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Abstract

Assuming some initial data u0 ∈ Ḣ1/2(R3) lead to a singularity
for the 3d Navier-Stokes equations, we show that there are also initial
data with the minimal Ḣ1/2 – norm which will produce a singularity.

1 Introduction

We consider the Cauchy problem for the Navier-Stokes equations in R3 ×
(0,∞)

ut + u∇u+∇p−∆u = 0
div u = 0

}
in R3 × (0,∞) (1.1)

u( · , 0) = u0 in R3 (1.2)

In this paper we will be interested in the case when the initial condition
u0 belongs to the space Ḣ1/2(R3). The Ḣ1/2-norm is invariant under the
natural scaling of the initial data u0(x)→ λu0(λx), and the Cauchy problem
is known to be globally well-posed for sufficiently small u0 ∈ Ḣ1/2, and locally
well-posed for any u0 ∈ Ḣ1/2, as proved by Fujita and Kato [9]. These
statements have to be made more precise by specifying the exact notion
of the solution. The solutions constructed by Kato are usually called the
mild solutions. See Section 3 for details. For u0 ∈ Ḣ1/2 we denote by
Tmax(u0) the maximal time of existence of the mild solution starting at u0.
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Let Bρ = {u0 ∈ Ḣ1/2, ||u0||Ḣ1/2 < ρ}, and let ρmax be the supremum of
all ρ > 0 such that the Cauchy problem 1.1– 1.2 is globally well-posed for
u0 ∈ Bρ.

It is not known if ρmax is finite or infinite. Here we will be interested in the
hypothetical situation when ρmax is finite. In principle ρmax could be finite for
various reasons, which depend on the exact notion of the solution. However,
one can show that with the natural definition of the mild solution, the only
reason ρmax could be finite is the appearance of finite-time singularities in the
solution u for some initial data u0.

1 We will consider the following question,
motivated by a discussion of one of the authors with Isabelle Gallagher:

(Q) If ρmax is finite, does there exist an initial datum u0 ∈ Ḣ1/2 with
||u0||Ḣ1/2 = ρmax, such that the solution u of the Cauchy problem 1.1– 1.2
develops a singularity in finite time?

We will show that the answer to the question is affirmative, see Corol-
lary 4.3.

The initial data u0 with ||u0||Ḣ1/2 = ρmax leading to a singularity will
be called Ḣ1/2-minimal singularity-generating data. We will show that, if
singularities exist, the set of the Ḣ1/2-minimal singularity-generating data is
in fact a (nonempty) subset of Ḣ1/2 which is compact, modulo the action of
the scalings u0(x)→ λu0(λx) and translations u0(x)→ u0(x− x0).

Corollary 4.3 is an easy consequence of Theorem 4.2, and Lemma 2.1,
which are in some sense the main new observation of this paper. Theorem 4.2
says, roughly speaking, that the solutions of the Cauchy problem are stable
with respect to the weak convergence of the initial data.2 This question
was studied by I. Gallagher in [7] and Theorem 4.2 can be thought of as a
continuation of those studies.

Lemma 2.1 says, roughly speaking, that singularities are stable under
weak convergence of the solution in the energy norm.

Our results can also be used to show that the absence of singularities in all
(reasonable) solutions is equivalent to certain a-priori estimates. Such state-
ments were already proved in [7] and [22], and we give another illustration

1The proof of the statement uses some special properties of the system 1.1– 1.2, and
can fail for other equations with similar non-linearities covered by the same perturbation
theory, such as the complex viscous Burgers equation. In particular, the energy inequality
plays an important role in the proof.

2There are several definitions of solutions and therefore one has to formulate the result
with some care - see Section 4 for details.
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of this principle.
Throughout this paper our main space for the initial data is the space

Ḣ1/2, which is the unique Ḣs space invariant under the natural scaling of
the equation. It is natural to ask if our results are true for other scale-
invariant spaces, such as L3, the Morrey space M with the norm with the
norm ||u||2M = supx,r r

−1
∫
Bx,r
|u|2 studied in [23], or some other suitable

spaces covered by [14]. We plan to address these questions in the future.
In the case of critical dispersive equation, the notion of minimal blow-up

solutions (with a definition quite different from ours) and related profile de-
composition has played an important role in the recent remarkable advances,
see for example [2, 6, 12, 1]. These techniques have been recently also applied
to the Navier-Stokes regularity in critical spaces, see [11].

The situation considered here is different, in that we focus only on the
initial data, since we do not have bounds in critical norms for general solu-
tions.

2 Suitable weak solutions

We first define suitable weak solutions of the Navier-Stokes equations, as
introduced by [4]. See also [16] and [20]. This is a local notion. Let
O be an open subset of the space-time R3 × R and let u = u(x, t) =
(u1(x, t), u2(x, t), u3(x, t)), p = p(x, t) be functions in O such that

• u belongs locally to the energy space L∞t L
2
x ∩ L2

t Ḣ
1
x ,

• p belongs locally to the space L
3/2
t L

3/2
x ,

• the equations div u = 0 and ut+div(u⊗u)+∇p−∆u = 0 are satisfied
on O in the sense of distributions , and

• the local energy inequality

2

∫∫
|∇u|2φ dx dt ≤

∫∫ [
|u|2(φt + ∆u) + (|u|2 + 2p)u∇φ

]
dx dt

(2.1)
is satisfied for every non-negative smooth test function φ = φ(x, t)
compactly supported in O.
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In what follows we will use standard notation for euclidean balls centered
at x0 ∈ Rn and parabolic balls Qz0,r centered at z0 = (x0, t0) ∈ Rn ×R:

Bx0,r = {x ∈ Rn; |x− x0| < r}
Qz0,r = Bx0,r × (t0 − r2, t0]

Given a suitable weak solution (u, p) , a point z0 = (x0, t0) ∈ O is called
a regular point of (u, p) if u is Hölder continuous in a neighborhood of z0. A
singular point z0 ∈ O of (u, p) is any point which is not regular. We will use
the following two propositions, the various versions of which can be found in
[4, 16, 20, 15]. The version below contains some quantitative estimates which
are often not explicitly stated in the literature, although they are implicit in
the proofs. A sketch of the proof of the spatial derivatives estimates can be
found for example in [19].

Proposition 2.1. (ε-regularity criterion) There exists ε0 > 0 such that
the following statement is true:
If (u, p) is a suitable weak solution in O, such that

1

r2

∫∫
Qz0,r

(|u|3 + |p|3/2) dx dt < ε0 , (2.2)

for some Qz0,r compactly contained in O, then all points in Qz0,r/2 are regular
points of (u, p). Moreover, in Qz0,r/2 one has

|∇ku| ≤ Ckr
−1−k k = 0, 1, . . . and (2.3)

|u(x, t)− u(x, t′)| ≤ C ′|t− t′|1/3 (2.4)

Remark: The regularity in t cannot be improved, due to solutions of the form
u(x, t) = ∇h(x, t) with h harmonic in x and having arbitrary dependence on
t. The Hölder exponent in t for these solutions is dictated by the assump-
tions on the integrability of the pressure p = −|∇h|2/2 − ht, and under the
assumptions of the lemma the Hölder exponent 1/3 is optimal.

Proposition 2.2. (Compactness) Let (uk, pk) , k = 1, 2, . . . be a sequence
of suitable weak solutions such that uk are uniformly bounded in the energy
space L∞t L

2
x ∩ L2

t Ḣ
1
x on compact subsets of O and pk are uniformly bounded

in L
3/2
t L

3/2
x on compact subsets of O. Then the sequence uk is compact in

L3
tL

3
x on compact subsets of O. Moreover, if uk → u in L3

tL
3
x on compact

subsets of O and pk ⇀ p in L
3/2
t L

3/2
x on compact subsets of O, then (u, p) is

again a suitable weak solution.
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The two previous propositions imply the following lemma, which will be
important for the proof of our main results.

Lemma 2.1. (Stability of singularities) In the situation of Proposi-
tion 2.2, assume that zk ∈ O are singular points of (uk, pk) , k = 1, 2, . . . ,
and that zk → z0 ∈ O. Then z0 is a singular point of (u, p).

Proof. If the regularity criterion in Proposition 2.1 did not contain the pres-
sure p, the statement of the Lemma would be immediate: indeed, if z0 is a
regular point of u, then r−2

∫∫
Qz0,r
|u|3 dx dt = O(r3) as r → 0+. Choosing

a sufficiently small r, one sees that r−2
∫∫
Qz0,r
|uk|3 dx dt is small for large

k by the strong convergence of uk in L3
t,x. However, such argument cannot

be applied to the pressure term, since the sequence pk may not have a sub-
sequence which is compact in L

3/2
t,x . It is well known how to deal with this

difficulty: the trick can be found in one form or another in the proofs of
partial regularity [4, 16, 20, 15]. The pressure pk solves the equation

−∆pk = ∂i∂j(u
k
i u

k
j ) (2.5)

Recall that the term uki u
k
j is compact in L

3/2
t,x on compact subsets ofO. There-

fore we can invert the Laplacian in 2.5 using a suitable boundary condition,
(or just taking the Riesz transforms p̃k = RiRj(u

k
i u

k
jχBx0,r) and decompose

pk as
pk = p̃k + hk (2.6)

with p̃k compact in L
3/2
t,x (Qz0,r) (by Calderon-Zygmund estimates) and hk

bounded in L
3/2
t,x (Qz0,r) and harmonic in x in Qz0,r. The term with p̃k can

be dealt with in the same way as the term with uk. The term hk is handled
by using classical estimates for harmonic functions: let γ ≥ 1 and let h ∈
Lγx(Bx0,r) be harmonic in Bx0,r. We denote (h)r′ = |Bx0,r′ |−1

∫
Bx0,r′

h. For

r′ ≤ r/2 and x′ ∈ Bx0,r′ we have

|h(x′)− (h)r′|γ ≤ Cγ

(
r′

r

)γ
r−3

∫
Bx0,r

|h|γ dx (2.7)

We recall that we can change the pressure by any function depending on t
only. Therefore we can use 2.7 with h = hk, and integrating over Qz0,r′ , we get
the required smallness of the term (r′)−2

∫∫
Qz0,r′

|hk− (hk(·, t))r′ |3/2 dx dt.
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In fact, the above proof together with the estimates in Proposition 2.1
give the following version of Lemma 2.1.

Lemma 2.2. Under the assumptions of Proposition 2.2, let K be a compact
subset of O. If each point of K is a regular point of u, then, for sufficiently
large k, each point of K is also a regular point of uk, and on the set K the
functions uk converge to u, together with all spatial derivatives.

3 Mild solutions

In this section we review the results we need about the so-called “mild solu-
tions” of the problem 1.1– 1.2. This approach was introduced by Fujita and
Kato, [9], see also [10], although the terminology was introduced later. Let
us first recall basic facts about the linear Stokes problem

ut +∇p−∆u = ∂
∂xk

fk
div u = 0

}
in Rn × (0,∞) (3.1)

u( · , 0) = u0 in Rn (3.2)

Here fk = (f1k, . . . , fnk) for k = 1, . . . , n. Let S(t) be the solution oper-
ator of the heat equation and let P be the Helmholtz projection of vector
fields onto the divergence-free vector fields. By definition, a mild solution of
the linear problem above is given by the representation formula

u(t) = S(t)u0 +

∫ t

0

S(t− s)P∇ · f(s) ds (3.3)

A mild solution of the Cauchy problem 1.1– 1.2 is the mild solution of the
linear problem above with fij = −uiuj. We will denote the “heat extension”

S(t)u0 of the initial datum u0 by U = U(x, t). The term
∫ t

0
S(t− s)P∇ · f(s) ds

with fij = −uivj will be denoted by B(u, v). In this notation, a mild solution
of the Cauchy problem 1.1– 1.2 in R3 × (0, T ) is defined as a solution of the
integral equation

u = U +B(u, u) (3.4)

in a suitably defined space of functions X on R3 × (0, T ). In this approach,
a key property of X is the continuity of the bilinear form (u, v)→ B(u, v) as
a map from X ×X to X. This is equivalent to

||B(u, v)||X ≤ c||u||X ||v||X (3.5)
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For initial datum u0 ∈ Ḣ1/2 there are many possible choices of X. A good
choice is for example X = L4

t Ḣ
1
x. In this case the proof of 3.5 is particularly

simple: using the inequality ||fg||Ḣ1/2(R3) ≤ c||f ||Ḣ1(R3)||g||Ḣ1(R3) we see that

for u, v ∈ X we have uv ∈ L2
t Ḣ

1/2
x . Recalling the energy inequality for the

linear system 3.1 ,

|| |∇|su||2L∞t L2
x

+ || |∇|su||2
L2

t Ḣ
1
x
≤ || |∇|su0||2L2

x
+ || |∇|sf |||2L2

tL
2
x

(3.6)

one easily gets 3.5. Also, the energy inequality implies that u0 ∈ Ḣ1/2 gives
U ∈ X, with ||U ||X ≤ ||u0||Ḣ1/2 .

In fact, the above proof gives that B maps L4
t Ḣ

1
x × L4

t Ḣ
1
x into CtḢ1/2

x ∩
L2
t Ḣ

3/2
x (where the first space denotes the space of continuous functions of

t with values in Ḣ1/2), which shows that equation 3.4 can be treated as an
ODE in t. In particular, one always has local-in-time existence of the solution
u, and one can define the maximal time of existence Tmax(u0) on which the
solution of 3.4 exists.

If Tmax(u0) is finite, one has

lim
T→Tmax(u0)

||u||L4
t Ḣ

1
x(R3×(0,T )) =∞ . (3.7)

We note that for sufficiently small ||u0||Ḣ1/2 we have Tmax(u0) = +∞.
This justifies the definition of ρmax from the Introduction.

The mild solutions have the same regularity as U since, roughly speaking,
for short times they are just a perturbation of U , and this can be iterated
forward to the time interval where the solution exists.3 In particular, the
mild solutions are smooth in R3 × (0, Tmax(u0)).

One obvious reason for Tmax(u0) to be finite would be the development of
a singularity in the solution u at time Tmax(u0). A-priori it is not clear that
this is the only reason. One could also imagine a scenario where the L4

t Ḣ
1
x

norm of the solution would blow up even though the solution would remain
smooth on each compact subset. However, this scenario can be ruled out.
The only reason for the blow-up of the L4

t Ḣ
1
x norm of the mild solutions u

with u0 ∈ Ḣ1/2 are the possible finite-time singularities. This will be justified
in the next section.

3One has to be cautious with this statement if “regularity” also means decay properties
of u as x→∞. Due to the non-local effect of the constraint div u = 0, the solutions u can
have slower decay at infinity than U . See for example [3].
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4 Leray’s solutions

In his pioneering work [18] Leray proved the existence of the weak solutions
to the Cauchy problem 1.1– 1.2. A key ingredient in his approach is the
energy inequality∫

R3

|u(x, t)|2 dx+ 2

∫ t

0

∫
R3

|∇u(x, s)|2 dx ds ≤
∫
R3

|u0(x)|2 dx (4.1)

This inequality is the only known a-priori bound for general solutions. At
the first glance it would seem that for its application it is crucial that u0 ∈
L2(R3), which would rule out using Leray’s techniques in the situation of the
preceding section, where the basic assumption is u0 ∈ Ḣ1/2, which is not a
subset of L2.

However, Lemarié-Rieusset [17] found a generalization of 4.1 to the sit-
uation when the energy is only (uniformly) locally finite, and this makes it
possible to extend the theory of Leray’s weak solutions to a much more gen-
eral setting. See also [13]. In this paper we will not need the full version of
Lemarié-Rieusset’s local theory, but we will need a version of his inequality
for local energy, see Lemma 4.1.

In our setting with u0 ∈ Ḣ1/2 one can use the following trick by C. Calderon
[5] to construct the weak solutions in a simple way. We can write u0 = a0+v0

with a0 smooth and small in Ḣ1/2, and v0 in L2. (For example, a0 can be
defined in terms of the Fourier transform as â0(ξ) = û0(ξ)ϕ(ξ), where ϕ is a
suitable smooth function equal to 1 in a small neighborhood of 0.) Since a0

is small, the Cauchy problem 1.1– 1.2 has a global solution a which is small
in L4

t Ḣ
1
x. We now seek solutions u in the form u = a + v, where v is a new

unknown function satisfying the equation

vt + a∇v + v∇a+ v∇v +∇q −∆v = 0 . (4.2)

The energy identity for this equation is∫
R3

|v(x, t)|2 dx+ 2

∫ t

0

∫
R3

|∇v(x, s)|2 dx ds =

∫
R3

|v0(x)|2 + 2

∫ t

0

∫
R3

(a∇v)v .

(4.3)
The last integral on the right-hand side can be estimated by

c||a||L4
t Ḣ

1
x
||v||1/2L∞t L2

x
||∇v||3/4

L2
tL

2
x
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and we see that we have a good energy estimate for v when ||a||L4
t Ḣ

1
x

is
sufficiently small.

Leray’s construction of weak solutions can therefore be applied to equa-
tion 4.2 for v. This way we can construct a global weak solution u = a+v to
the Cauchy problem with u0 ∈ Ḣ1/2. The pressure can be recovered from the
equation −∆p = ∂i∂juiuj. Moreover, one can do the construction in such a
way that (u, p) is a suitable weak solution in R3×(0,∞) and u(t)→ u0 in L2

on every compact subset of R3. The weak solution u with these properties
will be called the Leray solution. The relation of the Leray solution and the
mild solution introduced in the previous section is clarified by the following
“weak-strong uniqueness” theorem. In the case u0 ∈ L2 ∩ Ḣ1 the theorem
was proved by Leray. Leray’s result was generalized in various directions, see
for example [21, 24, 17]. We will use the following version which is a special
case of Theorem 33.2, p. 354 from Lemarié-Rieusset’s book [17].

Theorem 4.1. Let u be a Leray solution of the initial value problem 1.1–
1.2 with u0 ∈ Ḣ1/2. Let Tmax(u0) be the maximal time of existence of the
mild solution with of 1.1– 1.2 with the same initial value u0. Then the mild
solution coincides with u in R3 × [0, Tmax(u0)).

The problem of uniqueness of u after Tmax(u0) is open. At the time of this
writing we cannot rule out that Tmax(u0) is finite and that the Leray solution
is not unique after Tmax(u0). We will denote the set of all Leray solutions
with initial data u0 ∈ Ḣ1/2 by NS(u0).

Proposition 2.1 can be used to show that the only reason for Tmax(u0) <∞
can be a finite time singularity. We will now sketch a proof of this statement.
Let us assume that T = Tmax(u0) is finite. Set r =

√
T/2. We consider the

decomposition u = a+v as above, where a is a solution generated by a0 with
small ||a0||Ḣ1/2 (and hence a satisfies global estimates) and v satisfying the
energy estimates. The key point is that these estimates do not deteriorate as
we approach T . Using these estimates, together with corresponding estimates
for the pressure, it is not hard to see that for sufficiently large R > 0, the
assumptions of Proposition 2.1 are satisfied for our solution (u, p) and Qz0,r

with z0 = (x0, T ) and |x0| > R. If u does not develop a singularity at time
T in the ball BR, it means that u and ∇u will be bounded in (t1, T ) for any
t1 > 0. We can now write the Navier-Stokes equation for u as

ut −∆u+∇p = − div(u⊗ u) . (4.4)
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Using the standard estimates for the small solution a, the energy estimates
for v, together with the pointwise bound for u and ∇u, one can easily show
that the term u⊗u = (a+v)⊗(a+v) is bounded both in L2

tL
2
x(R

3×(T/2, T ))

and L2
t Ḣ

1
x(R3×(T/2, T )), and therefore also in L2

t Ḣ
1/2
x (R3×(T/2, T )). View-

ing 4.4 as a linear equation with the right-hand side − div(u⊗ u), we see by
the energy estimate that u ∈ L4

t Ḣ
1
x(R3 × (0, T )), which means that T was

not the maximal time of existence of the mild solution, a contradiction.
The weak solution v of equation 4.2 always belongs to the energy space

L∞t L
2
x ∩ L2

t Ḣ
1
x. As noticed already by Leray in [18], this implies that v is

smooth and small for large times. In our set-up we can see this from the fact
that ||v(t)||2

Ḣ1/2 ≤ ||v(t)||L2 ||∇v(t)||L2 and the expression on the right-hand
side of this inequality clearly has to be small on a large set of times if v is in
the energy space. Following the reasoning of Leray, ([18], p. 246), we notice
that at a time t0 when ||v(t0)||Ḣ1/2 is small we can apply the theory of mild
solutions and the weak-strong uniqueness results to see that after time t0 the
solution v coincides with a global mild solutions. Similar considerations have
been used for example in [8].

We can summarize the above facts in the following statement:

Proposition 4.1. Let u be a Leray solution of the Cauchy problem 1.1– 1.2
with u0 ∈ Ḣ1/2. Then for some compact set K ⊂ R3 × (0,∞) we have
∇u ∈ L4

tL
2
x(R

3 × (0,∞) \ K). In particular, u is regular at every point of
R3 × (0,∞) \K.

Proof. The proof of the first statement follows from the comments above.
The second statement follows from the first and the standard regularity
criteria, such as the Ladyzhenskaya-Prodi-Serrin criterion, or from Propo-
sition 2.1.

The energy estimate for v which can be obtained from equation 4.2 de-
pends on the decomposition of the initial data u0 = a0 +v0. For our purposes
in this paper we need an energy estimate which is “more uniform” (although
more local). Fortuitously, an estimate found by Lemarié-Rieusset in his work
on weak solutions with locally finite energy provides exactly what we need.
We will use the following notation: for x0 ∈ R3 and r > 0 we will denote by
Q̃x0,r the space-time cylinder Bx0,r × (0, r2). We will also use the notation
||u||E(Q̃x0,r) to denote the energy norm defined by

||u||2E(Q̃x0,r)
= ||u||2

L∞t L2
x(Q̃x0,r)

+ ||∇u||2
L2

tL
2
x(Q̃x0,r)

. (4.5)
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Lemma 4.1. Let u0 ∈ Ḣ1/2 and let u be a Leray solution of the Cauchy
problem 1.1– 1.2 with initial condition u0. Then for each r > 0 and x0 ∈ R3

||u||2E(Q̃x0,r)
≤ C(||u0||Ḣ1/2) r (4.6)

and, for a suitable function px0,r(t) of t,∫∫
Q̃x0,r

|p− px0,r(t)|3/2 dx dt ≤ C(||u0||Ḣ1/2) r2 (4.7)

Proof. The first estimate can be easily derived from Proposition 32.1, p. 342
and its proof in [17], and the second estimate follows from Lemma 32.2, p. 343
in the same book. There are two crucial points in the proof of these estimates.
One is that the energy flux in the localized energy estimate 2.1 is bounded
by ∼ |u|3, if we count the pressure as p ∼ |u|2. The energy itself controls
∼ |u|10/3, and it is important for the proof that this is a higher power than
the one in the energy flux. This is no longer the case in higher dimensions
and therefore a possible generalization to higher dimensions would not be
straightforward. Similar issue arises in the proof of partial regularity. The
second point is that the non-local effects of the pressure are under control,
so that the heuristics p ∼ |u|2 is valid, at least as far as the estimates are
concerned. To see this, we notice that the kernel of the pressure equation

−∆p = ∂i∂j(Fij), with Fij = uiuj (4.8)

is
Gij = ∂i∂jG, with G(x) = 1

4π|x| . (4.9)

Therefore the kernel for expressing the gradient ∇p in terms of Fij decays
as |x|−4 as x → ∞, and is integrable near ∞. This fast decay makes it
possible to estimate the contributions to ∇p from far away. This would not
be the case for p, and hence we have to work with ∇p, which is the reason
for the appearance of the function px0,r in the estimate 4.7. This part of the
argument would work in the higher dimensions as well.

We can now formulate the main new result of this section.

Theorem 4.2. Let uk0 be a bounded sequence of initial conditions in Ḣ1/2

converging weakly in Ḣ1/2 to u0. Let uk ∈ NS(uk0) be Leray solutions of the
Cauchy problem with initial conditions uk0. Assume that uk converge weakly
to u in distributions. Then u ∈ NS(u0), i. e. u is a Leray solution of the
Cauchy problem with initial condition u0.
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Proof. Using Lemma 4.1, Proposition 2.2 and Theorem 4.1, we see that it
is enough to show that u(t) → u0 in L2 on every compact subset of R3.
This can be seen as follows. We take a non-negative smooth test function
φ(x, t) compactly supported in R3 × [0,∞). Note that we are taking the
interval [0,∞), which is closed at zero, and φ(x, 0) does not have to vanish
everywhere. We write a version of the local energy inequality with such test
functions in the following form.∫ ∞

0

∫
R3

[
−|uk|2φt + 2|∇uk|2φ

]
dx dt ≤ (4.10)∫

R3

|uk0|2φ(x, 0) dx+

∫ ∞
0

∫
R3

[
|uk|2∆φ+ (|uk|2 + 2pk)uk∇φ

]
dx dt

Since for every compactly supported smooth test function ψ the sequence
uk0ψ is compact in L2, we see that in the limit k → ∞ the inequality 4.10
will be preserved. Hence∫ ∞

0

∫
R3

[
−|u|2φt + 2|∇u|2φ

]
dx dt ≤ (4.11)∫

R3

|u0|2φ(x, 0) dx+

∫ ∞
0

∫
R3

[
|u|2∆φ+ (|u|2 + 2p)u∇φ

]
dx dt ,

where p is a suitable pressure corresponding to the solution u. The last
inequality implies the required local L2-continuity property at time t = 0 for
the solution u. The key points, well-known in the theory of weak solutions
and going back to Leray’s paper [18] are that
(a) the equation implies that u(t)→ u0 weakly in L2 on compact subsets as
t→ 0 and
(b) inequality 4.11 implies that for every compactly supported smooth test
function ψ one has lim supt→0+

||u(t)ψ|| ≤ ||u0ψ||.

Corollary 4.1. Let uk0, u0, u
k be as in Theorem 4.2. Let (0, Tmax(u0)) be

the maximal interval of existence of the mild solution u starting at u0. Then
for any compact set K ⊂ R3 × (0, Tmax(u0)) and any k ≥ k0 = k0(K) the
solutions uk are regular at all points of K and converge uniformly to u in K,
together with all spatial derivatives.

Proof. Apply the theorem, together with Lemma 4.1, Proposition 2.2 and
Lemma 2.2.
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Corollary 4.2. Let uk0, u0, u
k be as in the theorem. Assume that Tmax(uk0) =

T < +∞ for each k and that the sigular points zk of u at t = T (which exist by
Proposition 4.1) stay in a compact subset of R3 × {T}. Then Tmax(u0) ≤ T .

Proof. Apply the theorem, together with Lemma 4.1, Proposition 2.2 and
Lemma 2.1.

Let us recall that

ρmax = sup{ρ; Tmax(u0) = +∞ for every u0 ∈ Ḣ1/2 with ||u0||Ḣ1/2 < ρ}
(4.12)

Let us also define

M = {u0 ∈ Ḣ1/2; Tmax(u0) <∞, ||u0||Ḣ1/2 = ρmax} (4.13)

Corollary 4.3. The set M is non-empty. Moreover, M is compact modulo
scalings and translations, i. e. if uk0 ∈ M is a sequence in M, then there
exist λk > 0 and xk0 ∈ R3 such the sequence vk ∈ Ḣ1/2 defined by vk(x) =
λku

k
0(λkx− xk0) is compact in Ḣ1/2.

Proof. Let uk0 ∈ Ḣ1/2 be a sequence of initial data with Tmax(uk0) finite and
||uk0||Ḣ1/2 → ρmax. Find λk > 0 and xk0 so that the functions given by vk(x) =
λku

k
0(λkx− xk0) develop their first singularity at time t = 1 and that (x, t) =

(0, 1) is a singular point of vk. We can assume that the functions vk0(x) =
vk(x, 0) converge weakly in Ḣ1/2 to v0 ∈ Ḣ1/2. By Corollary 4.2 we know
that Tmax(v0) ≤ 1, and by definition of ρmax this means that ||v0||Ḣ1/2 = ρmax

This shows that M is non-empty. We also see that ||vk0 || → ||v0|| and hence
vk0 → v0 strongly.

The following corollary can be thought of as a variant of results in [7]
and [22]. See also Theorem 33.3, p. 359 in [17] for a related statement about
“individual solutions”.

Corollary 4.4. Assume that every solution of the Cauchy problem 1.1– 1.2
with u0 ∈ Ḣ1/2 is regular, i. e. Tmax(u0) = +∞ for each u0 ∈ Ḣ1/2. Then,
for l = 0, 1, 2, . . . there exist functions Fl : [0,∞)→ [0,∞) such that

t(l+1)/2 sup
x
|∇lu(x, t)| ≤ Fl(||u0||Ḣ1/2) (4.14)
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Proof. Let us prove the case l = 0, the proof for the derivatives being the
same. By scaling invariance, it is enough to prove the statement for t = 1.
If the statement fails we can assume by the translational invariance that
there exists a sequence of initial data uk0 bounded in Ḣ1/2 such that for the
corresponding solutions uk one has |uk(0, 1)| ≥ k. Let u0 be a weak limit
of uk0, By our assumption, the solution u corresponding to u0 is regular at
(x, t) = (0, 1) and by Theorem 4.2 and Lemma 2.2 we get a contradiction.
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