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Abstract

We show that the viscous Burgers equation ut +uux = uxx consid-

ered for complex valued functions u develops finite-time singularities

from compactly supported smooth data. By means of the Cole-Hopf

transformation, the singularities of u are related to zeros of complex-

valued solutions v of the heat equation vt = vxx. We prove that such

zeros are isolated if they are not present in the initial data.

1 Introduction

In a recent paper Sinai and Li [8] consider the initial-value problem for the
three-dimensional incompressible Navier-Stokes equation, allowing the ve-
locity field and the pressure to be complex-valued. They prove that, in this
setting, there exist well-behaved (complex-valued) initial data for which the
solution blows up in finite time. In this note we consider a similar problem
for the viscous 1D Burgers equation

ut + uux = uxx (1.1)
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in R× (0,∞) with initial condition u(x, 0) = u0(x), where we allow u0 to be
complex-valued. A well-known fact about equation (1.1) is that the transfor-
mation u = −2vx/v, called the Cole-Hopf transformation, leads to standard
heat equation vt = vxx for v. The singularities of u correspond to the zeros
of v. For real valued functions, v cannot have zeros if they are not present in
v(x, 0) and one sees immediately that for u0 real and “sufficiently regular” the
initial value problem for equation (1.1) has a unique smooth global solution
(in some natural classes of functions), see [5]. This can, of course, also be
seen without the use of the Cole-Hopf transformation, in a number of ways,
since the equation (1.1) has a maximum principle and an energy estimate
with respect to which it is subcritical. (The non-trivial scaling invariance of
equation (1.1) is the same as for Navier-Stokes: u(x, t) → λu(λx, λ2t).)

The maximum principle and the energy estimates are lost when we pass
to complex-valued functions. At the same time, existence proofs based on
perturbation theory and Picard iteration, such as in [6] or [7], work also in
the complex case, and it is therefore natural to expect that the proofs of
local well-posedness for Navier-Stokes in critical (i. e. scale-invariant) spaces
work also for equation (1.1), without using its “complete integrability”. One
can therefore expect local well-posedness of complex-valued equation (1.1)
in L1 (by analogy with [6]) and, in fact, in (BMO)−1 (by analogy with [7]).
With the Cole-Hopf transformation, the local L1 well-posedness becomes
completely transparent (see below). It it not quite so with the local (BMO)−1

well-posedness, which shows the subtle nature of the well-posedness result in
[7]. Our focus will be on global well-posedness, and therefore we will work
with the L1 space which is very simple and - as we will see - completely
adequate for the problems we will consider.

Since the zeros of v produce singularities of u, it is easy to find compactly
supported smooth (complex-valued) initial data u0 for which the solution
of equation (1.1) blows up in finite time, see Proposition 2.2. The conti-
nuity argument used in the proof of this proposition allows us to formulate
more general sufficient conditions on u0 for the solution u to blow up, see
Remark 2.3(i). On the other hand, in Proposition 2.1 we give a sufficient
condition on u0 for the solution to converge to zero. Using these results, we
can then explicitly describe the boundary, in some subsets of the space of
initial data L1, between the basin of attraction of zero and the region from
which the solutions blow-up, see Remark 2.5(iii). The behavior of solutions
with the initial conditions on this boundary is then naturally of interest.
These solutions are global and bounded and we describe their asymptotics
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as t → ∞, see Proposition 2.4 and Remark 2.5(iii).
Once we know that a solution can develop singularities, we can ask about

the nature of the singular set. We will prove that, roughly speaking, if there
are no singularities present in the initial data, then the set of singularities
of the function u defined by the Cole-Hopf transformation from v (that is,
u = −2vx/v) is always discrete in R × (0,∞). This follows from a theorem
about zeros of complex-valued solutions of 1d heat equation (Theorem 3.3).
In a “typical situation” the number of singularities of such a solution u will
be finite. However, as we show in Section 5, certain regular initial data yield
solutions with infinitely many (isolated) singularities. We will also briefly
address the question what “right-hand side” the singularities produce in a
suitable weak formulation of the equation (see Section 4).

The solution of equation (1.1) defined by u = −2vx/v is analytic outside a
discrete set. This is not a typical behavior of solutions of non-linear parabolic
equations with singularities. In fact, it is reasonable to expect that, for many
equations, analyticity in the time variable will be destroyed in the whole time
level {(x, t), t = t0} if we have a singularity at time t0 at some point x0. This
conjecture is based on the study of singularities of the Complex Ginzburg-
Landau equation in [9]. As far as we know, the issue has not been much
studied.

In the case of the dispersive regularization of Burgers equation, which
is the KdV equation ut + uux = uxxx, the singularities for complex-valued
solutions are studied in [2]. Viscous Burgers equation with complex viscosity
is studied by means of the Cole-Hopf transformation in [10] and [11] for
a particular real initial condition, with the main focus on the behavior of
singularities arising in complex time.

2 Cole-Hopf transformation and singularities

For a complex-valued u ∈ L1(R) we define U(x) =
∫ x

−∞ u(ξ) dξ and v =

exp(−U/2). Vice-versa, given a complex-valued v ∈ W 1,1
0 (R) (the space of

all absolutely continuous functions that have the derivative in L1(R)) with
v(x) 6= 0 in R and v(x) → 1 as x → −∞, we let u = −2vx/v. For time-
dependent functions on R we apply the above transformations at each time
level.

A well known simple calculation shows that u satisfies equation (1.1) if
and only if v satisfies the standard heat equation vt = vxx, see for example
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[5]. (If one does not impose the normalization v(x) → 1 as x → −∞, the
function v is only determined up to a multiplicative factor depending on
time, and the heat equation for v needs an extra term which would account
for this, see [5].)

We can now solve the initial value problem for equation (1.1) with a
complex valued u0 ∈ L1(R) as follows. Set v0(x) = exp{−1

2

∫ x

−∞ u0(ξ) dξ}
and let v be the bounded solution of the heat equation with initial data
v0. It is easy to check that there is T > 0 such that |v(x, t)| ≥ ε > 0 in
R × (0, T ) and hence u = −2vx/v is a well-defined local-in-time solution of
equation (1.1) with u(x, 0) = u0(x).

Proposition 2.1. In the notation above, assume that u0 ∈ L1(R) with
∫

R
| Imu0| ≤ 2π. Then equation (1.1) has a global smooth solution u with

u(x, 0) = u0(x). If in addition |
∫

R
Im u0| < 2π, then supx |u(x, t)| → 0 as

t → ∞.

Proof. When
∫

R
| Im u0| ≤ 2π, the function v0(x) = exp{−1

2

∫ x

−∞ u0(ξ) dξ}
takes values in a convex sector of the form {z, α < arg(z) < β} with β−α ≤ π
and it has finite nonzero limits as x → ±∞. Thus for suitable real θ we
have Re (eiθv0(x)) > 0, x ∈ R. Applying the strong maximum principle
to Re (eiθv) (which solves the heat equation), we see that Re (eiθv) > 0.
Therefore v cannot vanish at any point (x, t) ∈ R × (0,∞), proving the first
statement. If |

∫

R
Im u0| < 2π, we can choose θ so that Re(eiθv0(±∞)) ≥ ε1 >

0, and therefore for all large t we will have |v(x, t)| > ε1/2. Moreover, since
vx also solves the heat equation and v0,x ∈ L1(R), we have supx |vx(x, t)| → 0
as t → ∞. These properties imply the second statement.

Proposition 2.2. For each δ > 0 there exists a smooth, compactly sup-
ported (complex-valued) u0 with

∫

R
|u0| < 2π + δ such that the solution of

equation (1.1) with initial condition u0 blows up in finite time.

Proof. We choose a smooth compactly supported non-negative ϕ with
∫

R
ϕ =

2π + δ/2. Set u0 = −iϕ and let v0 be the Cole-Hopf transformation of u0.
The function v0 satisfies:

• v0(x) = 1 for large negative x,

• v0(x) = exp(i(π + δ/4)) for large positive x,

• 0 ≤ arg(v0(x)) ≤ π + δ/4 for x ∈ R.
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Let v be the solution of the heat equation with initial data v0. For θ ∈ R the
function e−iθv also solves the heat equation and choosing θ > 0 small enough
we achieve that

lim
x→±∞

Im(e−iθv0(x)) < 0.

It then follows that for a sufficiently large t0 > 0 we have Im(e−iθv(x, t0)) < 0
for all x ∈ R. Since the limits of e−iθv(x, t) as x → ±∞ are independent of t,
comparing the trajectories of x 7→ e−iθv(x, t) for t = 0 and t = t0 we conclude
that v has to vanish at some point (x1, t1) with t1 ∈ (0, t0). Consequently u
has a singularity at (x1, t1).

Remarks 2.3. (i) The above continuity argument can also be used to show
that u develops a singularity whenever u0 ∈ L1(R) satisfies |

∫

R
Im u0| > 2π

and
∫

R
Im u0 is not of the form 2π + 4kπ, where k is an integer.

(ii) It is perhaps worth pointing out a very non-local behavior implied by
Propositions 2.1, 2.2. Consider a compactly supported u0 with Im u0 ≥ 0 and
∫

R
Im u0 = π + δ for some small δ > 0. Then the solution of equation (1.1)

with initial condition u0 exists for all time and converges to zero. Consider
now the initial condition ũa

0(x) = u0(x−a)+u0(x+a). With initial condition
ũa

0, the solution of (1.1) will blow up, no matter how large a is. If we take a
very large, the solution will become very small in L∞ before it starts growing
again and blows up. (In fact, it is not hard to see that one can replace L∞

by Lp for a fixed p > 1 in the last sentence.)

Proposition 2.4. Assume u0 ∈ L1(R) is compactly supported, with |
∫

R
Im u0| =

∫

R
| Imu0| = 2π. Then there exist a real yα and a complex β with Im β 6= 0

such that the solution u of equation (1.1) with u(x, 0) = u0(x) satisfies

u(x, t) =
−2

(x − yα

√
2t) + β

+ O(
1√
t
), (t → ∞) (2.1)

uniformly in x ∈ R.

Proof. By Proposition 2.1, the solution u is global. Let U0(x) =
∫ x

−∞ u0(ξ) dξ
and v0(x) = exp(−U0(x)/2). Let L > 0 be such that u0 vanishes outside
[−L, L]. We have v0(x) = 1 on (−∞,−L) and v0(x) = − exp(−I/2) on
(L,∞), where I =

∫

R
Re u0. We set F (x) = (2π)−1/2

∫ x

0
exp(−ξ2/2) dξ.

(In terms of the erf function used in probability we can write F (x) =
erf (x)− 1/2.) We note that the function F ( x√

2t
) solves the heat equation in

R × (0,∞) with the initial data 1
2
sign (x). The fundamental solution Γ(x, t)
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of the heat equation can be written as Γ(x, t) = 1√
2t

F ′( x√
2t

). We write the
initial condition v0 in the form

v0(x) = −a
sign (x)

2
+ b + w0(x) (2.2)

where a, b are chosen so that w0 be compactly supported. This gives a =
1+exp(−I/2) and b = (1−exp(−I/2))/2. Also note that Im w0 is continuous
and does not change sign. Let w(x, t) be the solution of the heat equation in
R × (0,∞) with initial condition w0. The solution with the initial condition
v0 is then

v(x, t) = −aF (
x√
2t

) + b + w(x, t) . (2.3)

From the representation formula w(x, t) =
∫

R
w0(y)Γ(x− y, t) dy we see that

|w(x, t)| +
√

t |wx(x, t)| = O(
1√
t
), (t → ∞) (2.4)

uniformly in x. To get further estimates for w in a simple way, we will use
Appell’s transformation and write

w(x, t) = Γ(x, t) w̃(
x

t
,−1

t
) , (2.5)

where w̃ is a function of x̃ = x/t and t̃ = −1/t (defined for (x̃, t̃) ∈ R ×
(−∞, 0)) which again satisfies the heat equation in x̃ and t̃. We have

w̃(x̃, t̃) =

∫

R

w0(y)
Γ(x− y, t)

Γ(x, t)
dy =

∫

R

w0(y) exp(− x̃y

2
+

t̃y2

4
) dy , (2.6)

which shows that w̃ can be analytically extended to R×R. Letting c =
∫

R
w0,

we see from (2.6) that w̃(0, 0) = c. Setting z = w̃ − c, we can write

v(x, t) = −a F (
x√
2t

) + b + c Γ(x, t) + z(
x

t
,−1

t
) Γ(x, t) , (2.7)

where z is smooth in R × (−∞, 0] and z(0, 0) = 0. We now set α = b/a and
β = −c/a. Observe that α ∈ (−1/2, 1/2) and Im β 6= 0. From (2.7) we get

u = −2
vx

v
= −2

1 + β Γx

Γ
− z

a
Γx

Γ
− zx̃

a
1
t

F−α
Γ

+ β − z
a

, (2.8)
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where F is evaluated at x/
√

2t. Given any fixed R > 0 and t̃0 < 0 we can
see that for |x̃| < R, t̃ > t̃0 we have |zx̃| ≤ c1, |z| ≤ c2|x̃| + c3|t̃|. Together
with (2.8), and after taking into account that Im β 6= 0, this gives

u = −2
1 + O( 1√

t
)

F−α
Γ

+ β + O( 1√
t
)

=
−2

F−α
Γ

+ β
+ O(

1√
t
) , (t → ∞) (2.9)

uniformly in regions {(x, t); |x|/
√

t ≤ R}, where F is again evaluated at
x/

√
2t.

Let yα be the unique root of the equation F (y) = α and let us fix a (small)
δ1 > 0. We note that when |x/

√
2t−yα| ≥ δ1, then |aF (x/

√
2t)−b| ≥ ε1 > 0,

and from (2.3), (2.4) we see that, in the region {(x, t); |x/
√

2t − yα| ≥ δ1},
one has

u = −2
vx

v
= O(

1√
t
), (t → ∞),

uniformly in x (for (x, t) in the above region). Taking into account (2.9), we
see that it only remains to show that

−2
F−α

Γ
+ β

=
−2

(x − yα

√
2t) + β

+ O(
1√
t
), (t → ∞) (2.10)

uniformly in {(x, t); |x/
√

2t−yα| ≤ δ1}. (As above, F is evaluated at x/
√

2t.)
For y ∈ R we set

κ(y) =
F (y) − F (yα)

F ′(y)(y − yα)

with the understanding that κ(yα) = 1. Since Γ(x, t) = 1√
2t

F ′( x√
2t

), we have

−2
F ( x√

2t
)−α

Γ(x,t)
+ β

=
−2

√
2t

F ( x√
2t

)−F (yα)

F ′( x√
2t

)
+ β

=
−2

κ( x√
2t

)(x − yα

√
2t) + β

(2.11)

Clearly
κ(y) = 1 + O(|y − yα|) , (y → yα). (2.12)

Using the elementary formula

1

κξ + β
− 1

ξ + β
=

∫ 1

0

ξ(1 − κ)

(ξ[(1 − s) + sκ] + β)2
ds

we see that (2.10) follows from (2.11) and (2.12).
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Remarks 2.5. (i) We note that, with the notation used in the proof, we have
Im β = 1

a

∫

R
Im w0. Under the assumptions of Proposition 2.4 the function

Im w0 does not change sign and is integrable. If we do not assume that u0

is compactly supported, it can easily happen that |
∫

R
Im w0| = +∞. We

then have | Im β| = +∞ and in view of (2.1) it is natural to expect that in
that case u(x, t) → 0 as t → ∞ uniformly in x. This can indeed be proved.
If u0 is not compactly supported, but

∫

Im w0 is finite, we expect that the
asymptotics of u(x, t) will be similar to (2.1), with perhaps a slower rate of
convergence.

(ii) The constant yα is given by the equation F (yα) = 1
2
tanh( I

4
), with

I =
∫

R
Re u0. In particular, yα = 0 if and only if

∫

R
Reu0 = 0. We note

that −2
x+β

is a steady-state solution of equation (1.1). For I 6= 0 we have
d
dt

(yα

√
2t) = yα√

2t
6= 0, and we can interpret formula (2.1) as an “almost

steady state solution”, which is slowly drifting to ±∞, at speed yα√
2t

.

(iii) Consider a complex valued L1 function ũ0 supported in [−L, L], with
∫

R
| Im ũ0| =

∫

R
Im ũ0 = 2π. Let O(ũ0, L, ε) = {u0 ∈ L1(R) : ||u0 − ũ0||L1 <

ε, u0 is supported in [−L, L]}. From the above one can see that for suffi-
ciently small ε, one has, in the set O(ũ0, L, ε), an explicit description of
the boundary between the basin of attraction of the zero solution of equa-
tion (1.1) and the region from which the solutions of equation (1.1) blow
up is finite time: The boundary (in O(ũ0, L, ε)) is given by the equation
∫

R
Im u0 = 2π. (To be precise, for the proof of this one needs to augment

the above propositions by a slightly modified version of Proposition 2.1, in
which we assume that u0 is in O(ũ0, L, ε),

∫

R
Im u0 < 2π, and we allow

∫

R
| Imu0| ≤ 2π + δ, where δ = δ(L, ε, ũ0) > 0 is sufficiently small. The

restriction on the support of u0 is crucial in this step. We leave the details
to the reader.) It is not hard to check that the large-time asymptotics of the
solutions starting at the boundary (in O(ũ0, L, ε)) of the basin of attraction
of the zero solution is given by the solutions described in Proposition 2.4. If
we replace O(ũ0, L, ε) by O(ũ0,∞, ε) (i. e. we remove the restriction on the
support of the perturbed function), the situation changes and the boundary
is no longer described in a simple way. In addition, even when ε is small, we
expect that for O(ũ0,∞, ε) some solutions at the boundary of the basin of at-
traction of zero will have more complicated behavior, such as slow oscillations
with large amplitude.
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3 Nodal sets of caloric functions

Let u be a bounded real-valued nontrivial solution of the heat equation ut =
uxx in R × (0,∞). We define

Z = {(x, t) ∈ R × (0,∞); u(x, t) = 0} ,
Zreg = {(x, t) ∈ Z; u2

t + u2
x 6= 0} , and

Zsing = Z \ Zreg .
The analyticity of u implies that Zsing is discrete and that Z is locally a
regular real analytic curve in a neighborhood of each point (x0, t0) in Zreg.
By a regular (real) analytic curve C in an open set U ⊂ R× (0,∞) we mean
a one-dimensional analytic (imbedded) submanifold of U with C̄ \ C ⊂ ∂U .

Lemma 3.1. In the notation introduced above, the regular analytic curves
describing Z in a neighborhood of (x0, t0) ∈ Zreg can be analytically continued
through the points of Zsing. In other words, Z is a (locally finite) union of
regular analytic curves in R × (0,∞).

Proof. We first recall some facts about caloric polynomials. As usual in the
parabolic setting we say that a function f(x, t) is parabolically m−homogeneous
if f(λx, λ2t) = λmf(x, t) for λ > 0. The m−th caloric polynomial is a
parabolically m−homogeneous polynomial satisfying the heat equation. It is
unique, modulo a multiplicative factor, and can be given for example by

Pm(x, t) =

[m/2]
∑

k=0

m!

k!(m − 2k)!
xm−2ktk. (3.1)

The polynomial Pm(x,−1) is the m−th Hermite polynomial. For m even,
m = 2k, the polynomial Pm is of the form

Pm(x, t) = (x2 + a1t) · · · (x2 + akt), (3.2)

with 0 < a1 < · · · < ak. For m odd, m = 2k + 1, Pm is of the form

Pm(x, t) = x(x2 + a1t) · · · (x2 + akt), (3.3)

with 0 < a1 < · · · < ak. (The aj ’s may be different for different m, of course.)
In a neighborhood of a point (x0, t0) ∈ Zsing we can write u as a convergent

series

u(x, t) = amPm(x − x0, t − t0) + am+1Pm+1(x − x0, t − t0) + · · · (3.4)
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where m ≥ 3, am 6= 0. In what follows we will assume that m is odd,
m = 2k+1. (The proof for m even is similar and, in fact, easier.) We change
coordinates so that (x0, t0) corresponds to (0, 0) in the new coordinates, which
we still denote (x, t). We let t = −y2, a1 = b2

1, · · · , ak = b2
k, bj > 0. The

equation u(x, t) = 0 can be written as

u(x,−y2) = x(x − b1y)(x + b1y) · · · (x − bky)(x + bky) + R(x, y) = 0, (3.5)

where R(x, y) is analytic in a neighborhood of (0, 0) with vanishing deriva-
tives of order 1, 2, . . .m. Letting b0 = 0, we will look for analytic curves
x = x(y) of the form x(y) = by + y2f(y) (with b = ±bj , j = 0, 1, . . . , k)
defined for small y on which u(x,−y2) vanishes. Substituting the expression
x(y) = by + y2f(y) in equation (3.5), it is easy to check that we get an
equation of the form

f(y) = F (y, f(y)) (3.6)

where F = F (y, f) is analytic in f and depends on f only through yf .
Therefore f0 := F (0, f) is independent of f and ∂F

∂f
(0, f) = 0. Applying

the standard implicit function theorem one shows that equation (3.6) has an
analytic solution f defined on a neighborhood of 0 with f(0) = f0.

Observe that with y 6= 0 fixed, the curves found above give m different
solutions of (3.5). Therefore, by the Weierstrass preparation theorem, they
yield all solutions of (3.5) in a neighborhood of (0, 0). (One can also use the
Malgrange preparation theorem.)

To finish the proof, we note that for j ≥ 1, instead of writing x = x(y)
we can write y = y(x) and the equation t = −y2 = −(y(x))2 then defines the
analytic branch of Z which has contact of the second order with the parabola
t = −x2/aj. When j = 0 we note that the function in equation (3.6) is of
the form F (y, f) = F̃ (−y2, f), and hence the corresponding curve is of the
form x = x(t) = tf̃(t), with an analytic f̃ satisfying f̃(0) 6= 0.

Remark 3.2. It is clear that the proof of the lemma also works when the
equation has lower-order terms and analytic coefficients. Although we did
not find the precise statement of the lemma in the literature, we assume
it is known to experts. For example, it follows easily from the analysis of
nodal sets in [1], where the method of Newton polygons is used. Also, once
the specific form of the caloric polynomials is taken into account, the lemma
can be derived easily from general principles used in algebraic geometry for
“desingularization”. Nevertheless, we think that the elementary proof above
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is still of some interest and we have included it for completeness. We remark
that even if we allow nonanalytic variable coefficients, Z is still a finite union
of regular C1 curves in a neighborhood of any point in Zsing, see [3].

Theorem 3.3. Let v be a bounded complex-valued solution of the heat equa-
tion in R× (0,∞). Assume v has no zeros in some neighborhood of R×{0}.
Then all zeros of v in R × (0,∞) are isolated.

Proof. Let v = v1+iv2, Z1 = {v1 = 0}, Z2 = {v2 = 0}. Assume Z1∩Z2 has
an accumulation point (x0, t0) inside R×(0,∞). By Lemma 3.1 we know that
Z1 is a locally finite union of regular analytic curves in R× (0,∞). Consider
the curves passing through (x0, t0). Clearly v2 has infinitely many zeros
accumulating at (x0, t0) on one of the curves, let’s call it C. By analyticity,
v2 vanishes on C. The curve C cannot be closed, for otherwise the maximum
principle would imply that both v1 and v2 vanish in the interior of C, which
is impossible by our assumption and analyticity. Hence we can parametrize
C by a parameter s ∈ (−∞,∞). Also, since C is a regular analytic curve,
we have C̄ \C ⊂ R×{0}, thus our assumption implies that C̄ \C = ∅. Now
either the time coordinate t has a strict local minimum on C or we can choose
the parametrization so that t(s) is monotone nonincreasing for large s and
x(s) approaches ∞ or −∞ as s → ∞. In either case, we find a (bounded or
unbounded) domain in R× (0,∞) such that both functions v1 and v2 vanish
on its parabolic boundary. Since they are bounded, the maximum principle
[4] implies that they vanish on a nonempty open set, hence on R × (0,∞),
and we again have a contradiction to our assumption.

It is clear that the proof of Theorem 3.3 works without much change also
for complex-valued harmonic functions in a half-plane.

4 Additional comments on the singularities

Given complex-valued initial data u0 ∈ L1(R) for equation 1.1 and con-
structing the solution u of the initial-value problem by means of the Cole-
Hopf transformation as in Section 2 by setting u = −2vx/v, we see from
Theorem 3.3 that the singularities of u are isolated. It is natural to ask if
equation (1.1) is satisfied in some weak sense across the singularities, or if
the singularities introduce a non-trivial “right-hand side”, i. e. we want to

11



calculate the distribution f given by ut +uux −uxx = f , where the left-hand
side requires a suitable interpretation. Clearly f should be supported in the
singular set. Even if we write the operator ut+uux−uxx as ut+(u2/2)x−uxx

the definition of f can still be somewhat ambiguous, since u and u2 are not
locally integrable in a neighborhood of a singularity. We suggest one possible
interpretation. For simplicity we will consider only the simplest case when
the function v defining u has a simple zero at the singularity (x0, t0), i. e.
v(x, t) = a(x−x0)+ b(t− t0)+O((x−x0)

2 +(t− t0)
2), with a, b complex and

linearly independent over R. We consider a smooth test function ϕ = ϕ(x, t)
supported in a small neighborhood of (x0, t0), so that no other singularity is
present in the support of ϕ. We want to define

I =

∫

R×(0,∞)

(−uϕt − u2ϕx/2 − uϕxx) dx dt. (4.1)

For t 6= t0 we let

h(t) =

∫

R

(−u(x, t)ϕt(x, t) − u2(x, t)ϕx(x, t)/2 − u(x, t)ϕxx(x, t)) dx (4.2)

Using well-known facts about the behavior of the distributions 1/(x ± iε)
and 1/(x± iε)2 as ε → 0, together with a change of variables v(x, t) = y (for
a fixed t) one can see that h(t) has one-sided limits as t → t0. Therefore it
seems to be natural to define integral I in expression (4.1) as

I =

∫ ∞

0

h(t) dt = lim
τ→0

(

∫ t0−τ

0

h(t) dt +

∫ ∞

t0+τ

h(t) dt.
)

(4.3)

Integration by parts, the equation satisfied by u, and the specific form of the
singularity of u now give

I = lim
τ→0

∫

R

[

u(x, t0 +τ)ϕ(x, t0 +τ)−u(x, t0−τ)ϕ(x, t0−τ)
]

dx = ±4πiϕ(x0),

(4.4)
where the correct sign is the same as the sign of the imaginary part of āb. In
other words, in a neighborhood of (x0, t0) we have, in some sense,

ut + uux − uxx = ±4πiδ(x0,t0), (4.5)

where we use the usual notation δ(x0,t0) for the Dirac distribution at the
point (x0, t0). Therefore we cannot interpret u as a global weak solution of
equation (1.1).
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5 Infinitely many singularities

If is not hard to show that, typically, the solution u will only have finitely
many singularities. In fact, one can check easily that a sufficient condition for
u to have only finitely many singularities is that

∫

R
Im u0(x) dx is not of the

form 2π+4kπ with k an integer. We now show that, on the other hand, there
are solutions with regular initial data having infinitely many singularities.
This is an immediate consequence of Proposition 5.1 below. We recall that
we denote by W 1,1

0 (R) the space of all functions on R which are absolutely
continuous with the derivative in L1(R). (In particular, constant functions
belong to W 1,1

0 .)

Proposition 5.1. There exists a smooth (complex-valued) function v0 ∈
W 1,1

0 (R) such that v0(−∞) = 1, |v0(x)| ≥ ε0 > 0 for any x ∈ R, and the
solution v of the heat equation with v(·, 0) = v0 vanishes at infinitely many
points (0, τk), with τk → ∞.

Proof. First choose a smooth real-valued odd function w ∈ W 1,1
0 (R) such

that w(−∞) = 1 and w > 0 on (−∞, 0). The solution v1 of the heat equation
with v1(·, 0) = w has a unique zero at x = 0 for each t. We shall next find
a smooth real-valued function z ∈ W 1,1

0 (R) such that z(±∞) = 0, z(0) 6= 0,
and the solution v2 of the heat equation with v2(·, 0) = z vanishes at points
(0, τk) with τk → ∞. From this the conclusion of the proposition follows
upon setting v0 = w + iz.

We first choose sequences Rk > 0, ǫk ∈ (0, 1) with the following properties:

(a1)
∑∞

k=1 ǫk < ∞,

(a2) Rk+1 > Rk and Rk+1ǫk+1 >
∑k

j=1 ǫj(Rj + 1) (k = 1, 2 . . . ).

Next, for each k we choose a smooth function zk such that

(a3) zk ≡ ǫk on [−Rk, Rk], zk ≡ 0 on R \ [−Rk − 1, Rk + 1],

(a4) 0 ≤ zk ≤ ǫk and |z′k| ≤ 2ǫk on R.

We will show that if xk is a suitably chosen sequence, then the function

z(x) =

∞
∑

k=1

(−1)k+1zk(x − xk) (5.1)
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has the desired properties.
The sequence xk will be constructed so that, in particular,

|xj | > |xj−1| + Rj + Rj−1 + 2 (5.2)

for j = 2, 3 . . . . This guarantees that the functions zk( · − xk) have non-
overlapping supports, hence, by (a1), (a3), and (a4), z is a smooth function
in W 1,1

0 (R) satisfying z(±∞) = 0. In addition to (5.2), we need to ensure
that the function

v2(0, t) =
1√
4πt

∫

R

e
−|y|2

4t z(y) dy (5.3)

has infinitely many sign changes.
We shall recursively construct sequences xk, tk, dk such that (−1)k+1xk

tk, dk are nonnegative and increasing with k and the following statement is
satisfied for each k:

(Ik) Relations (5.2) hold for j = 2, . . . , k and, with any choice of xk+1, xk+2, . . .
satisfying (5.2) for j = k + 1, k + 2, . . . and |xk+1| ≥ dk, one has

(−1)j

∫

R

e
−|y|2
4tj z(y) dy < 0, j = 1, . . . , k.

Take x1 = 0, t1 = 1. It is obvious that (I1) is satisfied if d1 is sufficiently
large. We fix such a d1 satisfying also d1 ≥ R1 + R2 + 2.

Assume that xj , tj , dj have been constructed for j = 1, . . . , k. To define
the next terms assume for definiteness that k is odd (in case it is even, the
construction is analogous). Set xk+1 = −dk. Assuming xk+2, xk+3, . . . , are
any numbers satisfying (5.2) for j = k + 2, k + 2, . . . and |xk+2| ≥ dk+1, with
dk+1 to be specified below, we use (a3), (a4) to estimate

∫

R

e
−|y|2

4t z(y) dy =

∞
∑

j=1

(−1)j+1

∫ xj+Rj+1

xj−Rj−1

e
−|y|2

4t zj(y − xj) dy

≤ 2

k
∑

j=1

ǫj(Rj + 1) − ǫk+1

∫ xk+1+Rk+1

xk+1−Rk+1

e
−|y|2

4t dy (5.4)

+

∫

R\[−dk+1+Rk+2+1 , dk+1−Rk+2−1]

e
−|y|2

4t dy.

(5.5)
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In view of (a2), if t = tk+1 > tk is large enough, the expression in (5.4)
is negative. Fixing such a tk+1 and subsequently choosing a large enough
dk+1 > dk + Rk+1 + Rk + 2, we make the whole expression in (5.4), (5.5)
negative. Hence (Ik+1) is satisfied.

It is obvious that with sequences xk and tk resulting from the above
construction, the function z has all the desired properties. In particular,
v2(0, t) has a zero τk in (tk, tk+1) for each k.

Remarks 5.2. (i) It is not difficult to check that with the initial data z
constructed above, the solution v2 of the heat equation has a unique zero
x(t) for each t > 0 (and x(t) changes sign infinitely many times as t → ∞).

(ii) It is conceivable that if the initial condition u0 is compactly supported,
the solution u of equation (1.1) given by the Cole-Hopf transformation will
always have only finitely many singularities. For example, the construction
above cannot be carried out if we demand that z be compactly supported.
This can be seen from the following observation: If z solves the heat equation

in R × (0,∞) with compactly supported initial data and t → z(0, t) has

infinitely many zeros, then z(0, t) = 0 for all t > 0. To see this we recall
that Appell’s transformation z̃ of z is defined in R × (−∞, 0) by z(x, t) =
Γ(x, t)z̃(x/t,−1/t). One can see from formula (2.6) applied to z that z̃ has an
analytic extension to R×R and the assumptions on z imply that t̃ → z̃(0, t̃)
has infinitely many roots accumulating at 0. Hence z̃(0, t̃) = 0 for all t̃, which
implies our statement.
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a valuable discussion.

References

[1] S. Angenent and B. Fiedler, The dynamics of rotating waves in scalar
reaction diffusion equations, Trans. Amer. Math. Soc. 307 (1988), 545–
568.

[2] B. Birnir, An example of blow-up, for the complex KdV equation and
existence beyond the blow-up. SIAM J. Appl. Math. 47 (1987), no. 4, 710–
725.

[3] X.-Y. Chen, A strong unique continuation theorem for parabolic equations,
Math. Ann. 311 (1998), 603–630.

15



[4] A. Friedman, Partial differential equations of parabolic type, Prentice-Hall
Inc., Englewood Cliffs, N.J., 1964.

[5] E. Hopf, The partial differential equation ut + uux = uxx, Comm. Pure
Appl. Math. 3, (1950). 201–230.

[6] T. Kato, Strong Lp-solutions of the Navier-Stokes equation in R
m, with

applications to weak solutions, Math. Z. 187 (1984), no. 4, 471–480.

[7] H. Koch, D. Tataru, Well-posedness for the Navier-Stokes equations, Adv.
Math. 157 (2001), no. 1, 22–35.

[8] D. Li, Y. Sinai, Blow Ups of Complex Solutions of the 3D-Navier-Stokes
System, arXiv.org preprint, physics/0610101.
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