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At the forefront of modern technology, matter structured at
the nanometer and atomic levels increasingly reveals its wave-
like nature. This provides new remarkable opportunities and
challenges in analysis and partial differential equations. In re-
cent years, pushing the limits of fundamental physics, cutting-
edge experiments with ultracold atoms have created new states
of matter and offer the possibility of controlling quantum en-
tanglement, with major potential applications to cryptography
and quantum computing. In engineering, electronic waves
confined in quantum wells have yielded high efficiency LEDs,

which are about to revolutionize the energetics of lighting, as recognized by the 2014 Nobel Prize. At
these scales, even the slightest disorder or irregularity can trigger one the most puzzling and ill-understood
phenomena – wave localization.

What is wave localization? It is an astonishing ability of physical systems to maintain vibrations in small
portions of their original domains of activity while preventing extended propagation. One should not, in this
context, think solely in terms of mechanical vibrations. Light is a particular example of an electromagnetic
wave, wifi is delivered by waves, sound is a pressure wave, and, from the vantage point of quantum physics,
even matter can be perceived as a type of wave. In mathematical terms, localized eigenfunctions ϕ of a
self-adjoint elliptic operator L = −divA∇ + V in a domain Ω satisfy Lϕ = λϕ, where ϕ is extremely close to
zero outside some small subset of Ω. This phenomenon can be triggered by irregularities of the coefficients
of A, disorder in the potential V , special features of the shape of Ω, or an intricate mixture of all of the above.
Over the past century this has been a source of persistent interest in condensed matter physics, engineering,
and mathematics. However, it has remained a mystery whether it is possible to directly translate knowledge
of A, V and Ω into the specific information on the location and frequencies of localized eigenfunctions, or
better yet, to design systems with desired localization patterns.

Figure 1. A network of valleys
of a localization landscape (in red)
and the first five localized eigen-
functions for the Schrödinger oper-
ator with disordered potential.

In 2012, together with M. Filoche, we introduced a new concept of
the “localization landscape” [FM]. This has turned out to have some re-
markable and powerful features. Indeed, in a joint work with D. Arnold,
G. David, M. Filoche, and D. Jerison, we show that the landscape func-
tion, which is defined as a solution to Lu = 1 on Ω, reveals a clear disjoint
partition of Ω into independent regions, and this partition predicts local-
ization domains with exponential accuracy, with the rate of decay gov-
erned by the so-called Agmon metric associated to 1/u [A+2016]. That
is, given any system, one only needs to solve a simple equation Lu = 1
and determine the corresponding “valley lines” to obtain a map of sub-
regions which host the localized eigenfunctions (see Figure 1). Further-
more, modulo this exponentially small error, the part of the spectrum of L
on Ω not exceeding the maximum of 1/u can be fully diagonalized, that
is, bijectively mapped on the combined spectrum of the subregions deter-
mined by the landscape. In particular, an eigenfunction can be massive
simultaneously in two landscape subregions if and only if the eigenvalues
of these subregions are exponentially close (a fairly unlikely event). In this sense, one could view 1/u as
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an effective quantum potential which exhibits clear structure even when V is highly disordered or when V
is absent and the localization is caused by the geometry and/or by coefficients of A. In other words, 1/u
suitably quantifies the uncertainty principle.

Going further, the localization landscape furnishes a new version of the Weyl law. It appears to give
the first universal estimate on the counting function and on the density of states for small eigenvalues, in
the range where the classical Weyl law notoriously fails. In fact, numerical experiments show that already
minima of 1/u give a very good approximation for the bottom of the spectrum, but these observations for
now remain mathematically inaccessible.

Finally, in the intervening years, these results have found immediate applications in theoretical and exper-
imental physics and in energy engineering, to predict the vibration of plates, the spectrum of the bilaplacian
with Dirichlet data, the efficiency and quantum droop of GaN LEDs governed by the Poisson-Schrödinger
self-consistent system, and the spectral properties of the Schrödinger operator with Anderson or Anderson-
Bernoulli potentials in bounded domains.
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