = 0, c = 0,
and

f(x) = αxn +
1

2
aij xjxi, g(x) = βxn +

1

2
bij xjxi . (76.4)

The surface {g = 0} near x = 0 is easily seen to be given by

xn = − 1

2β
bpqx

′
qx

′
p +O(|x′|3) , (with summation over p, q = 1, . . . n− 1).

(76.5)
Using x′ as local coordinates on Σ near 0, we see that on the surface Σ we have

f |Σ = − α

2β
bpqx

′
qx

′
p +

1

2
apqx

′
qx

′
p +O(|x′|3) . (76.6)

This is also immediately seen from

f |Σ = (f − λg)|Σ , f ′(0)− λg′(0) = 0 . (76.7)

We see that the second differential of the function f |Σ coincides with the re-
striction to {xn = 0} of the second differential of the function f −λg considered
in Rn . Hence f |Σ has a non-degenerate local minimum307 at x = 0 if and only

307By a non-degenerate local of a function we mean a point x where f ′(x) = 0 and the
quadratic form f ′′(x) is strictly positive definite.
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if the restriction of f − λg to {xn = 0} has a non-degenerate local minimum at
x = 0.

We note that as long as α ̸= 0, β ̸= 0, the role of f, g can be interchanged.
We can seek the extremum of g subject to the constraint {f = 0}. Then λ is
changed to 1

λ and f − λg is changed to g − 1
λf = − 1

λ (f − λg) . We see that
when λ > 0 (resp. λ < 0) and f ′(x) ̸= 0, g′(x) ̸= 0, then f attains a non-
degenerate minimum on {g = c} at x with f(x) = m if and only if g attains a
non-degenerate maximum (resp. minimum) at {f = m} at x.

Let us now return to the 2d Euler equations. We consider a bounded 2d domain
Ω with boundary components Γ0,Γ1, . . .Γr. We consider smooth vorticity func-
tions ω in Ω. The stream function ψ is obtained from ω as in (75.1), where the
fluxes γ1, . . . , γr are fixed, the integral

∫
Ω
ω = m is fixed, and γ0 = ψ|Γ0 = 0.

We note that γ0 + γ1 + . . . γr = m. The set of all vorticity function ω in Ω with∫
Ω
ω = m will be denoted by Ym. The energy functional E is defined as usual

by

E(ω) =
∫
Ω

1

2
|∇ψ|2 dx , (76.8)

where ψ is given by (75.1). Let f : R → R be a concave function and consider
the entropy functional308

If (ω) =

∫
Ω

f(ω) dx . (76.9)

We can now consider the problem of maximizing If over Ym subject to the
constraint E(ω) = E. This produces a solution of the equation

f ′(ω) + λψ − µ = 0 , (76.10)

where λ, µ are lagrange multipliers generates by the constraints E(ω) = E and∫
Ω
ω = m respectively. If f is sufficiently regular and uniformly concave, the

function f ′ can be inverted and we obtain

ω = g′(−λψ + µ) , (76.11)

for the maximizer, where g is the Legendre transform of f (defined by309 g(y) =
infx(yx− f(x))).
The quantity

Sf = Sf (E,m, γ1, . . . , γr) = sup{If (ω),
∫
Ω

ω = m, E(ω) = E} (76.12)

can be considered as a version of entropy. From (76.3) we expect

∂Sf
∂E

= λ , (76.13)

308See lecture 36, (36.14), where we used s for instead of f
309Some mild assumptions about the growth of f ′ are needed to endure that f ′ is globally
invertible.
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and λ can be considered as the inverse of “temperature”,310 see also lecture 38.
By analogy with the finite-dimensional situation considered above, we expect
that the second variation of If on the “manifold” given by the constraints E(ω) =
E and

∫
Ω
ω = m is

δ2(If |E(ω)=E,ω∈Ym
)(η, η) =

∫
Ω

f ′′(ω)η2 − 2λE0(η) , (76.14)

where E0 is calculated similarly as E , except that one takes
∫
Ω
η = 0 and∫

Γj

∂ψ
∂n = 0 . By the above remark, if λ > 0, then maximizing If with a given E

and m should be the same as minimizing E with a given If = S. Moreover, we
expect

δ2
(
E|If=S,∫Ω ω=m

)
(η, η) = − 1

λ

∫
Ω

f ′′(ω)η2 − λE0(η) = E0(η)−
1

λ
f ′′(ω)η2 .

(76.15)
This is in fact a version of formula (75.21), but now the second variation is taken
over a much bigger “sub-manifold”, namely the set {If (ω) = S ,

∫
Ω
ω = m}.

310This temperature has nothing to do with the usual temperature of the fluid
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77.1 Arnold’s stability criterion

We use the same notation as in the last lecture. For simplicity let us assume the
function in (76.9) is smooth with f ′′ ≤ −c1 where c1 > 0. (One can work with
weaker assumptions, but our goal is just to illustrate the main points.) The
meaning of m,Ym, γ1, . . . , γr is the same as in the last lecture, as is the map
ω, γ1, . . . , γr → ψ, which associates to each ω ∈ Ym a stream function (for given
γ1, . . . , γr.)

Let us consider a solution ω of (76.10) obtained by maximizing If over Ym
subject to E(ω) = E, and let us assume that the Lagrange multiplier λ in (76.10)
satisfies

λ > 0 . (77.1)

Let

l(ω) =

∫
Ω

ω (77.2)

and let us consider the functional

J(ω) = If (ω)− λE(ω)− µl(ω) , (77.3)

where λ > 0 is now fixed (to the specific value given by ω). This is a uniformly
concave functional defined on the space of vorticities. (For example, J is well-
defined on L2(Ω), with the understanding that J(ω) can be −∞ if f does not
satisfy appropriate growth conditions.311) We have

J ′(ω) = 0 , J(ω)−J(ω+η) = J(ω)−J(ω+η)+J ′(ω)η ≥
∫
Ω

1

2
c1η

2 . (77.4)

Moreover, for any solution ω(t) of the Euler equation, the quantity J(ω(t)) is
conserved:

J(ω(t)) = J(ω(0)) . (77.5)

Therefore a solution ω(t) starting at ω0 satisfying

J(ω)− J(ω0) < ε (77.6)

with satisfy
J(ω)− J(ω(t)) < ε , (77.7)

In view of of (77.4) this means that the solution ω(t) will stay L2− close to ω
(when ε is small, of course). All the solutions we consider here satisfy

∫
Γj

∂ψ
∂n =

γj , j = 1, 2, . . . , r. We emphasize that we only know the solution ω(t) is well-
defined when the initial value ω0 is in L∞(Ω). It is not known if one has a
well-defined unique time evolution when, say, ω0 ∈ L2(Ω).

311Here and below we assume that the volume of Ω is finite.
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The case λ < 0 is more complicated as the functional (77.3) is then not trans-
parently concave. In fact, even its boundedness from above is not completely
obvious and some assumptions on f are needed to establish it. Of course, if the
function If −λE −µω still attains a strict local maximum at ω, one can use the
same argument as above to establish the stability of ω.

Using Jensen’s inequality, we note that for a given m the function Sf attains
its maximum in Ym (without any other constraints) at

ωm =
m

|Ω|
, (77.8)

where |Ω| denotes the measure of Ω. We have

If (ωm) = |Ω| f
(
m

|Ω|

)
= Sm . (77.9)

Let
Em = E(ωm) . (77.10)

Then clearly

Sf (Em) = Sm,
∂Sf
∂E

(Em) = 0 . (77.11)

In Statistical Mechanics the entropy function S = S(E) is a concave function of
E. Assumptions under which the same is true for the function Sf above have not
been much investigated, it seems. We will do a few calculation relevant to this
question, which will show its connection to the stability of the corresponding
equilibria. For simplicity we will fixm and work on the space Ym in what follows.
For a given E a maximizer of If on {E = E} will be denoted by ω = ωE . In
general ωE may perhaps not be unique, but we will assume that we are in a
situation when we can choose ωE to depend on E in a way which is sufficiently
regular for the calculations below. We will use the notation

ω̇ = ω̇E =
∂ωE
∂E

. (77.12)

As we assume that ω ∈ Ym, we have
∫
Ω
ω̇ = 0. We have

I ′f (ω)− λE ′(ω) = 0 . (77.13)

The Lagrange multiplier µ is now not necessary since we are working in Ym.
The multiplier λ = λE depends on E, and we will write

λ̇ = λ̇E =
dλE
dE

. (77.14)

Taking derivative of (77.13) with respect to E, we obtain

I ′′f (ω)ω̇ − λE ′′(ω)ω̇ = λ̇E ′(ω) . (77.15)
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Here we view the second differentials I ′′f , E ′′ as quadratic forms on Ym and the
first differentials I ′f , E ′, together with I ′′f (ω)ω̇ and E ′′(ω)ω̇, are viewed as linear
functionals on Ym. We have

E ′(ω)ω̇ =
d

dE
E(ω) = d

dE
E = 1. (77.16)

Recalling (76.3), we see that

λ̇ =
∂

∂E

∂Sf
∂E

=
∂2Sf
∂E2

. (77.17)

Therefore we see from (77.15) that

I ′′f (ω)(ω̇, ω̇)− λE ′′(ω)(ω̇, ω̇) = λ̇ =
∂2Sf
∂E2

. (77.18)

The direction ω̇ is perpendicular to the tangent space of the surface {E = E} at ω
with respect to the quadratic formQ = I ′′f (ω)−λE ′′(ω). To see it, take a function
η in the tangent space, which is characterized by E ′(ω)η = 0. From (77.15) we
obtain

I ′′f (ω)(ω̇, η)− λE ′′(ω)(ω̇, η) = 0 . (77.19)

Since the quadratic form Q is clearly negative312 on the tangent space of {E =
E} at ω, we see that it is negative on Ym if and only if

∂2Sf
∂E2

≤ 0 . (77.20)

If the functional If − λE has a strict local maximum at ω in Ym, the evolution
by Euler’s equation starting near ω will stay near ω, in the same sense as in
the case λ > 0 considered above. We see that the condition (77.20), or more

precisely, it strict version
∂2Sf

∂E2 < 0, is related to the stability of the relevant
equilibria. From these consideration it is not hard to infer that the function Sf
is indeed concave for E ≤ Em and descreasing for E > Em.

312Here we use negative to mean non-positive.
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